ZERO-DIMENSIONAL SUBSETS OF HYPERSPACES

By

Alejandro Illanes

Abstract

Let X be a metric continuum, let 2^{X} be the hyperspace of all the nonempty closed subsets of X and let $C(X)$ be the hyperspace of subcontinua of X. In this paper we prove:

Theorem 1. If \mathscr{H} is a 0 -dimensional subset of 2^{X}, then $2^{X}-\mathscr{H}$ is connected.

Theorem 2. If \mathscr{H} is a closed 0-dimensional subset of $C(X)$ such that $C(X)-\{A\}$ is arcwise connected for each $A \in \mathscr{H}$, then $C(X)-\mathscr{H}$ is arcwise connected.

Theorem 2 answers a question by Sam B. Nadler, Jr.

Introduction

Throughout this paper X denotes a nondegenerate continuum, i.e., a compact connected metric space, with metric d. Let 2^{X} be the hyperspace of nonempty closed subsets of X, with the Hausdorff metric H, and let $C(X)$ be the hyperspace of subcontinua of X.
J. Krazinkiewicz proved in [5] that if \mathscr{H} is a 0-dimensional subset of $C(X)$, then $C(X)-\mathscr{H}$ is connected. In this paper we use Krasinkiewicz' result to prove the following theorem:

Theorem 1. If \mathscr{H} is a 0 -dimensional subset of 2^{X}, then $2^{X}-\mathscr{H}$ is connected.
On the other hand, in Krasinkiewicz' Theorem the word "connected" can not be replaced by "arcwise connected". Even if X is the $\sin (1 / x)$-continuum and A is the limit segment, then $C(X)-\{A\}$ is not arcwise connected. In [7, Question 11.17], Nadler asked the following question: if \mathscr{H} is a compact 0 -dimensional

[^0]subset of $C(X)$ and if $C(X)-\{A\}$ is arcwise connected for each $A \in \mathscr{H}$, does it follow that $C(X)-\mathscr{H}$ is arcwise connected? This question has been affirmatively answered for the following particular cases:

- if \mathscr{H} has two elements (Nadler and Quinn, [8, Lemma 2.4]),
- if \mathscr{H} is finite (Ward, [9])
- if \mathscr{H} is numerable (Illanes, [3], this result was rediscovered by Hosokawa in [1]).

Furthermore, in [3], the author showed that any two elements of $C(X)-\mathscr{H}$ can be joined by an arc which intersects \mathscr{H} only a finite number of times.

In this paper we finally solve the general question by proving the following theorem.

Theorem 2. If \mathscr{H} is a closed 0-dimensional subset of $C(X)$ such that $C(X)-\{A\}$ is arcwise connected for each $A \in \mathscr{H}$, then $C(X)-\mathscr{H}$ is arcwise connected.

Proof of Theorem 1

Throughout this section \mathscr{H} will denote a 0 -dimensional subset of 2^{X}. By Krasinkiewicz' result in [5], $C(X)-\mathscr{H}$ is connected. Let \mathscr{L} be the component of $2^{X}-\mathscr{H}$ which contains $C(X)-\mathscr{H}$.

In order to prove that $2^{X}-\mathscr{H}$ is connected, it is enough to prove that \mathscr{L} is dense in 2^{X}. Since the subset of 2^{X} which consists of all the nonempty finite subsets of X is dense in 2^{X}, we only need to prove the following claim:

Claim. For each finite subset $F=\left\{p_{1}, \ldots, p_{m}\right\}$ of X and for each $\varepsilon>0$, there exists an element $L \in \mathscr{L}$ such that $H(F, L)<\varepsilon$.

Let $F=\left\{p_{1}, \ldots, p_{m}\right\}$ and $\varepsilon>0$.
Take an order arc γ from a fixed one-point set $\left\{p_{0}\right\}$ to X (see [7, 1.2] for the definition of order arc). Since \mathscr{H} is 0 -dimensional, there exists an element $M \in \gamma-\mathscr{H} \subset C(X)-\mathscr{H}$ such that $H(M, X)<\varepsilon / 2$ and M is nondegenerate. Choose points $q_{1}, \ldots, q_{m} \in M$ such that $d\left(p_{i}, q_{i}\right)<\varepsilon / 2$ for each $i \in\{1, \ldots, m\}$. Let $\left\{U_{n}\right\}_{n=1}^{\infty}$ be a sequence of proper open subsets of M such that $q_{1} \in U_{n}$ for every $n \geq 1, \quad U_{1} \supset \operatorname{cl}\left(U_{2}\right) \supset U_{2} \supset \operatorname{cl}\left(U_{3}\right) \supset U_{3} \supset \ldots, \operatorname{cl}\left(U_{n}\right) \rightarrow\left\{q_{1}\right\} \quad$ (convergence in 2^{X}) and $M \neq \operatorname{cl}\left(U_{1}\right) \subset\left\{q \in X: d\left(q, q_{1}\right)<\varepsilon / 2\right\}$.

