Canonical formalism of dissipative fields in thermo field dynamics
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For the stationary case the canonical formalism of thermally dissipative fields with both
positive- and negative-frequency parts is constructed. This formulation enables one to follow
the self-consistent renormalization scheme which creates the dissipation spontaneously. The
self-interacting @ > model is examined as an example of the spontaneous creation of dissipation.
The parameter a appearing in the thermal state conditions as well as observables independent

of the choice of a are discussed.

I. INTRODUCTION

The quantum field theory provides us with a useful for-
malism for quantum systems with infinite degrees of free-
dom. A program of reformulating the nonequilibrium quan-
tum statistical mechanics with infinite degrees of freedom in
the terminology of quantum field theory has been developed
by extending thermo field dynamics (TFD) which is quan-
tum field theory with thermal degrees of freedom.'~® This
extended TFD was shown to be equivalent to the density
matrix formalism with the Liouville equation.! The ex-
tended TFD has so far been formulated in terms of harmonic
oscillators. The purpose of this paper is to reformulate the
extended TFD as a formalism for quantum field theory.

Asis now widely known, TFD is built on the concepts of
thermal doublets, the thermal vacuum, and the Hamilto-
nian.>'® Thus with any operator 4 there is associated an-
other operator 4 which is called the tilde conjugate of 4. The
doublet 4# with 4 ' = A and 42 = 4 ' is called the thermal
doublet. The tilde conjugation rules are summarized as

[AB] =4 B, (1.1a)
[c,d +¢,B] =c*4 +c*B, (1.1b)
[A41] =4", (1.1c)
(4] =04, (1.1d)
10)" = |0, (1.1e)
0" =<0|, (1.1)

where |0) and (0| are the thermal vacua, o0 = + 1( — 1) for
bosonic (fermionic) A4 and the ¢,’s are ¢ numbers.

The Hamiltonian is constructed as follows. When a sys-
tem of quantum fields is given, we write the Lagrangian den-
sity £ [¢] from which the canonical Hamiltonian H{¢]
follows through the well-known route. Then we construct &
by applying the tilde conjugation rules to H. The Hamilto-
nian is then given by

H=H-H. (1.2)
This statement is quite general. It covers all thermal situa-
tions, both equilibrium and nonequilibrium.

To make our consideration explicit, let us consider a
nonequilibrium transition from a situation of normal con-

2741 J. Math. Phys. 28 (11), November 1987

0022-2488/87/112741-12$02.50

ductivity to one of superconductivity. The initial situation is
described by the normal quasielectron field, while the final
situation is described by the superconducting quasielectron
field. The intermediate situation is described by a time-de-
pendent quasiparticle field (or a renormalized field). Thus a
reasonable computational method may be the perturbative
calculation in which the unperturbed representation corre-
sponds to the quasiparticle field. Since the key mechanism in
nonequilibrium phenomena is thermal dissipation, the qua-
siparticle field under consideration should be dissipative. In
the sense that the field equations of the quasiparticles are
linear and homogeneous differential equations, they can be
said to be free. However, since they are dissipative, they are
not really free. We have therefore called them semifree. Us-
ing this terminology we use semifree fields for the unper-
turbed representation.

It may be important to note that the dissipative effect is
important even in a stationary case. Consider a situation in
which the ground state is an equilibrium state. Even in such a
case the excited states approach the ground state dissipative-
ly. Then although the thermal averages of observables are
independent of time, the two-point functions such as the
Green’s functions or correlation functions exhibit dissipa-
tive effects caused by the contributions due to the excited
states. This means that the Hamiltonian for the semifree
fields should contain thermally dissipative terms.

It is obvious from the above consideration that the per-
turbative calculation formalism requires knowledge of the
general structure of the semifree field theory as its beginning.
Once we know the Hamiltonian say (H %) of the semifree
field, then crudely speaking H — H ° acts as the interaction
Hamiltonian. Then the Feynman diagram method tells us
how to proceed in the perturbative computation. Just as the
physical mass is determined by the self-consistent renormal-
ization method that leads to mass equations, the dissipative
constant is to be determined by the self-consistent renormal-
ization method that leads to equations for dissipative coeffi-
cients. When the latter equations give rise to a nonvanishing
dissipative coefficient the phenomenon is called the sponta-
neous creation of dissipation.’”” In the framework of TFD
this phenomenon is expected to happen in almost all cases.
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In a simple example it was shown by an exact solution.”

Since the Hamiltonian of a semifree system consists of
the thermal doublets, the dissipative term has the form of a
22 thermal matrix like a“4 #*a”. At first glance it may
seem that the structure of the matrix A is quite arbitrary, but
in fact the matrix A was found to have a very particular form.
In particular, the existence of the off-diagonal elements of 4,
which combine tilde and nontilde operators, indicates that
this dissipation is a thermal effect.

So far the study of the structure of semifree systems has
been made only for harmonic oscillator-type operators. One
purpose of this paper is to formulate the theory in terms of
semifree fields instead of in terms of harmonic oscillator-
type operators.

It is worth commenting on the dynamical map in TFD
(i.e., the expression of Heisenberg fields in terms of certain
free fields). The thermal instability giving rise to the imagi-
nary terms in the self-energy forces us to abandon the dy-
namical map in terms of the usual asymptotic free fields
based on the stable particle picture. In fact a no go theorem*!
states that the S matrix is trivial when the dynamical maps
are expressed in terms of asymptotic free fields in TFD. In-
stead we express the dynamical map in TFD in terms of the
semifree fields:

v=vylpl, (1.3)

where 1 and @ are the Heisenberg field and the semifree field,

respectively.? The symbol = is the weak equality (i.e., the
equality of matrix elements in reference to the Fock space of
the semifree field ¢). We feel that the reasons why (1.3) is
possible are the negative energy of the tilde quantum and the
infinite number of degrees of freedom. The creation or anni-
hilation of a tilde quantum describes a change in the ther-
mally excited background field and is therefore not observed
as particle creation or annihilation. Intuitively speaking, the
nontilde particles are acting under the influence of the ther-
mally excited background field. This is the reason for the
thermal instability of particles; they become unstable
through communication with the thermal background field.
The eigenvalues of H ° with imaginary  dissipative part may
have nothing to do with eigenvalues of H and furthermore H
itself has no eigenstate in the present realization space (i.e.,
the Fock space of ¢ ). The latter statement reminds us of the
fact that a generator G has no eigenstates in the representa-
tion space in which the symmetry generated by G is spontan-
eously broken in quantum field theory.

