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ON GLOBAL QUASI-ANALYTIC SOLUTIONS OF THE
DEGENERATE KIRCHHOFF EQUATION

By

Kaoru YAMAGUTI

§1. Introduction

The global solvability on the Cauchy problem of the degenerate Kirchhoff
equation with real analytic data has been well investigated. Then a natural
question arises: Isn’t it possible to weaken the regularity of the initial data to
any other ultradifferentiable functions involving certain Gevery class or quasi-
analyticity? It is the pourpose of this paper to show some non-small quasi-
analytic initial data provides an affirmative answer for this question in the
Cauchy problem

an {0314 + M((Au,u);2)Au = f(t,x), (1,x)€(0,T) x R

u(0,x) = up(x), u(0,x) =u(x), xeR"

Here,  Au(t,x) =3}, Dj(ay(x)Du(t,x)), D;= (1/v/-1)(8/éx;) and
(Au(t,-),u(t,-)) . denotes an inner product of Au(t, x) and u(z,x) in L*(R"). The
nonlinear part M(x) is an arbitrary positive function in C!([0, 0)).

Historically, the treatment by S. N. Bernstein [2] for this problem in 1940 is
the first case in search of mathematical concern. He used Fourier series and
proved the existence of one dimensional time global real analytic solution of the
simplest form of Kirchhoff equation

up— (1 +a J |ux|2dx)uxx =0

with analytic and periodic initial data in Q = [-z,7].

The next bench mark study obtained by S. I. Pohozaev [13] included the
initial-boundary value problem in a bounded damain Q R? with Dirichlet
conditions and real analytic data, whose proof was due to Galerkin method.
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Different approach toward (1.1) was developed by A. Arosio and
S. Spagnolo [1] whose challenge was to consolidate the solvability of (1.1) even
though the nonlinear part M(-) degenerates, i.e. M(n) = 0 ( > 0). This weakly
hyherbolicity was retained in the study of P. D’Ancona and S. Spagnolo [3],
who proved the time global existence of periodic and real analytic solutions.
And their research prompted recent attempt of K. Kajitani and K. Yamaguti
[7], which proved the existence and unigness of space-time global solution of
(1.1) with real analytic data and degenerate conditions for both A4 and M(xy).

Apart from these trends, the first breakthrough to weaken the regulality of
initial data in (1.1) was brought by K. Nishihara [12], which outstands among
a lot of endeavors searching relaxed regularity than real analyticity for initial
data. He assumed the initial data quasi-analytic, and his method deeply affects
the attempt of this paper. The main difference lying between his study and this
paper is in the assumptions; he employed 4 = —A while we assumed A was
degenerate elliptic.

Let us state assumptions.

First, let 4 be degenrate elliptic; i.e. [ay(x);i,j = 1,...,n] is a real symmetric
matrix
(12) a(x,&) = o(A)(x, &) = Y ay(x)&i&; =0
ij=1

for xe R* and &= (&,...,&,) e R
Each conponent of [a;(x);i,j =1,...,n] should be real analytic in the sense
that there are constants co > 0 and py > 0 such that

(1.3) |D2ay(x)| < cop!™a!

for xe R?, o= (a1,...,%,) € N" and i,j=1,...,n.
The nonlinear part M(n) e C'([0,)) satisfies

(1.4) Mg =my>0

for n € [0, ).

Let us introduce several functional spaces.

For se R and p >0, H5={u(x) e L*(R}); (€)’er1©iy(&) € L*(RY)} defines
a Hilbert space, where #(£) stands for Fourier transform of u, (&)=
A+ + ... and ¢(&) = ((¢)/log(1 +(&))). For p <0, HZ} defines the
dual space of H,. For p= 0, H® = Hj denotes the usual Sobolev space. Note
that the dual space of H; equals to H_j for any s,peR.
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For pe R, let us define an operator ¢”?) from H; to H* as follows
1Dy (x) = J e () dE

for u € H3, where d& = (2n)"d&. Note that (e/4D)~" = ¢~r4(D) maps H’ to Hj.
Then, the result puts it;

THEOREM 1.1.  Assume that (1.2) ~ (1.4) are valid. Let ¢ >0 and T > 0 be
arbitraly given real numbers and 0 < p| < po/+/n. Put p(t) = pie™ for y > 0.
Then there exists y > 0 such that for any uy € H4+€, up e H3+€ and for any f(t,x)
satisfying e*W4D)f € CO([0, T); H3), the Cauchy Problem ( 1) has the unique
solution u(t,x) satisfying e’1P)y ¢ ﬂ C* ([0, T); HY).

§2. Preliminaries

If 2(¢) e C*(R}) satisfies

1< AE) < Aof®),  |BEAE)] < Aui(&)' ™

A(&) is said to be a basic weight function. 4y and A4, are constants depending
only on index. The class of pseudo-differential operators of order m, denoting S7,
is the collection of a(x,&) e C*(R? x R?) whose derivatives satisfy

'a%("’ &) < Ca,;z(g)m—lal

for x,{eR" and for multi-indices o, feN", where a (x &= ( 5‘1)

B
(\/—l_— ;) a(x,&). In the case A(¢) = (&), we rather write S™ in stead of

S ) the usual class of pseudo- dlﬁerentlal operators. ST defines a Fréchét space
equipped with semi-norms |a|1 —max|a|+|/3|<zsupRann{a p)(x &)A (é)—m+|a|}
(1=0,1,2,...).

e D)ulx) = | e alx, Qae)de

for ue &, defines a pseudo-differential operator a(x, D) where & denotes the
Schwartz space of rapidly decreasing functions in R".

