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We compute the inclusive spectrum of produced particles in eþe� annihilation in confining gauge

theories that have a gravity dual and show that the momentum distribution exhibits thermal behavior.
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Introduction.—One of the puzzling features of hadron
production in collider experiments is that the inclusive
rates are well described by assuming the ‘‘Boltzmann’’
distribution at low momenta
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where the subscript i labels different hadron species. The
parameter T, often referred to as the ‘‘temperature,’’ is
more or less independent of the collision energy and is ty-
pically of the order of the confinement scale *150 MeV.
The model (1) gives a good fit of the identified particle
yields in eþe� annihilation [1–3], hadron collision [4], and
heavy-ion collision experiments [5,6]. Despite these phe-
nomenological successes, however, the origin of the ex-
ponential behavior is not understood. One may invoke
Hagedorn’s picture of particle production [7] in which an
equilibrated state of secondaries (‘‘fireball’’) is instantly
formed after the collision. Although such a scenario may
sound plausible in the heavy-ion case where one expects
the formation of the quark-gluon plasma, the situation is
highly obscure in the case of eþe� or hadron collisions
where the produced particles have essentially no chance to
interact among themselves.

In this Letter we derive the exponential distribution in
eþe� annihilation from gauge-string duality, thereby sug-
gesting that the apparent thermal behavior is a generic
feature of the strong coupling dynamics of gauge theories
in the nonperturbative regime. [See [8] for a quite different
approach to particle production using gauge-string duality.
See also [9–12] for earlier speculations concerning the
behavior (1).] eþe� annihilation inN ¼ 4 supersymmet-
ric Yang-Mills (SYM) theory and its variants has been
recently analyzed in the framework of the AdS/CFT cor-
respondence [13]. Here we briefly summarize the key

features at large ’t Hooft coupling � � 1. (i) Unlike in
QCD and in N ¼ 4 SYM theory at weak coupling, there
are no jets in the final state [14–16]. The distribution of
energy is spherical [14]. (ii) The average multiplicity
scales almost linearly with the virtual photon energy Q

[15,16]: nðQÞ / ðQ=�Þ1�3=2
ffiffiffi
�

p
where � is an infrared cut-

off. (iii) The inclusive spectrum is peaked at the kinemati-
cal lower limit. More precisely, it has the form [16]
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where x ¼ 2E=Q is the Feynman variable. Since the dis-
tribution is spherical, this is equivalent to
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The function FðyÞ remained unknown except for the prop-
erty that it decays faster than the power law when y � 1.
In [16], it was conjectured that
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where c is a number of order unity. We shall show that a
calculation based on gauge-string duality indeed yields the
exponential form with a ¼ 1 in accordance with the phe-
nomenological distribution (1) with 1=T ¼ 2c=�.
Statistical model—As a preliminary, let us first point out

the possible relationship between particle production in
strongly coupled gauge theories and a statistical model of
eþe� annihilation proposed by Bjorken and Brodsky long
ago [17]. Suppose, as is the case in QCD, that the multi-
plicity is dominated by the lightest particles (‘‘pions’’) with
mass m. The cross section to produce exactly n pions is
given by

�n ¼ e4
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where k and k0 and electron and positron momenta, respectively, and j� is a component of the R-current operator which
couples to the external virtual photon. We take n to be large, of the order of the average multiplicity n�Q=� � 1. The
model assumes that the hadronic matrix element can be written as

h0jj�ð0Þjp1; . . .pnihp1; . . .pnjj�ð0Þj0i ! anðq�q� � g��q2Þe��Q; (5)

where � ¼ 1=T. Note that the matrix element itself gives the ‘‘thermal’’ factor, which distinguishes this model from other
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statistical models where the factor comes from the total
phase space. (See also [18].) Because of the nonrenormal-
ization theorem for the R-current correlator [19], the total
cross section is given by the one-loop result for all values
of the coupling

�tot ¼ e4N2
c

32�Q2
: (6)

We then get the inclusive redistribution
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After an integration over Q within an interval �Q � Q,
(7) takes the form
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where we approximated E0 � p0. The last factor may be
omitted and the summation simply gives a factor �n�
�Q=�
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The coefficients fang can be determined by matching with
the total cross section (6) [17]

an � n3=2
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for n � 1. Inserting this into (8), we obtain
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This agrees with (3) and (4) provided a ¼ 1 and
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The proportionality constant is determined from the energy
conservation

2 ¼
Z 1

2m=Q
x
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dx: (12)

