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TOTALLY GEODESIC SUBMANIFOLDS OF

SYMMETRIC-LME RIEMANNIAN MANIFOLDS

By

J. Berndt, F. Prufer and L. Vanhecke

Abstract. We study for various kinds of geometric structureson

Riemannian manifolds whether these structuresinduce on totally

geodesicsubmanifolds structuresof the same kind.

1. Introduction

A submanifold M of a Riemannian manifold M is said to be totally geodesic

if every geodesic in M is also a geodesic in M. This is equivalent to saying that

the second fundamental form of M vanishes. Suppose M is equipped with some

special geometric structure.A natural question is whether this structure induces a

structure of the same kind on its totally geodesic submanifolds. For instance,

when M is a Riemannian locally symmetric space, then any totally geodesic

submanifold of it is also locally symmetric for the induced Riemannian structure.

In this paper we study this question for various classes of Riemannian manifolds

which are natural generalizations of locally symmetric spaces. In Section 2 we

give a summary of their definitions.In Section 3 we show that for most of these

classesthe totallygeodesic submanifolds inherit a similar structure,but in Section

4 we use generalized Heisenberg groups to prove that this is not the case for

naturally reductive homogeneous spaces.

2. SyiMmetric-IlkeRiemannian manifolds

We startby summarizing the definitionsof the variousRiemannian manifolds

which we call symmetric-like.A more thorough account and many further

referencescan be found in [11 and [61.
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Let M be an ^-dimensional, connected, smooth manifold of dimension n>2

and equipped with some Riemannian metric g. We denote its Levi Civita

connection by V and its Riemannian curvature tensor by R, where we use the

convention Rxy = ^[x,y] ―[V*-,Vy]. Further, I(M) denotes the isometry group

of M and I°(M) its identity component. The tangent bundle of M is denoted by

TM, the tangent space of M at some point m e M by TmM. If y is a geodesic in

M, the associated (Riemannian) Jacobi operator Ry is the self-adjointtensor field

along y defined by Ry := R(y, -)y. For any v e TM the (Riemannian) Jacobi

operator Rv with respect to v is the self-adjointendomorphism Rv := R(v, -)v on

TmM. Let expm : TmM ―*■M be the exponential map of M at m. At least locally

we have a well-defined smooth map given for every unit vector E,e TmM by

sm :p = e>xpm(t{)h+sm{p) = expm(-^)

which is called a local geodesic symmetry of M at m. We shall also work with

normal coordinates p＼-^(xl(/>),...,xn(p)) centered at meM. The Riemannian

metric g in such coordinates is given by the matrix-valued map/>i->(gf,y(/?)),and

we have the normal volume densitv function

com(p) = (det(^-))1/2(/>)

defined on a normal coordinate neighborhood. We denote by fik{m,p) the k-th

elementary symmetric function of the characteristicpolynomial of the symmetric

matrix {gij{p))~l.Each pLk is a symmetric two-point function [11].

(1) A Riemannian manifold M is said to be a k-D'Atri space if for any

meM the function fik(m,p) is left-centrallysymmetric, that is,

uk(m,expm(t£)) = uk(m,expm(-t£)).

Note that a Riemannian manifold is a 1-D'Atri space if and only ifit is a D'Atri

space [9].A Riemannian manifold is said to be a D'Atri space if itslocal geodesic

symmetries are volume-preserving up to sign, that is, fin(m,p) is left-centrally

symmetric.

(2) A Riemannian manifold M is said to be a k-harmonic space if for any

me M the symmetric two-point function jnk(m,p) is radial in its firstvariable

(and hence also in its second variable). M is harmonic in the usual sense if

fin(m,p) is radial. Note that a Riemannian manifold is 1-harmonic if and only if

it is harmonic [10]. A necessary and sufficient condition for a Riemannian

manifold to be harmonic is that each small geodesic sphere in the manifold has

p.nnstatitm#≫arirnrvfltiirp
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(3) A Riemannian homogeneous space M is said to be naturally reductive if

there existsa connected Lie subgroup G of I{M) acting transitivelyon M and a

reductive decomposition g = h c m of the Lie algebra g of G, where b is the Lie

algebra of the isotropy group H under the action of G at some point in M, such

that every geodesic in M is the orbit of a one-parameter subgroup of I°(M)

generated by some lent.

