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Anomalous scaling of anisotropy of second-order moments in a model of a randomly advected
solenoidal vector field

Kyo Yoshida and Yukio Kaneda
Department of Computational Science and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku

Nagoya 464-8603, Japan
~Received 25 May 2000; published 22 December 2000!

A model of randomly advected solenoidal field is presented. The model is formally derived by a linearization
of the Navier-Stokes equation with respect to the perturbation to a basic state and by assuming the character-
istic time scale of the basic state to be very short. The model includes a nonlocal~in space! effect through a
pressurelike term that keeps the advected field solenoidal, but still yields exact equations for multipoint
moments. The advecting field is assumed to be statistically homogeneous and isotropic with zero mean and
structure function with exponentj. An analysis is made of the scaling of the steady second-order moments of
the solenoidal field in two dimensions. The scaling exponentz l of the isotropic part (l 50) and the anisotropic
part for the angular wave numberl 52 is obtained analytically or numerically. The scaling of the isotropic part
does not depend on whether the pressurelike term is present or not while the scaling of the anisotropic part is
affected by the pressurelike term. There are two homogeneous similarity solutions with real positive exponents
z2 whenj.j2

c'1.3. The same kind of analysis is also applied to a simplified two-point closure equation.
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I. INTRODUCTION

Turbulent flows in nature and technology are in gene
not isotropic due to the anisotropy of initial and bounda
conditions, external forcing, etc. Although the flows cann
therefore be isotropic in a strict sense in particular at la
scale, it has been widely accepted that the degree of
anisotropy in a statistical sense decreases with the sca
fully developed turbulence at high Reynolds number. If it
true, however, little seems to be known regarding how fas
slow the anisotropy decays with the scale, in spite of so
pioneering studies~see, for example, Nelkin and Nakano@1#,
Arad et al. @2,3#, and references cited therein!. In this paper
we consider this problem on the basis of a model of a s
noidal vector field that is advected by another rapidly cha
ing random velocity field under the influence of a nonloc
effect which plays a role similar to the pressure in t
Navier-Stokes dynamics and keeps the field incompress

The study of this model is motivated by the comparis
between the equation for a randomly advected passive s
field,

]

]t
c1~v•“ !c2k¹2c5 f S , ~1!

and the Navier-Stokes equation with the incompressibi
condition,

]

]t
u1~u•¹!u2n¹2u52¹p1f, ~2!

“•u50, ~3!

wherev5v(x,t) is the random velocity field advecting th
passive scalarc5c(x,t), u5u(x,t) is the velocity of a fluid
of unity density,p5p(x,t) is the pressure,k is the molecular
diffusivity, n is the kinematic viscosity, andf S and f are the
external source and forcing, respectively.
1063-651X/2000/63~1!/016308~8!/$15.00 63 0163
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One of the characteristic features of turbulence is the
istence of the fluid motion and the advection effect asso
ated with the motion. This effect is in fact included in E
~1!, and is represented by the advection term (v•“)... .
Moreover, as shown by Kraichnan@4,5#, if the characteristic
time scale ofv is very small and therefore may be assum
to be white in time, then Eq.~1! yields exact closure equa
tions for multipoint moments such as^c(x1 ,t)c(x2 ,t)...&.
Such exact closure equations are rare in the study of tu
lence, and this model~hereafter called Kraichanan’s mode!
of Eq. ~1! with assuming the whiteness ofv has stimulated
extensive studies on the anomalous scaling of the mom
^@c(x1r ,t)2c(x,t)#n& for n52,3,4,... ~see, for example,
Refs.@6–11#, and references cited therein!. The model is also
expected to give some insight on the anomalous scaling
the velocity field obeying the Navier-Stokes equation.

On the other hand, it is also clear that there are differen
between the Kraichnan’s model~KM ! for the passive scala
and the Navier-Stokes dynamics~NS!. Among the differ-
ences are the following.

~a! The fieldc in KM is a scalar, whereas the fieldu in
NS is a vector satisfying the solenoidal condition~3!.

~b! The pressure term in NS is absent in KM. Therefo
the evolution ofc in KM is local, whereas that ofu in NS is
nonlocal in the sense that the former at a pointx is deter-
mined by the value ofv and the spatial derivatives of th
field itself ~i.e., c! at the point, whereas the latter is affecte
not only by the values at the point but also by the entire fi
of u. @Note that Eqs.~2! and ~3! give

p52¹22~] juk!~]kuj !,

and¹p in Eq. ~2! is therefore affected by the entire veloci
field u, where¹22 is the integral operator representing th
inverse of the Laplace operator¹2, and we use the summa
tion convention for repeated indices.#

~c! The convection velocity in (u•“) in NS is not white
in time, in contrast to that in KM.
©2000 The American Physical Society08-1
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~d! The dynamics of NS is nonlinear inu, but KM as well
as Eq.~1! is linear inc.