Let $\quad L_{0}=\left\{q_{1}, \ldots, q_{m}\right\} \cup\left(\operatorname{Bd}_{M}\left(U_{1}\right) \cup \operatorname{Bd}_{M}\left(U_{2}\right) \cup \operatorname{Bd}_{M}\left(U_{3}\right) \cup \ldots\right)$. Clearly, $L_{0} \in 2^{X}$. Fix a nondegenerate subcontinuum D of $U_{1}-\operatorname{cl}\left(U_{2}\right)$. Then the set $\left\{L_{0} \cup\{x\} \in 2^{X}: x \in D\right\}$ is a nondegenerate subcontinuum of 2^{X}. Since \mathscr{H} is 0 -dimensional, there exists a point $x_{0} \in D$ such that $L_{0} \cup\left\{x_{0}\right\} \notin \mathscr{H}$.

Define $L=L_{0} \cup\left\{x_{0}\right\}$. Then $L \in 2^{X}-\mathscr{H}$ and $H(F, L)<\varepsilon$.
We will show that $L \in \mathscr{L}$.
For each $n \geq 1$, let $A_{n}=M-U_{n} \subset M-\operatorname{cl}\left(U_{n+1}\right)$. Take an order arc γ_{n} from A_{n} to M. Since $M-\operatorname{cl}\left(U_{n+1}\right)$ is an open subset of M, there exists a (nondegenerate) subarc σ_{n} of γ_{n} such that each of its elements is contained in $M-\operatorname{cl}\left(U_{n+1}\right)$ and $A_{n} \in \sigma_{n}$. Consider the set $\theta_{n}=\left\{L \cup K: K \in \sigma_{n}\right\}$. It is easy to show that θ_{n} is a (nondegenerate) order arc from $L \cup A_{n}$ to some element in 2^{X}. Since \mathscr{H} is 0 -dimensional, we can choose an element $B_{n}=L \cup K_{n} \in \theta_{n}-\mathscr{H}$, where $K_{n} \in \sigma_{n}$. Notice that $A_{n} \subset K_{n} \subset A_{n+1}$.

Next, we will check that every component of B_{n} intersects L. Let C be a component of B_{n}. Since the subarc of θ_{n} which joins $L \cup A_{n}$ and B_{n} is an order arc, then (see [7, 1.8]), $C \cap\left(L \cup A_{n}\right) \neq \varnothing$. If $C \cap L=\varnothing$, we can take an element $x \in C \cap A_{n}$. Let C_{1} be the component of A_{n} which contains x. Thus $C_{1} \subset C$, and by ($[7,20.2]$), $\varnothing \neq C_{1} \cap \operatorname{Bd}_{M}\left(U_{n}\right) \subset C \cap L$. This contradiction completes the proof that $C \cap L \neq \varnothing$.

As a consequence of the claim of the paragraph above, we obtain that every component of B_{n+1} intersects B_{n}.

Let $B_{0}=L$. Notice that B_{n-1} is a proper subset of B_{n} for every $n \geq 1$. By $[7,1,8]$, there exists a map $\beta_{n}:[0,1] \rightarrow 2^{M}$ such that $\beta_{n}(0)=B_{n-1}, \beta_{n}(1)=B_{n}$, and if $0 \leq s<t \leq 1$, then $\beta_{n}(s)$ is a proper subset of $\beta_{n}(t)$.

For each $n \geq 1$, let $\alpha_{n}:[0,1] \rightarrow 2^{X}$ be a map such that $\alpha_{n}(0)=\operatorname{Bd}_{M}\left(U_{n+2}\right)$, $\alpha_{n}(1)=M$ and if $0 \leq s<t \leq 1$, then $\alpha_{n}(s)$ is a proper subset of $\alpha_{n}(t)$. Since $\operatorname{Bd}_{M}\left(U_{n+2}\right) \subset U_{n+1}-\operatorname{cl}\left(U_{n+3}\right)$, there exists $t_{n}>0$ such that $\alpha_{n}\left(t_{n}\right) \subset U_{n+1}-$ $\operatorname{cl}\left(U_{n+3}\right)$.

