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In order to try to open a new scope to explore the mutual dependence between the single-particle
and collective modes of motion near to the level crossing region, a general method is developed to
investigate the nonlinear resonant structure of the time-dependent Hartree-Fock (TDHF) manifold,
without depending on the adiabatic assumption. By using the Lie canonical transformation with the
Deprit perturbation treatment, in this method, the mazimal integrable-form representation of the
TDHF manifold is introduced. This representation plays an essential role in exploring the nonlinear
resonant structure of the TDHF manifold, which characterizes complex topology of the manifold.
Aiming at relating the nonlinear resonance in the TDHF manifold with the dynamics between the
single-particle and collective modes of motion near to the level crossing region, structure of the
TDHF wave function is investigated. It is clarified that an isolated nonlinear resonant region of the
TDHF manifold is characterized by a local constant of motion (dynamical symmetry) and generates
a new type of dynamical stable single-Slater-determinent states, which is topologically different
from the TDHF states near the HF ground state, and cannot be reached by the conventional static
Hartree-Fock method, constrained Hartree-Fock method, nor the adiabatic TDHF theories. One may
expect that the appearance mechanism of the new dynamical stable single-Slater-determinant states
gives us a new scope for understanding occurrence mechanism of a variety of collective sideband
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structure near to the level crossing region.

PACS number(s): 21.60.Ev, 21.60.Jz, 21.10.Re

I. INTRODUCTION

It has been the central theme in the microscopic theory
of nuclear collective dynamics to develop a method that
is capable of describing various states situated far from a
certain stable mean-field, a dynamical interrelationship
among many stable mean fields with different symme-
tries, the “phase transition” in the finite many-fermion
system as the nucleus, etc.

In the development of the nuclear structure physics,
the importance of the mutual dependence between
the single-particle and collective degrees of freedom in
the level crossing region has been discussed repeatedly
[1-10]. These statements have been mainly drawn from
the adiabatic time-dependent perturbation theory like
the adiabatic time-dependent Hartree-Fock (ATDHF)
[11-15] theory, which is usually grounded upon the con-
strained Hartree-Fock (CHF) or configuration-CHF the-
ories. Since the adiabatic assumption does not hold near
the level crossing region, it is imperative to carefully fig-
ure out the mutual dynamics between the single-particle
and collective degrees of freedom, by going beyond the
adiabatic (or diabatic) assumption.

The TDHF equation is formally expressed as the
canonical equations of motion in the classical mechan-
ics [16-19], when a set of time-dependent parameters
specifying the TDHF single-Slater-determinant state is
suitably chosen. The parameter space is called a TDHF
(symplectic) manifold. A relation between the TDHF
trajectories in the TDHF-manifold and the full quantum
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excited states has been one of the main theoretical is-
sues in developing the theory of large-amplitude collec-
tive motion [18,20,21]. Another important issue is how to
understand the complex structure of the TDHF manifold,
which is supposed to contain relevant semiclassical infor-
mation on the dynamical property of large-amplitude col-
lective motion in the level crossing region. In this paper,
we treat the latter problem. By exploiting the symplec-
tic structure of the TDHF manifold and by applying the
general theory of nonlinear dynamical system [22-24], we
try to formulate the nonlinear dynamical mean-field the-
ory for the finite, quantum many-fermion systems of the
nucleus, and try to open a new way of exploring the dy-
namics between the single-particle and collective modes
of motion near the level crossing region without depending
on the adiabatic assumption.

One of the cornerstones in developing the classical dy-
namical theory has been making clear why the phase
space shows an inexhaustibly rich structure even in a
simple classical system with only two degrees of freedom.
In these studies, it has turned out to be decisive to ob-
tain analytic information on each fixed point, including
nonlinear resonant point. It may not be an exaggera-
tion to say that the history of the nonlinear dynamics
has been a struggle to develop the proper perturbation
theory for obtaining the (approzimate) invariant, which
provide us with analytic information on the nonlinear res-
onant structure of the phase space. In Secs. II and III,
we discuss how to obtain the approximate invariants (ap-
proximate constants of motion) of the TDHF manifold
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by using the Lie transformation method [25,26]. In order
to get the Lie generating function, one usually employs
the Deprit perturbation treatment [27] which is briefly
summarized in Sec. ITA.

