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AND AN ODD-DIMENSIONAL SPHERE

By

Setsuo Nagai

1. Introduction

In Riemannian geometry the theory of homogeneous spaces is a very in-

teresting subject. Many geometers investigate homogeneous submanifolds in a

complex projective space CPn and get many fruitfulresults. CPn has good

geometric structures.One of them is a Kahler structure.These structures induce

many geometric structures on submanifolds. For example, almost contact metric

structures on real hypersurfaces are induced from the Kahler structure of CPn.

These structures are very useful to investigate geometries of real hypersurfaces.

On the other hand, CPn has the Hopf fibration whose total space is the odd-

dimensional unit sphere S2n+l. Its projection is a Riemannian submersion. The

fundamental equations of Riemannian submersions are investigated by O'Neill

[9].The Hopf fibrationis a useful tool when we study geometries of submanifolds

in CPn. Through the Hopf fibrationinformations of submanifolds in CPn can be

translated into informations of submanifolds in S2n+l and vice versa. Using this

method, R. Takagi [11] classifiedhomogeneous real hypersurfaces in CPn. By his

theorem they are classifiedinto 5 types of Riemannian submanifolds, say of type

(A)-(E) (see §2 Theorem T).

The homogeneity of a Riemannian manifold can be studied by means of the

existence of a so called homogeneous structure tensor (cf.[1] and [14]). So it is

natural to expect that on each homogeneous manifold a homogeneous structure

tensor will contain geometric informations about this space. Therefore it is an

important problem to determine homogeneous structure tensors on homogeneous

spaces. In the paper [6] the author gives a homogeneous structure on a homo-

geneous real hypersurface of tvpe (A) (cf.§4). Using this tensor, we know that
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a real hypersurface of type (A) is naturally reductive. Further, in the paper [7] the

author determines all naturally reductive homogeneous real hypersurfaces in CPn.

Our aim in this paper is twofold. One of our purposes is to determine a

homogeneous structure on a real hypersurface of type (B). This is expressed by

using its almost contact metric structure and the shape operator. The resultis as

follows.

Theorem 4.1. The following tensor TB defines an invariant homogeneous

structure on a homogeneous real hyper surface M of type (B)

(4.1) T?Y = U{X)jY + rj(Y)</>AX- q^AX , Y)£.

Here (0,£,rj,g) is an almost contact metric structure on M and a is the principal

curvature in the direction of £(for details see §2).

Another purpose of this paper is to investigate relations between homoge-

neous structures of submanifolds in CPn and S2n+l. Here we prove

Theorem 3.1. Let T be an invariant homogeneous structure of a real

hyper surface M on which C,is principal in CPn. Then the lifthyper surface M' in a

unit sphere S2n+X is locally homogeneous and the following tensor T' defines a

homogeneous structure of M'.

(3.1)

T'XY ^ (Tn{x)n(Y)r - g＼X}V)(MY)y - g'(Y,V)(M^)r +9(M^)^(Y))V.

Here n is the map from M' to M naturally induced by the Hopf fibration. V and

( )* denote the vertical tangent vector of M' and the horizontal liftof a vector

(for details see §2).

Further, using these observations, we obtain homogeneous structures of

submanifolds in 5'2w+1 which are some of homogeneous hypersurfaces given by

isotropy representations of compact Riemannian symmetric spaces of rank 2

(cf.[111).

2. Preliminaries

In thissectionwe explainpreliminaryresultsconcerning Riemannian homo-

geneous structures,realhypersurfacesof a complex projectivespace and Hopf

fibrations.

First,we recall a criterionfor homogeneity of a Riemannian manifold

obtained by Ambrose and Singer [11.We startwith
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Definition 2.1. A connected Riemannian manifold (M,g) is said to be

homogeneous if the group I{M) of isometriesacts transitivelyon M.

On the other hand, local homogeneity is defined by

Definition 2.2. A connected Riemannian manifold (M,g) is said to be

locally homogeneous if, for each p,q e M, there existsa neighborhood U of p, a

neighborhood V of q and a local isometry <f>: U ―> V such that (f>{p)= q.

