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By Monte Carlo simulation we study the critical exponents governing the transition of the three-
dimensional classical O(4) Heisenberg model, which is considered to be in the same universality class
as finite-temperature QCD with two massless flavors. We use the single-cluster algorithm and the
histogram reweighting technique to obtain observables at the critical temperature. After estimating
an accurate value of the inverse critical temperature K. = 0.9360(1), we make nonperturbative
estimates for various critical exponents by a finite-size scaling analysis. We find v = 0.7479(90),
B/v = 0.5129(11), and /v = 1.9746(38). They are in excellent agreement with those obtained by
perturbation theory with errors reduced to about one-half.

PACS number(s): 11.15.Ha, 12.38.Gc, 75.10.Hk, 75.40.Mg

I. INTRODUCTION

The finite temperature chiral phase transition of QCD
is very important in the study of phase transitions in the
early Universe and in the investigation of heavy ion col-
lisions at high energy. At present, this transition is stud-
ied mainly using the Monte Carlo method on the lattice.
Pisarski and Wilczek [1,2] suggested that QCD with two
massless flavors, which is considered to be an approxima-
tion of the real world, belongs to the same universality
class as three-dimensional (3D) four-component Heisen-
berg models, if the finite temperature chiral transition of
Ny =2 QCD is second order. Then, the chiral transition
of Ny = 2 QCD has the same critical exponents as the
3D O(4) Heisenberg model.

Simulations of lattice QCD for Ny = 2 suggest that the
chiral transition is a second-order transition for staggered
fermions [3] and for Wilson fermions [4]. The study to-
wards a precise measurement of the critical exponents of
Ny =2 QCD has just begun [5]. In the verification that
the O(4) Heisenberg model belongs to the same univer-
sality class, there is a problem that both Wilson fermions
and staggered fermions on the lattice do not have the full
chiral symmetry, which is expected to be restored only
in the continuum limit. Conversely, however, we could
consider that, assuming universality, chiral symmetry is
restored on the lattice sufficiently when the exponents
agree with those of the 3D O(4) Heisenberg model.

Therefore an accurate calculation of the critical ex-
ponents of the 3D O(4) Heisenberg model is quite im-
portant. For this model the best estimation of critical
exponents has been made with perturbation theory up
to seven loops combined with a Padé-Borel-Leroy resum-
mation method [6].

In this work we simulate the 3D O(4) Heisenberg model
by the Monte Carlo method and make a nonperturba-
tive estimation of several critical exponents. We use
the single-cluster Monte Carlo update algorithm which
recently has been used for the simulation of spin sys-
tems: Wolff formulated this algorithm by modifying the
multiple-cluster algorithm by Swendsen and Wang [7]
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and applied it to continuous spin models [8-10]. Recent
applications of the multiple- and single-cluster algorithms
to two- and three-dimensional spin models have demon-
strated their advantage in the computation time to the
usual local update algorithms. Among global algorithms,
the single-cluster algorithm is shown to be superior to
the multiple-cluster algorithm for three-dimensional spin
models [11,12]. Therefore, we apply the single-cluster
algorithm in this study.

In Sec. II the model and the method of simulation are
described. In Sec. III we estimate the transition point
from the crossing point of the Binder cumulant and com-
pute the critical exponents at the transition point mak-
ing use of the histogram reweighting technique. We also
check the consistency of the results by independent mea-
surements of the critical temperature and several expo-
nents. We then compare our exponents with those of
perturbation theory. Our conclusion is given in Sec. IV.

II. THE MODEL AND THE METHOD

The partition function Z and the energy E of the 3D
O(4) Heisenberg model are defined by

z= H/[dé’]e(_KE),

E=) {1-5)- =« +1i)}, (1)

x,3

where K is the inverse temperature and 5(x) is a four-
dimensional unit spin at the lattice site @. %’s are the
unit steps in three coordinate directions. We use three-
dimensional simple cubic lattices with the volume V =
L3 with L = 8, 10, 12, 14, 16, 24, and 32, and employ
periodic boundary conditions.