It would be certainly interesting to consider a model th
may capture all the features of the NS dynamics listed abo
However, at the present stage of our knowledge, it is diffic
to construct a model that allows us to derive exact clos
equations, but still represents the features of the NS dyn
ics not only in~a! and~b!, but also~c! or ~d!. It may therefore
be interesting to consider a model that may yield exact c
sures and also capture the features of the NS dynamics n
in ~a! and~b!. In this paper, we propose such a model in S
II, and analyze the scaling of the second-order moment
the model fields in two dimensions~2D! both for the isotro-
pic part and the anisotropic part in Sec. III.

It may be worthwhile to recall here that Lagrangian tw
point closures such as the abridged Lagrangian history
sure approximation~ALHDIA ! @12# and the Lagrangian
renormalized approximation~LRA! @13# are known to yield
reasonable approximations that are free from anyad hocad-
justing parameter and in good agreement with experime
for the second-order moments of homogeneous and isotr
turbulence at high Reynolds number. They are applicable
least in principle, also to anisotropic turbulence. It may
interesting, therefore, to apply such closures for the anal
of the dependence of anisotropy on the scale or the w
number. The analysis would, however, be very complica
because of the complexity of the closure equations. As
be shown in Sec. IV, the model presented in Sec. II yield
closure equation for the second-order moments that h
close relation to the one derived by a simplification of su
two-point closure equations. This is another motivation
our studying the model.

II. MODEL AND CLOSURE EQUATIONS
FOR SECOND-ORDER MOMENTS

One of the simple models capturing~a! and ~b! may be
formally obtained by a linearization of the Navier-Stok
equation with respect to the perturbation (ũ,p̃, f̃) to a given
basic stochastic state (v,pv ,fv). Substituting

u5v1ũ, p5pv1 p̃, f5fv1 f̃,

into Eq. ~2!, assuming that the basic state satisfies
Navier-Stokes equations~2! and~3!, and retaining only terms
linear in the perturbation, give

]

]t
ũ1~v•“ !ũ2nDũ52a~ ũ•“ !v2b“ p̃1 f̃, ~4!

“•ũ50, ~5!

where (a,b)5(1,1). In the model considered below, we fu
ther assume that the velocityv is white in time. The model
then yields closure equations for multipoint correlations t
are exact as in Kraichnan’s model.

The left-hand-side of Eq.~4! is essentially similar to tha
of Eq. ~1! except the fact thatũ in the former is a vector,
whereasc in the latter is a scalar. If we set (a,b)5(0,0) and
01630
t
e.
lt
e
-

-
ted
.
of

o-

ts
ic

at
e
is
ve
d
ll
a
a

h
f

e

t

disregard Eq.~5!, each component of the vectorũ does not
interact with the others and behaves as the passive scal
Eq. ~1!. Studies have been made of the anomalous scalin
anisotropy of the passive scalar model in@9,14#. If we set
(a,b)5(21,0), then the model with the solenoidal cond
tion ~5! reduces to the one for a passive magnetic field,
anomalous scaling of which has been studied for both
isotropic case@15# and the anisotropic case@16#. Thus the
model ~4! includes both the models for a passive vec
fields and for a passive magnetic field under appropr
choices of the values for the parametersa and b. Another
interesting case may be the model~4! with (a,b)5(0,1).
This model is simpler than the model with (a,b)5(1,1) in
the sense that the stretching term (ũ•“)v is absent, but still
keeps the features of the Navier-Stokes dynamics note
~a! and ~b!.

In the followings, we will consider the model with
(a,b)5(1,1). The key feature of the model~4! lies in the
presence of the nonlocal effect represented by the press
like term ¹ p̃, by which the fieldũ is kept to be solenoidal
Taking the divergence of Eq.~4! and using Eq.~5! ~with b
51! give

¹2p̃52~11a!~] jvk!~]kũj !,

so that

p̃~x!52~11a!E dyGD~x2y!@] jvk~y!#@]kũj~y!#,

~6!

where D denotes the space dimension, andGD(x) is the
Green function satisfying

¹2GD~x!5dD~x!,

and appropriate boundary conditions, in whichdD is the
D-dimensional delta function. The parametera is here writ-
ten explicitly for later use although it is unity. In general, it
necessary to add to Eq.~6! integrals representing the contr
bution from“• f̃ and the boundary of the fluid domain. Bu
for the sake of simplicity, we assume in this paper that
fieldsv, ũ, f̃, andp̃ satisfy the periodic boundary condition
and“• f̃50, so that we need not consider such a contrib
tion. The integral in Eq.~6! is therefore to be understood a
the one over the fundamental periodic domain.

