
Structural modelling of the complex of leucyl-tRNA synthetase and 

mis-aminoacylated tRNALeu  

Yohsuke Hagiwara1, 2, Osamu Nureki3, and Masaru Tateno1, 2 

  

1 Center for Computational Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 

Ibaraki 305-8571, Japan, Tel: (+81)-29-853-6496, Fax: (+81)-29-853-6496 

2 Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, 

Tsukuba Science City, Ibaraki 305-8571, Japan 

3 Institute of Medical Science, University of Tokyo, Shirokanedai 4-6-1, Minatoku, 

Tokyo 108-8639, Japan, Tel: (+81)-3-6409-2125, Fax: (+81)-3-6409-2127 

  

Corresponding author: tateno@ccs.tsukuba.ac.jp 

  

Keywords: Aminoacyl-tRNA synthetase; Error-editing reaction; Molecular dynamics 

simulation; Structural modelling; Ribose; Water. 

Abbreviations: aaRS, aminoacyl-tRNA synthetase; leucyl-tRNA synthetase, LeuRS; 

valyl-tRNA synthetase, ValRS; MD, molecular dynamics; connective polypeptide 1, 

CP1 

1 
 



Abstract 

To assure fidelity of translation, class Ia aminoacyl-tRNA synthetases (aaRSs) edit 

mis-aminoacylated tRNAs. Mis-attached amino acids and structural water molecules are 

not included simultaneously in the current crystal structures of the aaRS•tRNA 

complexes, where the 3′-ends (adenine 76; A76) are bound to the editing sites. A 

structural model of the completely solvated leucyl-tRNA synthetase complexed with 

valyl-tRNALeu was constructed by exploiting molecular dynamics simulations modified 

for the present modelling. The results showed that the ribose conformation of A76 is 

distinct from those observed in the above-mentioned crystal structures, which could be 

derived from structural constraints in a sandwiched manner induced by the mis-attached 

valine and tRNALeu.  
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1. Introduction 

Aminoacyl-tRNA synthetases (aaRSs) catalyse the attachment of their cognate amino 

acid to the 3′-end of the specific tRNA (aminoacylation). This reaction proceeds as: first, 

an amino acid is activated to an aminoacyl adenylate by transfer of ATP with generation 

of pyrophosphate; second, the amino acid moiety of the aminoacyl adenylate is 

transferred to the 3′-end of the specific tRNA. According to the primary and tertiary 

structures, aaRSs are divided into classes I and II, and further subdivided into subclasses, 

a, b and c, within each class [1]. The fidelity of translation is assured by the strict 

discrimination of cognate from non-cognate amino acids. However, for the leucine, 

isoleucine, valine, threonine, alanine and phenylananine systems, each of which is 

structurally similar to some other systems, their cognate enzymes, i.e. leucyl- (LeuRS), 

isoleucyl- (IleRS), valyl- (ValRS), threonyl- (ThrRS), alanyl- (AlaRS) and 

phenylalanyl- (PheRS) tRNA synthetases (LeuRS, IleRS and ValRS belong to class Ia, 

ThrRS and AlaRS to class IIa and PheRS to class IIc), have difficulties in the strict 

discrimination of their specific amino acids, producing mis-activated amino acids or 

mis-aminoacylated tRNAs. Two types of editing, pre-transfer editing and post-transfer 

editing, correct mis-activated amino acids or mis-aminoacylated tRNAs, respectively; a 

misactivated amino acid is hydrolysed to the amino acid and AMP by the pre-transfer 
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editing pathway and a mis-aminoacylated tRNA is hydrolysed to the amino acid and 

tRNA by the post-transfer editing pathway [1–10]. 

Several mutational analyses have been performed to elucidate the mechanisms of 

these editing reactions [3, 10, 11]; however, the reaction mechanisms remain unclear. 

To date, two crystal structures have been determined for class Ia aaRSs in complex with 

their cognate tRNAs, in which the 3′-termini are bound to the editing sites [12, 13]. 

However, in these crystal structures, no amino acid is attached to adenine 76 (A76) of 

tRNAs. Furthermore, even though water is assumed to participate in the nucleophilic 

attack, no crystallographic water molecule has been identified in the editing site, since 

the resolutions of the X-ray crystallographic data on LeuRS and ValRS are 3.3 and 2.9 

Å, respectively. Thus, the absence of crystal structures containing all the molecular 

components essential for the reaction causes difficulties in the elucidation of the 

detailed mechanisms. To address this issue, it is necessary to obtain three-dimensional 

(3D) structures of complexes of aaRSs and mis-aminoacylated tRNAs, including 

ordered water molecules in the editing sites using computational structural modelling.  