In the paper [1],Ambrose and Singer give a criterion for homogeneity of a

Riemannian manifold:

Theorem AS ([1]). A connected, complete and simply connected Riemannian

manifold M is homogeneous if and only if there existsa tensorfield T of type (1,2)

on M such that

(i) g(TxY,Z)+g(YJTxZ)=R,

(ii) {VXR)(Y,Z) = [TX,R{Y,Z)]- R(TXY,Z) - R(Y,TXZ),

(iii){VxT)y = [Tx,Ty]-TTxy,

for X, Y1Ze^{M). Here V denotes the Levi Civita connection, R is the Rie-

mannian curvature tensor of M and 3£(M) is the Lie algebra of all Cx vectorfields

over M.

Furthermore, without the topological conditions of completeness and simply

connectedness, the three conditions (i)-(iii)give a criterionfor local homogeneity

of M.

Remark 2.3. If we put V := V ― T, then the conditions (i),(ii)and (iii)are

equivalent to Vg = 0, VR = 0 and VT = 0, respectively.

Secondly, we turn to some preliminaries concerning real hypersurfaces of a

complex projective space. Let CPn(4) be an ^-dimensional complex projective

space with constant holomorphic sectional curvature 4 and let J and g be its

complex structure and metric, respectively. Further, let M be a connected

submanifold of CPn (4) with real codimension 1, simply called a real hypersurface

in the following. We denote by g the induced Riemannian metric of M and by v a

local unit normal vector field of M in CPn(4).

The Gauss and Weingarten formulas are:

(2.1) VxY = VxY + g{AX,Y)v,

(2.2) V^v = -AX,
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where V and V denote the Levi Civita connection on CPn(4) and M, respectively

and A is the shape operator of M in CPn{4).

We define an almost contact metric structure (</>,^tj,g)of M as usual. That

is,

£= -/v, r]{X) = g(X, £), </>X= (JX)T, for X e TM,

where TM denotes the tangent bundle of M and ( )T the tangential component

of a vector. These structure tensors satisfy the following relations:

(2.3)

g(<f>X,</>Y)= flf(jr,7) - i7(JT)7(F), IJe TM,

where / denotes the identity mapping of TM.

From (2.1) we easily have

(2.4) {VX(t>)Y = rj(Y)AX - g(AX, Y)£,

(2.5) Vx£ = 4>AX

for tangent vectors X,Ye TM.

For a homogeneous structure we define

Definition 2.4. A homogeneous structure tensor T on a real hypersurface in

CPn is said to be invariant if all structure tensors ((f>,£,ri,g)are parallel with

respect to the connection V = V ― T.

In our case the Gauss and Codazzi equations of M become

(2.6) R(X, Y)Z = g{Y,Z)X - g(X,Z)Y + g(<f>Y,Z)<f>X- g(</>X,Z)0Y

- 2g{<f>X,Y)(j)Z+ g(A Y, Z)AX - g(AX, Z)A Y,

(2.7) (V^) Y - (VYA)X = rj{X)(l>Y- rj{Y^X - 2g(<f>X,Y)£.

Homogeneous real hypersurfaces of CPn(4) are completely classified.In [11]

R. Takagi obtained the following:

Theorem T ([11]). Let M be a homogeneous real hypersurface of CPn(4)

Then M is locally congruent to one of the following spaces:

(A) a tube of radius r over a totally geodesic CPk{4) (0 < k < n ― 1)

0 < r < n/2;

(B) a tube of radius r over a complex quadric Qn-＼, 0 < r < n/4;

(C) a tube of radius r over CP＼ x CPin_＼＼n, n> 5 is odd, 0 < r < n/4;
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(D) a tube of radius r over a complex Grassmann G2,s(C), n = 9, 0 < r < n/A;

(E) a tube of radius r over a Hermitian symmetric space 5*0(10)/(7(5),

n = 15, 0 < r < n/A.

Here CP$ means a single point.

Homogeneous real hypersurfaces have other representations obtained by

using the Hopf fibrations.For later use, we only write such representations in the

case of real hypersurfaces of type (A) and type (B).

For real hypersurfaces of type (A) we have the following commutative

diagram:

S2P+l(n) x S2i+l(r2) > S2n+l(l)

(2.8)
■

1

M

1

'

CP (4)

where r＼+ r＼― 1 and p + q ―n ―1.

For real hypersurfaces of type (B), we have

SO{2) x SO{n + 1)/Z2 x 5O(≪ - 1) > S2n+{

(2-9) *j
|K'

M > CPB(4),

where Z2 denotes the finitegroup of order 2. In both diagrams the map n' is the

Hopf flbration (cf. [8],[11], [13]).