(4) A Riemannian manifold M is said to be a g.o. space if every geodesic in

M is the orbit of a one-parameter group of isometries.

(5) A Riemannian homogeneous space M is said to be a commutative space if

the algebra of all /(M)-invariant differentialoperators on M is commutative.

(6) A Riemannian manifold M is said to be a 0,-spaceif for every geodesic y

in M the eigenvalues of the associated Jacobi operator Ry are constant. This is

equivalent to saying that for any geodesic y in M there exists a skew-symmetric

tensor fieldTy along y such that R! = [Ry, Ty],where the prime denotes covariant

differentiationof Ry with respect to y. If for any geodesic y in M there exists a

parallel Ty with that property, then M is said to be a ^Q-space.

(7) A Riemannian manifold M is called a ty-spaceif for any geodesic y in M

the associated Jacobi operator Ry is diagonalizable by a parallel orthonormal

frame field along y.

(8) A Riemannian manifold is called an <S>(£-spaceif for each small geodesic

sphere in it the principal curvatures at antipodal points coincide.

(9) A Riemannian manifold M is called a %^,-space if for any two small

geodesic spheres in M with the same radii and touching each other at some point

me M the principal curvatures of these two spheres coincide at m.

(10) A Riemannian manifold M with the property that the eigenvalues of the

Jacobi operator Rv do not depend on the choice of the unit vector v e TM is

called an Osserman space. If these eigenvalues do not depend on the choice of the

unit vector v e TmM for any m e M, but may vary with the point m, then M is

called a pointwise Osserman space.

3. Totally geodesic submanifolds

Next, we investigate whether totallygeodesic submanifolds of the symmetric-

like Riemannian manifolds as defined in Section 2 admit corresponding prop-

erties.In the following, M is a totally geodesic submanifold of a Riemannian

manifold (M,g). The induced Riemannian metric on M will be denoted by g. Let

(jc1,...,xn) be normal coordinates centered at some point me M. We call these

normal coordinates adapted if d/dxHm) (i = !,...,≪)is tangent to M at m and
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d/dxa(m) (a = n + i, ...,h) is perpendicular to M at m. We will denote by

oc,/?e{1,...,≪} tangential indices with respect to M, by i,j e {l,...,n} tan-

gentialindices with respect to M, and by a, b e {n + 1,..., h} normal indices with

respect to M. We start with the following useful lemma.

Lemma 1. With respectto an adapted normal coordinatesystem centeredat

me M we have for any p e M lyingin the coordinateneighborhood thefollowing

representationof the metric tensorof M :

(9afi(j>))=

(
9ij{p)

0

0

9ab(p)

)-( 9ij(p)
0

0

9ab{p)

)

Proof. Let y be a geodesic in M parametrized by arc length and with

y(0) =m. We consider the Jacobi vector fields % : t＼-*td/dxi(y(t))and Ya:t＼-+

td/dxa(y(t)) along y in M. Since M is totallygeodesic in M and the initialvalues

of Yj at 0 are tangent to M, this Jacobi vector fieldis the variational vector field

of a geodesic variation in M. Thus Yi{t)is tangent to M for each t.Further, since

M is totally geodesic in M, the Gauss equation implies that the tangential

component Yj of Ya is a Jacobi vector fieldin M. But Yj" has initial values

fJ(0) = 0 and (Fflr)'(0)= 0. This implies that fj vanishes and hence Ya(t) is

normal to M for each t.This gives gut(y(t))= (l/t2)g(?i(t),YJt)) = 0 for each t,

and the lemma follows.

We now come to the main resultof thissection.

Theorem 1. Let M be a connected totally geodesic submanifold of M.

(i) If M is a k-D'Atri space (resp. a k-harmonic space) for all k = 1,...,h,

then M is a k-D'Atri space (resp. a k-harmonic space) for all k ― 1,...,≪.

(ii)If M is a Q,-space,a ^Q-space, a ^-space, an <&@,-space,a Z&space, an

Osserman space, or a pointwise Osserman space, respectively,then M belongs to

the same class as M.

(iii)If M is a g.o. space or a commutative space, then M is a k-D'Atri space

for each k ― !,...,≪.