Here, using the crystal structure of the Thermus thermophilus LeuRS in complex with 

tRNALeu, we built a 3D structural model of LeuRS in complex with valyl-tRNALeu. With 

regard to the conformation of the ribose moiety of A76, which binds to the catalytic 
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pocket in the reaction, we have found differences among the above-mentioned crystal 

structures and the modelled structure. These differences arise from the presence of the 

structural constraints induced by mis-attached amino acid and tRNALeu, either of which 

is absent in the crystal structures, while in the LeuRS•valyl-tRNALeu complex, the 

ribose moiety topologically connects those two moieties in a sandwiched manner.  

  

2. Materials and Methods 

2. 1 System setup 

In this study, two systems were used: the Thermus thermophilus LeuRS in complex 

with 2′-(L-norvalyl) amino-2′-deoxyadenosine as an inhibitor (Protein Data Bank (PDB) 

accession code 1OBC), and the LeuRS in complex with tRNALeu. In the latter complex, 

the 3′-terminal is bound to the active site of editing (PDB accession code 2BYT) [3, 12]. 

The former system (1OBC) was used to establish an algorithm to identify ordered water 

molecules in the editing site. For this purpose, the connective polypeptide 1 (CP1) 

domain (amino acid residues 228–415) was truncated to reduce computational costs; 

although in the crystal structure of LeuRS in complex with an inhibitor, 2′-(L-norvalyl) 

amino-2′-deoxyadenosine (Nva2AA; see Fig. 1a), to prevent the catalytic reaction, the 

inhibitor is bound to the active site in the CP1 domain. We replaced it with the ‘true’ 
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substrate as follows: N2′ was replaced with an O atom and the norvaline moiety with 

valine. The truncated CP-1 domain was immersed in a box of water molecules modelled 

by TIP3P water, and seven Na+ ions were added to neutralize the system. Thus, the total 

number of atoms included in the solvated domain was 24,253. The latter system (2BYT) 

was used to construct a model of the LeuRS•valyl-tRNALeu complex, including the 

solvent water. In this case, the complex of the enzyme and tRNALeu was used to attach 

valine to the 3′-end of tRNA and to identify hydration water around the editing site. This 

complex was immersed in a solvent box consisting of 49,587 water molecules and the 

periodic boundary condition was used, where the size of the unit box was 103.0 × 138.3 

× 117.1 Å3. Thus, the total number of atoms in the system was 165,739. 

All simulations were performed using the AMBER 9 software package [14]. The 

parm99 force field was applied to all atoms in the system. Electrostatic interactions 

were calculated by the particle-mesh Ewald (PME) method [15] with a dielectric 

constant of 1.0, and a cutoff distance of 12 Å was used to calculate the direct space sum 

for PME. The SHAKE algorithm [16] was used to restrain the bond lengths involving 

hydrogen atoms, allowing the time step for integrations to be set to 1 fs. Temperature 

and pressure were regulated using the Berendsen algorithm [17]. All atom types and 

partial charges assigned for LeuRS were taken from AMBER ff99 force filed. The 
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details of the parameterization for the valyl-tRNALeu moiety are described in 

Supplementary material (S1). 

  

2. 2 Identification of hydration water in the active site of editing 

We used a scheme consisting of the following five stages to predict ordered water 

molecules in the active sites. Computational details are described in Supplementary 

material (S1). 

(i) The ligand-binding pocket of a protein is immersed in the absence of a ligand, by 

performing MD simulations with explicit solvent water molecules. 

(ii) The molecular volume and atomic charges of the ligand are then reduced to ~0, 

following which the ligand is placed back onto the immersed binding pocket. 

Accordingly, the coordinates of the ligand and water molecules observed in the binding 

pocket are overlaid at the beginning of the subsequent simulation. 

(iii) The volume and atomic charges of the ligand are gradually increased in the MD 

simulation to exclude water molecules that are overlaid with the ligand and do not 

contribute to the protein•ligand binding. For this purpose, we introduce the following 

modified energy function: ( ) 101)( EEE λλλ +−= . Here, λ is a scaling factor that 

varies from 0 to 1; E0 denotes the total energy of the system, where the molecular 

7 
 



volume and partial charges of the ligand are set to ~0; E(λ) represents the total energy of 

the system, where λ is varied in the MD simulation and E1 denotes the total energy of a 

system with the ligand volume and charges set to the original values as defined in the 

force field. In this stage, the ligand atoms are positionally constrained using a harmonic 

potential. Thus, the aim of this stage is to exclude water molecules that are not required 

for interfacial hydrogen bond networks in the protein•ligand complex. 