About the decomposition of the tangent space into the eigenspaces of the

shape operator of a homogeneous real hypersurface, we know the following:

Theorem 2.5([12]). The tangent space of the homogeneous real hypersurfaces

can be decomposed as follows:

for type (A): TM = R£ c Tx c T_l/x, A£ = (x - ＼/x)£,x > 0;

for type (B): TM = Ri; c Tx c T_l/x, A^ = (-4x/(x2 - 1))£ 0 < jc< 1;

for ,yve (C), (o, w (E):
{ = ^(5f J-e ^r -

―,.

w/zere 7^ denotes the eigenspace of the shape operator with the principal curvature

X. Further, for type (B)-(E) we have <f>Tx― T_＼jx(cf. [5]).

In what follows we denote the principalcurvaturein the directionof the

vector£by a, thatis, A£,= a£.From Theorem 2.5 we have
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Proposition 2.6. The shape operator of a homogeneous real hypersurface of

type (B) satisfiesthe following relations:

(2.10) <f>A+ A(j)= --</>,

(2.11) (J}(a2+-A-i＼ =0.
＼ cc J

For the covariant derivativeof the shape operator A, we have

Proposition 2.7([3]). Let M be a homogeneous real hypersurface of type (B).

Then the shape operator A of M satisfies

(2.12)

iVxA) Y=-^{2ri(X)(A<f> - jA)Y + //(Y)(Af - 3</>A)X + g{{A^ - 3f4)X, F)<*}.

Finally, we explain some fundamental equations of the Hopf fibration and

their submanifolds. For detailssee [9] and [10].Let ri : S2n+l -> CPn be the Hopf

fibration.Further, let (/, g, V) be the tripledetermined by the complex structure,

the Riemannian metric of constant holomorphic sectional curvature 4 and the

Levi Civita connection of CPn. Moreover, let (gr',V) be the pair formed by the

metric of constant sectional curvature 1 and the Levi Civita connection of S2n+X.

For a real hypersurface M of CPn we have the following commutative diagram:

(g'X) M' ―^ $2n+l(l) (^V7)

(2,3) .[
[,

{faZ,ri,g,V) M ―'-^ CPn(4) (/^,V).

Here (^, ^,r],g, V) denotes the almost contact metric structure and the Levi Civita

connection of M, M' is the inverse image of M by n' and (g1,V') denotes the pair

of the Riemannian metric and the Levi Civita connection of M'.

In the following, for a vector X e TCPn (resp. e TM) X* denotes the

horizontal liftof X in TS2n+] (resp.in TM'). Further, for a point z e 5*2"+1(resp.

e M') V: ――iz denotes a verticaltangent vector at z e S2n+l (resp. 6 M'), where

/is the complex structure of Cn+l acting canonically on the unit sphere S2n+] c

C+1. For X e TS2n+{ we have Yx V = {-Jn'{X))＼ where / and ( )* denote the

complex structure of CPn and the horizontal liftof a vector, respectively and n'

also denotes the differential of n'. Then the fundamental equations of the

submersions n' and n are
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(2.14)

(2.15)

V V Y* = (V* Y)* + g(JX, Y) F, X, Y e rCP≪,

For a unit normal vector field v of M in CPn the horizontal liftv* defines a

unit normal vector field of M' in Sln+l. From (2.14) we can easily get the

following relations between the shape operator A' of M' and the shape operator

A of M:

(2.16)

Further, since Vvv*

(2.17)

So we obtain

A'X* = (AX)* -rj(X)V.

VV v = (-Jv)* = C we have

(2.18) A'Z = (An(Z)y - g(n(Z)^)V - g＼Z,V)C, ZeTM',

where the differentialof n is denoted by the same lettern.

Using (2.15),we have

(2.19) n{VxZ) = Vn(X)n{Z) -g'{V,Z)fa(X) - g'{V,X)ifm{Z).

The covariant derivativeof the shape operator A' of M' has the following

formula.

Lemma 2.8([2]). Let A' be the shape operator of M' in S2n+l. Then we have

(2.20) (V'XA') Y = {(Vn{X)A)n( Y) + rj(n(Y))</>n(X) + 9^{X),n{ Y))Q*

- g'(X, V){tfA - AJMY)}* - g'(Y, V){i^A - A<f>)n(X)y

-g(n{Y),(tA-At)n(X))V.