By using the Lie transformations, in Sec. III, we dis-
cuss how to define a mazimal integrable form represen-
tation where the approximate invariants manifest them-
selves explicitly. With the use of this representation,
Secs. IV and V are devoted to investigating the nonlinear
resonant structure of the TDHF-manifold and to discuss
how it reflects on the single-particle and collective modes
of motion. It is demonstrated that the nonlinear resonant
structure of the TDHF manifold gives a local constant of
motion, and leads us to a new type of stable single-Slater-
determinant states which is topologically different from
the TDHF states near the HF ground state and are not
reached by the usual Hartree-Fock (HF), constrained HF
(CHF) nor ATDHF theories.

II. TDHF SYMPLECTIC MANIFOLD

A. Canonical-variable representation of the TDHF
theory

A stationary stable mean-field is specified by a Hartree-
Fock (HF) state of an N-nucleon system satisfying the
variational principle

§(golH|do) = 0. (2.1)

By using the single-nucleon operators (éa,&l), |¢o) is ex-
pressed as

|$0) = Hé“lo éal0) = 0. (2.2)

The single-nucleon states are then divided into the par-
ticle and hole states as

o = t:zL,p=Oz>N, p=N+1,...,. N+ M, (2.3)
oz b,-,i:aSN, i:l,...,N, ’
where M denotes a number of particle states. The Hamil-
tonian in Eq. (2.1) is generally expressed as

= Yea:d

where the symbol : : represents the normal product with
respect to the HF state |¢o).

A time-dependent mean field is specified by the general
(time-dependent) single-Slater-determinant state |F') as

éléy: +1 Zvag,,a cTc;gcac.,, (2.4)
aﬂ’yé’

|F) = eFigo) F = (fuithbl - fribiay),

pi

(2.5)

which covers the whole space of states of the N-fermion
system. The basic equation to determine the time de-

pendence of the parameters (fyi, f;;) in |F) is given by
the TDHF equation?

§(Flid/dt — H|F) =0, (2.6)

which is known to be equivalent to the following canonical
equations of motion;

iCm’:a—H iC*; = Eaci
ni

ac‘:i’ pr ,H(C,C)E

(F|H|F).

(2.7)

Here a new set of canonical variables is introduced
through the following variable transformation;

Cim siny/f f1 ) cr. Cf_(ffsin,/ff’r) '
g (\/ff f) Vift ).,

(2.8)

Equation (2.7) describes the TDHF trajectory and ex-
hibits a symplectic structure of the TDHF manifold
[12-15].

The quadratic part of the Hamiltonian in the (C,C*)
representation can be transformed to a normal form by a
linear canonical transformation determined by the RPA:

Cpi@nka k=1,...,K, K=MxN. (29)
After applying the canonical transformation in Eq. (2.9)
to Eq. (2.7), one gets

.. oH .., oH
M = o’ )y = o’ (2.10)
k

where

H =H(C(n,7"),C*(n,7*))
=Ho+eMH,+*Has+--- = ZE"'H" )

Ho =) Lunim,
k

Ha = S {(Virmnini 1o + ViFnininm) + c.c.},
klm

Hy = Z {(Vetmnmieni nnin, + Vil MR T n
klmn
+ 3V R tm ) + c.c.},
. (2.11)

here the interaction parameters V"" ;" are related to the
original ones V,g,45 in Eq. (2.4) through Egs. (2.8) and
(2.9). In Eq. (2.11), Q4’s stand for the RPA eigenfre-
quencies and an integer n + 2 in H,, denotes a power of
the normal-coordinates (7,7y) contained in each term;
€ expresses a real smallness parameter.

'In this paper, we use a convention 4 = 1.
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B. Lie canonical transformation

Let us start with summarizing the Lie canonical trans-
formation theory [19,20] and introduce various notations
used in the subsequent sections. Suppose we have a Lie
generating function W (X, ¢) satisfying

dX»

—_— = {X,\,W(X, E)}pB,

- (2.12)

where the symbol {, }pp means the Poisson bracket with
respect to variables (X, X3}) defined by

{BA 0B 0A OB

= - . 2.13
{4.Blpn=3 89X 0X; 8X;8X,\} (2.13)

A

Equation (2.12) is reduced to a set of canonical equations
of motion when one regards ¢ as the “time” and —iW as
the “Hamiltonian.” Namely, the solution of Eq. (2.12)
expressed as

Xy = Xa(XO¢), (2.14)
with the initial condition
XA(X@,e=0) =X, (2.15)

describes a canonical transformation (X(© X*() &
(X, X*). An evolution operator T representing the above
canonical transformation is introduced as follows: A
function f(X(®) of the initial coordinates is derived from
a function g(X) of the transformed coordinates by oper-
ating T onto g(X(?) as