(iv) Conformational searches for the interfacial structures in the protein•ligand complex 

are further performed using the above-mentioned modified energy function without any 

positional constraints for both the protein and the ligand until λ reaches 1. 

(v) For further equilibration of the protein•ligand complex and the solvent structure 

around it, standard MD simulations are performed using a standard energy function. 

  

3. Results and Discussion 

3. 1 Test calculations to establish the modelling scheme 

First, we examined the scheme to identify the binding mode of a ligand and ordered 

water molecules in an active site using only the editing (proofreading) domain, referred 

to as the connective polypeptide 1 (CP1) domain, in the calculations of leucyl-tRNA 

synthetase (LeuRS) in complex with an inhibitor, 2′-(L-norvalyl) 
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amino-2′-deoxyadenosine (Fig. 1a). In this calculation, instead of the inhibitor bound to 

the CP1 domain in the crystal structure, we used the ‘true’ substrate as the ligand in the 

simulations. In the present modelling, the ligands mentioned are assumed to be divided 

into two fragments, i.e. the amino acid (fragment 1) and adenosine (fragment 2) 

moieties (Fig. 1c; also see Supplementary material; S1). 

We applied the scheme to the crystal structure of the Thermus thermophilus LeuRS in 

complex with the inhibitor mentioned, i.e., the initial coordinate of the protein and 

ligand are taken from the crystal structure of the complex. As a result of the simulations 

described in the Materials and Methods section, we found all five of the ordered water 

molecules that are experimentally observed in the catalytic site (Fig. 2a). Three of them 

are exchangeable water molecules corresponding to crystallographic water molecules 

HOH484, HOH483, and HOH224 in the crystal structure of the LeuRS•inhibitor 

complex (1OBC). The other two waters are ‘deeply buried’ ones, which are recognized 

by the N7 of the base and the carbonyl carbon of the valine moiety, corresponding to the 

crystallographic water molecules HOH222 and HOH482 in the crystal structure (1OBC), 

respectively. These ‘deeply buried’ water molecules are unlikely to exchange with bulk 

water molecules; in fact, when we removed these crystal water molecules, a standard 

MD simulation conducted for the complex of the CP1 domain and the substrate failed to 
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predict them (see Supplementary material; S3). Thus, we showed that the present 

scheme is essential for accurate identification of the ordered water molecules buried in 

the LeuRS•inhibitor interface.  

In stage (v) of our present scheme, we continued the standard MD simulation for 1 ns 

to evaluate the stability of the complex structure obtained, and found that the interfacial 

hydrogen bond networks, which are composed of the substrate, the CP1 domain and the 

buried water molecules, are fundamentally stable throughout the 1-ns MD simulation 

(see Supplementary material; S4). Thus, the present scheme can be used efficiently to 

identify the ordered water molecules in the ligand-binding site, in particular, the deeply 

buried water molecules in the interspace between the ligand and the protein. 

  

3. 2 Structural modelling of LeuRS in complex with valyl-tRNALeu 

Structural comparison of the two crystal structures, i.e., the Thermus thermophilus 

LeuRS in complex with the tRNALeu (2BYT) and that in complex with the inhibitor 

mentioned (1OBC), showed almost similar hydrogen bond networks between the 

adenosine bases and the enzymes. On the other hand, with respect to the ribose moieties 

of A76 of tRNA (2BYT) and the inhibitor (1OBC), the hydrogen bond networks with 

the surrounding structures are different: in the LeuRS•inhibitor complex, the hydrogen 
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bond is present between O5′ of the inhibitor and the hydroxyl group of Tyr332, whereas 

in the LeuRS•tRNALeu complex, the corresponding hydrogen bond is absent; instead, 

the hydroxyl group of Tyr332 forms the hydrogen bond with O2′ of C75 of tRNALeu. 

Correspondingly, one can find differences in the positions and conformations of the 

ribose moieties between the LeuRS•inhibitor and LeuRS•tRNALeu complexes, as shown 

in Fig. 1c. This indicates that the bound states of the ribose moiety depend on the 

presence/absence of either tRNALeu or the amino acid moiety attached to the O2′ atom. 

In this study, for the LeuRS•valyl-tRNALeu complex, we elucidate such differences 

using computational modelling techniques; it may be crucial to investigate the detailed 

mechanisms of the editing. 

Next, using the parameter set for MD simulations, which were optimized in the test 

calculations, we applied the present scheme for the identification of hydration water and 

constructed a fully solvated structure of the LeuRS•valyl-tRNALeu complex, as follows. 