We choose two simulation points for each L except
for L = 10: One is K = 0.935, which is a rough esti-
mate for the transition point by our preparatory simula-
tion. Another simulation point is chosen for each L at
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TABLE 1. Simulation parameters and statistics. Kgimu is the simulation point; “iteration” is the
number of cluster updates by single-cluster algorithm; (C) is the mean cluster volume; “sweep” is
the number of updates in Metropolis-equivalent units, i.e., in units of updates of whole spins on the
lattice: sweeps = iterations x (C) /V, where V = L3 is the lattice volume; 7, is the autocorrelation
time in sweeps for the magnetic susceptibility x defined by (18); Nindep is the number of independent
data: Nindep =sweeps/Ty; and x is the magnetic susceptibility measured at Kgimu.

|L]| Ksimu| Iterations/10°| (c) | Sweeps/10® | Tx | Nindep/10%] X

8 0.892 3000 31.6 185 1.95 95

8 0.935 3000 51.1 299 2.49 120 65.48(8)
10 0.935 4400 78.7 346 2.55 136 101.82(12)
12 0.910 4000 67.3 156 1.98 80

12 0.935 6000 113.2 393 2.48 159 145.24(16)
14 0.912 1400 88.0 45 1.82 25

14 0.935 6000 154.5 338 2.47 136 196.08(23)
16 0.920 3000 129.5 95 1.98 23

16 0.935 5200 197.4 251 2.32 108 254.92(33)
24 0.926 1500 280.9 30 1.87 16

24 0.935 2400 427.1 74 2.21 34 554.4(13)
32 0.928 1500 449.5 21 1.62 13

32 0.935 5600 719.1 123 1.95 63 958.1(17)

the maximum point of the susceptibility estimated by a
preparatory simulation. Our simulation parameters are
compiled in Table I. We use the data at K = 0.935 for
the calculation of the transition point as well as the anal-
yses of finite-size scaling with the histogram reweighting
technique and use the data at the maximum of the sus-
ceptibility for a check of the consistency of our results.

The magnetization and the energy are measured every
10 cluster updates by the single-cluster algorithm and
stored on the disk. Several million cluster updates are
performed for each simulation point. From the autocor-
relation time we measured (see the following section) this
corresponds to about one hundred thousand independent
data for each point, as compiled in Table I. We estimate
errors by the jackknife procedure. We study the bin-
size dependence of errors and choose a sufficiently large
bin size such that errors become stable. The resulting
bin sizes are consistent with the values of autocorrela-
tion time estimated independently. All the jobs take 23
hours with HITAC S820/80.

We use the histogram reweighting method [13] to cal-
culate the observables in a region of K around the sim-
ulated point Kgjny. The region of K in which the his-
togram reweighting method is applicable can be deter-
mined by the magnitude of the shift of energy value: If
the peak position of a reweighted energy distribution,
Epear(K), locates away from the peak position of the
original distribution, Epeak(Ksimu), then the statistical
errors for averages computed with the reweighted distri-
bution become large correspondingly. Limited statistics
near the tails of measured histograms also lead to the
danger of a large underestimation of the errors there.
We study the effect of reweighting and observe that,
with our statistics, many errors for the observables we
study become rapidly large and the histogram becomes
rapidly notched when K gets outside the region where
the height of the original energy histogram at Fpeax(K)
is larger than one-third of the peak height. Although
several computed errors, such as the error for the Binder

cumulant discussed below, sometimes remain small even
outside this range, we find that the result is not con-
sistent with the result of a direct simulation there. We
therefore limit ourselves to apply the histogram reweight-
ing method only up to the point where the height of the
original energy histogram at Fpeax(K) decreases to one-
third of the peak height. A similar criterion is used also
in Ref. [14].