F(X®) =Tg(X©) = (X (X, ¢)). (2.16)
If ¢ is identity, one has a relation
X, =Tx. (2.17)
Substituting Eq. (2.17) for Eq. (2.12), one gets
dT
EXS’) =T{xX", W(X© ¢)}pp. (2.18)
Introducing a Lie operator defined by
L(e)x = {W(X©, ), *}ps, (2.19)
one obtains
dT’ (o) _ © dT’ _
EX’\ =-TL(e)X, ", ie. = = TL(e), (2.20)
whose formal solution is expressed as
T = exp (—/ L(s’)da’> . (2.21)

Now, let us apply the Lie canonical transformation to
the Hamiltonian (2.11) whose variables (n,7*) are re-
garded to be the initial variables (X(®, X*(®). With
the use of Eq. (2.16) (with correspondence f <> #H and
g <> H), the transformed Hamiltonian H(X) is then writ-
ten as

H(X(X®,g)) = H(X®), (2.22a)

which is expressed as
TH(X@) = H(X®), ie H(X®)=T"13(X©).
(2.22b)

By changing the arguments, one finally gets

H(X) =T 'H(X). (2.23)

The evolution operator T is usually obtained pertur-
batively by using a method proposed by Deprit [27]. In
this method, every quantity is assumed to be an analytic
function of e. In the same way as the Hamiltonian in Eq.
(2.11), one may thus introduce the following expansion
form:

H= "Ho, T=) &"Tny, W= "Woyy,
n=0 n=0 n=0

L= anLn+1a Lypy1x = {Wayi1, *}pB. (2.24)
=0
Substituting Eq. (2.24) for Eq. (2.20), one gets
1 n—1
T, =—— TLy_m. 2.2
m ,,,z::o (2.25)

The initial condition for the evolution operator T is de-
rived from the condition (2.15) and is given by

To = 1. (2.26)

With the aid of Eq.(2.26), the set of successive relations
in Eq. (2.25) is expressed as

Ty=—-L,, T =-}L;+ L},

Ts=—3Ls+ 1LiLy + 1L,Ly - LL3,.... (227

For the inverse operator T ! satisfying T~'T = 1, one
has

T/ '=L,, T, =1L, + 103,

Ty'=1L3+ 3L,L1 + Y01l + §13,.. ., (2.28)

where the condition T, ' = 1 compatible with Eq.(2.26)
has been used. The explicit form of the transformed
Hamiltonian is then given as

Ho =Ty "Ho = Ho,
Hy, = To—l”'ld +T1_1uo = ul + {WlauO}PB»
Hz = T0“1%2 + Tl—l”'tl + Tz_lu()a

1
=H,+ {Wi,Hi}p + E{Wl, {W1,Ho}}pB

(2.29a)
(2.29b)

+%{W2, %o}pB, e (2.29C)

The above discussion is quite general and the generat-
ing function W is still left unspecified. In what follows,
we will discuss how to define the generating function W
by requiring that the transformed Hamiltonian is of the
maximal integrable form.



50 NONLINEAR RESONANCE IN THE TIME-DEPENDENT . .. 141

III. MAXIMAL INTEGRABLE-FORM
REPRESENTATION

A. Integrable form of Hamiltonian

In a region near to a certain stationary stable point in
the TDHF manifold (corresponding to the HF stationary
state), the small amplitude oscillation is well described by
the harmonic approximation (RPA). The Hamiltonian of
the harmonic oscillators is expressed by action variables
alone, when an action-angle representation is adopted
instead of the conventional coordinate and momentum
variables. This means that the harmonic motions are in-
tegrable and the actions are nothing but the constants
of motion. When there exist nonlinear interactions, the
system is no longer integrable and the action variables
are not constants of motion any more. According to the
KAM theorem [28], however, the action variables still
remain approximate invariant in the vicinity of the sta-
ble point, provided the KAM condition holds. It is then
very important to study how an approximate invariant
transfigures under the effects of nonlinear interaction.

This problem has a special relevance to the nuclear
collective dynamics, because it is one of the most im-
portant questions in exploring what kinds of dynamical
change will take place on the collective mode when the
noncollective modes of motion are excited. A well-known
example is the various sideband structure of the collective
motion in the level crossing region.

To investigate this problem, it is convenient to intro-
duce the action-angle representation through

Jk exp(—z’d)k).