By the use of Eq.~6!, we may rewrite Eq.~4! as

]

]t
ũi~x!52E dyMi jk~x,y!v j~y!ũk~y!1n¹2ũi~x!1 f̃ i~x!,

~7!

where

Mi jk~x,y!52
1

2
dD~x2y!d ik] j

y2
a

2
dD~x2y!d i j ]k

y

1gGD~x2y!] i
y] j

y]k
y , ~8!
8-2
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andg5(11a)/251. We will keep writinga andg explic-
itly ~although they are unity! so that the contribution of the
each term in Eq.~8! will be seen clearly.

Let the random advecting velocityv be statistically homo-
geneous in space and white noise process in time with
mean and the correlation

E
2`

0

dt^v i~x1r ,t !v j~x,t1t!&5Vi j ~r ,t !.

Then after some algebra it is shown that the single ti
second-order momentUi j (r ,t) defined by

Ui j ~r ,t !5^ũi~x1r ,t !ũ j~x,t !&,

satisfies

]

]t
Ui j ~r ,t !5$Li j @U#1n¹2Ui j ~r ,t !1Fi j ~r !%

1$~r ,i !↔~2r , j !%, ~9!

whereLi j is the linear operator defined by

Li j @U#54E dxE dy@Miab~r ,x!M jcd~0,y!

3Vac~x2y,t !Ubd~x2y,t !1Miab~r ,x!Mbcd~x,y!

3Vac~x2y,t !Ud j~y,t !#, ~10!

and the random forcef̃ is assumed to be statistically statio
ary and independent fromv and ũ with zero mean and

Fi j ~r !5E
2`

0

dt^ f̃ i~x1r ,t ! f̃ j~x,t1t!&. ~11!

The expressionLi j @U# may be simplified by substituting th
expression~8! of Mi jk into ~10!. In particular, the trace
Lii @U# may be then written as

Lii @U#5@Vac~0,t !2Vac~r ,t !#]a]cUii ~r ,t !2a@]bVic~r ,t !#

3@]cUbi~r ,t !#2a@]dVai~r ,t !#@]aUid~r ,t !#

2a2@]b]dVii ~r ,t !#Ubd~r ,t !

1E dp$4g~11a2g!GD~q,t !@]b]dVac~p,t !#

3@]a]cUbd~p,t !#22g@]a]c]d] iG
D~q!#

3Vac~q,t !Udi~p,t !12ag@]a]cG
D~q!#

3@]a]dVic~q,t !#Udi~p,t !%, ~12!

where q5r2p. Now we set the sides of the fundamen
domain to infinity. Then integrals in Eq.~12! are to be taken
over RD.

In the following, we assume that the random advect
field v is statistically stationary, homogeneous, and isotro
with zero mean, and has a scaling range ofr such that
01630
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h!r 5ur u!L, ~13!

in which the second-order moment of the increme
dv i(r ,t)5@v i(r ,t)2v i(0,t)# is given by

E
2`

0

dt^dv i~r ,t !dv j~r ,t1t!&52@Vi j ~0,t !2Vi j ~r ,t !#

52r jS d i j 2
j

D211j

r i r j

r 2 D ,

~14!

with

0,j,2.

Hereh is the characteristic length scale of the viscous s
range, whileL is that of energy containing eddies ofv as
well asũ and the forcingf̃, so thatFi j (r ) is almost constant,
say Ci j , independent ofr in the scaling range~13!. We
assume thatFi j is almost isotropic so thatCi j 5Cd i j .

We further assume that there is a~quasi!stationary state in
which the time dependence ofUi j (r ,t) is negligible in the
scaling range~13!. The assumption is acceptable when t
correlation functionUi j (r ,t) for the force-free case decay
with time and therefore unbounded growth of the field~dy-
namo effect! does not occur. If the dynamo effect does n
occur, the stationary state may be achieved by a large-sc
correlated external forcingf. Note that from the Cauchy
Schwartz inequality, the absolute value of the correlat
function uUi j (r ,t)u at any r is bounded by the value of th
traceuUii (0,t)u at r50 which is proportional to the energy o
the field per unit mass.