Proof. This follows from a straightforward calculation by using (2.18),

(2.19) and the definition of V'A' (for details see [2]). ■

3. Relations between Homogeneous Structures In the Hopf Flbration

In this section we obtain the relations between homogeneous structures of

real hypersurfaces in CPn(4) and the corresponding liftshypersurfaces in 5"2"+1.

We have the following:
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Theorem 3.1. Let T be an invariant homogeneous structure on a real

hyper surface M on which t,is principal in CPn. Then the lifthyper surface M' in a

unit sphere S2n+l is locally homogeneous and the following tensor T' defines a

homogeneous structure on M'＼

(3.1)

T^Y = (Tn{x)n(Y)y-g＼X,V)(MY)y-g＼Y,V)(MX)y+g(MX)MY))V.

Proof. We have to prove the conditions (i)-(iii)of the Theorem AS.

First, we prove (i).By straightforward calculation we have

gl{T'xY,Z)+g'{Y,TlxZ) = g(Tll{x)n{Y),n{Z))+g{n(Y),Tn{x)n{Z)).

By our hypothesis the right-hand side of this equation vanishes. This prove (i).

Secondly, we prove (ii).For this purpose it sufficesto prove VXA' = T'XA'.

Using (2.5),(2.18) and (3.1), we obtain

(T'xAf) Y = {(Tn{x)A)n( Y) + n(n( Y))<f>n(X)+ gfaWM *))£}*

- g＼X, V){{4A - A<j>)n(Y)y - g'{Y, V){{jA - A<j>)n(X)Y

-g(n(Y),((/>A-A(f>)n(X))V.

Combining this with (2.20), we have

(3.2) YxA'-T'xA' = $n{x)A)＼

By our assumption and (2.5) we have

(3.3) Tw£ = <fiAW, WeTM.

Taking the covariant differentiationof (3.3), we obtain

(3.4) (Vn{x) T) w^ + Tw{Vn{x)Q = (Vn{x)<f>)AW + <j>(Vn{x)A)W.

Since T, $ and £ are parallel with respect to the connection V, (3.4) reduces to

(3.5) 4(V≪{x)A)W = 0.

From (2.3) and (3.5) we have

(3-6) {V*(x)A) W = g({Va{x)A)Z, W)£.

On the other hand we have the following:
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(Vw(A-)^ = VwW(a0-^(VwW0

= 0.

Here we use the fact that the principal curvature a in the direction £is constant

(cf.[5] p. 533 Lemma 2.4).

So we have V^x)^ = 0. Combining this with (3.2) we have (ii).

Finally, we prove (iii).For this purpose we define the following two tensors

f and T*:

fX = ((/>n(X))＼ T*XY= {T<x)n(Y))＼

where X, Y e TM'. To prove (iii)it sufficesto verify that these tensors and V are

parallel with respect to the connection V" = V' ― Tf.

First, we prove V'x V ―0. By the definition of T' we have Tx V =

-{(f)n(X)y. Since the right-hand side of this equals to V'XV (see [9]),we get the

assertion.

Next, we prove the parallelism of the tensor (/>*.Using (2.15) and (2.18), we

have

(V'xr)Y = V'x(fY)-f(VxY)

= {{Va{x)*WY)y - g'(Y, V)n(Xy+g(n(X)MY))V.

On the other hand, we obtain

{Txf)Y=Tx((tn(Y)y)-P(TxY)

= {(Tn(x)tMY)}* - g＼Y, V)n(Xy+g(n(X),n(Y))V.

So we get

{Vxt*)Y=(Vxt*)Y-(Txf)Y = 0.

Now, we prove (V'XT*)YZ = 0. According to (2.15) and (2.18), we obtain the

following expression after a long and straightforward calculation.

(V'XT*)YZ = V'X(T*YZ) - T;,xYZ - TY(VXZ)

= {iyn{x)T)n{Y)n{Z)y

+ g'(X, V){Tn{Y)(MZ)) + TMY)n{Z) - ^Tn{Y)n{Z)y

+ g'(Y, V){TMX)n(Z)y + g＼Z, V){Tn{Y)(</>n(Z))y

+ g{fa(X)iTn{Y)n(Z))V.
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On the other hand, we obtain

{T'XT*)YZ=T^TYZ-T},YZ-TYT^Z

= {{Tn{x)T)n[Y)n{Z)Y

+ g'(X, V){Tn{Y)(<t>n{Z))+ TMY)n{Z) - ^r,(y)7i(Z)}*

+ g'(Y, V){TMX)n(Z)y+g'{Z, V){Tn{Y)(</>n(Z))V

+ g{(l>n{X)1Tn{Y)n{Z))V.