Let $\varphi_{n}:[0,1] \times[0,1] \rightarrow 2^{M}$ be given by $\varphi_{n}(s, t)=\alpha_{n}\left(s t_{n}\right) \cup \beta_{n}(t)$. It is easy to check that φ_{n} is continuous, one-to-one, $\varphi_{n}(0,1)=B_{n}$ and $\varphi_{n}(0,0)=B_{n-1}$. Let $\mathscr{G}_{n}=\varphi_{n}([0,1] \times[0,1])$. Then \mathscr{G}_{n} is a 2 -cell. By [2, Theorem IV 4], $\mathscr{G}_{n}-\mathscr{H}$ is connected and contains B_{n-1} and B_{n}.

Let $\mathscr{G}=\cup\left\{\mathscr{G}_{n}: n \geq 1\right\}$. Then \mathscr{G} is a connected subset of $2^{X}-\mathscr{H}$ and contains the element $B_{0}=L$. On the other hand, since $A_{n} \rightarrow M$, and $A_{n} \subset B_{n} \subset M$ for each $n \geq 1$, we conclude that $B_{n} \rightarrow M$ and $M \in \mathrm{cl}_{2^{x}}(\mathscr{G})$. This implies that $\mathscr{G} \subset \mathscr{L}$. Therefore, $L \in \mathscr{L}$. This completes the proof of the claim and thus the proof of Theorem 1.

Proof of Theorem 2

Throughout this section \mathscr{H} will denote a closed 0 -dimensional subset of $C(X)$ such that $C(X)-\{A\}$ is arcwise connected for each $A \in \mathscr{H}$.

Lemma 1. If $A, B \in C(X)-\mathscr{H}, A \cap B \neq \varnothing, A-B \neq \varnothing$ and $B-A \neq \varnothing$, then A and B can be joined by an arc in $C(X)-\mathscr{H}$.

Proof. Fix a component C of $A \cap B$. Then C is a proper subcontinuum of both A and B. Let $\alpha, \beta:[0,1] \rightarrow A \cup B$ be maps such that $\alpha(0)=C=\beta(0)$, $\alpha(1)=A, \beta(1)=B$ and $s<t$ implies that $\alpha(s)$ (resp., $\beta(s))$ is a proper subcontinuum of $\alpha(t)$ (resp., $\beta(t)$) (see $[\mathrm{Nd} 78,1.8])$. Let $\mathscr{C}=[0,1] \times[0,1]$. Define $\varphi: \mathscr{C} \rightarrow C(A \cup B)$ by:

$$
\varphi(s, t)=\alpha(s) \cup \beta(t) .
$$

Clearly, φ is continuous, $\varphi(1,0)=A$ and $\varphi(0,1)=B$. If D is a component of $\varphi^{-1}(\mathscr{H})$, then $\varphi(D)$ is a connected subset of \mathscr{H}. Thus $\varphi(D)$ has exactly one element. Therefore, D is a component of $\varphi^{-1}(E)$ for some $E \in \mathscr{H}$.

Since $\varphi(1,0)$ and $\varphi(0,1) \notin \mathscr{H}$ and \mathscr{H} is compact, there exists $0<r<1 / 2$ such that $\{([1-r, 1] \times[0, r]) \cup([0, r] \times[1-r, 1])\} \cap \varphi^{-1}(\mathscr{H})=\varnothing$.

Let $\quad G_{1}=([0,1-r] \times\{0\}) \cup(\{0\} \times[0,1-r]) \quad$ and $\quad G_{2}=(\{1\} \times[r, 1]) \cup$ $([r, 1] \times\{1\})$. Let $G=G_{1} \cup G_{2} \cup \varphi^{-1}(\mathscr{H})$. Then G is a compact subset of \mathscr{C}.

We will see that no component of $\varphi^{-1}(\mathscr{H})$ intersects both G_{1} and G_{2}. Suppose, to the contrary, that there exists a component D of $\varphi^{-1}(\mathscr{H})$ such that $D \cap G_{1} \neq \varnothing$ and $D \cap G_{2} \neq \varnothing$. Then there exists an element $E \in \mathscr{H}$ such that D is a component of $\varphi^{-1}(E)$. Let $z=(s, t) \in D \cap G_{1}$ and $w=(u, v) \in D \cap G_{2}$. Then $\alpha(s) \cup \beta(t)=\varphi(z)=\varphi(w)=\alpha(u) \cup \beta(v)$. Notice that $s=0$ or $t=0$. If $s=0$, then $\varphi(z) \subset B$. This implies that $\alpha(u) \subset A \cap B$. Hence $\alpha(u)=C$. Thus $u=0$. This is a contradiction since $w \in G_{2}$. A similar contradiction can be obtained assuming that $t=0$. Therefore, no component of $\varphi^{-1}(\mathscr{H})$ intersects both G_{1} and G_{2}.