In the model with (a,b)5(0,0) ~which is essentially the
same as the passive scalar model!, the right-hand-side of Eq
~12! vanishes atr50 and thereforeUii (0,t) decays with time
due to the viscosity, which implies that there is no dynam
effect. In the model with (a,b)5(0,1) ~the model of passive
solenoidal vector without stretching!, the absence of dynam
is shown in the same way. In the model with (a,b)5
(21,0) ~the passive magnetic field model!, it is shown by
Vergassola that there is no dynamo effect in 2D for a
exponentj, and in 3D for 0,j,1 @15#.

The question whether the dynamo effect occurs or no
the model with (a,b)5(1,1) is not yet solved. In the force
free case, we may rewrite Eq.~9! for the trace of correlation
function Uii (r ,t) as

]

]t
Uii ~r ,t !52$Lii @U#~r ,t !u~a,b!5~1,1!1n¹2Uii ~r ,t !%

52$Lii @U#~r ,t !u~a,b!5~21,0!1n¹2Uii ~r ,t !

1Lii8 @U#~r ,t !%, ~15!

where the operatorLii8 @•# is defined byLii @•#u(a,b)5(1,1)

2Lii @•#u(a,b)5(21,0) . If the termLii8 @U# is absent, Eq.~15! is
identical to the equation for the model with (a,b)5
(21,0) and there is no dynamo effect in the parameter
8-3
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gion noted above. If the underlined part of Eq.~15! is absent,
it can be shown after some algebra thatUii (0,t)
5supruUii (r ,t)u decays forD52,3, and 0,j,2, therefore
no dynamo effect occurs. However, the absence of dyna
in the full system~15! is not in general guaranteed by th
fact that each of the two separated parts in the right-ha
side of Eq.~15! does not induce the dynamo effect when t
other is absent. The difficulty of the problem lies in the fa
that Lii @U#(0,t) is non-negative for any correlation functio
Ui j (r ,t) if the stretching term is present (a51) and that the
operatorLi j @•# contains not only derivatives but also int
grals ~in space! due to the pressurelike term (b51).

If Ui j (r ,t) is the correlation function of the stationar
state, then

Li j @U#52Cd i j . ~16!

SinceL is a linear operator, the solution of Eq.~16! may be
symbolically written as

U5UH1UI ,

whereUH andUI are the homogeneous and inhomogene
solutions of Eq.~16!, respectively. The determination of th
scaling of the solution of Eq.~16! requires the knowledge o
the scaling not only of the inhomogeneous solution but a
those of homogeneous solutions.

Regarding the former, it is readily shown by a pow
counting that the isotropic inhomogeneous solution wh
second-order moment scales as

Ui j
I ~r !}r z I

has the scaling exponentz I522j. Here, we have omitted
writing the time argument for we are considering the stati
ary solution in the scaling range~13!.

However, such a power-counting method or dimensio
consideration is insufficient to determine the scaling of
homogeneous solutions. Its determination requires an an
sis ~the so-called zero-mode analysis! of the homogeneous
01630
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equation. Although the analysis in 3D would be quite co
plicated, the analysis can be considerably simplified in
because the second-order tensorUi j may be then expresse
in terms of only one scalar function. As a first step towa
the understanding on the scaling implied in the homogene
equation, we therefore consider the scaling in 2D in Sec.

III. ANOMALOUS SCALING OF SECOND-ORDER
MOMENTS IN 2D

A. Formulation for 2D

By virtue of the incompressibility condition, the correla
tion Ui j in 2D may be expressed in terms of a scalar fun
tion, sayF, as

Ui j ~r !5e iae jb]a]bF~r !, ~17!

wheree1252e2151, e115e2250, andF(2r )5F(r ).
Since L is a linear operator, the homogeneous solut

may be expressed as a linear combination of the function
the form

Ui j
l ~r !5e iae jb]a]bF l~r !,

where

Li j @Ul #50 ~18!

and

F0~r !5R0~r !,

F l~r !5Rl
c~r !cos~ lu!1Rl

s~r !sin~ lu! ~when lÞ0!.

The correlation functionUi j (r ) satisfiesUi j (2r )5Ui j (r ) in
2D so thatl is even. The isotropic part ofUi j (r ) is given by
Ui j

0 (r ). Since the scaling behaviors ofRl
c(r ) and Rl

s(r ) are
the same, we discuss only the cosine part. We letRl

s(r )50
and denoteRl

c(r ) by Rl(r ) in what follows. From Eqs.~12!
and ~14!, Eq. ~18! can be written in terms ofRl(r ) as
Lii @Ul #5
1

11j
„r j24 cos~ lu!„$r 4Rl-8~r !1~21j!r 3Rl-~r !1@j212 l 2~21j!#r 2Rl9~r !1~112l 2!~12j!rRl8~r !

1@2l 2~j22!1 l 4~11j!#Rl~r !%12a@2jr 3Rl-~r !1j~12j!r 2Rl9~r !1j~11 l 2!~j21!rRl8~r !

