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The long time asymptotics of the time spent on the positive side are discussed for
one-dimensional diffusion processes in random environments. The limiting distribu-
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1 Introduction.

In this paper, we are concerned with the long time asymptotics of the occu-
pation times on the positive side

A(n) =
n∑
i=1

1{Z(i−1)≥0,Z(i)≥0}, n = 1, 2, . . . and
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A(t) =

t∫
0

1[0,∞)(X(s)) ds, t ≥ 0 (1)

for a class of one-dimensional random walks Z = (Z(n)) on Z and diffusion
processes X = (X(t)) on R, respectively, in random environments. For a better
understanding of the problem and results, we would review some recent studies
in the case of usual generalized diffusions on the real line.

Let X = (X(t), Px) be a one-dimensional (generalized) diffusion process on R

with the Feller generator L = d
dm

d
ds

. Here, s : x ∈ R �→ s(x) ∈ R is a strictly
increasing continuous function such that s(0) = 0 and limx→±∞ s(x) = ±∞
and dm(x) is a non-zero positive Radon measure on R. The state space of
X is the support of the measure dm so that X is a birth and death process
when dm is supported on the one-dimensional lattice Z. Note that X is always
conservative and recurrent. For the occupation time (1), the class of possible
limit random variables in law of A(t)/t as t → ∞ coincides with the class of
Lamperti random variables {Yp,α} 0≤p≤1, 0≤α≤1: Yp,α is a [0, 1]–valued random
variable with the Stieltjes transform

E

(
1

λ+ Yp,α

)
=
p(λ+ 1)α−1 + (1 − p)λα−1

p(λ+ 1)α + (1 − p)λα
, λ > 0.

Also, a sufficient condition, which turns out to be necessary and sufficient
when 0 < p < 1, can be given in terms of s(x) and dm(x) for the convergence

1

t
A(t)

d−→ Yp,α as t→ ∞ (2)

to hold (cf. [15]).

When α = 1, Yp,1 is a constant random variable; P (Yp,1 = p) = 1 so that (2)
is a law of large numbers. We have studied in [10] some improvements such as
behaviors of fluctuations 1

t
A(t) − p for these laws of large numbers.

When α = 0, the limit random variable Yp,0 is a Bernoulli random variable;
P (Yp,0 = 1) = 1 − P (Yp,0 = 0) = p. The convergence (2) in this case occurs
when X is recurrent but is nearly transient, or in other words, is apt to localize.
We have studied in [9] its improvement in the log-log scale: For example, for
the diffusion X = (X(t), Px) with generator

L =
1

2

(
d2

dx2
+

x

1 + x2

d

dx

)
on R,

the asymptotic (2) holds with the limit random variable Y 1
2
,0 (under Px for
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any but fixed x) and it can be improved as

1

log t
logA(t)

d−→ U, as t→ ∞ (3)

where U is a [0, 1]-valued random variable with P (U < 1) = P (U = 1) = 1/2;
actually, in this case, the law of U is given by

1

(1 + x)2
1{0≤x<1}dx +

1

2
δ{1}(dx), (4)

(cf. [9], Example 1).

It is in this case of α = 0 that we can see some similarity with a diffusion
process in a random environment because of its localization character. In this
model, we cannot expect the convergence (2) to a Bernoulli random variable
if the environment is frozen; i.e., in the quenched model. However, for the
annealed model in which we average on the environments, the convergence (2)
to a Bernoulli random variable actually takes place. We can further obtain
its improvement in the log-log scale. For example, in the Brox model (cf.

[5]) which is given as Lw = 1
2
ew(x) d

dx

(
e−w(x) d

dx

)
-diffusion Xw = (Xw(t), Pw

x )

on R for a given Brownian path w(x), we have that, under the annealed
probability P 0(·) =

∫
Pw
x (·)P (dw), P (dw) being the Wiener measure over the

paths w : x ∈ R �→ w(x) ∈ R, the convergence (2) holds to the Bernoulli
random variable Y 1

2
,0 and its improvement in the log-log scale is given in the

same way as (3) where U is a [0, 1]-valued random variable with its law given
by 1

2
1{0≤x≤1}dx + 1

2
δ{1}(dx). This can be obtained as a particular and typical

example of results in Theorems 20 and 23 given in Section 4 below.

Finally, we summarize the contents of this paper. In Section 2, we develop
a general theory for the growth in time, in the log scale, of a class of one-
dimensional Brownian additive functionals. In Section 3, the results in Section
2 will be applied to obtain general results on asymptotic growth in time, in
the log scale, of occupation times on the positive side of a family of one-
dimensional diffusion processes depending on a parameter λ > 0. In Section 4,
we discuss the long time asymptotics of occupation times on the positive side
for diffusions and random walks in random environments by appealing to the
general results in Section 3. Here, the scaling property, i.e., a self-similarity,
is essential in reducing the problem to results obtained in Section 3, so that
we fundamentally assume that the environment is self-similar in the case of
diffusions and is asymptotically self-similar in the case of random walks. Our
model in Subsection 4.1 is a particular case of models introduced and studied
by Y. Suzuki [14]; the environments on the positive and the negative side are
mutually independent symmetric stable processes which may have different
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exponents. The case of random walks will be studied in Subsection 4.2 by
imbedding them in birth and death processes with asymptotically self-similar
environments (cf. Kawazu-Tamura-Tanaka [11], Hu-Zhan [6]).

2 Asymptotics of a family of Brownian additive functionals.

In this section, we prepare some results on long time asymptotics of a family
of increasing Brownian additive functionals parametrized by λ > 0. These
results will be a basic tool to obtain results on occupation times for random
walks and diffusions in random environments in Section 4. Before proceeding,
we set up a general framework.

Let Φ be the set of all càdlàg nondecreasing functions ϕ : [0,∞) � x �→ ϕ(x) ∈
[0,∞). We set always ϕ(0−) = 0 for ϕ ∈ Φ. We identify ϕ with its associated
Lebesgue-Stieltjes measure dϕ, which is the positive Radon measure on [0,∞)
such that (dϕ)([0, a]) = ϕ(a), a ∈ [0,∞). For ϕλ, ϕ ∈ Φ, we define ϕλ → ϕ
in Φ as λ → ∞, or denote it as limλ→∞ ϕλ = ϕ, if limλ→∞ ϕλ(x) = ϕ(x) for
every x ∈ [0,∞) such that ϕ(x) = ϕ(x−), equivalently, for every x in a dense
subset of [0,∞). This definition can also be stated as follows: limλ→∞ ϕλ = ϕ
in Φ if and only if; for every x ∈ [0,∞),

ϕ(x−) ≤ lim inf
λ→∞

ϕλ(x−) ≤ lim sup
λ→∞

ϕλ(x) ≤ ϕ(x). (5)

As is well-known, ϕλ → ϕ in Φ as λ→ ∞ if and only if

lim
λ→∞

∫
[0,∞)

f(x) dϕλ(x) =
∫

[0,∞)

f(x) dϕ(x)

for every continuous function f on [0,∞) with a compact support. The com-
posite ϕ ◦ ψ, for ϕ, ψ ∈ Φ, is defined as usual by ϕ ◦ ψ(x) = ϕ(ψ(x)), x ∈
[0,∞). It does not hold, in general, that ϕλ → ϕ and ψλ → ψ in Φ imply
ϕλ ◦ ψλ → ϕ ◦ ψ in Φ. We can, however, deduce from (5) that ϕλ → ϕ and
ψλ → ψ in Φ imply the following:

lim
λ→∞

ϕλ(ψλ(x)) = ϕ(ψ(x))

for everyx ∈ [0,∞) such that ϕ(ψ(x−)−) = ϕ(ψ(x)). (6)

Thus we have

Lemma 1 Let ϕλ, ϕ, ψλ, ψ ∈ Φ. If ϕλ → ϕ and ψλ → ψ in Φ and if the set
{x > 0 |ϕ(ψ(x−)−) = ϕ(ψ(x))} is dense in [0,∞), then ϕλ ◦ ψλ → ϕ ◦ ψ in
Φ.
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It is well-known that there exits a metric ρ on Φ such that Φ is a Lusin space
(a standard measurable space, i.e., a Borel subset of a Polish space with the
relative topology, cf. [3] or [13]) and, for ϕλ, ϕ ∈ Φ, ϕλ → ϕ in Φ is equivalent
to limλ→∞ ρ(ϕλ, ϕ) = 0.