For function {,(&) = ({,,1(%),...,5n(8)), Ca(é) = vsm(—) (k=1,.
v>0), let 4,(&) = ((,(&)), then A,(&) defines a weight function. (,(&) and }.V(é)
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have properties
() [6,(&)] < min(|E], vnv)
() [056,(&)] < Zahn(&)'

(i) ¢, (&) — & (v — oo,compact convergence)

and

@) (O < min((€), V1+m?)

(i) 1024(O)] < Lah(&)' ™

(iii) A,(&) — (&) (v — oo, compact convergence)
respectively.

It might be significant to emphasize that {,;(¢) provides approximating
difference quotient to Dy,. In fact, the identity €™ = cosx¢ + isinx{ presents

jei"évsinc—u(é)aézi_(u(xl,...,xk+l,...,xn> —u(xl,...,xk —l,...,xn)).
v 2i v v

Replacing Dy, to {,x(&), we obtain the Cauchy problem for the difference

equation
(2 1) {alzuv + M(”v(t))AVuV :f(t’ X), (t7 x) € (05 T) X Rna
. u,(0,x) = up(x), 0u,(0,x) = u;(x), xeR",
where
A uv t, X) Z Cv} aaj X)Cvt( )“V(tvx))
i,j=1
and

”v(t) = (Avuv(tv ')) uv(t, ))Li

We must propose an energy estimate for (2.1), which will establish Lemma
2.2.

LEMMA 2.1. Let F(n) = [] M(s)ds. Define e,(t) as

(2.2) ey(t)’ =3 {lloan(t, )z + F(n, (1)}, 0<t<T,
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Jor u, € CX([0, T); L?) which is supposed to be the solution of (2.1). Then,

(23) mmsmmW+Hm®W”+£WbJMS
SJor te0,T].

Proor. Taking time derivatives of both sides of (2.2), we have
26,10, (1) = 5 (&P, ) 5 + (Bt ) + M, (), (1)}

= Re{—M(n,(1))(4u,, atuv)Lg +(f, at”v)L§ + M(n,(2))(Ayuy, at”V)Lg}
< If 20l 2 < 201 f 1l zen(0)?
after taking (2.1) and Schwarz inequality into account. Integration with respect to

t of the inequality above completes the proof. g.e.d.
The next lemma is a direct conclusion of the previous one.

LemMMA 2.2. Let ug € H}, uy € L? and f € C°([0, T); L?). Then the solution of
(2.1) satisfies

(2.4) l2ue (1,3 < Cr
(2.5) (e, )z < Cr
(2.6) i) < Cr

Sfor t€[0,T). The constants may depend on T but not on v.

Proor. (1.3) leads to

n

n
1(0) = (@yy (D), L,s(DYuo) 3 < 3 3" 6, (DYuoll3 < r2e3uoll,
ij=1 j=1

which implies that (2.3) and (2.6) e,(7) has positive upper bound independent of v.
Thus (2.4) is proved. (2.4) derives (2.5). (1.4) implies

7,(1)

nmm=L M(s)ds > mon, (),
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which implies

1 2 2
< —F(n()) < —e¢
1) < o FOLD) S 7 e()
for t€[0,T]. Since e,(7) is uniformly bounded in v, (2.6) is proved. q.e.d.

§3. Some Properties on PsDOp

To begin with, let us state some well known facts on pseudo-differential
operators. Here S7 is the class of symbols of pseudo-differential operators
introduced in the previous section.

LemMa 3.1. (i) Let a,(x,{) € S and s € R. There exists a constant C; > 0
independent of v such that

(3.1) (DY ay(x, DYull 2 < Celanliy” (DY "ul 2

for ue H*™.
(ii) Let a,(x,¢&) € Sﬁv be non negative. Then some positive constants C, and C;
independent of v exist and satisfy

(32) Re(av(xa D)uv u)L2 B C1||u||L2

and

(3.3) S {IDY (D) ay(x, D)3 + (D)@l (x, D)ull1:}
Ja|=1

< C{2G1|[(D)ullzr + Re(ay(x, D){(D)’u, (D)'u) 2}

for ue H2.

Proor. For (i), refer to [8] for example. For (ii), consult [4] and [10].
q.e.d.

Now, we are able to come up with the pseudo-differential operators
characterizing quasi-analyticity. By ¢,(£), we define

__ W)
(34) O = o+ 1)

where 4,(£) is the symbol prescribed in the previous section. It is easy to observe



On global quasi-analytic solutions 547
g,(¢) defines a basic weight function, so inequalities

(3.5) 1<g,(8) < Q0(8), 149(6)] < Cugn(€)A(&) ™™

are satisfied with some positive constants Qy and Q, depending only on index a.
Let us define another pseudo-differential operator for u € L2 and by

a(p, x, D)u = e””"(D)a(x)e‘/”’“(D)u,
where a(x) is a real analytic function in terms of
(3.6) |D%a(x)| < copy ! (x € R, 0 € N™).

The next lemma 3.2 provides an asymptotic expansion of a(p, x, &).