The initial coordinates of the protein and tRNALeu (G1–C75) moieties were obtained 

from the crystal structure of the LeuRS•tRNALeu complex (2BYT). For the initial 

coordinates of A76 of tRNALeu and the amino acid moiety attached to O2′ of A76, the 

coordinates of the inhibitor in the crystal structure of the LeuRS–inhibitor complex 

(1OBC) were exploited. 
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As a result, five ordered water molecules were identified in the editing site, and the 

hydrogen bond networks formed by these water molecules are identical to those in the 

test case (Fig. 3a). It should be noted that two buried water molecules are also observed 

in the crystal structure of the Thermus thermophilus IleRS complexed with a 

post-transfer editing inhibitor [18], for which the configurations are well consistent with 

the ones identified in the modelled structure of the LeuRS•valyl-tRNALeu complex. This 

suggests that a conserved hydrolysis mechanism is present in these different aaRSs. The 

high stability of the CP1 domain and tRNALeu in a subsequent 500-ps MD simulation 

indicates that the calculations at stages (i) to (iv) do not induce any distortions of the 

structure (see Supplementary material; S5). However, since in the present modelling, 

the norvaline moiety was changed to valine, the binding mode of the side chain of the 

amino acid moiety is changed with respect to those of the crystal structure of the 

LeuRS•inhibitor complex. Nevertheless, it fits well in the hydrophobic pocket, as shown 

in Fig. 3b. Experimentally, Thr252, which consists of the catalytic pocket, acts to block 

the binding of leucine to the editing active site by the bulkiness of its side chain, since 

leucyl-tRNALeu is the ‘correct’ product for the LeuRS system. In fact, T252A results in 

mis-editing of the leucyl-tRNALeu [8, 9]. Here, in the modelled structure of the 

LeuRS•valyl-tRNALeu complex, the γ-methyl group of the valine moiety of the ligand is 
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located close to the side chain of Thr252 (the distance between Cδ of the leucine moiety 

of the ligand and Oγ of Thr252 is 2.1 Å), which would cause steric clash when the 

leucine is attached as the ligand (Fig. 3c). 

With respect to the adenosine moiety, its binding mode in the LeuRS•valyl-tRNALeu 

complex is identical to those in the crystal structures of LeuRS•tRNALeu and 

LeuRS•inhibitor complexes (see Supplementary material; S5). On the other hand, the 

position of the ribose moiety is different from those in the two crystal structures; i.e. for 

the LeuRS•valyl-tRNALeu complex, the MD simulation at stage (v) of the present 

modelling revealed that the ribose of A76 is located at intermediate positions between 

the two crystal structures (Fig. 4a and b). Next, to investigate its conformations, we 

measured the pseudorotation angles in the MD simulation (Table 1). This analysis 

revealed that the averaged value of the pseudorotation angle is almost identical to the 

value in the crystal structure of the Pyrococcus horikoshii LeuRS•tRNALeu complex 

(PDB ID: 1WD2), in which A76 is bound to the aminoacylation site, supporting the 

plausibility of the observed conformation of the ribose moiety. In fact, the 

pseudorotation angle corresponds to an optimal conformation of the ribose in the 

C3′-endo pucker [19]. Furthermore, since this averaged value is within the range of 

values for the crystal structures of the Thermus thermophilus LeuRS•tRNALeu and 
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LeuRS•inhibitor complexes, the conformation, as well as the position, of the ribose 

moiety obtained in the LeuRS•valyl-tRNALeu complex is also intermediate between 

these two crystal structures (Table 1). This is presumed to be induced by the mechanical 

constraints from tRNALeu and the attached amino acid moiety in a sandwiched manner, 

either of which is absent in these two crystal structures (Fig. 4a and b). In fact, changes 

of the pseudorotation angle within the C3′-endo conformation are almost barrierless 

[19]. This conformational flexibility of the ribose moiety enables the valyl-tRNALeu to 

be accommodated in the binding pocket in a manner whereby the specific recognition 

by the protein observed in the two crystal structures is fundamentally conserved, 

whereas the positions of the C1′ and O2′ atoms of the ribose are affected by the tRNA 

and the amino acid moiety, respectively.  

It should be noted here that despite the above-mentioned changes, the recognition 

mode of C75 and C74 in the LeuRS•valyl-tRNALeu complex is similar to that of the 

crystal structure of the LeuRS•tRNALeu complex (see Supplementary material; S5). 

Furthermore, with respect to the amino acid moiety attached to A76, i.e. valine, its 

hydrogen bond networks are consistent with those of norvaline in the crystal structure of 

the LeuRS•inhibitor complex (see Supplementary material; S5 and S7). 