It has been shown that there is a parameter « in TFD
with the property that the physical results are independent
of a. The Keldysh-Schwinger formalism'? corresponds to
the choice a = 1, while the so-called equilibrium TFD uses
a = 1.>1° In modern TFD for operators of harmonic oscilla-
tors the choice of a has been left undetermined. In Sec. III
the structure of a transformations will be presented.

In Sec. IV the structure of the semifree fields will be
presented. Here we restrict our consideration to stationary
situations only, and we choose a = 1. The semifree field is
expressed in terms of an orthonormalized complete set of
wave functions which satisfy the canonical sum rule®; this
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situation is exactly the same as the one for the usual free field
theory. In this way the semifree fields acquire the usual ca-
nonical formalism. The semifree field theory with arbitrary
choice of a in both stationary and time-dependent situations
will be presented in a separate paper.

In Sec. V we analyze a self-interacting scalar field in a
stationary situation. It will be explicitly shown how the self-
consistent equation for the dissipative coefficient emerges
from the renormalization calculation. Althought this renor-
malization method has been presented only in consideration
of a very simple model, the general method for choosing the
renormalization point in stationary situations will be illus-
trated.

As a preparation for the analysis in this paper, in Sec. 11,
there will be given a very brief summary of the semifree oscil-
lator theory.’

Il. TFD IN TERMS OF SEMIFREE OSCILLATOR

We consider the oscillator variables classified by the
“momentum” K, i.e., a(k) and @(k). The thermal doublets
are

a“(k): a'(k) =a(k), a*=a'(k), (2.1a)

a“(k): a'(k)=a'(k), a*= —oa(k). (2.1b)
The thermal vacuum is denoted by |0) and (0|. We can write

(k) =a'(k)7, (2.2a)
with

1 0

r, = (o R a) . (2.2b)
We have

[a*(k),a" (D], =6,,6(k—1) (2.3)
witho= + 1.

In this section and Sec. II1, we include both the station-
ary and time-dependent situations in our considerations.
The time evolution of operator is given by

a(tk)* =8 ~1(a(k)*S() , (2.42)

(LK) =S~ (Hak)ES(e) (2.4b)
with S(=0) = 1 and

3,5(t) = —iHS(z) . (2.5)

The relations in (2.4) are consistent with the tilde conjuga-
tion r/t\ﬂes (1.1) when and only when the semifree Hamilto-
nian H 9 is tildian,

GH® ~=iH°. (2.6)

In the quantum field theory without thermal freedom
the vacuum is empty of physical particles, implying
a(k)|0) = 0. When we have the thermal degree of freedom,
the vacuum contains thermally excited particles. Thus
a(k)|0) 0. It has been shown' that the vacuum is condi-
tioned by the thermal state conditions which read as

a(tk)'|0y =f*(t,k)a(t,k)?|0), (2.7a)
Ola(tk)! = —af' *(r.k)(0ja(t,k)?, (2.7b)

with a real and positive function f(z,k) and O<a<1. The
parameter @ may depend on time.
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Considering the tilde conjugation rules (1.1) we have
from (2.7)

a(tk)?|0y = —f*(tk)a(tk)'0), (2.8a)
(Ola(t,k)? = of ' ~*(tk)(Ola(t,k)". (2.8b)
The relations (2.7) and (2.8) give the complete set of [a]-
representation thermal state conditions for the semifree os-
cillators. In deriving (2.8) we have used the assumption that

f(tk) is real which is equivalent to considering only systems
with real particle number

n(tk) = (0ja(zk) 'a(tk)'|0)

where (2.7) and (2.8) have been used. When f(¢,k) is inde-
pendent of ¢ [i.e., f(t,k) =f(k) ], we state that the situation
is stationary.

Since S(#) is not necessarily unitary, we used the symbol
I

1+ 20n(tk)

A(tk) = [20’f1 —¢(tk)[1 +on(tk)]

_ _afa—l(tik)]
(k) = [af’—"(t,k) 1 ’

(2.12)
and the 7,’s ({ = 1,2,3) are Pauli matrices.

The thermal state conditions (2.7) and (2.8) have the
form

y(k)'0) = P(£,k)*|0) =0, (2.13a)

O]y (tk)* = (0|7(tk)' =0, (2.13b)
where

y(tk)* = B(t,k)**a(t,k)”, (2.14a)

y(tk)* =3 (tk)’B ~'(t,k)*, (2.14b)
with

B(tyk) = [1 _af(tyk)]—l/2

1 _fa(t’k)]
X[—afl—"(t,k) ) . (2.15)

In defining »* and 7", we have imposed the condition that
det B = 1. Equations (2.14) lead to

[k, @D ], =6,,6(k—1). (2.16)

The equations in (2.13) indicate that ¥ (£,k) Yand 7(1,k) Zare
the annihilation operators while y(£,k)? and 7(2,k) " are the
creation operators. We can prove

BU(tk) = 1,B(tK)T . (2.17)

It has been shown that ¥ (£,k)* and 7(#,k)* are the eigen-
functions of the form

y(tk)* = [W(t,O,k)epr- dr{ — iw(7.k)
0
—T3K(T,k)}]ﬂv7/(t=0,k)”, (2.18a)
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- 2fa— l(t!k)n(t,k)
— [1 4 20n(k)]

11 instead of T. Note that the nonequilibrium TFD presented
in Refs. 1 and 2 used the [a@ = 1] representation, while the
equilibrium TFD in Refs. 9 and 10 employed the [a =1]
representation. The {a = 0] representation corresponds to
the mirror space.' The physical quantities, the detailed defi-
nition of which will be given in the next section, are indepen-
dent of the choice of a. R

It follows from the thermal state conditions that H ? has
the following structure:

Ho= J d3k a(k)*[o(tk)8* — ix(k)A(LK)*

+ o{3,n(tk) }r(t.k)*
+ {0, Inftk) "~} r 4*]a(k)”.