12l 2j~12j!Rl~r !#1a2j~j12!@r 2Rl9~r !1~j21!rRl8~r !1 l 2~12j!Rl~r !#…12g~11a2g!j

3E
R2

dp
pj26 ln~q!

p
cos~ lu rp!$23p4Rl-8~p!16~12j!p3Rl-~p!13~12j!~j22l 223!p2Rl9~p!

13~112l 2!~32j!~12j!pRl8~p!1@ l 4~j11!1 l 2~8j228!#~12j!Rl~p!%12g@31~j21!a#jE
R2

dp
p22qj24

p

3$cos~2upq!cos~ lu rp!@2p2Rl9~p!1pRl8~p!2 l 2Rl~p!#12l sin~2upq!sin~ lu rp!@pRl8~p!2Rl~p!#%)50, ~19!
8-4
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whereq5r2p, u rp andupq denote the angles between tw
vectorsr , p andp, q, respectively, and the prime denotes t
derivative of the function. The tensorial algebra was p
formed by usingMATHEMATICA .

Let Rl be given by

Rl~r !5r 21z ~20!

in the scaling range~13!, thenUi j
l (r ) is given by

Ui j
l ~r !5r zFcos~ lu!S ~z12!~z11!d i j 2@~z12!z1 l 2#

r i r j

r 2 D
2sin~ lu!l ~z11!S e ia

r ar j

r 2 1e ja

r ar i

r 2 D G . ~21!

From Eqs.~19! and ~20!, Eq. ~18! reduces to

Lii @Ul #5lj,l~z!r j1z22 cos~ lu!50,

i.e.,

lj,l~z!50, ~22!

where

lj,l~z!5
1

11j S @~21z!22 l 2#@z~z1j!2 l 2~11j!#1

@22azj1a2j~21j!#@~21z!~z1j!1 l 2~12j!#

1
4g~11a2g!j

l 22~z1j22!2 @3z~21z!~j1z!~j1z22!

12l 2~12j!~213z212j13zj!1 l 4~j221!#

22g@~j21!a13#jE
R2

dp
pzq241j

p

3$@ l 21z~21z!#cos~ lu rp!cos~2upq!

22l ~11z!sin~ lu rp!sin~2upq!% D , ~23!

and q5r /r 2p. The integral on the right-hand side of E
~23! converges whenj.0 and222u l 22u,z,22j1 l .

Therefore the scaling of the homogeneous solution
given by

Ui j
l ~r !}r z l,

wherez l is the solutions of Eq.~22!. Althoughz l depends on
j, we do not write it here explicitly. Because of the comple
ity of the integral, it is not easy to solve Eq.~22! analytically.
However, it can be solved numerically. In what follows, i
tegrals in computations are evaluated numerically by us
MATHEMATICA .
01630
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B. Scaling of the isotropic part

For the model with (a,b)5(1,1), it is shown analytically
that z052j is a solution of Eq.~22! as follows. Forl 50
andz52j, the integral in Eq.~23! is proportional to

E
R
dp

1

q4 S q

pD z

cos~2upq!. ~24!

By introducing variables (r,k,ur) defined as

r5
p

q
, k5

1

q
, ur5upq ,

and noting that the triangle with the sides of length 1,r, and
k is similar to that with the lengthq, p, and 1, the integral
~24! is shown to be

E
0

`

drE
0

2p

durr2j11 cos~2ur!50.

The other part of the right-hand-side of Eq.~23! also van-
ishes whenl 50 andz52j. Therefore,z052j is a solu-
tion of Eq. ~22!. The valuelj,0(z) defined by Eq.~23! may
be evaluated numerically in the parameter region ofj.0
and24,z,22z where the integral in Eq.~23! converges.
It is then found that there is a negative solutionz0

(2) of Eq.
~22! other thanz052j whose absolute value is larger tha
j. Therefore, the homogeneous equation~18! has a solution
in the scaling range~13! whose trace is given by

Uii
H~r !5A1r z0

~1!
1A2r z0

~2!
, ~25!

whereA1 andA2 are arbitrary constants andz0
(1)52j. Now

assume that the trace of the correlation functionUii
H(r ) is of

the form~25! in the scaling range~13! and that the two terms
in the right-hand-side of Eq.~25! are of the same order at th

small scaleh, that is,A2 /A1;hz0
(1)

2z0
(2)

. Then the term pro-

portional tor z0
(1)

is much larger than the term proportional

r z0
(2)

in the scaling range~13! and therefore the dominan

scaling behavior isUii
H}r z0

(1)
5r 2j. As mentioned in Sec. II,

the inhomogeneous solution with scaling exponentz I52
2j is to be added to the homogeneous solution given abo