(iv) If M is a g.o. space and M is complete, then M is also a g.o. space.

Proof, (i) Let M be a A>D'Atri space (resp. a ^-harmonic space) for all

k = 1,...,≪.Then Lemma 1 shows that the same holds for M.

(ii)First, suppose M Is a C-space and let y be a geodesic in M. Then there

exists a skew-symmetric tensor field fy along y in M such that R'y = [^y, f^].
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Since M is totally geodesic in M, restrictionand orthogonal projection of fy to

the tangent spaces of M along y gives a skew-symmetric tensor fieldTy along y in

M with R'y = [Ry, Ty}.This shows that M is also a G-space. When fy is V-parallel,

then Ty is V-parallel, which gives the corresponding statement for Go-spaces.

Next, suppose M is a ^B-space and y a geodesic in M. As M is totally geodesic in

M, the associated Jacobi operator Ry leaves the tangent space of M at any point

on y invariant. Since the tangent bundle of M restricted to y is V-parallel,it

follows that Ry can be diagonalized by a parallel orthonormal frame fieldalong y

whose firstn elements are tangent to M everywhere. These n parallelvector fields

diagonalize the Jacobi operator Ry in M, and it follows that M is also a ^P-space.

Since M is totally geodesic in M, the Weingarten equation implies that any

principal curvature of a small geodesic sphere in M is also a principal curva-

ture of the corresponding geodesic sphere in M. This implies the statement for

<S£-and 2C£-spaces.Finally, the statement for Osserman spaces and pointwise

Osserman spaces follows from the fact that each eigenvalue of Rv, v e TM, is also

an eigenvalue of Rv, because of the Gauss equation and since M is totally

geodesic in M.

(iii)This follows from (i) and the fact that every g.o. space [8] and every

commutative space [7] is a fc-D'Atri space for all k.

(iv) Let y be a maximal geodesic in M. As M is a g.o. space, there exists a

one-parameter group of isometries of M having y as an orbit.This one-parameter

group generates a Killing vector field X on M. The restrictionand orthogonal

projection of X to M gives a Killing vector fieldX on M, and by construction y

is an orbit of the one-parameter group of isometries of M determined by X.

Remark. Below we will provide an example of a complete totally geodesic

submanifold of a naturally reductive space which is not naturally reductive.

Nevertheless, the following questions remain open:

1. Is any complete totally geodesic submanifold of a commutative space also

commutative?

2. Is, for a fixed k, any totally geodesic submanifold of a fc-D'Atri space

(resp. a Miamionic space) also a fc-D'Atri space (resp. a ^-harmonic space)?

4. Totally geodesic subgroups of generalized Heisenberg groups

In this section we investigate totally geodesic submanifolds of generalized

Heisenberg groups. As a consequence we get the example mentioned in the

previous remark. A thorough treatment of generalized Heisenberg groups can be
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found in [1],from which we also take several facts without providing the proofs

here.

Let t>and 3 be real vector spaces with finitedimensions n and m, respectively,

and j?:DXD-≫3a skew-symmetric bilinear map. Then the direct sum n = 0 R 3

becomes a 2-step nilpotent Lie algebra with w-dimensional center 3 by means of

[U + X,V+Y＼=0(U,V) (£/,Feo,X,FG3).

We choose some inner product <･,･> on n such that v and 3 are perpendicular and

define a homomorphism

/ : 3 ―> End (o),Zi―≫Jz

by

</zl/,F> = <[£/,F],Z> {U,Vev,Zez).

Then n is said to be a generalized Heisenbera algebra if

/| = -|Z|2id (ZG3)

The associated connected, simply connected 2-step nilpotent Lie group N

equipped with the induced left-invariantRiemannian metric g is called a gen-

eralized Heisenherg group. For m ― 1 these are precisely the classicalHeisenberg

algebras and groups.