Here «(2,k) is the dissipative coefficient. The matrices 4 and
T are

(2.10)

], (2.11)

AN O,k)"[exp f dr{iow(rk)
0

+ 7'3K(r,k)}W_‘(t,0,k)]m , (2.18b)
with
_ z(ts,k) O ]
W(tys’k) - [0 Z_l(t,s’k) > (2.19)
where
z(t’s,k) _ [n(s,k) (l—a)/Z[ 1 +crn(s,k) :Ia/z (220)
n(tk) 14 on(tk)
=z Ys,tk) . 2.21)

This leads to the commutation relation for arbitrary times as
[y k) 7(s1)],

= [W(t,s,k)expf dr{ — iw(7k)

- 7'3K(7',k)}]w5(k -D. (2.22)

The representation space in TFD (called the thermal
space) is the vector space spanned by the set of bra and ket
state vectors which are generated, respectively, by cyclic
operations of the annihilation operators ' and 7 on (0],
and of the creation operators y* and 7' on |0).

Rewriting physical operators a(z,k)* and a(t,k)* in
terms of the operators y(2,k)* and ¥(z,k)*, and using the
commutation relation (2.22), we can rewrite any product as
a sum of normal products, with 7', 7 to the right of 3%, 7'.
This leads to a Wick-type formula, which in turn leads to
Feynman-type diagrams for multipoint functions in the re-
normalized interaction representation. The internal line in
the Feynman-type diagrams is the unperturbed two-point
function, the calculation of which will be given in the follow-
ing.
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The calculation of the unperturbed causal two-point
function,

G(l,s,k)“”ﬁ{k - l) = - i<0¥T [a(tyk)#a(sxl)v} 20) »
(2.23)

can be made by means of the method of the Wick-type for-
muia. The result has been obtained. It is

G(ts k)" = [B(tk) ¥ (1,5K)B ~'(sk) ],
where
G (s k)8 (k — ) = — 0T [y (. k)*¥(5,)"1{0} ,

(2.24)

(2.25)
whose elements are explicitly given by
G (tsk)" =z2(¢5K)G7(t,5k) , (2.26a)
G (t5.k)2 =z(5,t,K)G(1,5k) , (2.26b)
and % (1,5,k)"? = Y (¢,5,k)?' = 0, with
G(tsk) = —i6(t —s)exp [j dr
x{ —iw(7,k) —K(r,k)}], (2.27a)
G(t,5k) = i0(s — t)exp U dr
X{ —iw(rk) + K('r,k)}] . (2.27b)

lll. THE « TRANSFORMATION AND OBSERVABLES

As is seen from the arguments in the previous section,
we have infinite ways of representing a thermal situation
through the thermal state conditions. This freedom was indi-
cated by a in the thermal state conditions (2.7) and (2.8).
(In the density operator formalism'? the a freedom arises
from the trace formula Tr[p4 ] = Tr[p' ~“4p°] with any
operator 4 and the Liouville equation of the form
p*= —ilp®H].) According to (2.4), (2.5), and (2.10),
the parameters and operators appearing in the free dissipa-
tive Hamiltonian also depend on a, and therefore H °(z),

Ho( =S~ HS() (3.1a)
should be denoted by H o():
BO(1) = H%, (10,3, (1;a). (3.1b)

Thus both the thermal state conditions and the free dissipa-
tive Hamiltonian depend on a. The fact that the thermal
state conditions depend on a implies that the thermal vacu-
um also depends on a. Thus we should write |0, ) and {0, .
However, in the following sections, the suffix « in the Hamil-
tonian and the thermal vacua will be mostly omitted.

The observable results, however, should be independent
of a. Therefore it is convenient to find the transformation
which changes e as ¢ - ¢’ in order to identify the observable
operators.

Let 7(0) denote the operator inducing the following
transformation:

|0,) =T"10)|0,), (0,|=(0,|T(0). (3.2)
Without loss of generality we can prepare all of the operators
in such a way that they become independent of ¢ at t = 0:
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a(0)y=a, (0) =a, (0},
a(0)“=a, (0)* =a, (0)*. (3.3)

Then T(0) can be easily obtained from the thermal state
conditions at ¢t = 0 as

T(0) = exp[ — 16a(0)In f(0)a(0)7,a(0)], (3.4)
with da(t) = a' (1) — a(t).

Since
A c(;’),(t).u"

=(0,|a, ()3, ()*]0,) (3.5a)

1+ on() ~f""(t)n(t)]
=[af1_"’(t)[1+cm(t)] — on(t) ’
(3.5b)

we can relate 4 (1) to 4 {” (¢) as follows:

AP =WHAT(OW (1) . (3.6)
Here

W(t) = explirsda()Infln)] . (3.7
This shows that

a, (=T HOYW()*a, (1)'T(0),

a, () =T Y0)a, ()W~ '(1)*T(0), 3.8)
which become

@y () =T (a, (DT (1),

a,(H*=9(a, (OAT ). (3.9)
Here

T() =T HO)T(¢r) (3.10)
with

T(t) = exp[ — ba()nflr)a, ()ma, ()] . (3.11)
In deriving (3.9), use was made of the relations

T(t)a, (T ~'(1) = W()*a, ()",

T()a, (T () =a, (£)"W ()™, (3.12)
Note that

J(0)=1. (3.13)

The 7 (t) transformation changes the Hamiltonian as

HO. () = T (WH ()T ~\(t) — iT ()T (1) .
(3.14)

A calculation shows that this changes only the explicit & in
H?®(t)in (2.10) asa—a’. Thus Sw and k are independent of
a.

An operator @, is said to be an observable, when and
only when its vacuum expectation value is independent of a:

(OalQa[0a> = (Oa'|Qa'|Oa'> . (3.15)
For our purpose it is sufficient to consider the @, of the form
Qa (tv“"tm) = Qal (tl)Qaz (tz) t 'Qam (tm) ’ (3~16)

where each of Q,; (i = 1,...,m) stands for any one of a,,, @,
@,,and a!', This is because the most general form of opera-
tors is a linear combination of the terms of the form in
(3.16).

It follows from (3.9) that

<0a"Qa"Oa'> :ex(oaiQa‘Oa> s (317)
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with

Salty)
-1 i [L‘(_ti_)_} (3.18)
2 “~ f(o)ﬁa(O)
for a, and a,
€ [ for a!' and aLT. (.19
Comparing (3.17) and (3.15), we see that
x=0 (3.20)

is necessary and sufficient for @, to be an observable. In
using (3.20), it is very important that & can vary in time.

Asisseen from (3.18) and (3.20), any observable Q, is
a linear sum of products of the following operators:

N, (t) =all()a, (1),
M, (1) =all(n)a, (1),

N, (1) =all(na, (1),

M, () =oall(t)a,(2) . (-21)
Note that the operators such as a!f(¢,)a, (¢,) with #,#¢, do
not satisfy condition (3.20) and, therefore, are not observa-
bles.