A. Algorithm

We use the single-cluster algorithm formulated by
Wolff [8]. This is a global update algorithm whose advan-
tage is that the autocorrelation time and the dynamical
exponent are both much smaller than those of the local
update algorithm as discussed below.

The autocorrelation function Ap (k) for an observable
O is defined by

o= 228

po(k) = (0:0;4k) — (0;)?, (2)

with O; being the ith measurement of ©. The autocor-
relation time 7o given by integrating the autocorrelation
function

To = iAo(k) (3)
k=1

diverges in the critical region as 7o o £*, where £ is the
correlation length. The exponent z is called as dynamical
exponent. On finite lattices in the critical region, ¢ is
replaced by the lattice length L:

To o< L* . (4)

This lattice size dependence of 7o is the origin of the
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“critical slowing down” which makes it difficult to get
high effective statistics in the critical region on large lat-
tices. We should use an algorithm with a small dynam-
ical exponent. It is known that the local update algo-
rithms, such as the Metropolis algorithm, have z ~ 2
independent of the model and the details of the update
algorithm. For example, z = 1.94(6) is obtained for the
3D O(3) Heisenberg model with a Metropolis algorithm
[15]. Use of a global update algorithm is required to get
a smaller z. It is reported in Refs. [11,14,16] that z with
single-cluster algorithm for the 3D Ising model is about
0.2 and that for the 3D O(3) Heisenberg model is about
0. As presented in the next section, our result of z for
the 3D O(4) Heisenberg model is also consistent with 0.

The single-cluster update for the O(n) Heisenberg
model is described in Refs. [8,17]. In order to test the
efficiency of the algorithm and to test our program code
for the single-cluster update, we simulate the 3D Ising
and the 3D O(3) Heisenberg model. Our results are com-
pletely consistent with Refs. 11,14}, including the results
for susceptibility, dynamical exponent, and critical expo-
nents.

III. RESULTS
A. Autocorrelation time and energy distribution

Our results for the autocorrelation time 7, for the mag-
netic susceptibility x, defined by (18), are compiled in
Table I. We find that 7,, in Metropolis-equivalent units,
i.e., in units of updates for V spins, stays almost constant
or rather decreases with the increase of the lattice size.
This implies that the dynamical exponent is 0 or slightly
smaller than 0. A similar result is obtained also for the
O(3) Heisenberg model [14].

The measured energy distribution shown in Fig. 1 is a

120 |
80 |

40 |

00.31 0.32 0.34 0.35

0.33
energy density

FIG. 1. Histogram of energy density for L = 32 near the
critical coupling. Each distribution is normalized to unit area.
Histograms are for K = 0.929, 0.935, and 0.939 from the left
to the right, respectively. The histograms for K = 0.929 and
0.939 are obtained by reweighting the measured histogram at
K = 0.935.
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Gaussian-type with a single peak. The continuous shift
of the distribution with temperature over the expected
critical region is consistent with a second-order phase
transition in accordance with the results of perturbation
theory. Final confirmation of the order of the transition
is done with the values of the critical exponents discussed
below.

In 2D spin models [8,10] and also in the 3D O(3)
Heisenberg model [14], the mean cluster volume (C) is
found to be proportional to the magnetic susceptibil-
ity x in the scaling region independent of the lattice
size. This suggests that the spin correlation length is
approximately explained by the size distribution of clus-
ters. From the values listed in Table I, we find a similar
property: (C) K/x = 0.72-0.73.

B. Critical temperature

An accurate calculation of critical exponents requires a
precise determination of the inverse critical temperature
K,.. An efficient method to determine K. for a second-
order transition is to measure the Binder cumulant [18]
for various system sizes and to locate the cross point
in the space of K. On sufficiently large lattices where
subleading corrections from the finite lattice size L are
ignored, the Binder cumulant U (K) defined by

'r?L:VZé’(m), (5)

becomes independent of L at the transition point K, [18]:

Uv(Ke) _ (6)
UL(K.)

and the slope of Ur(K) in K at K. increases as L be-
comes large. In Fig. 2 are shown our results of the Binder
cumulant near the crossing point. The values for U (K)
are obtained with the histogram method using the data
at K = 0.935.