The classificationof generalized Heisenberg algebras and groups can be

obtained by means of the classificationof finite-dimensional real representations

of Clifford algebras over negative definite real quadratic spaces. Denote by

C/(3,q) the real Clifford algebra of the real quadratic space (3,q), where q is the

negative of the quadratic form associated to the inner product on 3. If m # 3

(mod 4), then there exists (up to equivalence) precisely one irreducible real

Clifford module 3. The t>is isomorphic to Rk9 for some positive integer k. If

m = 3 (mod 4), then there exist(up to equivalence) precisely two non-equivalent

irreducible real Clifford modules &＼,&i over the Clifford algebra Cl($,q). The

modules #i,#2 have the same dimension and 0 is isomorphic to {Rkl$i)(&

(c^$2) for some non-negative integers k＼,ki.Any two pairs {k＼,k2)and {k＼,ki)

of non-negative integers with k＼+ kj = k＼+ ki yield generalized Heisenberg

algebras n(k＼,k2) and n(k＼,k2) of the same dimension. These are isomorphic if

and only if (ki,ki) e {(^1,^2), (&2,fci)}, that is, the corresponding generalized

Heisenberg groups, N{k＼,ki) and N{k＼.ic2)are isometric if and only if (£1,^2)e

Ukuk?)Jko,ki)＼.
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Viewing elements in the Lie algebra rtas left-invariantvector fieldson the Lie

groups N, the Levi Civita connection V is determined by

Vv+Y(U + X) = -l-JxV -^JYU -l-[U,V]

for all U, V e v and X, Y e 3.

We will now study totally geodesic submanifolds of generalized Heisenberg

groups. For general investigations about totally geodesic submanifolds of 2-step

nilpotent Lie groups we refer to [4].

Proposition 1. Let N, N be generalized Heisenberg groups and suppose N is

a totallygeodesic submanifold of N. Let n = t>c 3 and ft= 5 0 3 &e the associated

decomposition of the Lie algebra of N and N, respectively.Then we have r><= 6 and

Proof. The basic idea for the proof is as follows. Since N is totally geodesic

in N, the spectrum and the eigenspaces of the Jacobi operator R.% must be

contained in the spectrum and the eigenspaces of the Jacobi operator R＼ for each

unit vector £e TN. The spectra of these Jacobi operators and the corresponding

eigenspaces have been computed explicitlyin [1, p. 36-38]. Comparing these data,

we get the result.

Let Feobea unit vector. We have to show that V e 5. First we note that

Rv has three distincteigenvalues 0, -3/4 and 1/4. We decompose V into V ―

V + Y with V e 6 and Y e 3.If Y ― 0 we are done. Thus we assume Y # 0. If

V = 0, then Rf has just the two eigenvalues 0 and 1/4, but not ―3/4. Therefore

we must have V ^ 0 and Y # 0. We decompose ftinto

ft= ft3+ p + q

with

n3 :=span{ F,/fF, F},

p := ker ad(F) (1 ker ad(/f F),

q := span{ Y±,/fx F,/fx/f F}.

Each of these three subspaces is invariant under the action of Ry+f. The

endomorphism Ry+f＼^3 has the eigenvalues 0 and 1/4 (if ＼V＼2= 1/4) or 0, 1/4

and 1/4 - |F|2 (if |F|2 # 1/4); the endomorphism Ry+?＼v (if P # {0}) has only

one eigenvalue (I ―＼V＼2)/4―＼Y＼2/4.The situation is more complicated for
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Ry+f＼q (if q^{0}). We put V= V/＼V＼, Y= Y/＼t＼, and consider the skew-

symmetric endomorphism

Using the abbreviation K := Kv f, we have an orthogonal decomposition of Y1

into

where Lj := ker(A^2 ― fijidy±) (j = 0,1,..., k) and 0 > fiQ > fil > ■･■> fik > ―1

are the distinct eigenvalues of K2. We define

qj : spanjZ,-,JL.V,JLjJf V}, j = O,...,k, fik＼=-l,

qk := sp&n{LkJLkV}, if fik = -1.

Then q = q0 R ･･ ･ c qk and each space q,-is invariant under the action of Rv+f

with

Finally, we put

dim q＼-=

0(mod3)

0(mod4)

0(mod6) otherwise.

Pi=
＼-＼V＼2,

P2=
^
+
Jl+V＼V＼2＼Y＼2),

Pl=
＼i＼-＼I^+^＼V＼2＼Y＼2).