Let
Φ∞ = {ϕ ∈ Φ | lim

x→∞ϕ(x) = ∞}.
Φ∞ is a Borel subset of Φ. For ϕ ∈ Φ∞, we define the right-continuous inverse
ϕ−1 ∈ Φ∞ by

ϕ−1(x) = inf{y > 0 |ϕ(y) > x}, x ∈ [0,∞).

It is easy to see that (ϕ−1)−1 = ϕ for any ϕ ∈ Φ∞ and, (ψ ◦ ϕ)−1 = ϕ−1 ◦ ψ−1

if D(ϕ−1) ∩D(ψ) = ∅, where

D(ϕ) = {x ∈ [0,∞) |ϕ(x) �= ϕ(x−)}.
Also, it holds that, for ϕλ, ϕ ∈ Φ∞,

ϕλ → ϕ in Φ if and only if ϕ−1
λ → ϕ−1 in Φ (7)

We introduce the following notation: For λ > 0, eλ ∈ Φ∞ is defined by

eλ(x) = eλx − 1, x ∈ [0,∞). (8)

Thus,

e−1
λ (x) =

1

λ
log(x+ 1), x ∈ [0,∞). (9)

Now we consider Φ-valued random variables. Since Φ is a Lusin space so that
Φ is a Borel subset of a Polish space Φ̃, a Φ–valued random variable can be
identified with a Φ̃–valued random variable. Thus Φ–valued random variables
may be regarded as random variables with values in a Polish space.

For Φ–valued random variables Xλ, λ > 0 and X, Xλ
d−→ X as λ → ∞

denotes the convergence in law, that is, the law on Φ of Xλ converges in the
weak (or narrow in the terminology of [4]) topology to the law on Φ of X.

Also, Xλ
p−→ X denotes the convergence in probability, that is, P (ρ(Xλ, X) >

ε) → 0 as λ → ∞ for every ε > 0. Similarly, Xλ −→ X, a.s. denotes the
almost-sure convergence, that is, P (ρ(Xλ, X) → 0 as λ→ ∞) = 1.

The following implication is well-known:

Xλ −→ X, a.s. ⇒ Xλ
p−→ X ⇒ Xλ

d−→ X.
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Conversely, the following Skorohod realization theorem (cf. [7], p.9) holds: If

Xλ
d−→ X as λ→ ∞, then we can realize X̃λ and X̃ on a suitable probability

space in such a way that X̃λ
d
= Xλ for each λ > 0, X̃

d
= X and X̃λ −→ X̃, a.s.,

as λ→ ∞. Therefore, problems on the convergence in law may be reduced to

the discussions on almost-sure convergence. Note also that Xλ
d→ X implies

Xλ(x)
d→ X(x) for each x such that P (X(x) = X(x−)) = 1.

The proof of the following Proposition is easy and omitted.

Proposition 2 (i) If X is a deterministic Φ–valued random variable so that

X ≡ ϕ for some ϕ ∈ Φ, then Xλ
d→ X as λ → ∞ if and only if Xλ

p→ X as
λ→ ∞.

(ii) For a fixed ϕ ∈ Φ, Xλ
p→ ϕ as λ→ ∞ if and only if, for every x ∈ [0,∞)

such that ϕ(x) = ϕ(x−) (equivalently, for every x in a dense subset of [0,∞)),

Xλ(x)
p→ ϕ(x) as λ→ ∞ as real random variables.

Let B = (B(t)) be BM0(R); a one-dimensional standard Brownian motion
starting at 0 and {�(t, x); t ≥ 0, x ∈ R} be the local time of B with respect to
the measure 2 dx:

t∫
0

1E(B(s)) ds = 2
∫
E

�(t, x) dx, E ∈ B(R).

Suppose we are given m̃λ = (m̃λ(x)) ∈ Φ for each λ > 0. Define a Φ-valued
random variables Sλ by

Sλ(t) =
∫

[0,∞)

�(t, x) dm̃λ(x), t ≥ 0. (10)

Lemma 3 Assume that, for some c = (c(x)) ∈ Φ,

e−1
λ ◦ m̃λ ◦ eλ −→ c in Φ as λ→ ∞. (11)

Then

e−1
λ ◦ Sλ ◦ e2λ p−→ ξ in Φ as λ→ ∞, (12)

where ξ ∈ Φ (deterministic) is defined by

ξ(t) = t+ c(t), t ≥ 0. (13)

Proof. By Proposition 2 (ii), it is sufficient to show that, for any t ∈ [0,∞)
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such that ξ(t) = ξ(t−),

1

λ
log{Sλ(e2λt − 1) + 1} p−→ ξ(t) as λ→ ∞. (14)

We have the following by the scaling property of the Brownian local time; for
each c > 0,

{�(t, x); t ≥ 0, x ≥ 0} d
=
{ 1√

c
�(ct,

√
c x); t ≥ 0, x ≥ 0

}
.

Therefore,

1

λ
log{Sλ(e2λt)}=

1

λ
log

{ ∫
[0,∞)

�(e2λt, x) dm̃λ(x)
}

d
=

1

λ
log

{ ∫
[0,∞)

eλt �(1, e−λtx) dm̃λ(x)
}

= t+
1

λ
log

{ ∫
[0,∞)

�(1, x) dm̃λ(e
λtx)

}
. (15)

First, note that

the right-hand side (RHS) of (15) ≤ t+
1

λ
log{a · m̃λ(e

λtM)}, a.s.,

where M = sup0≤u≤1B(u) and a = supx∈[0,∞) �(1, x). Since t is chosen from
the continuity points of ξ, it is a continuity point of c and hence, we have by
(11) that

1

λ
log m̃λ(e

λt) → c(t), as λ→ ∞.

Then we can deduce that

lim sup
λ→∞

RHS of (15) ≤ t+ c(t) = ξ(t).

Secondly, note that, almost surely, �(1, 0) > 0 and x �→ �(1, x) is continuous.
Hence, almost surely, there exists α > 0 such that

b := inf
0≤x≤α

�(1, x) >
1

2
�(1, 0) > 0.

From this, we have

RHS of (15) ≥ t+
1

λ
log{b · m̃λ(e

λt · α)}, a.s.,
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and hence, we can deduce that

lim inf
λ→∞

RHS of (15) ≥ ξ(t), a.s. �

From now on, we are particularly interested in the case when sλ ∈ Φ and
mλ ∈ Φ are given such that sλ ∈ Φ∞ and x �→ sλ(x) is strictly increasing and
continuous. And m̃λ is defined by

m̃λ = mλ ◦ s−1
λ , i.e., m̃λ(x) = mλ(s

−1
λ (x)). (16)

In such a case, we have the Feller generator Lλ = d
dmλ

d
dsλ

on [0,∞) and the

reflecting diffusion process Xλ = (Xλ(t), Px) on [0,∞) is uniquely associated
with Lλ. Note that Xλ under P0 is given from BM0(R) B = (B(t)) by

Xλ(t) = s−1
λ (B(S−1

λ (t))), t ≥ 0.

We assume that, for some a = (a(x)) ∈ Φ∞ and b = (b(x)) ∈ Φ,

(A.1) e−1
λ ◦ sλ −→ a in Φ as λ→ ∞,

(A.2) e−1
λ ◦mλ −→ b in Φ as λ→ ∞.

Noting (6) and the relation e−1
λ ◦ m̃λ ◦ eλ = (e−1

λ ◦mλ) ◦ (e−1
λ ◦ sλ)−1, we can

deduce the following

Lemma 4 Under the assumptions (A.1) and (A.2), (11) holds with c = b◦a−1

if the following condition

b(a−1(x−)−) = b(a−1(x)) (17)

holds at every continuity point x of b ◦ a−1. In particular, (11) holds if the
following assumption (A.3) is satisfied:

(A.3) The set {x ∈ [0,∞) | b(a−1(x−)−) = b(a−1(x))} is dense in [0,∞).

The following theorem immediately follows from Lemmas 3 and 4.

Theorem 5 Let sλ ∈ Φ and mλ ∈ Φ be given as above. Under the assumptions
(A.1), (A.2) and (A.3), it holds that

e−1
λ ◦ Sλ ◦ e2λ p−→ ξ in Φ as λ→ ∞, (18)
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where

ξ(t) = t+ b(a−1(t)), t ≥ 0. (19)

Example 6 Let s(x) = x and m(x) = cx
1
α
−1 where c > 0 and 0 < α < 1.