PROPOSITION 3.2. Suppose that a(x) satisfies (3.6). Then, a(p;x,D) is a
pseudo-differential operator of order O whose symbol has the expansion

(3.7) a(p; x,&) = a(x) + paiy(x, &) + pPaz(p; x, &) + r,(p; x, &),
where
(38) an(x,&) ==Y aw(x)qP (&) esy,

Ja]=1

and ay, and r, respectively satisfy

(3.9) D e 52,
@ "
(3.10) reS;h

Proor. Let ue . Then, we can write

e D)(q. e Ply)(x)
_ J X1 gy J e ¥(a- e Ply)(y) dy
6—+0

— lim J eix~ri+pqv(r])—§|7712 3,7 J e~t’y-'7—5|x~)’iz(a. e—qu(D)u)(y) dy

= 61im0 ” ei(x—y)anv(rz)félx—ylz—6Irllza(y)eiy-é—pqv(é),;(é) dndydé
—+0

= lim r e™as(x, &)in(&) d¢,

0—+0
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where as(x,&) is given by

as(x, &) = “ oo =die e -0 g (x + y) dy dy.

Let us define w,(&) by

n 1
Bl +n) = 0O = Do, | @saE+on)do

=t 70

=n- Wv(é)”)a

and we can rewrite as(x,) by using the Stokes formula

asn) = | L o i0miom &) =003 (x4 1) dy dy

~ dn L (&) e En=deimEn) I (x4 2 + ipwy(&,n)) dz
n ’l_iwv ”1

=1 dy j e~ Eny =3l g(x 4y 4 ipw, (&, 7)) dy
Jre "

for p < py/n, where we write 22:2;’:1 |zj|2 for ze C". Thus, by Taylor’s

expansion, we obtain

where

Jim, as(x,¢) = Os - J J e~ Va(x +y + ipw,(&, 1)) dy dn

= a(x + ipw,(,0)) + r(p; x, &),

r(p;x, &) = }E{l) ” o~ n=00+ipw, (&)’ ~dlE+nl®

1
X Z j6:‘,{D§a(x+0y+ipwv(f,0))}d0dyc;'
lef+18]=1 7

satisfies (3.10) (See, for instance, Lemma 2.4 in [8]). Taylor’s expansion again to
a(x + ipw,(£,0)) yields

a(x + ipwy(£,0))
= a(x +ipdeqy(S))

= a(x) + ipayy(x, &) + pPan(p; X, &),

where ay,(x, &) and ay,(p; x, &) satisfy (3.8) and (3.9) respectively. q.e.d.
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§4. A Priori Estimates of Solutions for the Transformed Problem

Let 0 < T < oo and p(¢) be a positive valued function p() = pye (1 € [0, 0))
with positive parameter y. We shall transform unknown function u, in (2.1) into
v, by means of pseudo-differential operator ¢*()%(?)| where ¢,(D) is introduced
in section 2.

Let v,(,x) = e8Py (¢, x), and we observe this transforms (2.1) to

(at - Qvl)zvv(t) + M(”v(t))AQvUV(t) = gv(t)7 te (Ov T)
(4.1) UV(O) = vy,
atvv(o) =0y,

where 0,(1) = p(1)q,(D), Qu(?) = p,(t)q,(D) and Ag, = e2") 4,e~%)_ Initial data
and g, are set by

gv(t,x) = eQV(t)f(t’ x),
vo(x) = e@Ouy(x),
01(x) = 0u(0)e2Ouy(x) + 2Oy (x).

It is an immediate consequence of Proposition 3.2 that Ap has the
expansion

(4.2) Ag, = Ay + p(t)an,(x, D) + p(t)*az,(p(£); x, D) + 1,(p(1); x, D),

where

a(x,8) = ‘]; 4 ()i (E),

a(x,8) = Ql‘lL“,l 4o (x40, T eS),
and _

= eC0.TLS), e C0,T)Sy)

v

We shall adopt an energy E,(¢) for unknown function v, prescribed in
(4.1). We put

(43)  E (1) = %{n(at — Q)03 + M(1,(0)(Au(D) 0, (1), (D)0 (1)) 12
11wl P0u (D7 + 11 1Quelwn (1)1}
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”v(t) = (Av“v(t)y uv(t))LJz(-

Differentiating (4.3), we gain

(44)  2E[(OE(1) = 5 MmO (D)0, (0), (DY (),

(4.5) + Re((8: — Qu)vy(2), =M (1,(1)) Ag,0,(f) + 6)
(4.6) + Re((0; — Qvi)vy, Qwi(0: — Our)vu(1)) g

(4.7) M(n,(1))Re(A,(D)’v,, (3 — Qu)(D)'0,(1)) 12
(4.8) M(n,(1))Re(A,(D)Y’0,(1), Qu(D)'v,(1)) 12
(4.9) + Re()Qul*0,(2), (8 — Qu)| Quel *00(1))
(4.10) = Re(|Qul"*0,(2), 1Qu* 0, (8))

(4.11) + Re(|Qulon(2), (6: — Q)| Quilty()) g

(4.12) — Re(|Qul*0,(8), 10w 0,(1))

after taking (4.1) into account. Obviously the terms (4.6), (4.10) and (4.12) are
negative,