Now, if j = k and fik = ―1, then Ry+f＼qk has two differenteigenvalues ick＼and

Kk2 which are thee solutions of the quadratic equation

(

. ＼w)

Otherwise Ry,f＼h has three

{p-p＼) =
~＼v＼2＼t＼2

distinct eigenvalues icn, ftn, /en which are the

solutions of the third order equation

{p - P＼){p- h){P - h) = slWte
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The substitution of p = ―3/4 and the explicitexpressions for pY, p2, /?3into the

previous third order equation gives

<-≫@4^ -
H*1-*-

where t:= |F|2 and s := fij.Since ? # 0 and t # 1, thisimplies

32?2 - 32r + 48
s =

-27r2

Regarding s as a function in the variable t, we get for the derivative s'{i)―

32(3 - ?)/27f3 > 0 for 0 < t < 1, whence the function s(t)is strictlymonotone

increasing for 0 < t < 1. Since s{＼)― -16/9 < ―1, this shows s{t)< -1 for

0 < t < 1, in contrast to ―＼<s = fij<0. This shows that -3/4 is not an

eigenvalue of Ry+f＼^j. Now we consider the case fik= ―1. Then the above

quadratic equation gives

& I)
4/
(i - 0 =

£(i-0

with t:= |V＼2 and p := ―3/4. However, this is possible only for t=＼ or t =

12/5, in contradiction to 0 < t― |F|2 < 1. Thus ―3/4 is not an eigenvalue of

Ry+f＼^ic-The eigenvalue of Rv+f＼p is positive,so ―3/4 is not an eigenvalue of

Ry+f＼V- Eventually, we know that Rv+f＼n3 has only the eigenvalues 0, 1/4 and

1/4- |V＼2.Because of |F|2<1, -3/4 cannot be an eigenvalue of Rv+f＼^3-

Altogether we now see that -3/4 is not an eigenvalue of Rv+f- On the other

hand, Ry has the eigenvalue -3/4, which gives a contradiction. Thus F # 0 is

not possible and so V = V e 6. Thus we have now proved that dcd.

Now let F e 3 be a unit vector. We have to show that Y e 3. The Jacobi

operator Ry has two different eigenvalues 0 and 1/4 with corresponding

eigenspaces 3 and 0, respectively.We decompose Y into Y = V + Y with V e 6

and Y e 3.If V = 0 we are done. Thus we assume K # 0. If F = 0, then Rv has

the eigenvalues 0, ―3/4 and 1/4, and the eigenspace corresponding to 1/4 is 3.

But this implies ocj, in contradiction to 0 <= 5 which was established above.

Therefore we must have F # 0. Since 1/4 is not an eigenvalue of Rv+f＼v &n<i of

Ry+f＼Q> we nave to consider only Rv+f＼^3- The eigenspace of 1/4 is spanned by

-|F|2F+|F|2F, which gives a contradiction to dcd. Therefore, 1/4 is not an

eigenvalue of Rv+y> which is another contradiction. Consequently, we must have

V = 0 and it follows that jca. This finishes the proof of Proposition 1.
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Remark. Proposition 1 says that any generalized Heisenberg group TV which

is totally geodesically embedded in some other generalized Heisenberg group N is

well-positioned in the sense of [4]. This means that n = (itD d) 0 (n PI3), 0 = n PI6

and 3 = nri3.

A totally geodesic Lie subgroup N of a Lie group TV is a Lie subgroup /V

which is embedded totally geodesically in N. A Lie subalgebra n of the Lie

algebra ft of TV"is said to be totally geodesic if Vx Y e n for all A", y e it. There is

an obvious one-to-one correspondence between totally geodesic Lie subalgebra of

n and connected totally geodesic Lie subgroups of N.

The lowest dimension for a generalized Heisenberg group with 2-dimensional

center is 6. We will now show that this 6-dimensional generalized Heisenberg

group can be embedded totally geodesically into any generalized Heisenberg

group not satisfying the /2-condition. For this we must firstrecall the meaning of

the J2 -condition, which has been formulated firstin [2]. A generalized Heisenberg

group satisfies the /2-condition if any only if for all X, Y e 3 with <X, Y} = 0

and all non-zero vectors U e 0 there exists some vector Z e 3 so that JxJyU ―

JzU, that is, so that JxJyU e ker ad(C/)1. It was shown in [2] that a generalized

Heisenberg group satisfies the /2-condition if and only if it is isomorphic to the

nilpotent part in the Iwasawa decomposition of the identity component of the

isometry group of a non-compact rank-one symmetric space. More precisely, a

generalized Heisenberg group satisfies the J2 -condition if and only if m = 1 (this

corresponds to complex hyperbolic space), m ― 3 and 0 is an isotypic module

(this corresponds to quatemionic hyperbolic space), or m = 7 and t> is an

irreducible module (this corresponds to Cayley hyperbolic plane).