We can summarize the above results by the statement
that the observables are represented by the operators which
are invariant under the following time-local dilatation:

a, (1)—-e*Pa, (1), a,(t)-e*Va, (1),

(3.22)
all(t) »e=Pall(t), alf(r)—e Yall(s).

IV. GENERAL FORMALISM FOR SEMIFREE FIELD

DIVISOR

In this section, we will consider properties of the semi-
free field for type II in the stationary case. This time-inde-
pendent situation corresponds to the long time limit in the
statistical mechanical argument. We will use the fa =4 ] rep-
resentation because the general formalism for type II semi-
free fields is most easily constructed in this representation.
Here the type II field means those fields which carry both the
particle (i.e., positive-frequency wave function) and anti-
particles (i.e., negative-frequency wave functions). The type
I semifree field consisting of the particle only is discussed in
Ref. 4.

According to (2.10) with a =1, the Hamiltonian for
the type 11 semifree field in a stationary situation is

HO= J‘ d3k {a(k)*[w (k)& — ik(k)A(k)*]a(k)”

ik(k)A4 T(k)* 167 (k)"},

(4.1)
J

+ ob H(k)*[w(k)O* —

on(k)

4@ (k)* = (0la(k)*a(k)*|0) =

oJn(k)[1 +on(k)]

and has characteristics

[47(k)}*=47(k), (4.11a)
[4“Kk)]?P= —4“(K), (4.11b)
AP K)IA@K) =4 @ k)4 k) =0, (4.11c)

2745 J. Math. Phys., Vol. 28, No. 11, November 1987

where the matrix A4 is defined by (2.11). We have used the
thermal doublet notations b_oth for particle (a*,a*) [cf.
(2.1)] and antiparticle (b ™,b ™),
br(k)* b1k =b"(k), bY'(k)>=b(k), (4.2a)
—obt(k).
(4.2b)

i)™ blH(k)'=b(k), bY(k)’=

Note that the Hamiltonian and the thermal state conditions
for antiparticle are obtained by the replacement a(k) - b(k)
together with k— — k in those for particle.

In writing (4.1), we have assumed the symmetry of the
particle and antiparticle (i.e., they have the same energy
spectrum o, damping parameter «, and particle distribution
n), and the isotropy of the system (i.e., the quantities o, «,
and n are dependent on only the magnitude of k). Note the
property of the matrix 4,

rATr, =4, (4.3)

when a = 1, where 4 T indicates the transpose of 4 and 7, is
given in (2.2b).

The Hamiltonian H © leads to the following equations of
motion for the particle and antiparticle:

[19 00 — 0 ()& ]a(tk)" =0, (4.42)

a(ek)¥|[ —tﬁ,_K(k)”"—a)(k)S""] =0, (4.4b)
and

[ia,;(k)’”—f—w(k)&“”]b”(t,k)”=O, (4.5a)

bM(k)” [ —lﬁ,_x(k)"“+a)(k)5"“] =0, (4.5b)
respectively, where

d Z (k)" =3d,6" £ k(k)A(K)*. (4.6)
Equations (4.5) and (4.6) are solved to give

a(tk)* = e~ *®Y (1k)*a(k)”, (4.7a)

a(tk)* =ak)'U_ (tk)*He“™!, (4.7b)
and

b (Lk)* = 2™ U_ (£,k)*bT(k)”, (4.8a)

B (tk)* =bT(k)"U, (1k) e w0, (4.8b)
respectively, where

U, (k) = exp[ —x(k)4(k)¢]

=4V K)e W~ 4@ k)™,  (49)

where the matrix 4 " is defined in (3.5) and 4 “’ is given by

—Vn®[1T+on(®7T]*”

(4.10)
— [1+on(k)]
r
AR —A @k =8 (4.11d)
AP+ A4 @K =AKk)*. (4.11e)
From (4.4) and (4.5), we see that
Arimitsu, Umezawa, and Yamanaka 2745
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—{0% + [o(k) — ix(k)4(k)]*}*a(tk)* =0,
(4.12)

—{9% + [0(k) —ik(K)AK) ]} (k)" =0.
(4.13)

A. The semifree field equation for a physical field

We consider a semifree field ¢ (x) of type II which satis-
fies the field equation

A () p(x)"=0, (4.14)
where d = (V,d, ). The field equation is called a type I equa-
tion when it can be reduced to the eigenvalue equation
{32+ [w( — V) —ix( —iV)A(— V)] }*p(x)"=0.

(4.15)

This dissipative free field equation (the equation for a semi-
free field) is the extension of the nondissipative free field
[07 + @°( —iV) ]@ = 0. Note that the form of the dissipa-

tive term is not arbitrary; it should be proportional to the
matrix 4.

B. The divisor
For the semifree field, the divisor d, (8) is defined by
A () d, ()
=d, ("4,
= — {024 [0(—iV) —ik( —V)A(—iV)]2}*.
(4.16)
If we denote by A (x, ¥) any Green’s functions of (4.15),
— {02+ [@( = iV) —ik( —iIV)A( — V)] }Ag (x, p)®
=M6(x —y)o(t—ys), 4.17)
with p=(y,s) and V=V_, d,(d)As;(x,y) is a Green’s
function for (4.14),
A (D[d (DA (x, )% =66(x —y)b(t —5) .
(4.18)

C. The wave equation

In the usual quantum field theory without thermal de-
grees of freedom, the consideration of free fields begins with
finding u (x,k)a (k) for particles and v(x,k)b (k) for anti-
particles. Here #(x,k) and v(x,k) are the wave functions of
positive and negative frequencies, respectively, and x means
(x,¢). These wave functions are usually determined by the
free field equations. On the other hand, when the unper-
turbed Hamiltonian is known, they can also be obtained
from the Hamiltonian. The Hamiltonian determines a(z,k)
and b(t,k), and then the wave functions u(x,k) and v(x k)
are obtained through relations such as a(£k)u(xk)
= a(k)u(x,k), etc. In the case under consideration, we fol-
low the latter method because the unperturbed Hamiltonian
HP°, (4.1), is known.