When the Hamiltonian in Eq. (2.11) is expressed by
the action variables (J) alone, one may easily find the
constants of motion. When the Hamiltonian has an ex-
plicit angle-variable dependence, it is of vital importance
to introduce the mazimal integrable-form representation
where the angle dependence of the Hamiltonian is opti-
mally eliminated by using the nonlinear canonical trans-
formation discussed in Sec. II B given by

M = (3.1)

e = T’r]k [’F)k = v jk exp(~i¢k):| . (3.2)
i
4 a
W ,7'£ = Q 0, a~ ﬂ‘_... W
{ 1 o}PB zk: k (ﬂk Bin U/ 3171:) 1

= {[~ (% + U + V) Wit k55 i — (R + Q1 — Qo) W7 m] + ..}

klm

To demonstrate how to introduce the maximal
integrable-form representation, let us start with consid-
ering a simplified case where the RPA frequencies
are nonresonant. Since the nonlinear effects is assumed
to be sufficiently small near the HF state, it is reason-
able to apply the Deprit perturbation method. In the
following, we discuss how the maximal integrable-form
representation plays an essential role in studying trans-
figuration of an approximate invariant and in studying an
applicability of the Deprit perturbation method, as one
goes away from the HF state. In the nonresonant case,
the canonical transformation to the maximal integrable-
form representation is determined in such a way that the
resultant Hamiltonian is written by a new set of action
variables alone, i.e.

H(i*, 1) = T 'H1H(iG*,7) = H(J), Je =tik.  (3.3)
The Lie generating function, which transforms the
Hamiltonian into the integrable form, is obtained in the
following way. In accordance with the initial condition
for the evolution operator in Eq. (2.26), the lowest-order
Hamiltonian is given by

Ho = Zﬂkjk. (3.4)
k

The first-order Hamiltonian #; appearing in Eq. (2.29b)
is a cubic function of (7,7*) by definition, and is ex-
pressed as

Ha =Y {(Vaim i} fim, + Vi ikiiy iim) + €.}
kim

+{W1,Ho}pB, (3.5)

where the unknown function W; is assumed to have the
following general cubic form;

Wi =Y {(Wiimii it fim, + Wi iiaii fim) — c.c.}.
klm

(3.6)

The explicit form of the second term in the rhs of Eq.
(3.5) is given by

(3.7)

The unknown coefficients Wii,, and W7} in W, are determined by requiring that the first-order resultant Hamiltonian
has no angle dependence, i.e., H; = 0. The coefficients determined under this requirement are

Witm = Vit (Q + Q + Q) 7Y, W = Vi (e + @ — Q)L

(3.8)

The second-order Hamiltonian #; in Eq. (2.29c¢) is expressed as

Ha = Y {(Vatmn it s, + Vim0 Teafin + SVEE TR Timiin) + c.c.} + 1{W1, H1}pn + 1{W2, Ho}es,

klmn

(3.9)
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where the following relation has been used;

H, = —{W1,Ho}rs.

(3.10)

In the same way as in Eq. (3.6), the unknown second-order Lie generating function W5 is assumed to have the general

form given by

Wa =3 {(Waimn it i firaiin + Witm it fipaiin + Wi 75 fimiin) — c.c.}.

kimn

By using Eq. (3.11), the third term in the rhs of Eq. (3.9) is expressed as

.0 . 0
{W2,Ho}ps = Z:Qi (mgﬁ—i -1 _3717,') W,

= 3 =% + U+ U + Q) Whtmn i i i — (R + U + L — Q) W TR 5

klmn

—( Qe + QU = Q. — Q)WL i + ..}

Using the known quantity W3, the second term in the rhs of Eq. (3.9) is expressed as

{W1,Hi}es = z {BWi1Vinni — 3Wi

klmni

(3.11)
(3.12)
Vi )T T i
+@Wi Vi — 6Wii V™ — 6W! Vi — 2WE V) W ik i in
— AW VE )] fimiin + c.c.}. (3.13)

+ (W,i,V,’;L‘n — 9th‘V*

mni

By requiring the elimination of the angle dependence of the second-order Hamiltonian, the unknown coefficients in

W, are determined as

Wklmn= {2Vklmn +3 Z(Wilvmni - Wklivfi,n)} (Qk + Ql + Q7n + Qn)_la

Wiin= {w,:;m +2) (Wi Ve — Wi VI — 3WE Vi — W ,i,)} (% + QU+ D — Q)7

Wi = {V;Z?" + Y WiV, — WitV — 4W,'f.§-Vz?)} (e + U = W — Q) 77,

lk
W,:cllz Wkl = 0.