The deviation from the relation (6) observed in Fig. 2
can be explained by the finite-size confluent corrections.
The leading L'/L dependence in the deviation of the
crossing point K* from the critical point K, is estimated
by Binder [18] as

1 1 1

KK b (7)

where b= L'/L.

We plot (1/lnb,1/K*) for L = 8, 10, 12, and 14 in
Fig. 3. The errors for 1/K* are computed from the jack-
knife errors for UL(K). The solid lines in Fig. 3 rep-
resent the results of a linear least-squares fit for each
L. We find that the correction with 1/Inb is smaller
than that of the 3D O(3) Heisenberg model [14]. The
extrapolation of 1/K* to the point 1/Inb = 0 for each
L gives the values for 1/K.(L): 1/K.(8) = 1.06841(21),
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FIG. 2. The Binder cumulant U as a function of the in-
verse temperature K for L = 8, 10, 12, 14, 16, 24, and 32.
UL(K) is computed with the histogram reweighting method
using the data at K = 0.935.

1/K.(10) = 1.06832(26), 1/K.(12) = 1.06833(26), and
1/K.(14) = 1.06826(34). All of them are consistent with
each other. The mean value of these results is 1/K. =
1.06835(13). A similar fit for all L with a common pa-
rameter 1/ K, gives the value 1/K. = 1.06836(14), which
completely agrees with the mean value. We quote here-
after

1
— =1 1 8
7 = 1-06835(13), (8)

c

K. =0.9360(1). (9)

C. The critical exponent v

dUyp,
The slope for IK

d K=K,
ical exponent v as [18]

is known to scale with a crit-

i L
1/In(L'/L)

FIG. 3. The crossing point of Binder cumulants U (K) and
Up:(K) for L = 8 (squares), 10 (triangles), 12 (diamonds),
and 14 (circles) with different L’. Solid lines correspond to
linear least-squares fits for each L. The critical coupling is
estimated as K. = 0.9360(1) by extrapolating these lines to
the limit 1/1n(L’/L) = 0.
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FIG. 4. Scaling of the slope dUr/dK of the Binder cumu-
lant at K. = 0.9360(1) as a function of the lattice size L.
The slope of the solid line given by a linear least-square fit
leads to an estimate of the critical exponent 1/v = 1.337(16).
The jackknife errors for dUL/dK are smaller than the size of
symbols.

duy,

“dT{— ~ LI/V . (10)

K=K,

Using the relation

dUp (m?E) (m*E)
'JI_{IL =(1-UL) {(E> -2 (m?) + (m#) }’ (11)

we calculate dUp/dK|g_ k. at the estimated K. =
0.9360. In Fig. 4, we plot dUL/dK as a function of L.
From the slope of the solid line in this logarithmic plot
we find

% — 1.337(16), (12)
v = 0.7479(90), (13)

by a least-squares fit. We repeat the analysis by varying
K, within our estimated error, 0.9360(1), and find that
the results for v are completely consistent with the result
given here.

The scaling relation (10) requires a sufficiently large
L to ignore the subleading corrections. In order to test
if our values of L are large enough, we repeat the fits
excluding the data for the smallest size L = 8, and for
L = 8 and L = 10. We obtain 1/v(L = 8 excluded) =
1.344(36) and 1/v(L = 8 and 10 excluded) = 1.333(51),
respectively. Because these results are completely con-
sistent with 1/v with all data, we conclude that L = 8 is
sufficiently large to extract scaling properties.

D. The result for g8/v
The scaling relation of the magnetization (|m|) at K,

is given by

(Iml)g, ~ L7P/" . (14)

We study the scaling of (|m|),_at K. = 0.9360 and ob-
tain B/v = 0.5129(7) from the slope of the fitted line in
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FIG. 5. Magnetization (|m|) at K. = 0.9360(1) as a
function of the lattice size L. A least-squares fit gives
B/v = 0.5129(7). The jackknife errors for (|m|) are smaller
than 1/10 of the size of symbols.