Thus, these results are consistent with previous experimental data supporting the 
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feasibility of the present modelled structure of the LeuRS•valyl-tRNALeu complex. This 

structure enables us to computationally investigate the mechanisms of the editing by 

LeuRS. Furthermore, it also allows us to address the detailed processes of translocation 

of the 3′-end of tRNA between the editing and aminoacylation sites of LeuRS, followed 

by the large-scale rotations of the editing domain [12, 20]. In this manner, the present 

structural model of the fully solvated LeuRS•valyl-tRNALeu complex provides a 

structural basis for the design of new experimental and computational analyses of the 

mechanisms of the editing.  
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Table 1. Comparison of pseudorotation angles of the ribose moieties of A76 in the 

crystal structures of the Thermus thermophilus LeuRS•tRNALeu complex (PDB ID: 

2BYT), the Pyrococcus horikoshii LeuRS•tRNALeu complex (PDB ID: 1WZ2), the 

Thermus thermophilus LeuRS•inhibitor complex (PDB ID: 1OBC) and the 

LeuRS•valyl-tRNALeu complex obtained in the MD simulation (values in the table are 

averaged values using snapshots from 400 to 500 ps).  

 

PDB ID 2BYT 1WZ2 1OBC MD simulation

Pseudorotation 

(degrees) 
30.7 20.3 12.2 18.0 

  

  

Figure legends 

Figure 1. (a) Crystal structure of Thermus thermophilus LeuRS in complex with the 

inhibitor Nva2AA (PDB code 1OBC). The left and right panels show the overall 

structure and the editing active site of the LeuRS, respectively. (b) Crystal structures of 

Thermus thermophilus LeuRS in complex with tRNALeu (PDB code 2BYT). (c) 

Chemical structures of ligands of LeuRS. (d) Structural comparison between the crystal 
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structures of the LeuRS•inhibitor complex (PDB code 1OBC) (magenta) and the 

LeuRS•tRNALeu complex (PDB code 2BYT) (green). 

  

Figure 2. Results of test calculations to establish an algorithm for modelling of the 

enzyme•ligand complex with hydration water on the molecular interface, using the CP1 

domain of LeuRS and the substrate. (a) The van der Waals surface of the catalytic 

pocket, and the identified binding mode of the substrate (red) and solvent water 

molecules (yellow). (b) Conformations of the ligand (red), protein (blue) and solvent 

water molecules obtained using the present calculation scheme (light blue). The crystal 

structures of the protein, ligand and crystallographic water molecules are represented in 

yellow, grey and green, respectively. 

  

Figure 3. (a) Structural comparison of the catalytic site of the modelled structure of the 

LeuRS•valyl-tRNALeu complex (black) with those of the two crystal structures shown in 

Fig. 1b. (b) Recognition mode of the valine moiety in the editing pocket of the 

LeuRS•valyl-tRNALeu complex. (c) Mechanism of exclusion of the leucine moiety of 

the ligand (blue) so as not to bind to the editing pocket. This is regulated by the side 

chain of Thr252 (red). 
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Figure 4. (a) Close-up view of the conformations of the ribose moiety of A76. Colour 

representations are the same as in Fig. 3a. (b) Schematic drawing of the role of the 

conformational flexibility of the ribose moieties in the LeuRS•valyl-tRNALeu complex, 

which enables the A76-valine moiety to be accommodated in the catalytic pocket in a 

manner whereby the recognition modes observed in the crystal structures of the 

LeuRS•tRNALeu and LeuRS•inhibitor complexes are fundamentally conserved. Red and 

blue arrows represent mechanical constraints induced by tRNALeu and the misattached 

valine moiety, respectively.  
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S1. Computational details of identification of hydration water 

For test calculations to establish the modelling scheme, first, the connective 

polypeptide 1 (CP1) domain (amino acid residues 228–415) was truncated, and then, to 

completely immerse the binding pocket of the CP1 domain with solvent water 

molecules, MD simulation was performed for 10 ps at 300 K, where a harmonic 

constraint was applied to all atoms of the protein and Na+ atoms with a force constant of 

500 kcal·mol−1·Å−2. Furthermore, the MD simulation was performed for 5 ps at 500 K 

to fully solvate the ligand-binding pocket, where only main chain atoms were 

constrained. This procedure was applied to MD simulations conducted in stage (i). In 

stage (ii), the substrate was placed in the binding pocket by superimposing the crystal 

structure onto the simulated structure. In stage (iii) (for fragment 1), λ was increased 

first for the amino acid moieties of the substrate at a rate of 1.0 × 10−6/step until λ 

reached 4.0 × 10−4. Then, the rate was kept at 2.0 × 10−4/step until λ reached 0.9. In this 

stage, positional constrains with a force constant of 100 kcal·mol−1·Å−2 were applied to 

all atoms of the substrate. Next, in stage (iv) for fragment 1, the force constant was set 

to 0 for the atoms of the amino acid moieties until λ reached 1. Next, stage (iii) for 

fragment 2 was performed using a similar procedure; when λ reached 0.7, stage (iv) for 

fragment 2 was started, where all atoms of the system were free to move (Figure S1). 
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The total simulated time required for stages (iii) and (iv) for both fragments was 10.8 ps. 