(3.14)

The resultant second-order Hamiltonian is then expressed as

1 o
Ha = Z{kai! *t3 Z(Wisz'f — Wi Vi — AWE VL + c.c)

kl

1 L J—
VI + 5 D (WRVES — IWiVika — AWETVEE + c-c-)}JkJ,,

which contains only the new action variables Jy.

In this way, one may determine the Lie generating
functions as well as the transformed Hamiltonian up to
the desired order. The resultant Hamiltonian H is ex-
pressed by only the new action variables

Je = fpie =TJe = Jo + {Wi, Jelep +---,  (3.16)

which just correspond to the constants of motion.

B. Maximal integrable-form representation

In the previous subsection, we have discussed the
method of obtaining the regular trajectories within the

(3.15)

[

framework of the Lie transformation with Deprit pertur-
bation method. Generally, one may encounter the res-
onant cases among the RPA eigenfrequencies. In such
cases, the above perturbation method has the well-known
difficulty of small denominator problem: If there hold
resonant conditions among the RPA eigenfrequencies,

mQy — ny = 0,

m and n being prime numbers (k,l =1,..., K),

(3.17)

one cannot eliminate the corresponding angle-dependent
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terms of the Hamiltonian, which is clearly seen from Egs.
(3.8) and (3.14). Thus, the transformed Hamiltonian af-
ter the Lie transformation given in the previous subsec-
tion has the following form [29];

H= Hinteg(jly-- . ajK)
+Hcoupl(j17' . 'ajK;$1,-'- 1&1()9

where H;nteg stands for the integrable part described by
the new action variables Jx alone, and Hcoupl means
the coupling terms which cannot be eliminated due to
the resonant condition such as Eq. (3.17). In this way,
the maximal integrable-form representation is defined as
the most natural canonical coordinate system [22] in the
TDHF-manifold, where the major terms in the Hamil-
tonian are incorporated into the integrable part of the
transformed Hamiltonian as much as possible, by only
leaving the coupling terms which cannot be eliminated
by the Deprit perturbation treatment based on the HF
state |¢o).

Here it must be noticed that the maximal integrable-
form representation is a local concept, which is specific for
the stable HF state |¢o). If one wants to study the struc-
ture of the TDHF manifold in the vicinity of another HF
state |¢'o), it is natural to start with another canonical
coordinate system (C’,C'*) instead of (C, C*) in Eq.(2.8)
and introduce a maximal integrable-form representation
specific for the new HF state |¢'q).

(3.18)

IV. NONLINEAR RESONANCE AND
ASSOCIATED CONSTANTS OF MOTION

A. Elliptic and hyperbolic fixed points

At the end of the previous section, it has been clari-
fied that the maximal integrable-form representation is
of vital importance in discussing the nonlinear resonant
structure of the TDHF manifold in an analytical way. In
this section, we discuss how the nonlinear resonance ap-
pearing in the TDHF manifold is elucidated by means of
the maximal integrable-form representation.

To make the discussion simple, we consider the fol-
lowing system with two degrees of freedom. A pair of
coordinates (7;,7}) is supposed to describe the collective
motion under consideration and the other pair of coor-
dinates (772,73) describes the noncollective motion in the
maximal integrable-form representation. In this repre-
sentation, the Hamiltonian is expressed as

H =Hinteg(j1,j2) +%coupl(j17j2;$1’¢;2), (41)
where
=1y jle_i‘?", g = \/.I.ze“i‘;’. (4.2)

The nonlinear resonant condition is determined by the
integrable part of the Hamiltonian Hinteg(J1, J2), and is
given by

rwl(jl,jz) - 3w2(j11j2) =0,

r and s being a prime number, respectively, (4.3)

with
s = OMinteg(J1, J:
wl(']la-]2)=—_tag§ 1 2),
1
(4.4)
: = OHinteg(J1, J:
wa(J1,J2) = _%_
2

When the nonlinear resonance satisfying Eq. (4.3) oc-
curs, the standard perturbation method is involved into
the well-known difficulty of small denominator prob-
lem, treating such terms in the Fourier series of Hcoupl
that have angle-variable dependence n(rd;l — 3<2>2) with
n =1,2,.... For an isolated nonlinear resonance where
the resonant point (jl(o) R j:go)) satisfying Eq. (4.3) is suffi-
ciently far from the other nonlinear resonances, the above
secularity is eliminated in the following way, developed
in the classical nonlinear dynamics [22].