Through the relations

u(x,k)a(tk)" = u(xk)*a(k)",
v(x,k)*b T (1k)" = v(x,k)*b T (k)",

(4.19a)
(4.19b)
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with
u(x, k) = u(k)*e*™, (4.20a)
v (%K) = v(k)*ve — *x (4.20b)
we have
UK = e~ @UOTH Ry (1K)Ey (k) (421a)
DRk = Ry (LkyPu(k)® . (4.21b)

Here (4.7) and (4.8) have been used. We see that u(x,k)
and v(x,k) satisfy

[(3.5(—V)* —w(—iV)&]u(xk)® =0,
[(3.7(— V) +w(—iv)§]u(xk)®> =0.
The physical field ¢ (x) is expressed as

(4.22a)
(4.22b)

@lx)* = f d’k [u(x,k)* a(k)” + v(xk)*b (k)] .

(4.23)

Then substitution of (4.23) into the field equation (4.14)
gives us wave equations

A, (3)"u(xk)® =0,
A (3)*v(xk)® =0.

(4.24a)
(4.24b)

D. The Hermitization matrix

As we have assumed that the differential operator A, (d)
depends on the thermal degrees of freedom (i.e., the super-
scripts) only through ix( — iV)A( — iV), we can easily see
that it has the property

A (—=NTL =14,(9) . (4.25)
In deriving (4.25), we have used the characteristic
AT(—V)= —A(— V)71, L. (4.26)

In the following, we drop the superscript unless it is needed.
Equation (4.25) tells us that the matrix 7, is the Hermitiza-
tion matrix with respect to the thermal degrees of freedom.

The property (4.25) and the wave equations (4.24) give

us

k)4 (—3) =0, (4.27a)

B(xk)A, (—3) =0, (4.27b)
where

a(x k) =ru'(x k) !, (4.28a)

v(x,k) =0 (x, k) 1. (4.28b)
Substituting (4.21) into (4.28), we have

(k)" = a(k)?U_  (t,k)%ewdor—kx (4.29a)

U(x, k)" = 5(k)“U, (t,k)%e @i+ ikx (4.29b)
where we have used the relation

UIttk) =r,U_, (t,k)7r; ", (4.30)

which can be obtained from (4.26). Note that the relations

a(tk)u(x,k) =a(k)a(xk), (4.31a)
bt k)v(x,k) = b T(k)D(x,k), (4.31b)
are consistent with (4.7b) and (4.8b).
We then define
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Px)* = f d>k [a(k)@(x k) + b (k)" 5(xk) "],
(4.32)

which satisfies
P)A(—)*=0. (4.33)
The property of the divisor defined by (4.16) gives us

P92 + [0(V) — ik(V)AGV)]T}=0. (4.34)
E. The inner product of wave functions
Let us assume
A @ =29 =y + A V(- V)&
X8, +AP( -V 3. (4.35)

The inner product of two wave functions, say f(x) andg(x),
is defined by

(fe)= J d*xFxyT (3, — ()™,  (4.36)

where we have introduced
T3, — 9y = [A (= iV) —id D — V)3, ]6™,
(4.37)
with
3.=8,—3,. (4.38)

When f and g satisfy A, (3)f(x) = 1,.(d)g(x) =0, we
can show that  f*g), is independent of 7 as follows:

g;(f'g), - f 4% 00 [A Y = ¥) (3, + 8,
—IAP(—iV)(3, +3,)(3, —3,)]g(x)
- —z‘fd3x]‘(x}{/?.x(8) — A (=) ]gx)

=0, (4.39)

where we have performed integration by parts with respect
to the space integration.

F. An orthonormalized complete set of solutions of the
semifree field equation (4.14)

Being equipped with the above definition of inner prod-
uct we now construct an orthonormalized complete set of
solutions of the semifree field equation (4.14).

When we use u(x,k) and v(x,k) for f(x) and g(x) in
(4.36), respectively, we have the following orthogonality
theorem:

fd%c #(x, k)T (3, — Hvx,l) =0, (4.402)
dex (k)T (8, — Du(x]) =0, (4.40b)

because of the time independence of the quantities proved by
(4.39).

We choose u(x,k) and v(x,k) to satisfy the following
orthonormalization condition:
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fd3x 7(x,k)*T (3, — ) Pu(x,)®> =6k — 1),
(4.41a)
fd3x B(x, k)T, (3, — )P0 (x1)% = — p& Sk —1) .

(4.41b)

In (4.41a) we chose the sign of A(d) (which determines the
signof ', ) in such a way that the left-hand side of (4.41a) is
positive. Since this does not determine the sign of the quanti-
ty in (4.41b), we put the sign factor p = -+ 1 in the condi-
tion (4.41b).

Introducing
[lkok] =AW(k) — 2k, A P (k) = Y] [kok],
(4.42a)
with
Alkok] =2 9(k) + 1 V(k)ky — A P(k)KE, (4.42b)

for the case given by (4.35), we see that (4.41) give
{@(k)T [w(k) — ix(k)A4(k),k]u(k)}*

= (2m) 738, (4.43a)
{TK)T[ — wk) + ix(k)A4(k), — kiv(k)
= —pQ2m) . (4.43b)

G. The canonical sum rules
Let us define the following two functions:
3
ar =i [ 2K ?
27)° 2{w(k) — ik(k)A(k)]

X U, (tk)eFilotor—kxl, (4.44)
We then have
Af(xty= — A7 (x,—1), (4.45)
8(1)d,AF (x) = —16(x)8(t), (4.46)

{02 4+ [w(—iV) —ix( —iV)A(—iV)]*}A=(x) =0.
(4.47)

The last property implies that d, (d)AF (x) satisfies the
equation

A D[ ANHAE(x)]=0. (4.48)
The following sum rules can be proved:
fd3k u(xX)*u( pk)% =id (I*AF (x —p)®,
(4.49a)

Jd3k v(x,K)"5( y, k)% = —ipd (VA" (x —p)*,

(4.49b)

the detailed derivation of which is given in the Appendix.
Since this sum rule is the basis of the equal-time canonical
commutation relations, this is called the canonical sum
rule.®

Introducing

Ax) =AF(x0) + A7 (x1), (4.50)
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we see from (4.45) and (4.46) that
A (x,0)6(t) =0, (4.51)
()3, A (x,t) = —6(x)6(1) . (4.52)

Since A, satisfies the linear homogeneous differential equa-
tion of the form (4.47) which is the second order in time
derivative, we have

[(@)A(x1)]8() =0, (4.53)

[(@)* 1A, (x,6)]8(2) =0 for x#0, (4.54)
when n is an integer. Thus we have

[F(@)A(x,)]8(r) =0 for x#0, (4.55)

where F(J) stands for a sum of products of derivatives with
finite powers. The combination (A" — A, ) does not have
this property.