The final snapshot was subjected to a standard MD simulation at 300 K for 1-ns. The 

same procedure was employed in the structural modelling of LeuRS in complex with 

valyl-tRNALeu, although the simulation time of the standard MD simulation in the stage 

(v) was 500 ps due to their huge size of the system, i.e. total number of atoms involved 

in the system is 165,739. 

The parameterization of the valyl-tRNALeu was done as follows. All atom types of the 

valyl-tRNALeu were taken from the AMBER ff99 force field. For the valine moiety 

attached to A76, atom types of the N-terminus valine were assigned; for A76, those of 

the ribo-adenosine with 5'-phosphate group and 3'-OH were used. More specifically, for 

O2' of A76, the atom type of ester oxygen, ‘OS’, was used, since O2' is bonded to the 

carboxyl oxygen of the valine moiety. With respect to the partial charges of tRNALeu 

including A76, the values defined in the ff99 force field were applied; for the valine 

moiety attached to A76, the values of the N-terminus valine defined in the force field 

were employed, leading this moiety to establish the consistency with the others. These 

assignments of the partial charges result in a non-zero (but small negative) value of the 

total charge of the valyl-A76 moiety, i.e., −0.11. To neutralize the value, we added the 

positive value of 0.002 to the partial charge of each atom in the valyl-A76 moiety. Atom 
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types and partial charges of the valyl-A76 moiety are summarized as shown in Fig. S1. 
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Figure S1. Assignments of atom types and partial charges for the valyl-A76 moiety. 
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Figure S2. Regulation of the parameters used in the present calculations. (a) log �, (b) 

temperature, (c) time constants for heat bath coupling in ps, (d) force constants of 

positional constraints for the backbone atoms of the protein moiety in kcal·mol−1·Å−2, 
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(e) force constants of positional constraints for the atoms of the base moiety of the 

substrate in kcal·mol−1·Å−2, (f) force constants of positional constraints for the atoms of 

the amino acid moiety of the substrate in kcal·mol−1·Å−2. 

  

Solvation of protein in the absence of the substrate

Relaxation of the solvent water molecules using MD simulation

Increase in atomic charges and volumes of the 
substrate without any positional constraints

Increase in atomic charges and volumes of the 
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with the reduced volume and atomic charges
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Standard MD simulation for relaxation of the system
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Increase in atomic charges and volumes of the 
substrate without any positional constraints

Increase in atomic charges and volumes of the 
substrate with positional constraints

 

Figure S3. Flowchart of the scheme for the present modelling. 
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S2. The calculation for the complex of the CP1 domain of leucyl-tRNA synthetase and 

its substrate 

In stage (i), the binding pocket of the CP1 domain of LeuRS was filled with 23 water 

molecules using a standard MD simulation (Figure S3a); six ordered water molecules 

are found in the active site, all of which correspond to structural water molecules 

observed in the crystal structure of LeuRS in the free state (Figure S3a). Note that in 

stage (ii), the coordinates of the “ligand” and water molecules are actually overlaid 

(Figure S3b). In stages (iii) and (iv), the MD simulations using the modified energy 

function are performed for fragment 1, with the positional constraints for the substrate 

and then without any constraints, respectively. Subsequently, stages (iii) and (iv) are 

applied to fragment 2. Thus, at the end of stage (iv), we have identified three deeply 

“buried” water molecules in the interspace between the CP1 domain and the substrate 

(Table S1). The first forms a hydrogen bond with the N7 atom of the base moiety; this 

corresponds to the crystallographic water HOH222. The second forms a hydrogen bond 

with the carbonyl carbon of the amino acid moiety, corresponding to the 

crystallographic water HOH482, and the third with the N6 atom of the base moiety, 

which is referred to as WAT1 (Figure S4a). The third water molecule does not 

correspond to any crystallographic ones and thus further relaxation phases, such as the 
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subsequent stage (v) in our scheme, are likely to be required. In fact, a slight distortion 

of the adenosine base of the substrate is also found in this stage; i.e., the N6 atom is not 

on the plane of the adenosine base. 