For later use, we extend the assumption to determine
dominant scaling behavior in the scaling range~13! to the
case when there are more than two isotropic homogene
solutions of Eq.~18! with different exponents 0>z0

(1).z0
(2)

.... . We assume that the homogeneous part of the corr
tion function UH is expressed as a linear combination
these scaling solutions of Eq.~18! in the scaling range~13!
and that all the scaling solution are of the same order ar
;h. It follows that the dominant scaling behavior in th
scaling range is determined by the largest exponentz0

(1) .
The scaling exponents of the isotropic second-order m

ment in the model with other value of the parameters~a, b!
are given in the following for the comparison. In the rest
this section,z l(a,b) denotes the scaling exponent of th
homogeneous equation~18! with ~a, b!. The model with
8-5
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(a,b)5(0,0) has the same scaling exponent as that of
passive scalar model. Although the solenoidal condition~5!
is not applied for the model with (a,b)5(0,0), it can be
shown that we can formally apply Eqs.~22! and ~23! to
determine the scaling exponentz0 by letting (a,g)5(0,0)
and eliminating the zero’s coming from the coefficient@(2
1z)22 l 2#. The exponents arez0(0,0)50,2j and from the
assumption mentioned above, the exponent of the domi
scaling is given byz0(0,0)50, that is, the homogeneous s
lution is nearly a constant. For the model with (a,b)5
(21,0) ~the passive magnetic field model!, the scaling expo-
nents of the homogeneous solutions are given by solving
~22! with a521 and g50. Among the exponentsz0
(21,0)52j,22,2j,22, the largest exponentz0(21,0)5
2j dominates the scaling behavior in the scaling range~13!
from the assumption. The exponentz0(21,0)52j is con-
sistent with the result in@15#. For the model with (a,b)
5(0,1), the scaling exponents of the homogeneous solut
are given by solving Eq.~22! with a50 andg51/2. It is
easily seen thatz0(0,1)50 is a solution. In a similar way a
for (a,b)5(1,1), it can be proved thatz0(0,1)52j is a
solution. It is found numerically that there exist negati
exponentsz0(0,1) whose absolute values are larger thaj
and there is no positive exponent in the parameter regio
j andz where the integral in Eq.~23! converges. Therefore
the exponent of the dominant scaling behavior is determi
to be z0(0,1)50. Note that the inhomogeneous solution
Eq. ~16! with the scaling exponentz I522j is to be added to
the homogeneous solutions in all the cases of~a, b! shown
above.

The scaling exponentz0(a,b) of the homogeneous solu
tion of Eq. ~18! is 0 if the stretching term is absent (a50)
and 2z if it is present (a561) andb is irrelevant to the
exponentz0(a,b). Therefore the scaling of the isotropic pa
is determined by whether the stretching is present or not
is not affected by the pressurelike term.

C. Scaling of the anisotropic part

Since the constant termCd i j in Eq. ~16! is zero except for
l 50, we have only to consider the homogeneous equa
~18!. Equation~22! with (a,b)5(1,1) is solved numerically
for l 52. The solution is shown in Fig. 1. It suggests th
there is a critical valuej2

c such thatlj,2(z)50 has no real
zero for j,j2

c , but has real zero’sz2
(1)(1,1) andz2

(2)(1,1)
such that 0,z2

(1)(1,1),z2
(2)(1,1),2 for j.j2

c , and the
critical values isj2

c'1.3. Note that the correlation functio
Ui j

l (r ) for the anisotropic part (lÞ0) is 0 atr50 and that the
exponentz l which matches the small scale limit is positiv
If there is more than one scaling solution with positive e
ponentsz l , then the one with the smallest exponent dec
slowest with the scaler and dominates the scaling in th
scaling range~13!. Therefore in the case forl 52, the expo-
nent of the dominant scaling isz2

(1) . It is found for l 54
numerically that the two real zero’s 2,z4

(1)(1,1),z4
(2)(1,1)

,4 of Eq. ~22! which take nontrivial values exist forj
.j4

c wherej4
c,1/3. Therefore, the homogeneous solutio

for l 54 decay with the scale faster than those forl 52. The
01630
e

nt

q.

ns

of

d
f

d

n

t

-
s

s

fact is in agreement with the empirical ‘‘law of isotropiza
tion,’’ which states that the anisotropy of the higher degrel
decays faster with the scale.