(4.13)  Re((9: = Qu)vu(1), Qu(8: — Qu)ou(8)) s — Re(1Qul*00(2), |0l 00 (1)) g
— Re(|0ul*0,(2), | Q00 ()
= —[11Qul"2(@ = Qu)ovD)lI7s = | 1@uelts (D13 — 11 1@l 0 (1) 13
and (4.5) and (4.7) provides
Re((8: — Qu)on(2), —M(5,(1) Ag,0,(1) + 9)
+ Re(M (1,(£))(D) °A,{D)*vy, (8, — Qu)or(1))
< gl sl Br = Qu)ou ()| e
+ M(n,(£))Re((8, — Qu)u(2), (D) °A(DY* — Ag,)0s(1)) g
@18 <2l B + 11020~ G0l
+ M, (1)*[11Qul (D) 44 D)™ — Ag,)ou(2)[ 7

Since
(D)~ 4,(D)’ = 4, +F,(x,D), F(x,&) €S}



On global quasi-analytic solutions 551

and using several symbol calculations together with Lemma 3.1 and (4.2), we will
see the last term of (4.14) has estimate

M, () 111wl 2 ((D) T 44DY — Ag,)ou(1) |7
< M(n,(0) {4p()*[| 1Qul ™ *ary(x, D)oy ()17
+4p(0)*11Qul ™ 2ar(p(2); %, D)oy ()3
+ 41 1Qul ™21 (p(2); %, D)oy (1) |3
+ 41l 1Qul ' (x, D)3}

1 1
415 < M(m(t))z{cy—z(AV|QV,1‘/2vv<r>, 100, () g + ezl 10wl 0,13

1 eZyT e4yT

+ C? I IQvt|3/2UV([)”§IS + c(7 + 7) EV»S(I);}-
In fact, repeated applications of Lemma 3.1 bring about

4p(0)*)]1Qu| ™ *a1y(x, D)oy (1) |3
2

1 - p—
o] 0 a (D) Awan (D) 1ul (1)
Cn

< y—z{Re(Av<D)s|Qw|‘/2vv(t), (DY'|@ul o) 2 + elf |Qul 0 (1)}

<4(n+1)p(1) )

Ja|=1

Hs

Likewise we get

2

4p(0)* ]| 1Ol a2 (x, D)v, ()3

2

1 _
W qv(D) 1/2a2qu(D)3/2 ’ IQvt|3/zvv

4 3/2. (12
< 1104 N

40 1Qul ™ Pry(p(1); x, D)oy (1) 132

= 4p()*

Hs

2
(D)_I/ZVVQV(D)_I/Z : let| l/ZUV

1
Hb’/’(t)l ’ s

29T
c /2. 12 ce 2
110wl P03 < 7 Bnsll)

<
0%
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and

4111w %#,(x, D)oy (1) 32

1 _1/2~
=4 ——|lg(D)" %0, |12

lyo(2)]
4 /2. 2 ¢ 2
< ——[[4(D)gu(D) "ol < —=llav(D)vy |5
08 Pp(2)
c 4yT

__ ¢ 2 ce 2
- y3p(t)3 ” }QVI|UV||HS < 74 EV,S(t) .

Thus we have checked (4.15).
Since the S}V-term of (0| 24,|0,|'?) is purely imaginary number, that
is essentially positive valued va-symbol with Sf{v-remainder. So an application of

lemma 3.1 to (3.3) derives,

(4.16)
(48) = _M(”v(t))Re(IQvtll/zAlevtrI/z : <D>sttll/2vv» (D)S,Qvlll/ZUV)L2

< —M(n,(1))Re(Ay(D)’| Q| vy, (DY*|0u]*0) 12 + eM (1, ()| 1Qut] 00 1%
< _M(”v(t))(Alevt|1/2vva let|l/ZUV)HS + CM(”v(’))Ev,S(I)Z-
Meanwhile we can compute

(4.9) + (4.11) = Re(10u|'"*0,,8:(10u]*0)) = 0| Q|00 s
+ Re(|Qviwy, 0:(|Quilvy) — Qv Qulvv) s
- _%” IQWII/ZUV”iI-‘ + Re(|Qv,|1/2vv, |Qvt|1/2(6t - Qvt)Uv)Hﬂr

+ Re(|Qulvy, |Qutl (3 — Cur)tw) s — ¥l 1 Qutlvl e

1
(4.17) < 311wl 0l +311Qul (0~ Qu)oslie
g Y 1/2 ?
- ?” |Ovelvy {51 “ ’Qv I"“o,
s (2 ) ! e

by using Schwarz inequality and relation &;|Q./| = —7|Qy/-
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Summing up from (3.13) to (3.16), we come to

2E,s(1)E, (1)
< lM’('iv(t))’?'v(t)(Av(D)svv, (DY'vy) 2 + 100 = Quo)vvll s ll gl s

-2
1 cemt cm?
- (§ - 70) “ |QV4|3/ZUVt il“' - (1 - yzo) (AV|QVI|1/ZUV1 intIl/zvv)Hs

M?2ATY M264T7
R

< 2 MO0, (D)) (A )

eZ Ty 64 T,

(4.18) + 2Y2\g, || 1o B s(2) + M2 (7 + ?> E, ()%,

if we take y > 0 so large that
y > max{(cm3)' 2, (3em) ', 2(Mo + 1)},
where

(4.19) mo < M(n,(1)) < sup  M(y) = Mo.
0<p<Cr

The constant Cr appeared in (4.19) and in (2.6) is same.
Only (4.4) remains unsolved.