Provided that we are interested in a region near to
the resonant point (J.{o),jz(o)), it is general enough to
consider only the Fourier components of Hcqup1 such as

Hcoupl(jl, jl;&laq;Z)
= Z V(")(jl, jz) {ei“("z"_"i”) + c.c.} . (4.5)

Let us introduce the following canonical transformation
(J,9) & (I,0) whose generating function is given by

W = —(r¢r — s¢2)I2 + $1 1.

By means of W, the old canonical variables are expressed
by the new ones as

(4.6)

. -1 - -
$1=01, ¢2= ;(02 +161), Jo=I5 —rl;, J;=sl.
(4.7)

Substituting Eq. (4.7) into Egs. (4.1) and (4.5), one gets
a new Hamiltonian H given by

H= Hinteg + Hcouph
Hinteg = Hinteg(j(I))y
Hcoupl = Hcoupl(J(I)(ﬁ(a))

=Y 2V (J(1)) cos(nby). (4.8)

As is clearly seen from Eq. (4.8), the new Hamiltonian H
does not depend on 6, indicating an existence of a new
local constant of motion I;. Consequently the system
described by the Hamiltonian in Eq. (4.8) is effectively
reduced into a system with one degree of freedom (I3, 6,)
which is integrable.

An important conclusion from the above discussion
is summarized as follows: By employing the maximal
integrable-form representation referred to the stable HF
state o), it has been clarified that an appearance of an
isolated resonance indicates an existence of both a new
local constant of motion I; and a new local regular mo-
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tion [described by (I2,62)] in the vicinity of the resonant
point. The variables (I,6,) are regarded as describing
a transfigured collective motion and the variables (12, 62)
are supposed to describe transfigured noncollective mo-
tion in the nonlinear resonant region. With the aid of
Eq. (4.8), one may get a set of elliptic (stable) and hy-
perbolic (unstable) fixed points (Iéo),f)go)) in the I>-0;
phase plane at

oH
96,

_oH

oL =0, (4.9)

(1 ,657)

(15 ,65)

for a given value I; in the nonlinear resonant region.

B. Illustrative example

In order to illustrate a feasibility of the method pro-
posed in the present and previous sections, let us consider
the following SU(3) Hamiltonian given by

H eiKii +

M= I~

v <

2
Z(Kigkio —+ H.C.),
=1

&l &im- (4.10)

m=1

I

There are three orbits with energies €9 < €7 < €3 and
each level has N-fold degeneracy. In the following cal-
culation, we treat a system with even particle number
N. With the aid of canonical variables in Eq. (2.8), the
Hamiltonian in the TDHF-manifold is expressed as

H(C, C*) =¢eoN + (61 — E())C;Cl + (62 - 60)0502
+V(N —1)(C? + C? + C32 + C3)
X(N—Cfcl —C;Cz) (411)

The used parameters are N = 30,e0 =0,e; =1, g2 = 2,

and V = —0.01. By introducing the coordinates and

momenta through
g; = (C; +Cy)/V2, p; =i(C; - Cj)/V2, (412)
the Poincaré section of the TDHF trajectories on a plane

(p1,q1) is constructed with a condition g; = 0. In the

present case with weak interaction, the Poincaré sections

with various total energies usually indicate only regular
motion expressed by concentric circles centered at the ori-
gin. As the system gets more energy, the structure of the

TDHF manifold is affected by the nonlinear interaction.

The Poincaré section with E = 40 is illustrated in Fig. 1,

where the nonlinear interaction starts to generate a typ-

ical structure which is not dominated by the concentric
circles alone. There appear five kinds of regular motion:

three regular motions expressed by the innermost, mid-

dle, and outermost concentric circles, and two additional

regular motions by inner four-crescent and outer four-
crescent structure. Although the separatrix lines are not
explicitly shown in Fig. 1, each four-crescent structure is
surrounded by a respective separatrix. The elliptic point

0.9 | T T T T T

0.6 -

03 r

0.0 r

P1

-0.9 x - : :
09 06 -03 00 03 06 09

Q1

FIG. 1. Poincaré section of the TDHF-trajectories with en-
ergy E = 40. The elliptic points are located at the center of
crescents, whereas the hyperbolic points are at the edge of
crescents. The inner four and outer four crescent structures
are originated from different resonant points. The first-order
perturbation calculation of the present method gives an ana-
lytic information on the elliptic and hyperbolic points which
are indicated by the solid circles and triangles, respectively,
depending on the two different resonant points.