The scaling exponents of the anisotropic part for t
model with the other values of parameters~a, b! are given in
the following for comparison. For the model with (a,b)
5(0,0), it can be shown that

z l~0,0!5
1

2
@2j1Aj214~11j!l 2#, ~26!

by using the same procedure as for the isotropic case to
~23!. Only the positive exponent that matches the small sc
limit is shown. The exponentz l(0,0) is the same as that o
the passive scalar model which is given by Fairhallet al. @9#.
The exponentz2(0,0) is also plotted in Fig. 1. For the mode
with (a,b)5(21,0) ~the passive magnetic field model! the
scaling exponents of the homogeneous solutions are give
solving Eq.~22! with a521 andg50,

z l
~1!~21,0!5

1

2
@2j1Aj214~11j!l 2#22,

~27!

z l
~2!~21,0!52j1 l ,

where negative exponents are omitted for the same reaso
for the case (a,b)5(0,0). The exponents are shown in Fi
1 for l 52 for comparison. For the model with (a,b)
5(0,1), it is easily seen thatz2(0,1)52 is a solution of Eq.
~23! for all 0,j,2 as follows. The integrand in Eq.~23! is
proportional to p2q241j cos(2urq) when z52 and l 52.
Sincep2511q222q cos(urq), the integral is shown to be 0
In the case for (a,b)5(0,1), the other part of Eq.~23! also
vanishes forz52 andl 52. Thereforez2(0,1)52 is a solu-
tion of Eq.~22! for all 0,j,2. It is shown numerically that
there is no other positive solutionz2(0,1) of Eq.~22! in the
range ofj andz where the integral in Eq.~23! converges. It
is not easy to solve Eq.~22! analytically for l>4, but it is

FIG. 1. The scaling exponentsz2 of the homogeneous solution
of the model equation@(a,b)5(1,1)# with l 52. j is the scaling
exponent of the advecting field.lj,2(j) changes its sign within the
error bars and the circle symbols denote zero’s obtained by a li
interpolation. For comparison, the scaling exponentsz2 of the
model with other choices of the values of the parameters~a, b! are
also given by the solid, dashed, and dot-dashed lines.
8-6
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shown numerically that there exist two zero’s 2,z4
(1)(0,1)

,z4
(2)(0,1),62j of Eq. ~22! with nontrivial values forj

.j48
c wherej48

c,1/3.
From the comparison of the models with different valu

of parameters~a,b!, it is found that the scaling exponen
z l(a,b) of the homogeneous solution of Eq.~18! is affected
by the pressurelike term for the anisotropic part (lÞ0),
while it is not the case for the isotropic part (l 50). It is seen
from Fig. 1 that z2(0,1),z2(0,0) and z2

(1)(1,1)
,z2

(2)(21,0) if z2
(1)(1,1) exists, which suggests that th

presence of the pressurelike term (b51) lowers the scaling
exponentz2 of the anisotropic homogeneous solution of E
~18!.

IV. A SIMPLIFICATION OF THE TWO-POINT CLOSURE
EQUATION

In various two-time two-point closure approximations i
cluding the direct interaction approximation~DIA !, as well
as the ALHDIA and the LRA, the evolution of a single tim
momentUi j (r ,t) of the fluid velocity in homogeneous tur
bulence obeying the Navier-Stokes equation~2! is given by
the equation of the form

]

]t
Ui j ~r ,t !5E dxdydzE

t0

t

ds$2Miab~r ,x!Mecd~z,y!

3Qac~x2y;t,s!Qbd~x2y;t,s!Gje~2z;t,s!

14Miab~r ,x!Mdce~y,z!Qac~x2y;t,s!
r.

y

01630
s

.

3Gbd~x2y;t,s!Qe j~z;t,s!%1$~r ,i !↔(2r , j !%,

~28!

where we have omitted writing the viscous and forcing term
Mi jk(x,y) is that of Eq.~8! with a51 andg51. The two
time functionsQi j (r ;t,s) and Gi j (r ;t,s) are to be under-
stood as appropriately defined two-time correlation and r
sponse functions. For example, they are Eulerian two-tim
functions in the DIA, whereas they are Lagrangian function
in the ALHDIA and the LRA.

Let us suppose that the turbulence is weakly anisotrop
and we may write

Qi j ~r ;t,s!5Vi j ~r ;t,s!1Ui j ~r ;t,s!, ~29!

whereVi j is the two-time two-point correlation for a certain
isotropic state of turbulence, andUi j represents the perturba-
tion from the isotropic state. By substituting Eq.~29! into Eq.
~28! and collecting only the terms first order inUi j , and
further introducing a bold simplification that the characteris
tic time scale ofV is very small so that one may put
Vi j (r ;t,s)}d(t2s), we obtain
]

]t
Ui j ~r ,t !5H Li j @U#14E dxE dyMiab~r ,x!Mbcd~x,y!Uac~x2y,t !Vd j~y,t !J 1$~r ,i !↔~2r , j !%, ~30!
for
a-

.

that
where

Vi j ~r ;t !5E
2`

t

Vi j ~r ;t,s!ds, Ui j ~r ,t !5Ui j ~r ;t,t !.