The result is
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and for the average multiplicity,
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m
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It is straightforward to include heavier hadrons with mass
m� >m as a small contamination in the final state.
Proceeding as before, we find
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This immediately leads to the characteristic ratio

hn�i
hni ¼ m�K1ð�m�Þ

mK1ð�mÞ � e��ðm��mÞ (16)

which resembles the observed scaling [1–6]. Therefore,
finding the exponential factor e��Q in (5) establishes a
connection between strongly coupledN ¼ 4 SYM theory
and a statistical model of particle production in eþe�
annihilation.
Gauge-string duality—Let us now turn to the matrix

element

h0j� � jð0Þjp1; . . .pni; (17)

where �� is an arbitrary polarization vector which we take

to be transverse (� � q ¼ 0) for convenience. The prescrip-
tion for evaluating amplitudes like (17) has been spelled
out in [20,21]. In the limit � ! 1, this can be viewed as
the scattering of nþ 1 bulk fields in AdS5 � S5 in the
supergravity approximation. We shall use the Poincaré
coordinates

ds2 ¼ R2 �dt2 þ d~x2 þ dz2

z2
þ R2d�2

5: (18)

The Minkowski boundary is at z ¼ 0 and the space is cut
off at z ¼ 1=�. The current j� is dual to a five-dimensional
Kaluza-Klein photon whose wave function solves the
Maxwell equation in the bulk. For timelike momenta, q2 ¼
Q2 > 0, and with the infalling-wave condition as appro-
priate for the problem of jet evolution [15], it features the
Hankel function

A�ðx�; zÞ ¼ ��e
�iqx �NcQz

8�5=2R3
Hð1Þ

1 ðQzÞ: (19)

[The normalization is taken from [22]. Note that Az ¼ 0 in
the current gauge (� � q ¼ 0).] Alternatively, (19) may also
be regarded as the wave function of a heavy vector meson
with which the photon couples in a way similar to the vec-
tor meson dominance in QCD. Then the factor Nc in (19)
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acquires the meaning as the strength of this coupling. Natu-
rally, the timelike photon or the meson decays, and at
strong coupling the decay is so complete that the final state
contains only particles with the smallest virtuality p2

i ¼
m2 ��2 [15,16]. These are represented, for simplicity,
by the scalar wave function in AdS5. We shall consider
two scenarios. (i) Hadrons corresponding to normaliz-
able modes in the cutoff AdS space. They have the wave
function

�iðx; zÞ ¼ eipix

ffiffiffi
2

p
�z2

2�3=2R4
J�þ�2ðmzÞ; (20)

where �þ is the conformal dimension of the interpolating
operator. The lightest one is dual to the lowest dimension
scalar operator in theN ¼ 4 graviton supermultiplet. This
has �þ ¼ 2 and m � 2:4� as determined from the first
zero of the Bessel function J0. (ii) The non-normalizable
mode with �� ¼ 4��þ ¼ 1

�iðx; zÞ ¼ eipix
�i�z2

2�3=2R4
Hð1Þ

1 ð�zÞ: (21)

This somewhat peculiar choice is motivated by the follow-
ing argument. As noted in [23] and emphasized in [24], the
value �� ¼ 1 realizes Bjorken scaling in DIS which is the
hallmark of the parton picture. (See, also, [25].) Curiously,
these modes contain the so-called singletons that are often

referred to as the most elementary excitations, or ‘‘par-
tons’’ in AdS spaces. Moreover, the bulk supergravity
modes such as (19) are bound states of singletons [26].
This fits nicely with the branching picture at strong cou-
pling proposed in [15]. Note that at the borderline value
�� ¼ 1 the normalization integral suffers a logarithmic
UV (z ! 0) divergence. This is analogous to the fact that
the light-cone wave function with soft partons (gluons) in
QCD is not normalizable due to the same reason.
In the branching picture of [15], one evaluates diagrams

with only the three-point (1 ! 2) vertices. On the other
hand, the supergravity effective action contains all possible
higher-point vertices allowed by symmetry. To better illus-
trate the essential point of our calculation, let us first
consider a contribution to the matrix element from a local
(nþ 1)-point vertex of n scalars and a photon. The zero
mode integration reads, symbolically,

h0j� �jð0Þjp1; . . .pni�gnþ1
c

	0g2c

Z
dzd�5

ffiffiffiffiffiffiffiffi�G
p
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where gc � gs	
02 is the closed string coupling. The sim-

plest vertex is obtained by expanding the function F to
linear order in its argument
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where va (a¼1;2; . . . ;5) is a Killing vector on S5 and Qi;j

are the U(1) charges. The sum is over oppositely charged
pairs. Since n�Q=� is large, one can do the saddle point
approximation. It is consistent to look for a saddle point in
the asymptotic region of the Hankel function Hð1Þ

1 ðQzÞ �
eiQz=

ffiffiffiffiffiffiffi
Qz

p
. The equation determining the saddle point is,

setting n ¼ kQ=m where k is a number of order unity,
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and similarly forHð1Þ
1 ð�zÞ in which case we set n ¼ kQ=�.