H. The commutation relation and statistics
Using (4.23) and (4.32) with (4.49), we obtain
[e(x)*@(»)"],
=i{d (D [A} (x—y) +opA7 (x =]}

(4.56)

We now require the causality condition which states that the
operators of observables should commute with each other
when they refer to different points in space at a common

time. Then, it follows from (4.55) and (4.56) that
op=1. (4.57)

In this way, p determines the statistics.

I. Projection of creation and annihilation operators

When we are given the semifree field ¢ (x) of the form
(4.23), we can project out the creation and annihilation op-
erators by means of the formulas:

a(k)* =J-d3x T(x,K)T(3, — N™p(x)*, (4.58a)

— pb (k)" = J d3x 5(x,k)?T (3, — 9)*p(x)".

(4.58b)
In deriving (4.58), we have used (4.40) and (4.41).

J. The two-point Green’s function

The internal line in the Feynman-type diagrams is the
causal two-point Green’s function A,(x — y) defined by
[see (4.18)]

A (x—y)j'=d, (a)f.;.ﬁAc (x —py)®

= —i(0|T [@)“@(»);]10) . (4.59)

Introducing the Fourier transform of A, (x — y) with
respect to the space variable by

d3k
o By __ _ ke (x —y)
A (x—y)f = (27)3Ac(t sK)Le™x =¥ | (4.60)
we have
2748 J. Math. Phys., Vol. 28, No. 11, November 1987

A, (1 —sk)y =G(t —sk)* S [u,(k)u, (k) 1>

+0G(s — k)" Y [0, (K),5,(k),]%,

(4.61)
where
G(t — s,k) = G(¢,5,k) (4.62)
with (2.23)-(2.27). Note the time independence of B, w,
and «.

Fourier transforming (4.61) further with respect to
time, we have

A, (ko k)5
- f T dr A (ke
[ 1 k). (k) |
= |5 —et0 T maan 2 4 )"]

1 v
- k)3, k), |-
alk0+“’(k)—fk(k)A(k) Z”’( )b, ( ),]

(4.63)
In deriving (4.63), we have used the property
Ak) =B ~'(k)7;B(k) . (4.64)

Note that the existence of ix4 in A, means that the Feynman
line is a dissipative wave even though no physical quantities
dissipate in the stationary situation.

K. Some examples
A simple example of an equation of type II is given by
A (@)= =32 — [w(—iV) —ik( —iIV)A(—iV)]*.

(4.65)
In this case,
d (9 =8, (4.66)
T (3, —a)» =63, (4.67)
p=c=1. (4.68)
Thus (4.43) leads to
u(k) = u(k) =v(k) =v(k)
= 2m) 7 2[wk) — ix(k)4A(k)]}~V2. (4.69)

From (4.49), the commutation relation becomes

()@ (¥) ],y =i (x — )™, (4.70)
where A, (x — y) is defined by (4.50). If we use the property
(4.52), (4.70) reduces to

[o(x)*“7(¥)*]1,6(t —s) =i6(x — y)b(t — ),

(4.71)
where

T(x) =d,9(x). (4.72)

This shows that ¢ (x) and 7(x) are canonical conjugates of
each other. Note that the canonical commutation relation is
based on the canonical sum rule.

The propagator A, (kq,k) is given by
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A, (kok) = B ~'(K) L B(K) .

k3 — [w(k) —ik(k)T;]?

(4.73)

A more complicated example is provided by the semi-
free field equation of physical electrons in superconductors:

A () =10,8;6" — [€( — V)T, — A7)
v o( —iV)&* —ik( —iV)A( — iV)*

s

w( —IV)
(4.74)
with
€(—iV)=(1/2m)[(—iV)* — k%], (4.75)
o( —-iV)>=¢e(—iV)?+ A?, (4.76)

where &y is the Fermi momentum. It is easy to show that

4. (0)f =18,6,0 + [e( —iV)7y; — ATy ]
DU V) — ik — IV)A(— V)™

w( —iV)
477
From (4.37), we have
i::x (a’ - a)zv = 6,_,6‘“’ s 4.78)
and
p=o=—1. (4.79)
Thus (4.43) leads to
1 cos (k) )6"”
m =
u(k)f (217-)3/2(—sin o); (4.80a)
1 sin 0(k))6"“
[ P—
v = (coso(k) ;o (4.800)
with
cos B(k) = {[w(k) + €(k)]/20(k)}''?, (4.81a)
sin 8(k) = {[w(k) — e(k)] /20 (k) }'2. (4.81b)

The commutation relation is given by (4.56) with (4.44)
and (4.76). Furthermore, we have
[ @)/ ] - 16(t —5) =646,8(x —y)b(t — ),
(4.82)
which indicates that ¢ (x) and $(x) form a pair of canoni-
cally conjugate fields. The propagator is given by (4.63)
with (4.80).
A dissipative Dirac field satisfies the semifree field equa-
tion
Ac8) =i°3, — (—iyV +m)
o(—iV) —ik( —iV)A(—=IV)

X , (4.83)
o(—1iV)
with the Dirac ¢ matrices
Y=B, y=8Ba. (4.84)
The w( — iV) is defined by
o( =V =(—iV)*+m*. (4.85)

It is easy to show that
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d.(d) =iy’ 8, + (—iyV+m)
w( —iV) —ik( —iV)A( —iV)

X (=) , (4.86)

so we have from (4.37)

T8 - = 02,6 Gj=1—4) (4.87)
and

p=o=—1. (4.88)
From (4.43) we can construct the wave function as

u(k)? = u(k);6", (4.89a)

v(kY¥ =v(k), 6", (4.89b)

where #'” (k); and v”(k), (r = 1,2) are four-component
Dirac free spinors with the condition

u N (k)yu® (k) =8%/(2m)3,
v (k) yr® (k) = 67/(2m)?,
u(’”(k)}/ov“)(k) — v(r)(k)fyou(s)(k) =0.

Again the commutation relation is given by (4.56) with
(4.44) and (4.86). It leads to

[ (1)) -6t —5)
=8"(y0)y6(x — y)8(1 —5), (4.91)

which indicates ¢ and @y, are canonical conjugates of each
other.

In this section we used the particular choice, @ =, in
constructing the canonical formalism of the semifree fields.
The construction is tremendously simplified by the relation
7,4 Tr; = — A, which holds if and only if @ = 1. The con-
struction of the semifree field with arbitrary a requires a
more complex consideration. This will be presented else-
where.