is situated just at the center of the crescent, whereas the
hyperbolic point is at the edge of crescent island.
Applying the Lie transformation with the Deprit per-
turbation method in Sec. III to the Hamiltonian in Eq.
(4.11), one obtains an analytic expression of the maxi-
mum integrable-form Hamiltonian,which contains infor-
mation on the nonlinear resonant condition (4.3). By fur-
ther applying the canonical transformation in Eq. (4.6),
and by using the condition (4.9), one gets an analytic
expression for the fixed points caused by the nonlinear
resonance. The fixed points thus obtained in the first-
order Deprit perturbation are plotted on the Poincaré
section map in Fig. 1. As is recognized from Fig. 1, the
first-order perturbation treatment of the present method
already gives us an isolated resonant structure of the
TDHF phase space, which is not simply understood in
terms of the structure of the potential energy surface. In
this way, one may get analytic information on the local
constant of motion specific for each nonlinear island.

V. SINGLE-PARTICLE DYNAMICS
ASSOCIATED WITH THE NONLINEAR
RESONANCE

The structure of the TDHF manifold has been so far
discussed through the numerical simulation of the TDHF
trajectories [30]. In order to relate the nonlinear dy-
namics between the collective and single-particle modes
of motion (in the level crossing region) with the non-
linear resonance in the TDHF manifold, however, it is
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decisive to make clear analytically what happens in the
TDHF wave function in association with the nonlinear
resonance.

To this aim, we introduce a set of the following one-
body generators (with respect to {Jx, ¢x}) which relates
the canonical dynamics in the TDHF manifold with the
single-particle dynamics in the maximal integrable-form
representation;

(5.1)

where F' is defined in Eq. (2.5) and ( fuis £

garded as functions of the action-angle varlables (Jk, ¢k)
in the maximal integrable-form representation, through
the transformations Egs. (2.8), (2.9), and (3.2). The
single-Slater-determinant state |F) = exp{F}|¢o) in Eq.
(2.5) thus becomes a function of (Jk, ¢k) and is expressed
as

*.) in F are re-

|F(J,9)) = |J,9).

As is ea.511y proved [31], the “action” and “angle” op-

erators (Jk, ¢k) satisfy the weak canonical commutation
relations,

(5.2)

<j,$|[¢?h jk]lj, $> = ’L.(Sk[,
(J, @1, el T, @) = (J, Bl dx]|J, B) = O.

Wit]{ the aid of the set of action and angle operators
(Jk, Px), the TDHF equation (2.6) is expressed as

(5.3)

5(J,B1H - 3 (udu — Tudi)lJ,$) =0.  (5.4)
k

By taking variations in |J,¢) with respect to (Ji, )
and by using the relations (5.3), Eq. (5.4) turns into the
canonical equation of motion in the maximal integrable-
form representation,

* oH oM
= —=, = = 5.5
br a7 T aa, (5.5)
where the Hamiltonian #H is defined by
H(J,9) = (J,4|H|J, $) (5.6)

and is equivalent to one given in Eq. (3.18).

To make the following discussion simple, let us adopt
the system with two degrees of freedom which has been
considered in the previous section. The Hamiltonian is
then given by

.....

= 7'lim:eg(Jl, J2) + Hcoupl(jla jZ; J’la ‘52)
(5.7)

What we bear in mind is a local region of the TDHF
manifold near the isolated nonlinear resonance point

(J(o) J(O)) satisfying the nonlinear resonant condition

(4.3). Corresponding to the canonical transformation
(4.7), in this case, one may introduce the one-body gen-
erators with respect to (I1,0;; I2, 62)

lae’F —iF _ 3.]1 lae'F . 5

-~ _ _ F — -~
=35 Tan i9sC 1
. 0eiF P _ 3¢1 deif —iF 3¢2 deif o—iF
Li=i——e —e
80, 801 8¢, 801 3¢2
= jl + f'jZ’
. 18eF —iF _ 3 - BeiF o—if 1.
0= - —0}2— =s¢2 — r¢1, Iz =1 602 = ;Jz-
(5.8)

They satisfy the weak canonical commutation relations

(I,01[6:, L;)|1,6) = i6y;,

<I’9|[éi’éj]|I’0> = <I70|[ii7jj”I’ g) =0,

(¢ and j =1,2) (5.9)

where the single-Slater-determinant state defined in Eq.
(5.2) is expressed as a function of (I, 6; Iz, 6,),

|J(1,6), $(1,6)).

