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Anisotropic Velocity Correlation Spectrum at Small Scales
in a Homogeneous Turbulent Shear Flow
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A simple theoretical analysis and direct numerical simulations on 512* grid points suggest that the
velocity correlation spectrum tensor in the inertial subrange of homogeneous turbulent shear flow at high
Reynolds number is given by a simple form that is an anisotropic function of the wave vector. The tensor
is determined by the rate of the strain tensor of the mean flow, the rate of energy dissipation per unit
mass, the wave vector, and two nondimensional constants.
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Since the 1941 Kolmogorov theory, it has been widely
accepted that the statistics of turbulence at very high Rey-
nolds numbers is universal and isotropic in the small scale
limit. Effect of anisotropy induced by forcing and/or
boundary conditions at large scales should be weaker at
smaller scales. However, recent quantitative studies sug-
gest that the anisotropy at small scales persists in experi-
mental and numerical anisotropic turbulence at finite
Reynolds numbers with finite scale range (see, e.g., [1,2]
and the references cited therein). The small scale aniso-
tropy in turbulence is a theoretical challenge. The detailed
information on the anisotropic process of energy transfer,
in particular that in the inertial subrange, should be useful
in turbulence modeling for practical problems. The pur-
pose of this Letter is to investigate theoretically and numeri-
cally the quantitative effects of the mean flow on the small
scale anisotropy in the inertial subrange of turbulence.

In this paper, we consider the incompressible turbulent
shear flow that obeys the Navier-Stokes equations and has a
simple mean flow profile U; which is given by the simplest
but nontrivial one, i.e., by a linear function of the position
vector x as

Ui(x) = Sijx;, (D
where S;; is a time-independent constant 3 X 3 matrix
satisfying S;; = 0. The summation convention is used

for repeated indices. This study is restricted to the small
scale anisotropy of the second order correlations of the
fluctuating velocity field, since much remains unknown
about them and they are important in practical applications.

The mean flow U given by (1) is compatible with the
homogeneity of single-time statistics; i.e., the statistics
remain homogeneous if they were so at some initial instant.
The single-time two-point correlation of the fluctuating
velocity at points x and x’ then depends on x and x’ only
through the difference r = x — x’. It is convenient to
define the Fourier transform of this quantity as Q;;(k, 1) =
Qm) 73 [dPr (uix, uj(x + r,t))e 7.

The equation of motion governing the fluctuating field
u contains two types of terms: (i) those representing the
direct coupling of u and the mean flow, which are bilinear
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in U and u; and (ii) those representing the nonlinear cou-
pling within the fluctuating field, which are quadratic in
u. The mean field U has a spatially small gradient and is
temporally coherent, whereas # may have a spatially larger
gradient and temporally shorter correlation. These can be
taken into account and the relative importance of these cou-
plings (i) and (ii) is evident when their characteristic time
scales are compared. The time scale 7 associated with the
coupling (i) is of order 1/S, where § = max;;|S;;|, and in-
dependent of the wave number k. However, the time scale
7y of eddies with a length scale of € that is associated with
(ii) is of order €/u¢, where ug is the characteristic veloc-
ity of the eddies. If we assume Kolmogorov scaling uy ~
(e0)'/3, then 7y ~ (£2/€)'/? ~ [1/(ek?)]"/3, where € is
the energy dissipation rate per unit mass, and k ~ 1/¢.
Thus, 7y is dependent on the wave number, unlike 75, and
it is much smaller than 75 at large wave numbers. This sug-
gests that in the inertial subrange, where k is much larger
than the characteristic wave number k of energy contain-
ing eddies in the fluctuating velocity field, the nonlinear
coupling between the eddies is more dominant than direct
interactions with the mean flow.