Set sλ(x) = s ◦ eλ and mλ = m ◦ eλ, λ > 0. Then (A.1) and (A.2) hold
with a(x) = x and b(x) = ( 1

α
− 1)x. Then (A.3) obviously holds and hence,

by Theorem 5, we have e−1
λ ◦ Sλ ◦ e2λ p−→ ξ in Φ as λ → ∞. Note that

m̃λ = m ◦ s−1 = m and ξ(x) = x+ b(a−1(x)) = x
α

so that this implies that

1

λ
log

( e2λt∫
0

(B(s) ∨ 0)
1
α
−2ds

)
p−→ t

α
as λ→ ∞.

Example 7 Let w : [0,∞) → R be a càdlàg function such that w(0) = 0,
lim supu→∞ w(u) = ∞ and

∫∞
0 eλw(u)du = ∞ for every λ > 0. Set

sλ(x) =

x∫
0

eλw(u)du and mλ(x) = 2

x∫
0

e−λw(u)du. (20)

Then (A.1) and (A.2) hold with

a(x) = w(x) := sup
0≤u≤x

w(u) and b(x) = w(x) := sup
0≤u≤x

(−w(u)). (21)

This fact will be proved under a more general situation in Example 8 below.
Then c(x) = b(a−1(x)) = w(w−1(x)) and hence (A.3) in this case means that
the set

{x ∈ [0,∞)|w(w−1(x−)−) = w(w−1(x))} (22)

is dense in [0,∞). Hence, by Theorem 5, the convergence of Φ-valued random
variables

1

λ
logSλ(e

2λt)
p−→ ξ(t) = t+ w(w−1(t)) as λ→ ∞ (23)

can be concluded if the set defined by (22) is dense in [0,∞).

Example 8 This is a slight generalization of Example 7: This result will be
used in Subsection 4.2 through Example 14 of Section 3. Suppose we are given
two families of càdlàg functions wλ : [0,∞) → R and vλ : [0,∞) → R for
λ > 0 , each satisfying the following conditions; denoting by fλ either wλ or
vλ, fλ(0) = 0, lim supx→∞ fλ(x) = ∞ and

∫∞
0 eλfλ(u) du = ∞. Suppose also

φλ ∈ Φ, λ > 0, is given and assume φλ(x) → x for every x ∈ [0,∞) as
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λ→ ∞. Assume further that a càdlàg function w : [0,∞) → R is given such
that w(0) = 0, lim supx→∞ w(x) = ∞ and the following holds:

wλ → w in J1 and vλ → w in J1 asλ→ ∞, (24)

where J1 is the Skorohod topology (cf. [12]) on the space of càdlàg functions.

Under these assumptions, sλ and mλ are defined by

sλ(x) =

x∫
0

eλwλ(u)du and mλ(x) =

φλ(x)∫
0

{e−λwλ(u) + e−λvλ(u)}du. (25)

Then, if a(x) and b(x) are defined by (21) using this limit function w, the
same conclusions as Example 7 hold: For example, the proof of “e−1

λ ◦ sλ → w
in Φ as λ → ∞ ” is as follows: Let x > 0 be such that w(x) = w(x−).
Since wλ → w in J1-metric, it is easy to see that, for any ε > 0, there exist
0 < x1 < x2 < x and λ0 > 0 such that wλ(u) ≥ w(x) − ε for all u ∈ [x1, x2]
and λ > λ0. Then

lim inf
λ→∞

1

λ
log

( x∫
0

eλwλ(u)du
)

≥ lim inf
λ→∞

1

λ
log

(
(x2 − x1)e

λ(w(x)−ε)) = w(x) − ε.

On the other hand, wλ → w in J1 implies wλ → w in J1 and hence,

lim sup
λ→∞

1

λ
log

( x∫
0

eλwλ(u)du
)
≤ lim sup

λ→∞

1

λ
log (xeλwλ(x)) = w(x).

The proof of “e−1
λ ◦mλ → w in Φ as λ→ ∞” is similar.

Remark 9 The same conclusion obviously holds if sλ and mλ are modified as

sλ(x) =

x∫
0

eλw(u)du · ρ1(λ) and

mλ(x) =

φλ(x)∫
0

{e−λwλ(u) + e−λvλ(u)}du · ρ2(λ)

where ρi(λ) > 0 and 1
λ

log ρi(λ) → 0 as λ→ ∞, i = 1, 2. A typical example is
the case when ρi(λ) = αiλ

βi with αi > 0 and βi ≥ 0, i = 1, 2.
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3 Asymptotics of occupation times on the positive side of a class
of diffusions on R.

Suppose we are given, for each λ > 0, a strictly increasing and continuous
function sλ : R → R and a positive Radon measure mλ(dx) on R. We assume
that limx→−∞ sλ(x) = −∞ and limx→∞ sλ(x) = ∞ for each λ > 0. Then the
unique recurrent (generalized) diffusion Xλ = (Xλ(t), Px) on R is associated
with the Feller generator Lλ = d

dmλ

d
dsλ

: Strictly speaking, the state space of
Xλ is the support Eλ of the measure mλ. We are interested in the long time
asymptotic behavior of the occupation time

Aλ(t) =

t∫
0

1[0,∞)(Xλ(s)) ds, t ≥ 0. (26)

In order to apply the results in Section 2, we define sλ± and mλ
± as elements in

Φ as follows:

sλ+(x) = sλ(x) − sλ(0), sλ−(x) = sλ(0) − sλ(−x), x ≥ 0 (27)

and

mλ
+(x) = mλ([0, x]), mλ

−(x) = mλ([−x, 0)), x ≥ 0. (28)

Define

m̃λ
+ = mλ

+ ◦ (sλ+)−1 and m̃λ
− = mλ

− ◦ (sλ−)−1. (29)

For a BM0(R) B = (B(t)) with the local time �(t, x), set

S+
λ (t) =

∫
[0,∞)

�(t, x) dm̃λ
+(x), S−

λ (t) =
∫

[0,∞)

�(t,−x) dm̃λ
−(x), (30)

and

Sλ(t) = S+
λ (t) + S−

λ (t). (31)

We assume that (sλ+, m
λ
+) and (sλ−, m

λ
−) satisfy the assumptions (A.1), (A.2)

and (A.3) of Section 2; namely, for each of + and −,

(A.1)’ e−1
λ ◦ sλ± −→ a± in Φ as λ→ ∞, with a± ∈ Φ∞
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(A.2)’ e−1
λ ◦mλ

± −→ b± in Φ as λ→ ∞

and

(A.3)’ the sets {x ∈ [0,∞) | b+(a−1
+ (x−)−) = b+(a−1

+ (x))}

and {x ∈ (0,∞) | b−(a−1
− (x−)−) = b−(a−1

− (x))} are dense in [0,∞).

Then, by Theorem 5, we have the following joint convergence:(
e−1
λ ◦ S+

λ ◦ e2λ, e−1
λ ◦ S−

λ ◦ e2λ
)

p−→ (ξ+, ξ−) in Φ × Φ as λ→ ∞ (32)

where

ξ+(t) = t+ b+(a−1
+ (t)) and ξ−(t) = t+ b−(a−1

− (t)). (33)

By a standard argument using the inequality

S+
λ (t) ∨ S−

λ (t) ≤ S+
λ (t) + S−

λ (t) ≤ 2
(
S+
λ (t) ∨ S−

λ (t)
)
,

we deduce from (32) that

e−1
λ ◦ Sλ ◦ e2λ p−→ ξ+ ∨ ξ− in Φ as λ→ ∞ (34)

where ξ+ ∨ ξ− ∈ Φ is defined by

(ξ+ ∨ ξ−)(t) = max{ξ+(t), ξ−(t)}. (35)

Summing up these results, we have obtained the following

Theorem 10 Assume that sλ and mλ satisfy the assumptions (A.1)’, (A.2)’
and (A.3)’. Then we have the following joint convergence:

(
e−1
λ ◦ S+

λ ◦ e2λ, e−1
λ ◦ S−

λ ◦ e2λ, e−1
λ ◦ Sλ ◦ e2λ

)
p−→ (ξ+, ξ−, ξ+ ∨ ξ−) in Φ × Φ × Φ as λ→ ∞ (36)

where ξ+ and ξ− are defined by (33).