Fig. 5. The fits excluding L = 8, and L = 8 and 10
give the results consistent with this value [3/v(L = 8 ex-
cluded) = 0.5130(15) and B/v(L = 8 and 10 excluded)
= 0.5127(21)]. Unlike the case of v in the previous sub-
section, we find that the effect of the error of K. on the
estimate of 3/v is larger than the statistical error 0.0007
at K. = 0.9360:

B

_ B
~ (K. = 0.9359) —

P (K. = 0.9360) = 0.0009 ,

v

B _ Biw _ _

= (K. =0.9360) — — (K. = 0.9361) = 0.0011.  (15)
14

Therefore we should use the value 0.0011 for the error of
B/v:
B _
2 = 0.5129(11) . (16)
v
Combined with our estimate for v, we have

8 = 0.3836(46) . (17)

E. The result for v/v

For K < K. the susceptibility x is defined by

x = VK (m?). (18)
The scaling relation of x at K, is given by
X, ~ L. (19)

With a similar method as in the previous sections, we ob-
tain for K. = 0.9360, v/v = 1.9746(15) from the slope of
the fitted line in Fig. 6. Again, the value of v/v depends
strongly on the choice of K.:

V(K. = 0.9360) — X (K, = 0.9359)
174 174
~Yin Yip _
= 1 (K. = 0.9361) — X (K. = 0.9360) (20)
v
= 0.0038 . (21)

Therefore we quote
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FIG. 6. Susceptibility x at K. = 0.9360(1) as a function of
L. A least-squares fit gives v/v = 1.9746(15). The jackknife
errors for x(K.) are smaller than 1/10 of the size of symbols.

% = 1.9746(38) . (22)
Combined with our estimate of v, we get
v =1.477(18) . (23)

Using our independent results for 8/v and /v, we can
check the hyperscaling relation

B 1y d

adl Ll _Z=0. 24

l/+2 v 2 (24)
We find

LHS = 0.0002 + 0.003 (25)

that is consistent with zero to ~ 1073.

F. Scaling of x° and K,

c
max

To make a further check of our results for exponents,
we study the finite-size scaling property of the peak of
the connected susceptibility x°:

X° = VE((m®) = (Im])*), (26)

whose maximum value is expected to behave as
Xoaax ~ L. (27)

Here we add a suffix ¢ for the exponent to make clear
the way it is defined. Because the pseudocritical coupling
constant K,. _where x° gets its maximum value is found
to be slightly off the range of the applicability of the
histogram reweighting method for the data at K. (see
the discussion in Sec. II), we carry out new simulations at
K ~ K, __listed in Table I determined by a preparatory
simulation. With the histogram method applied to these
new data we estimate accurate values for xg,,, and K<
(see Table III). From a least-squares fit shown in Fig. 7,
we obtain

(v/v)e = 1.996(8) . (28)
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TABLE II. Critical exponents of the three-dimensional
O(4) Heisenberg model obtained by perturbation theory [6,2]
and by this study. In perturbation theory, independent cal-
culations are done for v and 7. In this study, v/v, 8/v, and
v are determined independently. Other exponents are calcu-
lated using (hyper)scaling relations.

Perturbation theory This study

Yv=2—1 1.97(2) 1.9746(38)
B/v 0.515(5) 0.5129(11)

v 0.73(2) 0.7479(90)

¥ 1.44(4) 1.477(18)

B 0.38(1) 0.3836(46)

) 4.82(5) 4.851(22)
a=2—dy —0.19(6) —0.244(27)

This value is slightly larger than that from the scaling
of x, 1.9746(38), given in (22). The same tendency is
observed for the O(3) Heisenberg model [14,19]. Because
the quality of the fit for x is better than that for x¢ ..,
we quote (22) for the value of v/v.