So we get

(V'T*)YZ = (V>T*)YZ - (T>T*)vZ

= {(V*(X)T)n(Y)n{Z)y.

By the hypothesis the right-hand side of thisvanishes. The theorem is now proved

by all the above arguments. ■

4. Homogeneous Structures on Real Hypersurfaces

In this section we obtain an invariant homogeneous structure on a homo-

geneous real hypersurface of type (B). After that we give homogeneous structures

of some type of homogeneous hypersurfaces in S2n+l.

First, we have the following:

Theorem 4.1. The following tensor TB definesan

structureon a homogeneous real hypersurfaceM of type

invariant homogeneous

(B)

(4.1) T*Y = ^(X)<f>Y + rj(Y)*AX - g{<t>AX＼Y)£.

Its explicit components are given by

(4.2) <

TBe- &to

x
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where e＼,...,en-i, </>eu...

e＼,...,en-＼ iresp. #e＼,...

<f>en-＼,£is a local field of orthonormal frames such that

$en-＼) is an orthonormal basis of Tx [resp. T_＼/x).

Proof. In order to prove our theorem it sufficesto prove the following four

equations:

(4.3) Vxg = 0, Vxt = 0, Vx</>= 0, VXA = 0,

where X e TM and V = V - TB (see Remark 2.3).

First,we shallprove VyQ ―0. By the definitionof TB we have

g(T*Y,Z)+g(Y,T*Z)=^ri(X){g(tY,Z)+g(Y,4Z)},

and the right-handside of thisequation vanishes,since^ is a skew-symmetric

transformation.

Secondly, we prove Vx£ = 0- By straightforwardcalculationwe get

T^ = <f>AX= V*f.

Here we use (2.5).So we have our assertion.

Thirdly,we prove VX(j>= 0. By a straightforwardcalculationwe have

(T≫t)Y=T*(tY)-t{T*Y)

= rj(Y)AX-g(AX,Y)l

Compairing thiswith (2.4),we obtain

Vx<f>= 0.

Finally,we prove VxA = 0. By a straightforwardcalculationwe obtain

(4.4) (T≫A)Y=T*{AY)-A(T*Y)

= |rj(X)((f)A-A(/>)Y + rj{Y)(a<f>A- A(f>A)X

+ g{{oc</>A-A^A)X, Y)£.

On the other hand, using (2.10) and (2

(4.5) ccd>A ― ASA =

(

11), we have

Substituting (4.5) into the right-hand side of (4.4), and using (2.12), we get
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(T*A)Y=(VXA)Y.

So we have the assertion.

According to (2.6) and (4.3), the metric g, the curvature R and the tensor TB

on M are all parallel with respect to the connection V = V - TB. These facts

prove our theorem. ■

Combining Theorem 3.1 and Theorem 4.1, we have

Corollary 4.2. The following tensor T defines a homogeneous structure on

SO(2) x SO(n + 1)/Z2 x SO(n - 1).

TxY = (Tn%)n(Y)y-g＼x,v)(MY)y-g＼Y:v)(Mx)r + g(Mn<Y))v.

In the paper [61, the author proves the following.

Theorem 4.3([6]). Let M be a homogeneous real hypersurface of type (A)

Then

T*Y = n( Y)<j>AX - n(X)<f>AY - gtfAX, Y)£

defines a naturally reductive homoqeneous structure of M.

Here T is said to be naturallyreductiveif TXX = 0 is satisfiedfor any

tangent vector X e TM.

According to Theorem 3.1,Theorem 4.3 and the resultsof [61,we have

Corollary 4.4. For S2P+＼rx) x £2*+1(r2)[r＼+ r＼=

T defines a homoaeneous structure on it:

1) the following tensor

TxY = (T*x)n(Y)y-g＼X,V)(MY)y-g＼Y,V)(fa(X)r+9(MX)MY))V.

Remark 4.5. The above tensor TB is not naturally reductive because T§X

does not vanish. Indeed, substituting X = vx + £, vx e Tx into (4.1), we get

T§X = (x(x2 - 3))/(x2 - l)$vx ^ 0, since 0 < x < 1 (see Theorem 2.4). In the

paper [7] the author proves that the only naturally reductive homogeneous real

hypersurfaces in CPn are of type (A).
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