As in [9], we have

Aλ = S+
λ ◦ S−1

λ , i.e., Aλ(t) = S+
λ (S−1

λ (t)), t ≥ 0. (37)

12



By the Skorohod realization theorem, we can realize, on a suitable probability
space, a family of Φ-valued random variables S̃+

λ , S̃
−
λ such that, for each λ,

(S+
λ , S

−
λ )

d
= (S̃+

λ , S̃
−
λ ) and, setting S̃λ = S̃+

λ + S̃−
λ ,

(
e−1
λ ◦ S̃+

λ ◦ e2λ, e−1
λ ◦ S̃−

λ ◦ e2λ, e−1
λ ◦ S̃λ ◦ e2λ

)
−→ (ξ+, ξ−, ξ+ ∨ ξ−) a.s. in Φ × Φ × Φ as λ→ ∞. (38)

Hence, if we set Ãλ(t) = S̃+
λ (S̃−1

λ (t)), then we have, as Φ-valued random vari-
ables,

Aλ
d
= Ãλ for each λ > 0. (39)

Note that

e−1
λ ◦ S̃+

λ ◦ e2λ ◦ (e−1
λ ◦ S̃λ ◦ e2λ)−1

= e−1
λ ◦ S̃+

λ ◦ (S̃λ)
−1 ◦ eλ = e−1

λ ◦ Ãλ ◦ eλ.

Also, note that (ξ+ ∨ ξ−)−1(t) is continuous in t because ξ+ and ξ−, hence
ξ+ ∨ ξ−, are strictly increasing. Then, by noting the general fact concerning
(6) and (7), we can now deduce from (38) the following: If t ∈ [0,∞) is such
that

ξ+((ξ+ ∨ ξ−)−1(t)) = ξ+((ξ+ ∨ ξ−)−1(t) − ), (40)

then,

(e−1
λ ◦ Ãλ ◦ eλ)(t)

(
=

1

λ
log

{
Ãλ(e

λt − 1) + 1
})

−→ ξ+((ξ+ ∨ ξ−)−1(t)) as λ→ ∞, a.s. (41)

From this fact, we obtain the following:

Theorem 11 We assume that sλ and mλ satisfy (A.1)’, (A.2)’ and (A.3)’.
If t ∈ [0,∞) is such that

ξ+((ξ−)−1(t) − ) = ξ+((ξ−)−1(t)), (42)

then it holds that

1

λ
logAλ(e

λt)
p−→ ξ+((ξ−)−1(t)) ∧ t, as λ→ ∞. (43)

13



Proof. It is sufficient to prove in the above realization that, if (42) holds,
then,

1

λ
log Ãλ(e

λt) −→ ξ+((ξ−)−1(t)) ∧ t, as λ→ ∞, a.s. (44)

If (ξ−)−1(t) ≤ (ξ+)−1(t), then (40) follows from (42) and hence, (44) follows
from (41).

Next, consider the case when

(ξ−)−1(t) > (ξ+)−1(t) (45)

holds. Setting, for simplicity,

ϕ±
λ (s) =

1

λ
log S̃±

λ (e2λs) and ψλ(s) =
1

λ
log S̃λ(e

2λs),

we have

(ϕ±
λ )−1(s) → (ξ±)−1(s) and ψλ(s)

−1 → (ξ+)−1 ∧ (ξ−)−1(s)

as λ → ∞ uniformly in s on any bounded interval, a.s. (Note that (ξ±)−1

and (ξ+)−1 ∧ (ξ−)−1 are continuous because ξ+ and ξ− are strictly increasing).
Then, for fixed t satisfying (42) and (45), we have, from the inequality

S̃λ(s) = S̃+
λ (s) + S̃−

λ (s) ≤ 2(S̃+
λ (s) ∨ S̃−

λ (s)),

that, for some λ0 large enough,

ψ−1
λ (t) ≥ (ϕ+

λ )−1
(
t− log 2

λ

)
∧ (ϕ−

λ )−1
(
t− log 2

λ

)
= (ϕ+

λ )−1
(
t− log 2

λ

)
,

for all λ > λ0. Hence

ϕ+
λ (ψ−1

λ (t)) ≥ ϕ+
λ

(
(ϕ+

λ )−1
(
t− log 2

λ

))
−→ t, as λ→ ∞

and therefore,

lim inf
λ→∞

1

λ
log Ãλ(e

λt) = lim inf
λ→∞

ϕ+
λ (ψ−1

λ (t)) ≥ t, a.s..

On the other hand, we have obviously,

lim sup
λ→∞

1

λ
log Ãλ(e

λt) ≤ t, a.s.,

14



so that

lim
λ→∞

1

λ
log Ãλ(e

λt) = t = ξ+((ξ−)−1(t)) ∧ t, a.s.
in this case as well. �

Example 12 This example corresponds to Example 6 of Section 2. We con-
sider the L = d

dm
d
ds

-diffusion process X = (X(t), Px) on R where s(x) = x, x ∈
R, and

m(x) =

{
c+x

1
α
−1, x ≥ 0,

−c−(−x) 1
β
−1, x < 0,

for some c+ > 0, c− > 0 and 0 < α < 1, 0 < β < 1. Let s+(x) = s−(x) = x for

x ≥ 0 and m+(x) = c+x
1
α
−1, m−(x) = c−x

1
β
−1, x ≥ 0. Set s±λ = s± ◦ eλ and

m±
λ = m± ◦ eλ. From Example 6, we have ξ+(x) = x

α
and ξ−(x) = x

β
so that

ξ+((ξ−)−1(t)) =
β

α
t, t ≥ 0.

Hence

ξ+((ξ−)−1(t)) ∧ t =

{
β
α
t, β < α,

t, α ≤ β.

In this case, the scale sλ on R is determined by sλ(x) = s+
λ (x), x ≥ 0 and

sλ(x) = −s−λ (−x), x < 0. Similarly the speed measure dmλ on R is determined
by mλ([0, x]) = m+

λ (x), x ≥ 0 and mλ([x, 0]) = m−
λ (−x), x < 0. Then, if

Xλ = (Xλ(t), P
λ
x ) is the Lλ = d

dmλ

d
dsλ

-diffusion, we have

{Xλ(t)} d
= {s−1

λ (X(t))}

and hence {Aλ(t)} d
= {A(t)}. Thus, from Theorem 3.2, we can deduce that, as

λ→ ∞,

1

λ
logA(eλt) −→

{
β
α
t, β < α,

t, α ≤ β,
(46)

in the sense of Φ-valued random variables and also, in the sense of finite
dimensional distributions. In particular, we have

logA(t)

log t
−→

{
β
α
, β < α,

1, α ≤ β.
(47)

This is an improvement of the law convergence

A(t)

t

p−→
{

0, β < α,
1, α ≤ β,

as t→ ∞.
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Example 13 This example corresponds to Example 7 of Section 2. Let w :
R � t �→ w(t) ∈ R be a càdlàg function such that

w(0) = w(0−) = 0, lim sup
u→∞

w(u) = lim sup
u→−∞

w(u) = ∞,

lim inf
u→∞ w(u) = lim inf

u→−∞ w(u) = −∞
and

∞∫
0

eλw(u)du =

0∫
−∞

eλw(u)du = ∞ for every λ > 0.

Set

sλ(x) =

x∫
0

eλw(u)du, −∞ < x <∞ (48)

and

mλ(x) = 2

x∫
0

e−λw(u)du, −∞ < x <∞, (49)

so that mλ(dx) = dmλ(x) = 2e−λw(x)dx. Xλ = (Xλ(t), Px) is the recurrent
diffusion process on R associated with the Feller generator Lλ = d

dmλ

d
dsλ

. Let

Aλ(t) =
∫ t
0 1[0,∞)(Xλ(s)) ds, λ > 0. In order to apply the results in Example

7, we define sλ±,mλ
±,w±, and w± as elements in Φ;

sλ+(x) =

x∫
0

eλw(u) du, sλ−(x) =

0∫
−x

eλw(u) du, x ≥ 0, (50)

mλ
+(x) = 2

x∫
0

e−λw(u) du, mλ
−(x) = 2

0∫
−x

e−λw(u) du, x ≥ 0. (51)

We define w± : [0,∞) → R by

w+(x) = w(x) and w−(x) = w(−x− 0). (52)

Then w± and w± are defined by (21); namely, for each of + and −,

w±(x) = sup
0≤u≤x

w±(u) and w±(x) = sup
0≤u≤x

( − w±(u)). (53)

Then (A.1)’ and (A.2)’ hold with a± and b± defined by (21) through w±,
respectively. (A.3)’ holds if the following holds:
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The sets
{
x ∈ [0,∞) |w+((w+)−1(x−)−) = w+((w+)−1(x))

}
and

{
x ∈ [0,∞) |w−((w−)−1(x−)−) = w−((w−)−1(x))