Nevertheless, we identified another structural water molecule coordinated to the N3 

atom of the substrate, which is not “buried” in the molecular interspaces but can be 

exchanged with other unordered solvent water molecules, corresponding to the 

crystallographic water HOH484. Moreover, the exchangeable water molecule 

corresponding to the crystallographic one (HOH224) was identified, which was 

suggested as the nucleophile in the enzymatic reaction. In this manner, four water 

molecules among five crystallographic ones observed in the crystal structure of the 

complex are found in this stage. In stage (v), a standard MD simulation is performed to 

further relax all atoms in the system without any constraints. In the early phase of this 

simulation (at ~10 ps), a water corresponding to the crystallographic HOH483, which 

was not observed in previous stages, was further identified. It should be noted that the 

WAT1 mentioned above is moved toward the outside of the ligand-binding pocket (Fig. 

S4b). 
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(a)

(b)

 

Figure S4. 

(a) Snapshot of the binding pocket at 15 ps of the MD simulation. Water molecules 

depicted as light blue spheres are crystallographic water molecules observed in the 

crystal structure of the LeuRS in the free state. The water molecules observed in the MD 

simulation are represented as blue sticks. (b) Initial structure of stage (iii) with respect 

to the amino acid moiety of the substrate. The manner of the representation of the water 

molecules is the same as in (a). 
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Figure. S5 

(a) Obtained conformations of the ligand (red), protein (blue), and solvent water 

molecules (light blue). Those coordinates are taken from a snapshot at the end of stage 

(iv). The crystal structures of the protein, ligand, and crystallographic water molecules 

are represented in yellow, gray, and green, respectively. (b) Their coordinates are taken 

from a snapshot of the standard MD simulation conducted in stage (v) at 50 ps. 
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Table S1.  

Distances between oxygen atoms of crystallographic water molecules and 

corresponding water molecules identified in the MD simulations conducted in stage (iv) 

and (v) (MD snapshots are used to calculate the atomic distances). 

crystallographic water HOH222 HOH224 HOH482 HOH483 HOH484 
distance in stage (iv)1 1.37 0.95 0.37 - 1.77 
distance in stage (v)1 1.41 0.86 0.33 0.50 1.16 

1) Distances are defined as those between oxygen atoms of water molecules observed 

in the crystal structure and in the calculated structure.  

  

S3. Comparison with a standard MD simulation of the complex of the CP1 domain 

and the substrate 

The “deeply buried” water molecules identified are unlikely to be exchanged with 

unordered water molecules in the solvent. In fact, this is the case with the MD 

simulation conducted in stage (v). To further confirm this issue, we performed another 

standard MD simulation for 1 ns, initiated from the crystal structure of the complex, in 

which all the crystallographic water molecules bound to the active site in the CP1 

domain were removed. As a result, the water molecules located near the surface of the 

ligand, such as HOH223, HOH224, and HOH483, were identified in the MD simulation. 

However, those buried in the molecular interspace, i.e., HOH222 and HOH482, were 
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not found in the active site. Thus, the standard MD simulations failed to predict them, 

because unordered water molecules in bulk cannot be placed in the interspace because 

of the excluded volume of the substrate and the protein. This shows that our procedure 

accurately predicts the ordered water molecules and the protein•substrate interfacial 

structures. 

  

S4.Stability of intermolecular hydrogen bonds identified in the calculation of the CP1 

domain. 

Most of all hydrogen bonds identified in the stage (iii) and (iv) are stable in the MD 

simulation conducted in stage (v) execpt that the Tyr332 side chain fluctuated (Fig. S5). 

This is consistent with experimental data (e.g., B-factor) observed in the crystal 

structure of the complex (Table S2). Thereby, the hydrogen bond between O5′ of the 

substrate and HOζ of the Tyr332 side chain is not stable; the variance of the distance 

between the two atoms is 0.62, whereas those of the others related to the hydrogen 

bonds are less than 0.1. 
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Figure S6. 

(a)-(i) Trajectories of distances of atoms forming the hydrogen bonds between the 

substrate and the protein in the stage (v); 

(a) Distances between O3' of the substrate and the hydroxyl oxygen of Thr247. 

(b) Distances between the carboxyl oxygen of the substrate and the hydroxyl oxygen of 

Thr247. 

(c) Distances between O3' of the substrate and the hydroxyl oxygen of Thr248. 

(d) Distances between O5' of the substrate and the hydroxyl oxygen of Tyr332. 

(e) Distances between N6 of the substrate and the carboxyl oxygen of Leu329. 