The above consideration leads us to assume that there
exists a wave number range with k > k¢ in fully devel-
oped turbulence at high Reynolds numbers such that the
energy spectrum is approximated by

D) + 0 k), )

Qi/'(k) = Ql]

0 (k) = Ko < EPk10P k), 3)
where Q(O) is the isotropic Kolmogorov spectrum in the
wave number range kg < k < ky. Here, P; ,(k)

k k], k = k;/k, K, is the Kolmogorov constant, and kd =

€'/*»73/* is the Kolmogorov wave number. The term Q(l)
represents the modification due to the existence of the
mean flow, and is assumed to be small for small 7y/7g,
ie., small 5(k) = §/(ek?)'/.

Let us further assume that (A1) the two-point statistics in
this range are reflection invariant so that Q;; (k) = Q;;(—k),
which implies the symmetry condition Q;j(k) = Qji(k);
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(A2) for small §(k), only the linear terms in §(k) need to
be retained. o

The latter implies that Q;;" is linear in S, g. Therefore,
there exists an isotropic fourth order tensor C;;, g such that

01} () = Cijep®)Saap 4)

Since Q;; and Q(O) are divergence free and symmetric,
Q(l) must also satlsfy these conditions. The tensor
Cijap(k) must therefore satisfy the following constraints:
() kiCijap(k) = kiCijapk) =0, (D) Cjjaplk) =
Cjiaplk). Under these constraints, QE})(k) may be
written, without loss of generality, in the form of (4) with

Cijaplk) = a(k)[Pio(k)P;g(k) + Pig(k)P;q (k)]
+ b(k)Pij(K) ko kg, (5)

for any traceless tensor S,g. Since Cjjq B(k) is indepen-
dent of S, g, we assume that C depends only on € and k in
the inertial subrange, following Kolmogorov. The dimen-
sional analysis then gives

a(k) = Ae'Pk™B5, b(k) = Be'PFkBR, (6)

where A and B are universal constants.

The anisotropic spectrum le)(k) is determined for any
Sqp using (4) with (5). In particular, when S, ﬁ
S8418p2, the anisotropic components E (k) and ER?(k)
are related to A and B according to

4
Epp(k) = —757 (7A — B)¢,
(7)
E”(k) 757 (—A + B)E,
where ¢ = el/3k—7/3s = X3k B8(k),  Eijlk) =
> =k Qij(p), E?jh(k) =2 i PaDrQij(P), and

»=k denotes the integral or the summation with
respect to p over a spherical shell that satisfies
k—=12<p=k+1/2.

The turbulence has been assumed above to be almost sta-
tionary in the inertial subrange (not at the larger scales).
It is not difficult to include the effects of small nonsta-
tionarities in the dissipation rate €, 7. = €(r)/[de(t)/dt].
However, it does not contribute to the anisotropic spectra
to be considered below and therefore it is neglected in the
present analysis.

The &~ '3/3 dependence of Q" is in agreement with
previous studies based on dimensional analysis, including
Lumley [3]. However, there have been few investigations
of the tensorial dependence of Q) on the vector k com-
pared to studies of the spectrum scaling. Leslie [4] and
Yoshizawa [5] did examine the tensorial dependence of
0W, but their formulations of Q) are different from
(4) with (5). The quantity Q,(,1 )(k) that was obtained by
Leslie violates the symmetry condition Q;;(k) = Qj;(k),
and does not satisfy the solenoidal condition; the one by
Yoshizawa is based on extra assumptions of Eulerian di-
rect interaction approximation and scale separation, and
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the b(k) term in (5) is missing. The form (4) with (5) is
derived solely from assumptions (A1) and (A2) and is new
to the authors’ knowledge. The form (4) with (5) may be
Fourier transformed with respect to k into real space rep-
resentation which belongs to the j = 2 sector of the SO(3)
decomposition [6]. The present analysis shows that the lin-
ear modification due to the existence of the mean shear is
completely determined by two elements in the sector.

Direct numerical simulation (DNS) data of homoge-
neous turbulence with an imposed simple shear mean flow
(1) with §;; = S8;10» was analyzed to test the predictions
of (4) with (5) on small scale anisotropy. The number of
grid points is 5123. Prior to this study, we performed a
DNS with 10243 grid points to simulate almost statistically
stationary forced turbulence without a mean flow field, us-
ing periodic boundary conditions with periods of 27 in
each of the three Cartesian coordinate directions [7]. The
initial conditions for our study were generated by cutting
off the higher wave number components of the 1024 DNS
field. The characteristic parameters of the initial velocity
field are listed in Table I.