}
are both dense in [0,∞). (54)

Hence, by Theorem 10, we have the following conclusion: Assume that (54)
holds. Let ξ± ∈ Φ∞ be defined by

ξ+(t) = t+ w+ ◦ w+
−1(t) and ξ−(t) = t+ w− ◦ w−−1(t), t ≥ 0. (55)

If t is such that

ξ+((ξ−)−1(t) − ) = ξ+((ξ−)−1(t)), (56)

then it holds that

1

λ
logAλ(e

λt)
p−→ ξ+((ξ−)−1(t)) ∧ t, λ→ ∞. (57)

Example 14 This is a modification of Example 13, which corresponds to
that in Example 8 of Section 2. Suppose we are given, for each of + and
−, and for λ > 0, families w±

λ , v
±
λ , w

± and φλ± satisfying the same conditions
as wλ, vλ, w and φλ in Example 8. Then, we have s±λ and m±

λ , respectively, in
the same way as (25) in Example 8. Now, these can be extended to sλ and
mλ on R by setting sλ(x) = s+

λ (x), x ≥ 0 and sλ(x) = −s−λ (−x), x < 0, and
mλ(x) = m+

λ (x), x ≥ 0 and mλ(x) = −m−
λ (−x−0), x < 0. Hence we have the

Feller generator Lλ = d
dmλ

d
dsλ

on R and the associated recurrent (generalized)

diffusion Xλ = (Xλ(t), Px) on the support of dmλ. Then, for the occupation
time Aλ(t) =

∫ t
0 1[0,∞)(Xλ(u)) du, we have the same conclusion as in Exam-

ple 13; in particular, the limit process can be described in terms of the limit
function w± on [0,∞).

Remark 15 In Examples 13 and 14, we have obviously the same conclusion
if s±λ and m±

λ are replaced, respectively, by those multiplied by some ρ(λ) > 0
such that limλ→∞ 1

λ
log ρ(λ) = 0. A typical example is the case ρ(λ) = c1λ

c2

with positive constants c1 and c2.

4 Long time asymptotics of occupation times for diffusions and
random walks in random environments

We would apply the results of Section 3 to the study of the long time asymp-
totic behaviors of occupation times on the positive side for diffusions on R

and random walks on Z in random environments.
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4.1. The case of Brox model and its generalization to stable envi-
ronments.

Let w : [0,∞) → R be a càdlàg function such that w(0) = 0, lim supu→∞ w(u)
= ∞ and

∫∞
0 eλw(u)du = ∞ for every λ > 0. We denote the totality of such

functions by W+, which is a Lusin space under the Skorohod topology. For a
pair w = (w+, w−) ∈ W+ ×W+ =: W , define sw± ∈ Φ∞ and mw

± ∈ Φ, for each
of + and −, by

sw±(x) =

x∫
0

ew±(u)du and mw
±(x) = 2

x∫
0

e−w±(u)du. (58)

These sw± and mw
± determine the scale sw and the speed measure dmw on R;

sw(x) = 1{x≥0}sw+(x) − 1{x<0}sw−(−x) (59)

and

dmw(x) = 2
{
1{x≥0}e−w+(x) dx+ 1{x<0}e−w−(−x) dx

}
. (60)

Then we have the Feller generator Lw = d
dmw

d
dsw and the unique recurrent

diffusion Xw = (Xw(t), Pw
x ) on R associated with Lw. We suppose that Xw is

realized on the space Ω of all continuous functions ω : [0,∞) → R as Xw(t) =
ω(t) so that Pw

x is the Borel probability on Ω concentrated on {ω |ω(0) = x}.

Let 0 < α+ ≤ 2 and 0 < α− ≤ 2. Let (X+(t), X−(t)) be a pair of mutually
independent one-dimensional symmetric stable processes X+(t) and X−(t) of
index α+ and α−, respectively, with X+(0) = X−(0) = 0, so that

E[ei(ξ+X+(t)+ξ−X−(t))] = e−(c+|ξ+|α++c−|ξ−|α−)t, ξ+, ξ− ∈ R

for some positive constants c+ and c−. The values c+ and c− are irrele-
vant in future discussions. It is well-known that lim supt→∞X±(t) = ∞ and∫∞
0 eλX±(t)dt = ∞ for every λ > 0 almost surely, so that (X+(t), X−(t))

is a W = W+ × W+-valued random variable. We denote its law on W by
Pα+,α−(dw). Then we have a stochastic process X = (X(t), P x) realized on
Ω ×W where X(t) = ω(t), ω ∈ Ω, and P x(dω, dw) = Pw

x (dω) · Pα+,α−(dw).
This model has been introduced by Y. Suzuki ([14]): Indeed, she introduced a
more general model in which Pα+,α− is the law of the pair of mutually indepen-
dent self-similar processes on R with index α+ > 0 and α− > 0, respectively.
We restrict ourselves to the case of the pair of independent symmetric stable
processes: As we shall see, this restriction is only needed below in verifying
Lemmas 18 and 19, and in obtaining an explicit formula for the limit law in
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Theorem 23. The case of mutually independent Wiener processes is well-known
as the Brox model (cf. [5]).

For w = (w+, w−) ∈ W (= W+ ×W+) and λ > 0, we introduce, for each of +
and −,

sλ,w± (x) = λα±
x∫

0

eλw±(u)du, x ≥ 0

and

mλ,w
± (x) = 2λα±

x∫
0

e−λw±(u)du, x ≥ 0.

These sλ,w± andmλ,w
± determine the scale swλ and the speed measure dmw

λ on R in
the same way as (59) and (60) above. Then, we have the unique Lλ,w = d

dmw
λ

d
dsw

λ
-

diffusion process Xλ,w =
(
X(t), P λ,w

x

)
on R which we realize on Ω as X(t) =

ω(t), ω ∈ Ω. Also we have the stochastic processX
λ

=
(
X
λ
(t), P

λ
x

)
realized on

Ω ×W where X
λ
(t) = ω(t), ω ∈ Ω, and P

λ
x(dω, dw) = P λ,w

x (dω)Pα+,α−(dw).

Let, for a > 0 and b > 0, Ta,b : R → R be a homeomorphism on R defined by

Ta,b(x) = a · 1{x≥0} · x+ b · 1{x<0} · x.

Lemma 16 For each λ > 0,(
Tλ−α+ ,λ−α− (X), P 0

)
d
=
(
X
λ
, P

λ
0

)
. (61)

Proof. Generally, if Y = (Y (t), Px) is L = d
dm

d
ds

-Feller diffusion on R and

T : R → R is a homeomorphism of R, then T (Y ) = (T (Y (t)), Px) is L̃ = d
dm̃

d
ds̃

-
Feller diffusion on R with dm̃ = d(m ◦ T−1) and s̃ = s ◦ T−1. Using this fact
and the self-similarity of stable processes:{(

w+(λα+t), w−(λα−t), Pα+,α−

)}
d
=
{(
λw+(t), λw−(t), Pα+,α−

)}
,

(61) is easily concluded. �

Corollary 17 If

A(t) =
∫ t
0 1[0,∞)(X(u))du and Aλ(t) =

∫ t
0 1[0,∞)(Xλ(u))du, then, for each λ >

0, we have (
{A(t)}t≥0, P 0

)
d
=
(
{Aλ(t)}t≥0, P

λ
0

)
.

The limiting property of Aλ(e
λt) under P

λ
0 as λ→ ∞ can be studied by results

in Example 13 and Remark 15. For w = (w+, w−) ∈ W+ × W+(= W ), we
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define ξ+(t) and ξ−(t) by (55). Note that these may be regarded as stochastic

processes under P 0 as well as under P
λ
0 on Ω ×W .

Lemma 18 Under Pα+,α− (and hence, under P
λ
0), (54) holds almost surely.

Proof. Note first that w+ : [0,∞) � x �→ w+(x) ∈ R and w− : [0,∞) � x �→
w−(x) ∈ R are mutually independent stable processes under Pα+,α− . Then,
by known properties of stable processes, we can easily see that, for each fixed
x ≥ 0, it holds a.s.(Pα+,α−) that

w+((w+)−1(x−) − ) = w+((w+)−1(x))

and
w−((w−)−1(x−) − ) = w−((w−)−1(x)).

By a standard Fubini argument, we deduce that these identities hold for almost
all x ∈ [0,∞), Pα+,α−-almost surely. Thus (54) holds for a.a.w (Pα+,α−). �

Lemma 19 For each t ≥ 0, (56) holds almost surely under Pα+,α− (and hence,

under P
λ
0).