Comparison between Eqs.~30! and ~10! shows that the
simplified two-point closure equation~30! and the equations
derived by the model~4! have some similarity to each othe
Both have the same operatorL, and the only difference is the
existence of the underlined extra term in Eq.~30!.

The equation for the second-order moment is given b

]

]t
Uii ~r !52S Lii @U#12E dp$@]aG~p!#@]b]dVac~q!#

3@]cUbd~p!#1@]aG~p!#@]a]dVbc~q!#

3@]cUbd~p!#% D . ~31!
We assume the existence of a statistically stationary state
this equation, too. Now one can estimate in 2D the anom
lous scaling in the range~13! in the same way as in Sec. III
In particular, if we putVi j as Eq.~14! and Ui j

l as Eq.~21!
then we have a relation for the homogeneous solution
may be written in the form similar to Eq.~22!, say

lj,l8 ~z!50, ~32!

where

lj,l8 ~z!5lj,l~z!1
1

11j ER2
dp

p221zq221z

4p
j†z„@ l 2

2~21z!2#$j~21j!12~42j2!cos~2upq!%

1~423l 22z2!~826j1j2!cos~4upq!…cos~ lu rp!

1 l ~j22!$2@ l 22~21z!2#~21z!sin~2upq!

1~42 l 223z2!~42j!sin~4upq!%sin~ lu rp!‡. ~33!
8-7
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lj,l(z) in Eq. ~33! is that of Eq.~23! with a5g51. The
integral in Eq.~33! converges whenj.0 and2u l 22u,j
,22j1 l . Figure 2 shows the solution for 0,j,2 and l
52. The zeroz28 of Eq. ~32! is seen to be slightly smalle
than 2 in the range 0,j,2.

V. CONCLUSIONS

In this paper we proposed a model equation of a rando
advected solenoidal field that can be formally derived a
linearization of the Navier-Stokes equation@the model with
parameters (a,b)5(1,1) in Eq.~4!#. The equation contains
the pressurelike term which represents a spatially nonlo
dynamics. Unlike Kraichnan’s model, the resulting closu
equation of the second-order moments of the advected
contains not only derivatives but also integrals with resp
to space variables.

In general, the scaling exponents of the homogeneous
lutions of the closure equation are not determined from
dimensional analysis and take nontrivial values. An analy
is made of the scalings of the homogeneous solutions
both the isotropic part and the anisotropic part in 2D and i

FIG. 2. The scaling exponentsz28 of the homogeneous solution
with angular wave numberl 52 of the simplified two-point closure
equation.j is the scaling exponent of the advecting field.lj,28 (z)
changes its sign within the error bars and the circle symbols de
zero’s obtained by a linear interpolation.
-

,
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shown that such nontrivial scaling exponents do exist. Th
is an isotropic homogeneous solution with the scaling ex
nent z052j. For the angular wave numberl 52, two real
exponentsz2

(1) and z2
(2) which take nontrivial values in the

range~0, 2! exist forj2
c,j,2 wherej2

c'1.3. A preliminary
analysis forl 54 shows that there are two scaling expone
2,z4

(1),z4
(2),4 of the homogeneous solutions which are

agreement with ‘‘the law of isotropization.’’
From the comparison of the models with the paramet

(a,b)5(0,0) ~passive scalar!, (a,b)5(21,0) ~passive
magnetic field!, (a,b)5(0,1) ~passive solenoidal vecto
without stretching!, and (a,b)5(1,1), it is seen that the
scaling exponentz0 of the isotropic part is not affected b
the pressurelike term but depends alone on whether
stretching term is present. However, the scaling exponenz l
of anisotropic (lÞ0) homogeneous solutions are affected
the pressurelike term and it is suggested from the analysis
l 52 that the pressurelike term lowers the exponentsz l of the
anisotropic part, i.e., the decay of anisotropy with the scal
slower under the existence of the pressurelike term.

The anisotropy of the second moment is also studied fo
simplified two-point closure equation. The scaling expon
z28 of the anisotropy ofl 52 is slightly smaller than 2 for 0
,j,2 and is smaller than that of Kraichnan’s passive sca
model. Finally we note that the statistically stationarity of t
model with parameter (a,b)5(1,1) is not yet solved and is
left as a future problem.
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