V. SELF-CONSISTENT EQUATIONS OF ¢* MODEL

In this section we present an example of ¢ self-interact-
ing real scalar in order to show how a dissipative effect can be
created spontaneously in such an isolated system in TFD.
(This system is assumed to be stationary below.)

In a recent paper’ we have already seen spontaneous
creation of dissipation in a reservoir model, a simple solvable
one, which is a system of a single harmonic oscillator bilin-
early coupled to a reservoir consisting of an infinite number
N of harmonic oscillators. At the limit of ¥ - « with fixed
g,

g =Ng, (5.1)
g being a coupling constant between the system and reser-
voir, our self-consistent renormalization scheme leads ustoa
solution in which « is nonvanishing and the number density
of the system is determined to be at the temperature of the
reservoir. The infiniteness of degrees of freedom in the reser-
voir, allowing the system to dissipate in it, is an essential
ingredient for this. This analysis also tells us that the dissipa-
tion effect shows up as a result of the communication among
the tilde and nontilde fields and, consequently, it can really
be called thermal dissipation.

When we consider a nonlinear self-interacting case
which is being dealt with in what follows, we should take

(4.90)
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account of the self-energy diagrams due to the self-interac-
tion in the self-consistent equations. Although the system is
no longer coupled to any reservoir we still have an infinite
number of communication channels among the tilde and
nontilde field operators due to transitions from one state to
another by self-interaction. In this case as well as general
nonlinearly interacting cases we may expect the thermal in-
stability, i.e., that nontilde particles decay into multiparti-
cles including tilde particles through many channels, be-
cause tilde particles have negative energies. So the thermal
dissipation inevitably appears in nonlinearly interacting
cases.

The formulation of the semifree field of type 11 in a sta-
tionary system has been given in Sec. IV with the choice of
a = 1. We start from the model Lagrangian density for a real
scalar field,

L =3[@5 — Pows (— V)] — (8/3Nps, (52)
where w,, g5, and ¢, are bare quantities. Deriving H from the
canonical formula and constructing its tilde conjugate H,we
have our basic total Hamiltonian # = H — fl . The semifree
(unperturbed renormalized) Hamiltonian H °, which speci-
fies the state vector space for realization of the field operator,
should have the following form:

H°= J d3x %—[i"é)” + (0 —ixk4)}*p*], (5.3)
where g is the semifree (unperturbed renormalized) field

[see (4.23)] and w is a renormalized energy. Then the inter-
action Hamiltonian H, is unambiguously given by

B =H-H°=H, +H,, (5.4a)
H, =%fdx[{¢‘}3—{¢2}3], (5.4b)
I}C = %fdx P4 — 80” + 2ikwA + 1, (5.4¢)

where g is a renormalized coupling constant and an energy
counterterm Sw?” is defined by

0t =0’ — 0*. (5.4d)
In writing Eq. (5.4c), we used the relation
A?=1, (5.4e)

and suppressed the counterterms of wave function renor-
malization and the coupling constant renormalization since
we are interested only in the two-point Green’s functions in
the one-loop approximation.

In order to apply the self-consistent renormalization
scheme to this system, we now calculate the connected full
propagator A ¢y,

Ay (X =) = —i<0|T[<P(X)“¢( »”

X exp[ — ifdtfi,(t)”|0)mn (5.5)

where the suffix conn means a connected part of the dia-
grams. From graphical considerations just as in the ordinary
quantum field theory, A 4, can be expressed by the proper
self-energy X as

A (Y™ = A7 (k™ — Z(k)H, (5.6)
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the free propagator A_ being givenin (4.72) and k = (ky,k).
At the level of one-loop approximation, 2 (k) is a sum of the
contribution from a one-loop diagram X, (k) and that from
counterterms,
Sk =3, (k)" + { — 80® + k% + 2ikwA }K)*,
(5.7a)

g (4%
2J @2m?

[A(q+)]1A(q_)11

5, (k) =

—A(q+)‘2A(q_)”]
A(q+)21A(q_)21 _A(q+)22A(q_)22 4
g, =g+ k/2. (5.7b)

For a real value of k,, the integrations over g, can be per-
formed in (5.7b), and =, has the matrix form of

L,—iL, iL,
= : 5.8
200 [—iL3 L, +iL, (>-82)
whose elements are further expressed as
3
%=~5Jii
2 ) @n)?
x{(1+2n VK¢, +(1+2n)K{ )},
(5.8b)
_ _E[da
2 2 ) @m)?
x{Ki,, +1+2n)(1+2m)K,_,}, (58¢)
3
L--&£ (49
2 (2m)°
x{an,d+non_(A+n)Ki_,}, (58

with the notation of #n_, = n(q+ k/2). The real valued
functions K { , , and K ¢, are defined through the follow-
ing relations:

K., +iK{,, =i, +1D), (5.9a)
where
1= Lt AL N -(5.9b)
20,0_[k3—(Q, + Q)]
(., — Q*
I, K9, — 27 ) (5.9¢)

T 20,0% [k2-(Q,—-0)%]"
Q, =0, —ix, ,

withw , =o(q+k/2)andx, =«(q+k/2).
At this stage, we require the renormalization condition

that the total self-energy should vanish on the energy shell,
ko = w(K),
Sky=aw(k))=0 (5.10a)
or
— 3ky = w(k)) ={ — 600* + k% + 2ikwA } (k)™ .
(5.10b)

The last equation is the 2 X 2 matrix self-consistent equation.
In deriving (5.10), the “on shell” is defined by the real part
of the pole of propagator. It is remarkable that this matrix
equation brings us only three independent real equations be-
cause the two off-diagonal elements give the same equation,
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4xkenfn(l + n = Ly(ky = w,k) . (5.11a)

The real and imaginary part of the two diagonal elements of
(5.10b) imply

80* — kK2 =L, (ky= 0,k) (5.11b)

and
2nw(l + 2n) = L,(ky = 0,k) , (5.11¢c)

respectively. In Eqgs. (5.11), we used the notations
n=n(k), o =w(k), x =«(k), and Sw = bw (k).