Proof. This is easily provided by the independence of ξ+ and ξ− combined
with the fact that ξ+ and ξ− have no time of fixed discontinuity. �

Thus by Example 13 and Remark 15, combined with Lemmas 18 and 19, we

can conclude that, under P
λ
0 ,{

1

λ
logAλ(e

λt)
}
t≥0

−→
{
ξ+((ξ−)−1(t)) ∧ t

}
t≥0

as λ → ∞ in the sense of convergence of all finite-dimensional distributions
as well as the convergence in law as Φ-valued random variables. Then, by
Corollary 17, we immediately obtain the following:

Theorem 20 Under P 0, we have{
1

λ
logA(eλt)

}
t≥0

−→
{
ξ+((ξ−)−1(t)) ∧ t

}
t≥0

, λ→ ∞

in the sense of convergence of all finite-dimensional distributions as well as
the convergence in law as Φ-valued random variables. In particular,

1

log t
logA(t)

d−→ ξ+((ξ−)−1(1)) ∧ 1, as t→ ∞. (62)

From (62), we have, for every β < 1,

lim inf
t→∞ P 0

( 1

log t
logA(t) < β

)
≥ P 0

(
ξ+((ξ−)−1(1)) < β

)
.
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From this, we can easily deduce that, for every ε > 0,

lim inf
t→∞ P 0

(A(t)

t
< ε

)
≥ P 0

(
(ξ−)−1(1) < (ξ+)−1(1)

)
.

By the same argument applied to t−A(t) in place of A(t), we obtain

lim inf
t→∞ P 0

(A(t)

t
> 1 − ε

)
≥ P 0

(
(ξ+)−1(1) < (ξ−)−1(1)

)
.

Since P 0((ξ+)−1(1) = (ξ−)−1(1)) = 0, we conclude the following

Corollary 21 Under P 0,

A(t)

t
d−→ 1{(ξ+)−1(1)<(ξ−)−1(1)} as t→ ∞. (63)

Thus, the limit random variable in law of A(t)/t as t → ∞ is the Bernoulli
random variable Y0,p where

p=P 0

(
(ξ+)−1(1) < (ξ−)−1(1)

) (
= Pα+,α−

(
(ξ+)−1(1) < (ξ−)−1(1)

))
. (64)

Remark 22 As for the almost sure result for the ratio A(t)/t as t → ∞,
we have the following: P 0 -almost surely, (equivalently, Pw

0 -almost surely for
Pα+,α−-almost all environments w = (w+, w−) ), it holds that

lim sup
t→∞

A(t)

t
= 1 and lim inf

t→∞
A(t)

t
= 0.

This fact can be proved by applying a result of Bertoin [1]: Bertoin obtained
an integral test for sw±(x) and mw

±(x) in order that the above asymptotics for
the ratio A(t)/t to hold. We can show that the conditions of the integral test
are fulfilled by Pα+,α−-almost all w = (w+, w−): For this, we use the above fact
(63) and combine this with the Hewitt-Savage 0-1 law for stable processes w+

and w−. We omit the details.

The distribution of ξ+((ξ−)−1(1)) ∧ 1 can be obtained explicitly as follows.

Theorem 23 It holds that

ξ+((ξ−)−1(1))
d
=
U2

U1

(65)

where U1 and U2 are mutually independent (0, 1)-valued random variables such

that U1
d
= V (α+) and U2

d
= V (α−), where V (α), 0 < α ≤ 2, are (0, 1)-valued
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random variables with the distribution function P (V (α) ≤ x) = uα(x), 0 <
x < 1, given by

uα(x) =

⎧⎪⎪⎨⎪⎪⎩
sin απ

2

π
x

α
2

∞∫
0

dξ

ξ
α
2 (ξ + 1)(1 + (1 − x)ξ)

α
2
, 0 < α < 2,

x, α = 2.

(66)

So the limit random variable in law of (62) is given by (U2/U1) ∧ 1.

Proof. Recall that {ξ+(t)}t≥0 is defined from a symmetric stable process
{w+(t)}t≥0 of exponent α+ by ξ+(t) = t + w+((w+)−1(t)) where w+(t) =
sup0≤u≤tw+(u) and w+(t) = sup0≤u≤t(−w+(u)). Also, {ξ−(t)} is defined from
{w−(t)}t≥0 in the same way. Denoting by {x(t), Pa} the stable process of index
α+ starting at a ∈ R and by σb the first leaving time from the interval (−b, b);
σb = inf{t > 0| |x(t)| ≥ b} for b > 0, we have for x > t > 0,

P (ξ+(t) ≥ x) =P
(
w+((w+)−1(t)) ≥ x− t

)
= Px

2
−t
(
x(σx

2
) ∈ (−∞,−x/2]

)
. (67)

We have a general formula (cf. [2]): If |a| < b,

Pa(x(σb) ∈ dy) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1{|y|>b} · sin α+π

2

π

(b2 − a2)
α+
2

(y2 − b2)
α+
2

· dy

|y − a| , 0 < α+ < 2,

a+ b

2b
δb(dy) +

b− a

2b
δ−b(dy), α+ = 2.

Using this formula, we can easily calculate the RHS of (67) to obtain

P (ξ+(t) ≥ x) = uα+

(
t

x

)
, 0 < t < x,

where uα(x), 0 < x < 1, is given by (66). Hence

P

(
1

ξ+(t)
≤ x

)
= uα+(tx), 0 < x <

1

t
. (68)

By the self-similarity of stable processes, it is easy to deduce under Pα+,α−

that {ξ±(ct)}t≥0
d
= {c ξ±(t)}t≥0, respectively, for each c > 0. Then, noting the

independence of ξ+ and ξ−, we have under Pα+,α− ,

ξ+((ξ−)−1(1))
d
= (ξ−)−1(1) · ξ+(1).
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Also,

P
(
(ξ−)−1(1) ≤ x

)
= P (1 ≤ ξ−(x)) = P

(
1

ξ−(x)
≤ 1

)
= uα−(x).

Therefore, setting U1 = 1/ξ+(1) and U2 = (ξ−)−1(1), we can now conclude the
assertion of the theorem. �

In the case of α+ = α− = 2, in particular, the case of the Brox model, we have
the following convergence:

P

(
1

log t
logA(t) ≤ x

)
−→

{ x

2
, 0 < x < 1,

1, x ≥ 1,
as t→ ∞. (69)

Note that p in (64) is given by

p =

1∫
0

uα+(x) duα−(x).

When α+ = α−, we always have p = 1/2.

4.2. The case of random walks on Z.

Given a sequence p = (pi), i ∈ Z, such that 0 < pi < 1, let Z = (Z(n), PZ
i ) be

a time-homogeneous Markov chain on Z with the discrete time n = 0, 1, 2, . . .
and with the one-step transition probability pi,j, i, j ∈ Z given by

pi, j = pi · δj, i+1 + (1 − pi) · δj, i−1. (70)

PZ
i is the probability law governing the paths starting at i so that PZ

i (Z(0) =
i) = 1 and Pi(Z(n+ 1) = j |Z(1), . . . , Z(n)) = pZ(n), j, j ∈ Z. We denote it as

Zp = (Z(n), PZ,p
i ) when we emphasize its dependence on p = (pi).

As is well-known, Z can be imbedded in a birth and death process on Z which
is a generalized diffusion process associated with the Feller generator L = d

dm
d
ds

with the speed measure dm supported on Z. Here, the scale s(x) and the speed
measure dm(x) are given as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

s(0) = 0, s(l) =
l−1∑
k=0

k∏
i=0

1 − pi
pi

, l = 1, 2, . . .,

s(−1) = −1, s(l) = −1 −
−l−1∑
k=1

k∏
i=1

p−i
1 − p−i

, l = −2,−3, . . .

(71)
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and s(x), −∞ < x <∞, is given by the piecewise linear continuous extension;

s(x) = s(l) + (s(l + 1) − s(l))(x− l), l < x < l + 1.

The speed measure dm(x) is defined by setting

m(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

l∑
k=0

1

pk

k∏
i=0

pi
1 − pi

, l ≤ x < l + 1, l = 0, 1, 2, . . .

0, −1 ≤ x < 0,

−
−l∑
k=1

1

1 − p−k

k∏
i=1

1 − p−i
p−i

, l − 1 ≤ x < l, l = −1,−2, . . . ,

(72)

so that

dm(x) =
∞∑
k=0

1

pk

k∏
i=0

pi
1 − pi

δk(dx) +
∞∑
k=1

1

1 − p−k

k∏
i=1

1 − p−i
p−i

δ−k(dx).