Under the presence of a simple shear mean flow, the
initially periodic field remains periodic in the coordinate
system moving with the mean flow. The position vector
X is related to the position vector x in the fixed Eulerian
frame, according to X; = x; — Stxs, X» = xp, and X3 =
x3. The wave vector K in the moving frame is related
to the wave vector in the fixed frame according to K -
X =k - x. The present DNS fields are simulated using a
fourth order Runge-Kutta method to advance the time. An
alias-free spectral method was used with the wave vector
K and a fast Fourier transform, in which the maximum
wave number K,x of the retained modes is 241. The
retained wave vector space is isotropic in K space, but not
in k space.

Two simulations were performed with different shear
rates, S = 0.5 and 1.0, up to time St = 2.0. Although the
simulation domain in wave vector space is deformed, all
the modes whose wave numbers are smaller than 100 re-
main in the domain throughout the simulation time. The
characteristic wave number ks = € ~1/253/2 defined as the
wave number at which 8(kg) = 1,1is 1.3-1.5 and 3.3-3.8
for the runs with S = 0.5 and S = 1.0, respectively. The
direct coupling to the mean flow is therefore smaller than
the nonlinear coupling between the eddies of the fluctuat-
ing field across almost the entire simulated wave number
range.

TABLE I. The characteristic quantities of the initial velocity
field. R,, Taylor microscale Reynolds number; E, total energy;
€, energy dissipation rate; Ly, integral length scale; A, Taylor
microscale; 77, Kolmogorov microscale.

R, E € Lo A n
284 0500 7.2 1072 121 0.143 430 X 1073
154501-2
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The anisotropic energy spectrum components — E1, (k)
and —(1/2)E}? (k) obtained from the S = 0.5 DNS with
time St = 2.0 are shown in Fig. 1. The isotropic compo-
nent (1/2)E;; (k) calculated at the same time is also shown
for comparison. Both the anisotropic components E (k)
and E,-ll-z(k) are negative for all but the highest wave num-
bers, where the artificial effects of the simulation domain
deformation may have a direct influence on the spectra.
The Reynolds stress —(ujuy) is the integration of —E (k)
with respect to k. The negative values of Eip(k) imply
the positive Reynolds stress. Since (1/2) (d{u;u;)/dt) =
—S8{uiuz) > 0, where the viscous term is neglected, the
energy is supplied from the mean flow to the fluctuating
velocities. The values of E1»(k) and E}(k) in Fig. 1 show
an approximate k /3 power-law dependence at k =~ 10,
which is in agreement with (6). Similar results were also
observed when S = 1.0 (figure omitted). The spectra in
this range are quasistationary over the simulated time in-
terval, except during the initial transient state. This im-
plies that the anisotropy is almost stationary, unlike the
rapid-distortion limit (the linear limit ignoring the nonlin-
ear term) [8].

Figure 2 shows the anisotropic components — E1;(k)
and —(1/2)E}?(k) normalized by ¢ = €'/*k~7/3S. The
plot suggests that the normalized spectrum E1,(k)/& may
be approximated by a constant in the vicinity of £k = 10
for both runs between 1.0 = St = 2.0. Also, the normal-
ized spectrum (1/2)E}?(k)/£ may be approximated by a
constant over the same region, although a slight systematic
decay with time is observed. The mean values of the nor-
malized spectra for S = 0.5 and St = 2.0 are computed
by taking the average values over 4 = k = 16. In this re-
gion, the energy spectrum E(k) exhibits nearly the k~/3
power law, and the energy flux I1(k) is nearly constant
with relative deviation from € less than 10%. This gives
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FIG. 1. The isotropic (1/2)E;(k) (solid line), anisotropic
E1»(k) (dashed line), and —(1/2)E;? (dotted line) components
of the energy spectrum at S = 0.5 and St = 2.0. The dot-
dashed lines with a slope —7/3 are the line fits described by (8).
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Ep(k) = (—0.60 = 0.16)¢,