LemMa 4.1. Let T be a linear, symmetric and positive operator in L?, then
1/2 172
|(Tu7 v)HN| < (Tu,u)L/z (Tl), U)Lé .

The statement is rather elementary and acceptable without proof.
It is a quick result of Lemma 4.1 that

”(;(t) = 2Re(Avuv(t)7 atuv(t))@

< 2(4vuy, uv)'L/;(Av@tuv, 6tuv)1L/§2

1/2

< c(A4,0.u,, 0tuv)Lz )

where we used (2.6) again. With this inequality and M’(5,(1)) < maxo<,<c|M'(n)|,
we find

7,(8) < enag||Ay(D)3 | 12
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hence

(420 MM, DY)z S T 4(D)o| s B’

LEmMMA 4.2. Let Po(s) = exp(pe?™/log(1 +s)). Then, No(s/?) is con-
tinuous, increasing, and convex function if we define

cs® (6>2,0<s5<s)
No(s) =

Py(s) + (cs§ + Po(so)) (s <5).

LEmMMA 4.3 [5]. Let ¢ and  be continuous and strictly increasing. We define
My(f) by

M) = ¢ (j #(/(9)a(x) dx)

where f and q are the nonnegative function such that [ q(x)dx=1 and
[ ¢(f(x))q(x)dx exists. Then in order that My(f) < My(f) for all f, it is
necessary and sufficient that o ¢~ should be convex.

Lemma 4.3 is a direct quotation from famous [5], we accept it here without
proof.

Now let us try analogous estimates for ||4,(D)du/(?) ;. like Nisihara did.

When [p, [0, (t,x) P dx > 1, we see (1/]|das2) < 1, so

- 2 1/2
14(D)2a (1) = (0] 2) (j LILLY lv(é)zdé)

R ||5tuv||L§

~ 2
< ony'! (L BuAn )l No(iv(é))df)

N A

n

¢

(4.21) < CN;! (L No(4(8))|8:in (2, é)|2d5>

is assured if we recall Lemma 4.2 and Lemma 4.3.
When [, [04,(¢, x)[*dx < 1, let us adopt

Poy(& 1) = (1= [[0as]172)90(8),

where @,(¢) = 0"p(07'¢) with [@(¢)dé=1 and 0 <@< 1 is a Friedrichs’
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mollifier. It is easily checked that pg,(&,?) satisfies
0<| paend | (2t OF +puen)de =1,
R R

Applying ps, to Lemma 4.3, we get

12
14,(&)0an (D)l 2 < (JR o (x0)? (18,80, (8, xi) +P0,v(f,t))d§)
<N, (J ) (941, ) + pon (&, t))dé>

(4.22) <Ny (J No(A4()) (184 (1, &)I* d + sup) No((€ >))

which implies

No(4s(8))10i0(2, &) df'*'NO(l))

R"
5

4 (D)3 ()l 2 < No (
)) <

by letting § — 0. Since Ny(4,(¢)) < Ce¥#9() we have reached for s >0,

144(D)da4y(8)]] .2 < CNg! (c J " |0 ) ey i, (1,) | de + No(l))

< CNg'! ((H(a, Qw)o(1)llz; + 1))
(4.23) < CNg ' (e(Evs(t)” + 1))

Assembling (4.18), (4.20) and (4.23), we have found the differential ineqality that
E, ((f) must obey:

(424) B, (1) <2290l + L B, (ONy (B +1)), 0<1<T,

where g(f) = e?WIDIf (1),
Now we can state our final conclusion.

«T)
mo

PROPOSITION 4.4. Let T > 0 and s = 0. E,(¢) defined by (4.3) satisfies (4.24)
in 0 <t<T. Moreover, if v,(t)e C°([0,T); H*) and E,(0) takes independent
value of v, E,4(t) is uiformly bounded in v and t, namely

Eyy(0) < B! (jo 19(2) dr) ©0<t<T),

where B~! is a positive function in C([0, 0)).
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To prove Proposotion 4.4, we have to quote a lemma.

LemMa 4.5 [12].

Let e C([0,00)) and fe C((0,00)) be nondecreasing

Sfunctions whose ranges are [0, 0) and (0, 00) respectively. Let y e C([0, ) be a
nonnegative function. If they satisfy

(1) < ¢+ [ (09) + plate)) ds

1

0<t< o),
0

where ¢ is a positive constant, then

«(t) < B Y(By) < (0 <t< J;(%Jr 1) drsBo>

for any fixed number By less than B(o0), where

Moreover, if B(c0) = oo, then

(4.25)
for all t > 0.

B(t) = J ;% (2 0).
«(t) < B71(2)

Proor. Let h(f) =c+ [j(y(s) + B(a(s))) ds. Then the definition of B(t)

derives

Hence

B(h(1)) < B(H(0)) + j’ (M + 1) dr = JI (ﬁ + 1) dr

and

B(c)

0

a(t) < h(t) < B! U; (;—Z—; + 1) dr).

If B:[c,0) — [0,B(c0)) then B! :[0,B(0)) — [c, 00), and if there exists some
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upper bound By < B(c0) and we get

B(h(1) < J; (Z,—((?)+ 1) dt < By < B(),

therefore

a(t) < h(t) < B! (J; (;%-1— 1) dr) < . g.e.d.