We assume that limx→∞ s(x) = − limx→−∞ s(x) = ∞. Then, with the Feller
generator d

dm
d
ds

, a unique recurrent generalized diffusion X = (X(t), PX
i ) is

associated on the support of dm, which is Z in this case, so that X is a
birth and death process on Z. We denote it as Xp = (X(t), PX,p

i ) when we
emphasize its dependence on p. If σn is the n-th jumping time of X(t), then

(X(σn), P
X
i )n=0,1,2,...

d
= (Z(n), PZ

i )n=0,1,2,....

Also, it is easy to see that the family {σn − σn−1, n = 1, 2, . . .} is i.i.d. with
mean 1 exponential distribution, so that, by the strong law of large numbers,
we have

PX
i

(
for every t0 > 0, sup

t0≤t<∞

∣∣∣∣σ[eλt]

eλt
− 1

∣∣∣∣→ 0 as λ→ ∞
)

= 1. (73)

Here [x] denotes the largest integer not exceeding x: [x] = n if n ≤ x < n+1,
n ∈ Z.

We define ξi, i ∈ Z, by

ξi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log

1 − pi
pi

, i = 0, 1, 2, . . .

log
pi

1 − pi
, i = −1,−2, . . .

(74)

Also, we define two càdlàg functions θ+(x) and θ−(x) on [0,∞) by setting

θ+(x) =
[x]∑
i=0

ξi, 0 ≤ x <∞ (75)
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and

θ−(x) =

⎧⎪⎨⎪⎩
0, 0 ≤ x < 1
[x]∑
i=1

ξ−i, 1 ≤ x <∞.
(76)

We extend θ± to be defined on R by setting θ±(x) = 0, x < 0. We put the
following assumption (A.4) on the sequence p = (pi):

(A.4) There exist two càdlàg functions w+(x) ∈W+ and w−(x) ∈W+ on [0,∞),
and two positive increasing functions ψ+(λ) and ψ−(λ) of λ > 0 with
limλ→∞ ψ±(λ) = ∞, such that the following convergence holds:(

1

λ
θ+(ψ+(λ)t),

1

λ
θ−(ψ−(λ)t)

)
−→ (w+(t), w−(t)) as λ→ ∞ (77)

in the sense of Skorohod’s J1-topology on W+ ×W+. (For the definition on
W+, see the beginning of Subsection 4.1)

We define continuous increasing functions s+(x) and s−(x) of x ∈ [0,∞) by

s±(x) =

x∫
0

eθ±(u) du, x ≥ 0. (78)

We also define càdlàg increasing functions m+(x) and m−(x) of x ∈ [0,∞)
by

m+(x) =

[x]+1∫
0

e−θ+(u) du+

[x]+1∫
0

e−θ+(u−1) du, x ≥ 0 (79)

and

m−(x) =

[x]∫
0

e−θ−(u) du +

[x]∫
0

e−θ−(u+1) du, x ≥ 0. (80)

We can easily verify from (71) and (72) that

s(x) = s+(x), m(x) = m+(x) for x ≥ 0, (81)

and

s(x) = −s−(−x), m(x) = −m−(−x− 0) for x < 0 : (82)
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In verifying the identities m(x) = m+(x) for x ≥ 0 and m(x) = −m−(−x− 0)
for x < 0, note the simple relations 1

pk
= 1−pk

pk
+ 1, k = 0, 1, . . . and 1

1−p−k
=

p−k

1−p−k
+ 1, k = 1, 2, . . .

We now set, for λ > 0 and each of + and −,

s±λ (x) = s±(ψ±(λ) x), x ≥ 0, (83)

m±
λ (x) = m±(ψ±(λ) x), x ≥ 0, (84)

w±
λ (x) =

1

λ
θ±(ψ±(λ) x), x ≥ 0, (85)

v+
λ (x) =

1

λ
θ+(ψ+(λ) x− 1), x ≥ 0, (86)

v−λ (x) =
1

λ
θ−(ψ−(λ) x+ 1), x ≥ 0, (87)

ϕ+
λ (x) =

[ψ+(λ) x] + 1

ψ+(λ)
, x ≥ 0 (88)

and

ϕ−
λ (x) =

[ψ−(λ) x]

ψ−(λ)
, x ≥ 0. (89)

Then, it easy to deduce from (78), (79) and (80) that, for each of + and −,

s±λ (x) = ψ±(λ) ·
x∫

0

eλw
±
λ

(u)du

and

m±
λ (x) = ψ±(λ) ·

ϕ±
λ

(x)∫
0

{
e−λw

±
λ

(u) + e−λv
±
λ

(u)
}
du.

(77) implies that

(w+
λ (t), w−

λ (t)) −→ (w+(t), w−(t))

and
(v+
λ (t), v−λ (t)) −→ (w+(t), w−(t))

as λ→ ∞ in the J1-topology on W+ ×W+.

Thus, our family defined above satisfies the conditions in Examp. 14 so that we
have the same conclusion for the occupation time Aλ(t) =

∫ t
0 1[0,∞)(Xλ(u)) du
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where Xλ = (Xλ(t)) is Lλ = d
dmλ

d
dsλ

-generalized diffusion. Here, noting (78),

(79) and (80) combined with (83) and (84), we have sλ = s ◦ Tψ+(λ),ψ−(λ) and
mλ = m ◦ Tψ+(λ),ψ−(λ), where the map T is defined, as above, by Ta,b(x) =
ax 1{x≥0} + bx 1{x<0}. Hence,

Xλ(t)
d
= T−1

ψ+(λ),ψ−(λ) ◦X(t)
(

= T1/ψ+(λ), 1/ψ−(λ)(X(t))
)

from the birth and death process X = (X(t), PX
i ) introduced at the beginning

of this subsection.

This conclusion can be applied, in the same way as we did in the previous
Subsection 4.1, to the study of the occupation time for the birth and death
processes in random environment and thereby for random walk in random
environment.

First of all, we set up our model. Let Π be the totality of sequences p = (pi), i ∈
Z, such that 0 < pi < 1 and limx→∞ s(x) = − limx→−∞ s(x) = ∞, where s(x)
is defined as above by (71). For p ∈ Π, we have the random walk Zp =

(Z(n), PZ,p
i ) on Z as above which we realize canonically on Ω

(1)
�

= {ω : Z+ �
n �→ ω(n) ∈ Z} so that Z(n) = ω(n), ω ∈ Ω

(1)
�

and PZ,p
i is the probability on

Ω
(1)
�

supported on {ω : ω(0) = i}. Here, we use the notation Z+ = {0, 1, 2, . . .}
and Z− = {−1,−2, . . .} so that Z = Z+ ∪ Z−. A random walk in random
environment is determined by giving a probability P on Π; we realize this on

Ω
(1)
�

×Π with the annealed probability P
Z
i (dω dp) = P (dp)PZ,p

i (dω), so that
PZ,p
i can be regarded as the conditional probability given the environment p.

In the same way, for given p ∈ Π, we have the birth and death process Xp =
(X(t), PX,p

i ) on Z, which we realize on Ω
(2)
�

= {ω : [0,∞) � t �→ ω(t), càdlàg }
as X(t) = ω(t), ω ∈ Ω

(2)
�

and PX,p
i is the law of d

dm
d
ds

- generalized diffusion
starting at i with s and m defined by (71) and (72), which is a probability

on Ω
(2)
�

supported on {ω : ω(0) = i}. The birth and death process in random

environment is defined by the probability P
X
i (dω dp) = P (dp)PX,p

i (dω).

We put, in accordance with the assumption (A.4) above, the following funda-
mental assumption (A.5) on the probability P on Π:

(A.5) Under P on Π, p = (pi) satisfies the following; the families p+ := {p0, p1, . . .}
and p− := {p−1, p−2, . . .} are mutually independent i.i.d. families. Further-
more, there exist two constants 0 < α+ ≤ 2 and 0 < α− ≤ 2, two positive
increasing functions ψ+(λ) and ψ−(λ) of λ > 0 with limλ→∞ ψ±(λ) = ∞
such that the following convergence holds:(

1

λ
θ+(ψ+(λ)t),

1

λ
θ−(ψ−(λ)t)

)
d−→ (w+(t), w−(t)) as λ→ ∞ (90)

in the sense of J1-topology on W+ ×W+, where {w+(t)} and {w−(t)} are
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mutually independent symmetric stable processes of exponent α+ and α−,
respectively.