The scaling property of the pseudocritical coupling
K- _ provides us another test of our results:

-1 -1 -1/v
Ko ~ KT +al™Y (29)

Using our estimate 1/v = 1.337, we fit the data with two
parameters K.~ ! and a to obtain

K. = 0.9360(2). (30)

This value is consistent with our K. from the crossing
points of the Binder cumulant.

G. Restriction of the transition point by Q value

The scaling relations (10), (14), and (19) require that
the estimated value of K. is close enough to the real

i P | " N
5 6 78910 20 30 40

L

FIG. 7. The maximum height of the connected susceptibil-
ity Xmax- A least-squares fit gives (v/v). = 1.996(8). The
jackknife errors for xfax are smaller than 1/5 of the size of
symbols.
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FIG. 8. Q values of least-squares fits for dU /dK (circles),
(|m|) (squares), and x (triangles) for various fixed K..

transition point. If we fix K, far from the real transition
point in these scaling relations the data will no longer fit
them well.

The quality of a least-squares fit is determined by the
Q value [20]:

oo -1
Q(Xza n) = / dt(%) e—t/27 (31)

2

where x2 is the weighted sum of squared deviations of
data from the fit, and n = (number of data points) —
(number of fit parameters) is the degree of freedom for
the fit. We may consider that the fitting procedure is
appropriate if 0.1 < Q < 0.9. If, on the other hand,
Q < 0.1 something is wrong: the error of data may be
underestimated or the fitting function may be incorrect,
and if @ > 0.9 error of data may be overestimated or we
have too many fit parameters.

In the present case, if we fix K, far from the real tran-
sition point, the quality of the scaling fits must become
low so that the @ value decreases to a value less than
0.1. In Fig. 8 the Q values of our finite-size scaling fits
for dUr /dK, {|m|) and x are plotted as a function of K.
We find that Q value for dUL/dK is not so sensitive on
K., while the Q values for (|m|) and x depend sensitively
on K. This difference of the dependence on K. between

TABLE III. Results for the pseudocritical coupling K¢
and the maximum values x§,.x of the connected susceptibility
x°. The K dependence of x° is determined by the histogram
reweighting method using the data simulated at Kgjm, on an
L3 lattice.

| L | Keimu | Kye . | Xinax
8 0.892 0.8907(37) 2.118(09)
12 0.910 0.9109(05) 4.793(28)
14 0.912 0.9144(06) 6.577(48)
16 0.920 0.9183(08) 8.390(46)
24 0.926 0.9253(06) 18.89(16)
32 0.928 0.9289(01) 33.97(32)
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dUL/dK and (|m|), x is the same as that observed for
the O(3) Heisenberg model [14]. From the condition that
Q < 0.1 we have

0.9359 < K, < 0.9364. (32)

This provides us another consistency check of our anal-
yses. The value obtained from the crossing point of the
Binder cumulant K. = 0.9360(1) is well included in this
region.

H. Comparison with perturbation theory

The critical exponents obtained in this work are com-
piled in Table II together with the values by perturbation
theory [6,2]. In our results, the exponents v/v, 3/v, and
v are determined independently, and o and 4§ are cal-
culated using (hyper)scaling relations with the value of
other exponents. In the results of perturbation theory, 5
and v are estimated independently and other exponents
are calculated with  and v. Our results are completely
consistent with those of perturbation theory with the er-
rors reduced to about one-half.
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IV. CONCLUSION

We simulated the three-dimensional O(4) Heisenberg
model by applying the single-cluster algorithm, which re-
duces the dynamical exponent to about zero. The his-
togram reweighting method with high statistics data con-
firmed that the transition is second order for this model.
We performed a precise estimation of the critical point
to get K. = 0.9360(1) from the crossing point of the
Binder cumulant. The critical exponents were calculated
using finite-size scaling at K.. The exponents obtained,
which are summarized in Table II, are completely con-
sistent with those of perturbation theory with the errors
reduced to about one-half.
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