If we accept Lemma 4.5, and if we take ¢ =E,;(0)+ 1, a(t) = E,(?),
B(t) =N (*+1) and y(f) = |g(¢)| s, the inequality in Proposition 4.5
immediately follows since

®© dr
o) = |, ey~

which characterizes quasi-analyticity.

§5. Local Solution

Our task here is presenting a proposition which gurantees the existence of
local solution of the Cauchy problem (4.1) for every fixed v. Throughout this
section we employ the abbreviation v for v, to avoid complexity.

PrOPOSITION 5.1. Let p(t) = pye " and Q, = p(2)q,(D) and s > 0. Suppose
vo, vy € H®. For each fixed v, the Cauchy problem

5. { (8 — Qu)’o(t) + M(n,(0)Ag,v = go(t), to<t<T
. U(l()) = 1y, 8,1)([()) =0

has a unique solution v(t) € C*([ty, 20 + T,]; H®).

At first, let us assure the solution of the ordinary differential equation
{ (0, — Ovw(t,x) = h(t,x), 0<t<T
W(I()) =Wy

can be written by
w(t, x) = K[h](,x) + €@ O~ 20 y(x)

if we define an operator K by

t
Kh) = j €2 =26 (s, x) ds.

fo
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This operator rewrites (5.1)
(5.2) v(t,x) = K o K[F[v]](2, x)

+ K[e20=20) (5 — 0,,(19)) 0] (2, x) + €22 W)gy(x),

where F[v] =g, — M(n(t))Ag,v, and then we are able to define a sequence

{v) }k=0,1,2,... as

(53) o) (1,x) = K[~ (5, — Q,,(t9)v0)](1, x) + €22y (x)
5.3
v(k)(t, x) =Ko K[F[v(kvl)]](t,x) + U(o)(x), k= 1, 2, ceey

which would be convergent in C?([to, o + T,]; H*). Hence we get
Vik+1) — Vk) = Ko K[F[U(k)] - F[U(k—l)]]-

All we have to do is to show that F is Lipschtz continuous in metric | - || 2
and LK o K defines a contraction for sufficiently small life span T,, where L is
the Lipschtz constant. Since p(#) is decreasing, we have

t
KA Y < [ 102905, ).

fo

t
< j 10Oy ()] 1. ds

4]

to+Ty
SJ IA($) || ds < T, sup  [JA(s)|| s

I to<s<ty+Ty
and also get

(54) sup ||K o K[h)(t, )l < Ty sup il -

0<t<T, w<t<to+T,

Recalling |4,(&)] < min({¢), V1 + m?), and we get

|, (2, ugey) — 1, (8 ey | = |(Av (s — wge—1))s tigey) 12 + (Avtbe—rys Uiry — Ue—1)) 2|

< Cv,n,ao(H“(k)”L2 + ||”(k—1)”L2)”u(k) - u(kfl)Hh(s < 2Cv,n,ao”U(lc) - U(k—l)”Hu

where C,,4, is independent of k and wuy) = e P 0B D)y,

g < C, holds uniformly in k. We will check it
inductively. First, we can assume ||v()|| g < Coy and [|gy|| e < Co,. We may take
C, > Cy,. Then this assumption and (5.4) yield |vg |2 < T2 Flvg-1)lgs + Cov

Now let us make sure |[v|
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and

IFog-n]lllz, = llgy — M(n,(e” % vp_1y) g, vp—1ll 2

< Coy + ( sup M(n)) CovCy.
e

0<n<CyC,

The last inequality is true because Ap, is a H*-bounded operator for each fixed v
and || Ag,vp—1)llge < C'llvge—1yllgs < C'Cy if we assume [|vg_plz < C, and take
C' < Cy,. Hence we get

||u<k)HLz < Tf (Cov + CpyCy, sup M(ﬂ)) +Ch <G,
OSﬂSCOVCv

. -G
if we choose 7, so small that T2 < = Con . Thus, our
Coy + CoyCy SupOsrngOVCVM(’?)

assertion is verified.
With the last result we get

1 Flvw)] — Flog—ll g
< M(n,(t, up)|l 4o, (0w — vg—0)ll g + 1M (1, (2, ug)))
— M(n,(t, ug—1)))| |40, 0k—1) | ps

< ey max M(n)|og) = vl

+ ¢y Igg’c{ | M ()| Noge—1)ll gy (8, ury) — 1, (2, we—1y)|
< Lyllogy — vge—1)ll g

hence

sup logrry = vyl < LvTr sup  [[og) — vge—ny -
to<t<ty+T, ta<t<t+T,

If we take 7, so small that LVTV2 < 1, we can conclude the sequence we defined
above converges to v, € C2([ty, to + Ty; H®).