YEJ2(k) = (—0.20 = 0.04)¢,

where the error is estimated from the variance. The coef-
ficients A and B, estimated from (7) and (8), are

A= —0.16 = 0.03, B = —0.40 = 0.06. 9

From (2), (4), and (5), some of the components of
E%n(i,j, m,n = 1,2,3) are identically zero when Sap =
041042, due to the symmetry in k space. Among the re-
maining components, those that are zero for isotropic tur-
bulence are expressed in terms of A and B as

EX(k) = EB(k) = (47/105) (13A — 3B)&,
E(k) = (47/105) (23A — B)¢,

E2(k) = ER(k) = (167/105) (=24 + B)&,
EX2(k) = (87/105) (A + 3B)¢.

This theoretical prediction can be tested using DNS data,
as shown in Fig. 3. There is good agreement between the
predictions and DNS.

Experiments have been performed to investigate the
one-dimensional cross spectrum E12(k;), which satisfies
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FIG. 2. The anisotropic components of the energy spectra (a)
—E»(k) and (b) —(1/2)E (k) normalized by & = €'/3k~7/35.
The straight dot-dashed lines indicate the values given by (8).
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FIG. 3. Simulated tensor com]i)onents, (a) —E(k), —EB(k),
—E{3 (k) and (b) —Eii(k), —Ex(k), —Es53(k), at S = 0.5 and
St = 2.0. Straight lines are the estimates using (9) and (10).

fg dky E\2(k;) = (ujuz). From (2),(4)—(6), this can be
expressed as Ep(k;) = —Coéy, Co = (367/1729) X
(—=33A + 7B) in the scaling subrange, where & =
61/3k1_7/3S. Substituting the values of A and B in (9) to
the above equation gives Co = 0.16 £ 0.05. This is in
fairly good agreement with experimental values (~0.14)
obtained by Wyngaard and Cote [9] and by Saddoughi and
Veeravalli [10]. On the other hand, in order to determine
the universal constants A and B completely from experi-
ments, measurement of another anisotropic spectrum
which is linearly independent of E1»(k;) is needed.

In the present analysis, the linear assumption (A2) is
used. The dimensional analysis used to derive (6) implic-
itly assumes that C;;,p is independent of large scale flow
statistics, except €. These are not trivial assumptions. Re-
cent studies of anomalous scaling of anisotropy show that
the effect of the zero modes cannot be excluded a priori
[11,12]. The agreement between the present theory and
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DNS suggests that the zero modes may not be significant
in the problem under consideration.

The assumptions of our theory are consistent with spec-
tral closure approximations such as the Lagrangian renor-
malized approximation (LRA) [13], which is free from
any ad hoc adjusting parameter and yields the Kolmogorov
spectrum for isotropic turbulence. The universal constants
A and B may be estimated using the LRA by assuming
the formulas (2)—(6) over the scaling range kg < k < ki,
and then substituting it into the closure equations. A pre-
liminary analysis suggests that the estimate is sensitive to
ko/k for finite but small ko/k(~0.2). Thus, the similarity
range must be quite large to obtain a reliable estimate of the
asymptotic values of A and B at high Reynolds numbers
from experiments or DNS. The closure analysis based on
the LRA is now underway, and the details will be reported
elsewhere.

Since the gradient of the arbitrary mean flow is locally
constant at sufficiently small scales, it is tempting to as-
sume that the formulas (2)—(6) can be applied to general
turbulent shear flows (which is at least formally possible).
The validity of such an assumption is left to be examined
in the future.

The DNSs were performed using a Fujitsu VPP5000/56
computer at the Nagoya University Computation Center.
This work was supported by the “Research for the Future”
Program of the Japan Society for the Promotion of Science
under project JSPS-RFTF97P01101.
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