The set of three equations (5.11) are the self-consistent
equations for three unknown functions w(k), n(k), and
x(k). Their solution is expressed in terms of g, and m,,
where

(5.12)

We have been unable so far to obtain analytic solutions
except for x(k) =0, because the forms of the functions
®(k), k(k), and n(k) are not given but should be deter-
mined self-consistently. However, we expect that there are
many solutions with £ #0, each having different w (k), x(k),
and 7 (k). The n(k) thus obtained is determined by dynam-
ics which includes the interaction with the thermal back-
ground fields (i.e., the tilde quanta).

The origin of « = 0 solution in our calculation can be
understood in the following way. Suppose that we start our
perturbation calculation with the free fields without dissipa-
tion and consider the self-energy at one-loop level. Then the
decay of a nontilde particle into two nontilde particles is
obviously forbidden. At first glance, we might feel that the
decay of a nontilde particle into another nontilde particle
and a tilde particle might be possible because the tilde parti-
cle we consider has a negative energy. The energy and mo-
mentum conservation laws read as

ol =k*+mk.

o(P) =w(k,) —ok,), (5.13a)

P=k,—k,, (5.13b)
with

o(P) =P +m?. (5.13¢)

However, further inspection of (5.13) shows that there is no
solution of (5.13). This means that the x =0 solution in the
self-consistent equation can be interpreted as the resuit of the
lowest-order perturbation expressed in terms of the usual free
field without dissipation. When we consider higher orders, a
nontilde particle is allowed to decay into many particle states
with at least one tilde particle and, consequently, k=0 is no
longer a solution of the self-consistent equation.

VI. A SHORT SUMMARY

It was shown that TFD offers a systematic and unified
treatment of any thermal situations including nonequilibri-
um situations. Given a dynamics, i.e., a Hamiltonian, H
characterizing a system under study, one associates with it
the total Hamiltonian H as H = H — H. Each thermal situa-
tion corresponds to one of various realizations of H and is
characterized by thermal state conditions at an initial time.
With such initial thermal state conditions we proceed to
make an interaction picture associated with it and follow a
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self-consistent renormalization program to determine the
time evolution of # as well as @ and «. In other words, all the
quantities n, @, and « are determined dynamically and self-
consistently. Note that here the dynamics include the com-
munication between the nontilde particles and the thermal
background fields (the tilde fields).

In the course of practical calculations we can exploit all
the techniques developed in the usual field theory, because
TFD is formulated as an operator field theory. Thus the use
of TFD will be useful in describing the nonequilibrium sys-
tem with an infinite number of degrees of freedom like in
cases of quantum field systems.

Since TFD is equivalent to the other methods such as
the density matrix formalism'? and the path-ordering meth-
od,'? we expect that a formulation of self-consistent renor-
malization for the dissipation coefficient may be needed also
in other methods.

One particular flexibility in TFD can be found in the
arbitrariness of the parameter o discussed in Sec. III. The
specific choice of @ sometimes simplifies a problem in a way
similar to the choice of gauge in gauge theories.

We pointed out in Sec. I how the thermal instability in
TFD is closely related to the lower unboundedness of H. It
indicates that the dynamical map in terms of the asymptotic
free fields is inadequate in TFD. Therefore, we have formu-
lated the semifree fields in [a@ = 1] representation for unper-
turbed ones, taking account of such a thermal instability
from the beginning. There it is remarkable that the semifree
fields has a canonical formalism. This enables us to follow a
self-consistent renormalization, since the renormalization
transformation is a kind of canonical transformation.

In this paper we give only the semifree fields of type Il in
the [a = 1] representation. The semifree field formulation
in any [a] representation is possible, which is explicitly
shown, e.g., in Ref. 8. We think that practical calculations
are performed most elegantly in the present formulation of
the [a = 1] representation because of its symmetric nature.

The infinite number of degrees of freedom combined
with the lower unboundedness of H plays a central role in the
present formulation of TFD and gives us a much richer
structure of theory than the quantum field theory without
thermal degrees of freedom. First, the fact that all ther/r\nal
situations should be covered by a single Hamiltonian H is
justified by the existence of inequivalent representations in-
herent to quantum theory with infinite degrees of freedom.
Second, the nonvanishing « really appears as a result of infi-
nite decay channels due to the negative energy of tilde parti-
cles. We call it spontaneous creation of dissipation, since its
mechanism is analogous to the spontaneous breakdown of
symmetry in quantum field theory. Third, although the
complex eigenvalues of H 9 seem to contradict the Hermiti-
city of H, this controversy may be explained by the spontane-
ous breakdown of symmetry generated by the generator H in
which H has no eigenstates and eigenvalues in the realization
Fock space.

The theory developed in this paper still has many prob-
lems to be studied in the future. Above all, its application to
the explicitly time-dependent case is of particular interest.
There the physical content of the theory will manifest itself
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most clearly. After its accomplishment, the theory is appli-
cable to the problem of the universe as well as various non-
equilibrium problems in solid state physics. To this end, we
need the formalisms of both canonical semifree fields and
renormalization in time-dependent cases, on which we are
preparing another paper.

APPENDIX: DERIVATION OF (4.49)

Since d, (J)AF (x — y) are solutions of field equation
(4.14) [see (4.48)], they can be expanded in terms of the
orthornormalized solutions u (x,k) and v(x,k) as

d(HAF (x—p) = f 4k u(xk)C*(pk), (Ala)

d (DA (x —) =fd3k (6K)C (k). (Alb)

When we consider the orthonormalization condition
(4.41), the matrices C * ( y,k) can be determined as fol-
lows:

C*(pk)= J.d3k #(x,k) T3, — NAAF (x —p),
(A2a)
C=(yk) =fd3k 3k T(E, — )d@)AT (x ) .

(A2b)
Substituting (4.44) into (A2a), we obtain

1
CH(yk)= — 1@
(k) 2ok —n (AR ]

Xu(y k) 'ewk) —ix(k)4(k) k]

Xd [w(k) —ix(K)A(k) k] . (A3)
On the other hand, we see from (4.42a) that
Tlkokld [kok] + A [ko,kléék—d [kok] = 2k, ,
Q

(A4a)

where d[ ky,k] is defined by

Alkokldkok] = d[kp,k]A[Ko k]
=k2 — [ok) —ik(k)4A(K)]>.

(A4b)

This leads to
A(yk) ' owk) —ik(k)A(k) ,k]d [o(k) — ik(k)A (k) k]
=2[wk) — ik(k)4(k)Ja( k), (A5)
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Thus (A3) gives

CHt(yk)= —iu(yk). (Aba)
Similarly we have

Substituting (A6) into (Al), we obtain the sum rule
(4.49).
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