Here, càdlàg increasing processes θ+(t) and θ−(t) are defined from p = (pi)
by (74), (75) and (76).

A standard sufficient condition for (A.5) to hold is that, denoting by p+ and
p− the common random variables in law of the i.i.d. families p+ and p−,
respectively, the following hold for each of + and −:

0 < p± < 1, p±
d
= 1 − p± and, setting ξ± = log{(1 − p±)/p±}, E[(ξ±)2 ·

1{0<ξ±<x}] is a slowly varying function of x at ∞ when α± = 2, and P (ξ± > x)
is a regularly varying function of x at ∞ with exponent −α± when 0 <
α± < 2. Note that, under our assumption (A.5), lim supx→∞ θ±(x) = ∞ and
limx→±∞ s(x) = ±∞ almost surely.

Now, for almost all p ∈ Π, we can define, for λ > 0 and each of + and −,
s±λ , m

±
λ , w

±
λ , v

±
λ , ϕ±

λ as above through (83) to (89). From s±λ and m±
λ , càdlàg

increasing functions sλ(x) and mλ(x) on R are defined as in Example 14 and
the unique recurrent generalized diffusion Xλ = (Xλ(t), P λ

x ) is associated with
the Feller generator Lλ = d

dmλ

d
dsλ

. As we remarked above, Xλ is obtained from

Xp = (X(t), PX,p
i ) by {Xλ(t)} d

=
{
T1/ψ+(λ), 1/ψ−(λ)(X(t))

}
so that the state

space of Xλ is 1
ψ+(λ)

Z+ ∪ 1
ψ−(λ)

Z−. Define

Aλ(t) =

t∫
0

1[0,∞)(X
λ(s)) ds and AX(t) =

t∫
0

1[0,∞)(X(s)) ds.

Then obviously

{Aλ(t), P λ
0} d

= {AX(t), P
X
0 }

where P
λ
0(dω dp) = P (dp)P λ

0 (dω). ForAλ(t), we can apply the result of Exam-
ple 14 with Remark 3.1 and, using this result, we can give the same arguments
as in Subsection 4.1 to obtain the following:

Theorem 24 Under P
X
0 ,

{
1

λ
logAX(eλt)

}
t≥0

−→
{
ξ+((ξ−)−1(t)) ∧ t

}
t≥0

, as λ→ ∞ (91)

in the sense of convergence of all finite-dimensional distributions as well as
the convergence in law as Φ-valued random variables. In particular

1

log t
logAX(t)

d−→ ξ+((ξ−)−1(1)) ∧ 1 as t→ ∞. (92)
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Here, the processes ξ+ and ξ− are defined from independent symmetric stable
processes w+ and w− in the same way as in Theorem 20, namely by (53) and
(55), and the limit law in (92) is given in the same way as Theorem 23.

We can now deduce from this our final result for the random walk in the
random environment Z = (Z(n), P

Z
i ).

Theorem 25 Let AZ(n) =
∑n
k=1 1{Z(k−1)≥0,Z(k)≥0}. Then, under P

Z
0 ,{

1

λ
logAZ([eλt])

}
t≥0

−→
{
ξ+((ξ−)−1(t)) ∧ t

}
t≥0

, as λ→ ∞ (93)

in the sense of convergence of all finite-dimensional distributions as well as
the convergence in law as Φ-valued random variables. In particular,

1

log n
logAZ(n)

d−→ ξ+((ξ−)−1(1)) ∧ 1 as n→ ∞. (94)

Here, the processes ξ+ and ξ− are defined from independent symmetric stable
processes w+ and w− by (53) and (55) so that the law of the limit random
variable is given by Theorem 23.

Proof. For p ∈ Π, let Xp = (X(t), PX,p
i ) be the birth and death process on

Z as given above realized on the space Ω
(2)
�

. It is a d
dm

d
ds

-generalized diffusion
process where s(x) and m(x) are defined by (82) through p. We assume p
possesses the property that both limx→∞ s(x) = limx→−∞(−s(x)) = ∞ and
limx→∞m(x) = limx→−∞(−m(x)) = ∞ hold. We note that almost every p ∈ Π
under P (dp) possesses this property.

Let σn, n = 0, 1, 2, . . ., be the n-th jumping time of X(t):

σ0 = 0, σn = inf{t > σn−1|X(t) �= X(σn−1)}, n = 1, 2, . . . . (95)

Set

Z(n) = X(σn), n = 0, 1, . . . (96)

and

τn = σn − σn−1, n = 1, 2, . . . . (97)

Then {Z(n)} under PX,p
i is a realization of the random walk (in a fixed envi-

ronment p) such that Z(0) = i. Note that {τn} is i.i.d. with mean 1 exponential
distribution. Also, {X(σn)} and {σn} are independent.
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In the following, we consider under the probability PX,p
0 . Set, as above,

AZ(n) =
n∑
k=1

1{Z(k−1)≥0,Z(k)≥0}, n = 1, 2, . . . , (98)

and also

A(n) =
n∑
k=1

1{Z(k−1)≥0}, n = 1, 2, . . . , (99)

AX(t) =

t∫
0

1[0,∞)(X(s)) ds. (100)

Then, we have

AX(σn) =
n∑
k=1

1{Z(k−1)≥0} · τk (101)

and hence
AX(σn)

A(n)
=

∑n
k=1 τk 1{Z(k−1)≥0}∑n
k=1 1{Z(k−1)≥0}

.

Let a random sequence {ki} of positive integers be defined, successively, by

k1 = 1, ki = min{k > ki−1|Z(k − 1) ≥ 0}, i = 2, 3, . . .

Since Xp is recurrent, {ki} is well-defined a.s.. Set θi = τki
, i = 1, 2, . . .. By

the strong Markov property of Xp, we can easily deduce that {θi} is also i.i.d.
with mean 1 exponential distribution. Obviously, we have

AX(σn) = θ1 + θ2 + . . .+ θi and A(n) = i if ki ≤ n < ki+1.

Hence, by the strong law of large numbers, the following convergence occurs
almost surely:

AX(σn)

A(n)
=
θ1 + θ2 + . . .+ θi

i
−→ 1, as n→ ∞.

Thus we have

A(n) = AX(σn)(1 + o(1)) as n→ ∞ a.s.. (102)

If we set ã(n) =
∫ σn

0 1{0}(X(s)) ds, then ã(n) =
∑n
k=1 τk1{Z(k−1)=0} and, by the

same argument as for the proof of (102), we have

a(n) = ã(n)(1 + o(1)) as n→ ∞ a.s.,
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where a(n) =
∑n
k=1 1{Z(k−1)=0}. Since

A(n) −AZ(n) =
n∑
k=1

1{Z(k−1)≥0,Z(k)<0}

=
n∑
k=1

1{Z(k−1)=0,Z(k)=−1} ≤
n∑
k=1

1{Z(k−1)=0} = a(n),

we have

0 ≤ A(n) − AZ(n) ≤ ã(n) (1 + o(1)) as n→ ∞ a.s.. (103)

Finally, we have

ã(n) = o(AX(σn)) as n→ ∞ a.s.. (104)

This follows from the well-known ratio ergodic theorem for a recurrent d
dm

d
ds

-
generalized diffusion X(t) on R, which states that, if B1 and B2 are Borel
subsets of R such that 0 < m̃(B1) <∞ and 0 < m̃(B2) ≤ ∞, then∫ t

0 1B1(X(s)) ds∫ t
0 1B2(X(s)) ds

−→ m̃(B1)

m̃(B2)
as t→ ∞, a.s.

where m̃(dx) = d(m ◦ s−1(x)), (cf. [8]).

Note that, in our case,

ã(n)

AX(σn)
=

∫ σn
0 1{0}(X(s))ds∫ σn

0 1[0,∞)(X(s))ds
,

and m̃({0}) <∞ but m̃([0,∞)) = ∞.

From (102), (103) and (104), we have

AZ(n) = AX(σn) (1 + o(1)) as n→ ∞, a.s.

for PX,p
0 and hence, a.s. for P

X
0 . We can now deduce the convergence (93)

from the convergence (91) combined with (73). �

In the same way as Corollary 21, we have the following

Corollary 26 Under P
Z
0 ,

AZ(n)

n
d−→ 1{(ξ+)−1(1)<(ξ−)−1(1)} as n→ ∞. (105)
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