Theorem 2. Let N be a generalized Heisenberg group which does not satisfy

the J2-condition. Then the 6-dimensional generalized Heisenberg group N with 2-

dimensional center can be embedded totally geodesically into N.

Proof. As N does not satisfy the /2-condition, the solvable extension of

N known as a Damek-Ricci space has zero sectional curvature for some suitable

2-plane [3].Such a 2-plane existsif and only if there exists a unit vector V 4- Y e

ft with |V＼2= 2/3 and a non-zero vector x Y1- so that JxJy V is orthogonal to

/jf [1, P- 104]. A straightforward calculation shows that F, JxV, JyV, JxJyV,

X, Y are orthogonal and span a 6-dimensional totally geodesic Lie subalgebra n

of ft isomorphic to a 6-dimensional generalized Heisenberg algebra with 2-

dimensional center. The corresponding totally geodesic Lie subgroup N of N is

a 6-dimensional generalized Heisenberg group with 2-dimensional center.
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Corollary 1. A totallygeodesic submanifold of a naturally reductive space

is not naturally reductive in general.

Proof. A generalized Heisenberg group is naturally reductive if and only if

dim 3 e {1,3} [5].Any generalized Heisenberg group N with 3-dimensional center

and arising from a non-isotypic module t>is therefore naturally reductive and

does not satisfythe /2-condition. The previous theorem implies that one can find

a generalized Heisenberg group N with 2-dimensional center embedded totally

geodesically in N. Since the center of N is 2-dimensional, N is not naturally

reductive, and the corollary is proved.

We finish this paper with another existence theorem concerning totally

geodesic embeddings of generalized Heisenberg groups with 2-dimensional center

into generalized Heisenberg groups with 3-dimensional center.

Theorem 3. Let N = N(k＼,k2) be a generalized Heisenberg group with 3-

dimensional center and suppose that k := minjfci,/^} > 1. Then there exists for

each I e {1,..., k] a (41 + ^-dimensional generalized Heisenberg group with 2-

dimensional center embedded totally qeodesically in N.

Proof. We begin with an explicit description of the generalized Heisenberg

algebra n = n{k＼,ki). Denote by H the algebra of quaternions. We define a linear

map

O : R3 -> H, (s, t,u)＼-+si + tj+ uk.

For Z e R3 we consider the automorphism

Jz : Hkl+k2 -> Hkl+k2

given by

(wu...,wlci+k2)^(wlm(z),...,wkMz)Mz)wkl+l,...MzWkl+k2).

Then we have J＼ = -|Z|2id and n = n(fc1}ifc2)= ^*1+*2 c ^3- Let X, Y, Z be the

standard basis of J?3 which corresponds via O to i, 7, fc.Let n＼(respectively ni) be

the projection of v = o＼c 02 = ^' c Hkl onto the first (respectively second)

factor and V＼e c a unit vector with |tti(Fi)| = |tt2(Ki)|. Then

fi! = span{X, r, F^/zK^/rF^/x/rFi}

is a totally geodesic Lie subalgebra isomorphic to the 6-dimensional generalized

Heisenberg algebra with 2-dimensional center. If k > 2 we may find a unit vector
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V2 e ≫ with |tci(K2)|= tafFi)! and perpendicular to the 8-dimensional subspace

fli(z):=(fl,no)0/z(£iriD)

of o. Then

22 := fiicspan{F2,/xF2,/FF2,/z/FF2}

is a totally geodesic Lie subalgebra of n isomorphic to the 10-dimensional

generalized Heiseeberg algebra with 2-dimensional center.In this manner we may

construct successively for each /e {1,..., k} a totally geodesic Lie subalgebra of

itisomorphic to the (4/ + 2)-dimensional generalized Heisenberg algebra with 2-

dimensional center. This proves the theorem.
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