Note each initial surface ¢ = ¢, affects neither the Lipschitz constant nor 7.
So we are able to prolong the gained solution v,(¢) € C*([to, 20 + T]; H*) to
v,(2) € C*([to + Ty, to + 2T,); H®). Iteration of these process up to T, an arbitrary
given edge, makes our solution turn out to be global one. It is clear that v,(¢)
also belongs to C'([0, T]; H*) and C°([0, T]; L?) by (5.2). Thus,

PROPOSOTION 5.2. If vy, vy e H and g,(t) e C[0,T); H), the Cauchy
problem (3.1) has a unique solution v,(t) € C*([0, T|; H®).
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§6. Proof of Theorem 1.1

In section 4, we found E, ((¢) is uniformly bounded; in this section, we will
prove {v,(f)},5o is equi-continuous in C°([0,T); H®). Then, Ascoli-Arzela’s
theorem gurantees the existence of subsequence {v,(?)},.,, converging in
CO([0, T); H®). The way of picking up subsequence is the same as the proof of
original version of Ascoli-Arzela’s theorem (c.f. Kumano-Go [8]).

We have already proved in Proposition 4.4 that for s > 0

Egt)<C, 0<t<T
and replacement of w,(¢) with v,(¢) in (4.3) and (5.1) yields
“(6’ - Q"’)v"(t)l w <G, ” |QVt|Uv(t)”H: <C.

These two lead to [|8y(2)|gs — | 1Ouelos()|lgs < 11(8r — Que)vu(?)|| s < C hence
16:04(2)]| = < 2C. Thus

T

(6.1) lov (Ol e < JO 10:0v (D)l g d + 120l o < 2CT + ||o| g,

which implies v,(¢) is uniformly bounded in C°([0, T]; H*). Integration of both
sides of ||0,0,()||f: < 2C derives

!

(6.2) low(e) = (g < jﬂ 160, () | d < 2C) — 1],

which means wv,(f) equi-continuous. Therefore there exists a subsequence

{vy,(0)} =1 5, weakly converging to v(z) e C°([0, T]; H*), where v(t) = lim,_.o 0y, (£).

If we set s> 2, u(t) = e 2Wy(r) would be the solution to (1.1). However, it is

uncertain yet that 5, (£) — (Au(t,-),u(t,-));2 as p — oo and o(z) satisfies (1.1).
Back to the previous section, (3.1) has a unique solution v,(¢) for each fixed

vy and let us define u,(¢) = e~ @@y, (¢) to satisfy (2.1). If we can prove

u,(t) = u(t) strongly in C°([0, T]; H') asv— oo,

we can complete the proof of main theorem. We have to prepare several lemmas
to accomplish it.

Lemma 6.1.  Let p(x,&) € C®°(R} x R}) be a symbol in S™ and let p,(x,¢) =
p(x,4,(&)) in ST Then, for any compact subset K of R,

P (x,8) = pi3(x,&) uniformly on R: x K (v — o).
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LemMMA 6.2. Let p(x,{)e C*(R, x R}) be a symbol in S™ and let
pv(x,8) =p(x,(,(&)) in ST. Then, for m,m' € R and £ —0e NU{0}

lim |o((D) ™" (p,(x, D) — p(x, D))(D) ™ ~*)(x, &) = 0

V— 00

for any positive ¢.

Proor. The proof of Lemma 6.1 is seen in Kumano-go [6] (page 237,
Lemma 3.3).

Lemma 6.2 follows Lemma 6.1.

Let p,(x,&) = py(x, &) — p(x,&). We are able to describe the symbol above as

a((D)™™" (py(x, D) — p(x, D))(D)™"~*

=0s- J JRn . eVUE 4 1) E T (x + y, &) dy dn

_ J j e Vhy(x, & y,n) dydy,
R"x&

where /,(x,&y,1) = (1)~ (D))* ((3) (D) (E+m) ™™ (O By (x + 3,€)).

Let us decompose pre-integrated function into several segments. For
arbitrary given positive radius R, we set three segments {|¢| < R}, {|¢| > R,
|€] < 2|7} and {|¢| > R, || = 2|x|}. In the first segment, we replace any ¢&-
related quantities with their suprema. We also use facts that if |£| > 2|y|, then
(E+n) = (&) —Inl = (&) and if |¢] <2ly|, then 4,(&) < (&) < 2().

Thus, repeated applications of Leibniz formula with some inequality like
(€+n) < 2E)(n) and 10L(&)] < G yield

Ih(“) (x, &)
=1(n) (D) (3) DY OUE + 1) E T By (x + 2,E))]

=21 « o 2 2 21—j =21 | Aa—a” 21 —m+m'
<o () 2 )2l ot ene s i

o <a o <ol \ X Jj=0

X (& (DyYBS ™ (x + 3, )]

o o ) / ,
< Cy Z (a,) ;, ( o ) <’7>—21<y>—21<é>7e~m*|1 |(é + 77)—(m—m )—|oa—o!| -2/

o <a

X max sup [pv(ﬂ, (x, )]

o <a

181<|81+21
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Cap(R) )™ () ™ max  sup 5% (x,¢) (¢l <R)
a<a xeR"
IB<IBl+2 [¢|<R

=) O THE O™ (18 =2 R = 20n)
Clgl) 2+ (py =2 gy ==l (1] > R, |E] < 2Jn)).

Hence if we take [ > ((m| +n+ 1 +£0)/2)(|a| + |B| < o), the integral exists and

lv(f)m

“ e Yhy(x,&y,n)dydn

R;xR;‘,

Cp(R)(1+ R max  sup |5, (x,&)] (1€ < R)
< BI<IB+2 E<R

wRC (1€l = R).