In the nonlinear resonance region under consideration,
as is seen from Eq. (4.8), the transformed Hamiltonian
H(J(1,60),4(I,0)) = (I,0|H|I,0) is 0; independent, and
there holds a relation

O0H

0 A
0= 5. = 59, (LOHIL0) =

|1,0) = (5.10)

(I,6|[H,1]|1,6). (5.11)
Equation (5.11) demonstrates that, in the local region
near the nonlinear resonant point, I; becomes a constant
of motion and the corresponding generator I; can be re-
garded as a weak conserved quantity specifying a dynam-
ical symmetry of the Hamiltonian operator. Thus, as al-
ready mentioned in Sec. IV, the new variables (I;,6;)
describe the new collective modes of motion transfigured
from the old one with (Jl, ¢1)
The stationary condition (4.9) is now rewritten as

8H .
90, = (I,0|[H, I]|1,06) =0,
21 047) (I 6)
8H .
oL = (I,0|[H,6,]|I,6) =0. (5.12)
2lag 60 (15 087)

Equations (5.11) and (5.12) clearly display that there ex-
ists a new type of stable single-Slater-determinant states
in the nonlinear resonant region:
0) (0
11,0)| 101 o001 = | T2, 03; ), 057, (5.13)

which is specified by a given value of I; and elliptic (sta-
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ble) fixed point (Iéo), 0;0)) in the I;-0, phase plane, with
an arbitrary value of 6;.

It is worthwhile to mention that the new type of dy-
namical stable single-Slater-determinant state specified
by Egs. (5.11) and (5.12) is just associated with the
elliptic fixed point (Iéo),Oéo)) in the nonlinear resonant
region, and is not reached by the usual static HF, CHF,
or ATDHF theories [32]. Stabilization of the dynamical
stable states is caused by the nonlinear resonant struc-
ture. This mechanism of stabilization may give us a new
scope for understanding a variety of collective side-band
structure, shape coexistence phenomena, etc. Since one
may expect many fixed points in the TDHF manifold, one
may also have a variety of stable and unstable resonant
mean fields which have not been discovered yet.

VI. SUMMARY AND DISCUSSION

In order to try to open a new way of exploring the mu-
tual dynamical dependence between the single-particle
and collective modes of motion near to the level crossing
region, in this paper, a general method is proposed to an-
alytically investigate the nonlinear resonant structure of
the TDHF manifold, without depending on the adiabatic
assumption. In this method, the maximal integrable-
form representation of the TDHF manifold plays an es-
sential role. The representation is obtained within the
general framework of the Lie transformation method with
the Deprit perturbation treatment, by exploiting the re-
cent progress in the theory of nonlinear dynamical sys-
tem. As is always the case for any representation of the
general manifold, the maximal integrable-form represen-
tation is also a local one which is specific for the starting
HF state |@o). Provided that the local representation is

obtained by extending the RPA solutions around |go),
the Lie transformation method with the Deprit pertur-
bation method (in the theory of nonlinear dynamical sys-
tem) is applicable. It is discussed that the representation
provides us with analytic understanding of the nonlinear
resonant structure of the TDHF manifold. The struc-
ture of the TDHF wave function in the nonlinear reso-
nant region is investigated, with the purpose of trying
to relate the nonlinear resonance in the TDHF mani-
fold with the dynamics between the collective and single-
particle modes of motion near the level-crossing region.
The isolated nonlinear resonance in the TDHF manifold
generates a new type of dynamical stable single-Slater-
determinant states, which are topologically different from
the TDHF states near the HF ground state |¢q), and are
not accessible by the usual static HF, CHF, or ATDHF
theories. The new type of states in the nonlinear reso-
nant region are characterized by a local constant of mo-
tion (dynamical symmetry), which can be regarded as a
transfigured collective motion. The appearance mecha-
nism of the new type of stable states gives us a new clue
for understanding the occurrence mechanism of a variety
of collective sideband structure, shape coexistence phe-
nomena, etc. Structure of the single-particle states in the
new type of stable states will be discussed in a separate
paper in association with the topological phase.

In this paper, we have discussed how to study the rich
structure of the TDHF manifold by confining ourselves
to a case where only one HF state dominates. In order to
study what is happening in the level crossing region, one
has to further explore a case where at least two HF states
play a role in characterizing the structure of the TDHF
manifold. This subject will be discussed in a subsequent

paper.
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