(f) Distances between N6 of the substrate and the carboxyl oxygen of Tyr332. 

(g) Distances between N1 of the substrate and the amide nitrogen of Leu329. 

(h) Distances between O3' of the substrate and the amide nitrogen of Thr247. 

(i) Distances between amino nitrogen of the substrate and the carboxyl oxygen of 

Asp347. 

(j)-(o) Trajectories of distances of atoms forming the hydrogen bonds between the 

identified ordered waters and the protein in the stage (v); 

(j) Distances between the oxygen of a water and the amide nitrogen of Thr334. 

(k) Distances between the oxygen of a water and the amide nitrogen of Ala338. 
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(l) Distances between the oxygen of a water and the N7 of the substrate. 

(m) Distances between the oxygen of a water and the carboxyl oxygen of the substrate. 

(n) Distances between the oxygen of a water and the amide nitrogen of M338. 

(o) Distances between the oxygen of a water and the carboxyl oxygen of P246. 

  

Table S2.  

The comparison of the B factor of the amino acids forming the hydrogen bond networks 

with the ligand in the crystal structure. The average value of B factor of the backbone 

atoms, the side chain atoms and all atoms of each amino acid residue are shown. 

  

 

averaged values 
of backbone 

atoms 

averaged values 
of side chain 

atoms 

averaged values 
of all atoms of 
amino acids 

T247 22.1  22.1  22.1  
T248 24.6  26.3  25.3  
L329 31.1  33.5  32.3  
Y332 30.2  38.9  36.0  
M338 22.2  20.9  24.6  
D347 21.4  21.5  21.4  

  

S5. Stability of modeled structure of LeuRS•valyl-tRNA complex 

 The MD simulation of the LeuRS•valyl-tRNA complex in stage (v) shows that the CP1 

domain which possesses the editing active site is stable and well equilibrated for 500 ps 
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(Fig. S6). Furthermore, the intermolecular hydrogen bonds between the substrate, i.e. 

valine-attached A76 and the protein are also stable during the MD simulation, all of 

which are consistent with the hydrogen bonds observed in the crystal structures of 

Thermus thermophilus LeuRS•inhibitor (1OBC) and Thermus thermophilus 

LeuRS•tRNALeu complexes (2BYT). 
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Figure S7. Time evolution of RMSDs of the tRNALeu backbone and the CP1 domain of 

the LeuRS•valyl-tRNALeu complex with respect to the crystal structure of the 

LeuRS•tRNALeu complex (PDB ID: 2BYT) obtained in the MD simulation of stage (v) 

of the present modelling scheme. The green line shows the RMSD of the tRNALeu 

backbone, and the blue and red ones show RMSDs with respect to the backbone atoms 

and all heavy atoms of the entire structure of the complex, respectively 

  

41 
 



0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

0.0 

1.0 

2.0 

3.0 

4.0 

5.0 

6.0 

0 100 200 300 400 500

valine:O – Thr247:Oγ

valine:N – Asp347:Oδ

A76:O3' – Thr248:N

A76:N6 – Tyr332:O

A76:N6 – Leu329:O

A76:N1 – Leu329:N

C75:C4 – Arg418:Cζ

C74:O2 – Lys302:Nζ

R
M

S
D

 (Å
)

R
M

SD
 (Å

)
R

M
S

D
 (Å

)
R

M
S

D
 (Å

)

R
M

SD
 (Å

)
R

M
SD

 (Å
)

R
M

S
D

 (Å
)

R
M

S
D

 (Å
)

time (ps)

time (ps)

time (ps)

time (ps)

time (ps)

time (ps)

time (ps)

time (ps)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

 

Figure S8. Trajectory of the distance between the atoms which form the hydrogen bonds 

in the LeuRS•valyl-tRNALeu (black) The values in the crystal structures of the 

LeuRS•inhibitor and LeuRS•tRNALeu are colored in green and red, respectively. 

(a) Distances between the carboxyl oxygen of the valine moiety and the hydroxyl 

oxygen of Thr247. 

(b) Distances between amino nitrogen of the valine moiety and the carboxyl 
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oxygen of Asp347. 

(c) Distances between O3' of the A76 and the amide nitrogen of Thr247. 

(d) Distances between N6 of the A76 and the carboxyl oxygen of Tyr332. 

(e) Distances between N6 of the A76 and the carboxyl oxygen of Leu329. 

(f) Distances between N1 of the A76 and the amide nitrogen of Leu329. 

(g) Distances between C4 of the C75 and the Cζ of Arg418. 

(f) Distances between O2 of the C74 and the Nζ of Arg302. 

 