Since Lemma 6.1 gurantees limy,_o SUPxer MAX 4oy | ﬁiﬁ)(x, &) =0, we
can say [EI<R B <|pl+21

lim sup |o({D) ™™ (py(x, D) — p(x, D))(D) ™" ~*|%¥) < Ci4,R™* for any R > 0,

V—00

which confirms Lemma 6.2. qg.e.d.

LemMa 6.3. Let p(x,&) € C*(R? x R}) be a symbol in S° and let p,(x,{) =
p(x,(,(&)) in ng. Suppose u € H® for a given positive real number ¢. Then,

lim |y (x, D) — p(x, DYl 2 = 0.

ProoF. Taking account of L?-boundedness of (p,(x,D) — p(x,D)){D)™*
and previous lemma, we get

| py(x, DYu — p(x, D))ull ;2 = ||(ps(x, D) — p(x, D)){D)~* - (D)°ul| 12
< Cl(pv(x,&) — p(x,E))(E) " §O)||u||H£ —-0. gqed

Lemma 5.2 showed us the Caucy problem (2.1) has a unique solution
u, = e 2Wy,(r) for each fixed v > 0. Let us write the counterpart v}, for v' and
set w,y =u, —u,. Then w,, satisfies '

Pwyy + M ) Awyy = Gy (8, x
(6.4) { i (n,(2)) (1,x)

ww(0,x) =0, 9wy (0,x) =0,
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where
Gy (t,x) = —(M(n,(£)) Ay — M(n,,(2)) Av )y ().

In order to show

(6.5) () < € j |G ()1 s,
(6.6) lim sup ||Gy ()]l =0.

W0 (0,7

It is useful to investigate the energy

67)  ew(® = 3100w (OB + M1, (AXDIWw (D), (Do (D) 2.

The both the derivative of e, (f) and the fact |0,M(#,(2))| < CM(n,(t)) lead
us to

2ey ()€, (1)
= Re(3}wyw (1), 0wy (10)01) g + (0:M (17,(£))) (Ay (D) Wi (1), (DYWw (1) 12
+ M(n,()) Re(Ay(D) 0wy (1), (D) Wy (1)) 12
(6-8) < — M(n,(1))Re(({D) Ay — Ay(D)) W (1), (D) 0rwuw (1)) 2
+ Cew (1) + ew ()| Guwr (D) 1

Let us find the estimate of the first term of (6.8). Putting o(4,)(x,&) =
ay(x, &) eS%v, we can represent

o((D) Ay — 4(D))(x,8) = 3ty (%, E)0u(&) + (%, ),

|of=1

where wq(xi) = 62(5) and the remainder r,(x,¢&) € Siv. Hence

|Re(({(D)4y — Ay(D))ww (1), (D)0:wy (1)) 2]
<C Z ”av(oc)(x’ é)WW’(t)HLZ“atWW’(t)”Hl + CHWW’(I)”HI”atWVV’(t)”Hla

=1

and it is a quick result of (3.3) of Lemma 3.1 that
llav@ (x, ‘f)wvw(t)”il < C((Ay(D)yw (1), (DYwyw (£) 12 + C”WW’([)Hiﬁ)

< Cep(1)* + C(J' e (7) dr)z.

0
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So we get
t

(6.9) ¢ (t) < Ceyy(t) + C J e (2) 2+ Cl| Gy (D) -

w!
0

The calculation over |G, (t)||;: is remained. By its definition

G (D] 21
< (M (n,(0) — M (7, (0))) Avowll g + 1M (1,0 (1)) (A — Ay)oy) |
(6.10) < CIM(n,(1)) — M(n,(1))]
(6.11) + Cll(4y — 4y)oy) |15

where we took s =3 and used ||Ayvy || < C, |loy]ly < C and M(n,(2)) < C,
results of section 4 and Lemma 2.2. The last two terms have the following
estimates.

(6.11) = [|(D)(Ay — 4,)(D) (D) **v,)| 12
< Clo((D)(Ay = 4)(D) | 1Dy 0, ) 12
—3—¢,(0
< Clo((D)(4y - 4,)(D) [,
if we choose s >3 +¢ in E,¢(f). Writing
(6.10) = C|M'(n,, () + 8(m, () — 1, (1)))] |, (8) — 1,0 (2)]
< C,M(,)l”v(t) - ”v’(t)l
< CIM(I)(KAV — Av)uy, ) 2| + (AW, 1) 2| + [(Ayttyr, wiy) 2]),
and applying Lemma 6.3 to the first term of the last inequality, we get
(6:10) < Clo((dy — A)D) > )l [zec + Cllwons Lz (sl + Nl 1)
t
(6.12) < C'|((4, — A)(D)A27£)|£2) +c J ey (7)dr.
0
Combining all together from (6.9) to (6.12), we come to
t
ew () < cre(f) + 2 j ew (1) dr
0

+ eslo((4y — A)D) 2|5 + calo (D) (A — 4,)(D) > 4(D)**¥0,)) |7
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13
e, (1) <a J ew (7)dt

< C(T){lo((4y — A)D) )W + [o({D) (4y — 4,)(D) )|}

— 0(v,v' — 00),

which implies

sup [ju(2) — wy ()l g — 0(, V" — 0).
1€[0,T

Therefore we can conclude 7, (1) — (4u(t,-),u(t,-));» as p — co. Thus we have
proved Theorem 1.1.
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