We solve this equation numerically in the form z ¼ i	=�
and find that, in the physically interesting range 0:5 &
k & 1:0, 	 � 0:2� ð0:8	 0:1Þi and 	 � 0:5	 0:1 for
the J0 and Hð1Þ

1 cases, respectively. This leads to, using
4�gs	

02=R4 ¼ 1=Nc and Qi ¼ �Qj,
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where the factor 1=
ffiffiffiffiffiffiffiffiffi
Q=z

p
is from the fluctuation around

the saddle point. Squaring and noting that p
�
i p

�
j !

g���ijp
2
i � g���ij�

2 under the phase space integral, we
find

jh0j� � jjp1; . . . ; pnij2 � N2
c

N2n�2
c

nQ2

�2n�4
e�2cQ=�; (25)

where c ¼ Re½	
. Equation (25) features the exponential
factor as in (5). Note that having n / Q particles in the final
state is crucial in order to obtain this behavior. If n is order
unity, the integral would be dominated by intermediate z
values, leading only to a power-law [20].
The evaluation of the nonlocal diagrams with the 1 ! 2

vertices is considerably more complicated, but without
going into the details one can argue that they also give
rise to the exponential factor. [The exact value of c may be
different, however.] Indeed, as one approaches the root of
the branching tree, the intermediate states necessarily have
an increasingly large number of constituents and, hence,
are dual to operators with increasingly large dimensions

whose wave functions are localized around z� 1=�. In

particular, the photon couples to fields�X;Y having dimen-

PRL 102, 062001 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

13 FEBRUARY 2009

062001-3



sions of order �X;Y � n�Q=� via the vertex A�ð�X@��
�
Y ��Y@��

�
XÞ. (See [23] for a related discussion including the

issue of gauge invariance of this coupling.) The matrix element will be given by a multiple convolution of the form

ðp�
X � p�

Y Þ
Z

dzdz0dz00 � � � ffiffiffiffiffiffiffiffi�G
p

A�ðzÞGXðz; z0ÞGYðz; z00Þ � � �Gðz000; z1Þ�ðz1Þ�ðz1Þ � � �Gðz0000; zn=2Þ�ðzn=2Þ�ðzn=2Þ;

where G’s are propagators in (cutoff) AdS5. At small z,
GX;Yðz; z0Þ � z�X;Y � zn, so the function obtained after the
integration dz0dz00 � � � is as strongly peaked around z�
1=� as�nðzÞ in (22). The final integral over z then leads to
the exponential factor by the same mechanism as in the
local case above.

In fact, although the two contributions—local and non-
local diagrams—have similar Q dependence, they cru-
cially differ in Nc dependence. When comparing (5) and
(11) with (25), one notices that the latter is enormously
suppressed by the factor 1=N2n�2

c (1=Nn�1
c in the ampli-

tude), which actually was expected from the standard
large-Nc counting. If the nonlocal diagrams also received
this suppression, one would have to conclude that the
multiparticle production process would be a negligible
fraction of the total cross section (6) which scales as N2

c .
Instead, the production cross section of a single heavy
vector meson, being OðN2

cÞ, would alone seem to saturate
the total cross section. In order to avoid this unphysical
conclusion which contradicts the AdS/CFT prediction n /
Q, the subsequent decay of the meson into n particles via
1 ! 2 splittings must somehow be an OðN0

cÞ effect rather
than suppressed by a large negative power of Nc. Fortu-
nately, a similar problem was encountered and resolved in
the context of eþe� annihilation in (two-dimensional)
QCD at large Nc [27]. There it was observed that a proper
inclusion of the decay width (��1=N2

c in the present situ-
ation) in the intermediate propagators together with a suit-
able averaging of the incident energy give just the right
number ofNc factors to cancel the unwanted 1=Nc suppres-
sions from the three-point couplings g�1=Nc. Namely,
the squared propagator in the momentum space reads







 g

p2 �m2 þ i�










2¼ �

ðp2 �m2Þ2 þ �2

g2

�
: (26)

The first factor on the right-hand side is unit normalized
with respect to the integration over the momentum and the
second factor is OðN0

cÞ, so effectively (26) is OðN0
cÞ con-

trary to the naive expectation g2 �Oð1=N2
cÞ. Since this

argument appears to be quite general, we expect that the
nonlocal diagrams will not be Nc suppressed unlike the
local ones.

Keeping the above qualification in mind, we conclude
that the distribution obeys the thermal law (1), and espe-
cially (16), though clearly the parameter T �� has noth-
ing to do with the temperature. In view of the strikingly
different pictures of the final state in perturbative QCD and
in strongly coupled SYM as mentioned in the introduction,
it is intriguing that the latter can explain this particular
nonperturbative aspect of particle production.
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