We are ready to apply the Cut Wire Theorem $([7,20.6])$ to the compact space $\varphi^{-1}(\mathscr{H})$ and the closed sets $\varphi^{-1}(\mathscr{H}) \cap G_{1}$ and $\varphi^{-1}(\mathscr{H}) \cap G_{2}$. Thus there exist two disjoint closed sets H_{1}, H_{2} in \mathscr{C} such that $\varphi^{-1}(\mathscr{H})=H_{1} \cup H_{2}, \varphi^{-1}(\mathscr{H}) \cap G_{1} \subset H_{1}$ and $\varphi^{-1}(\mathscr{H}) \cap G_{2} \subset H_{2}$. Define $L_{1}=G_{1} \cup H_{1}$ and $L_{2}=G_{2} \cup H_{2}$. Then L_{1} and L_{2} are disjoint closed subsets of \mathscr{C}. Thus there exist two disjoint open subsets U_{1} and U_{2} of \mathscr{C} such that $L_{1} \subset U_{1}$ and $L_{2} \subset U_{2}$.

Let U be the component of U_{1} which contains G_{1} and let M be the component of $\mathscr{C}-U$ which contains G_{2}. It is easy to prove that $\mathscr{C}-M$ is connected. Since \mathscr{C} is locally connected M is closed in \mathscr{C} and $\operatorname{Bd}_{\mathscr{C}}(M) \subset \operatorname{Bd}_{\mathscr{6}}(U) \subset \operatorname{Bd}_{\mathscr{G}}\left(U_{1}\right)$. Let $L=\operatorname{Bd}_{\mathscr{C}}(M)$. Then $L \cap\left(L_{1} \cup L_{2}\right)=\varnothing$. Since $G_{1} \subset \mathscr{C}-M, L$ separates G_{1} and G_{2} in \mathscr{C}. Since \mathscr{C} is unicoherent ([6, Thm. 2 II, §57, Ch. VIII]), L is a subcontinuum of \mathscr{C}.

Since $[0, r] \times[1-r, 1]$ is a connected subset of \mathscr{C} that intersects both G_{1}
and G_{2}, we obtain this set intersects L. Similarly L intersects $[1-r, 1] \times[0, r]$. Then the set $L_{0}=L \cup([1-r, 1] \times[0, r]) \cup([0, r] \times[1-r, 1])$ is a subcontinuum of $\mathscr{C}-\varphi^{-1}(\mathscr{H})$. Since \mathscr{C} is locally connected, there exists an open connected (and then arcwise connected) subset V of \mathscr{C} such that $L_{0} \subset V \subset \mathscr{C}-\varphi^{-1}(\mathscr{H})$. Let λ be an arc in V joining $(1,0)$ and $(0,1)$. Therefore, $\varphi(\lambda)$ is a path in $C(X)-\mathscr{H}$ joining A and B.

Lemma 2. If $A, B \in C(X)-\mathscr{H}$ and $A \subset B \neq A$, then A and B can be joined by an arc in $C(X)-\mathscr{H}$.

Proof. By [7, 1.8], there is an order arc from A to B. That is, there is a map $\alpha:[0,1] \rightarrow C(B)$ such that $\alpha(0)=A, \alpha(1)=B$ and if $s<t$, then $\alpha(s)$ is a proper subcontinuum of $\alpha(t)$. Let $\mathscr{G}=\alpha^{-1}(\mathscr{H})$.

First, we will show that for any $t \in \mathscr{G}$, there exists $\varepsilon_{t}>0$ such that $\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \subset(0,1)$ and for every $s \in\left(t-\varepsilon_{t}, t\right)-\mathscr{G}$ and every $r \in\left(t, t+\varepsilon_{t}\right)-\mathscr{G}$, $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$.

Since $\alpha(t) \in \mathscr{H}, C(X)-\{\alpha(t)\}$ is arcwise connected. Then there exists a one-to-one map $\beta:[0,1] \rightarrow C(X)-\{\alpha(t)\}$ such that $\beta(0)=A$ and $\beta(1)=B$. Let $u=\max \{v \in[0,1] ; \beta(w) \subset \alpha(t)$ for each $w \in[0, v]\}$. Then $\beta(u)$ is a proper subcontinuum of $\alpha(t)$. Since β is continuous, there exists $z \in(u, 1)$ such that the continuum $C=\cup\{\beta(w): u \leq w \leq z\}$ does not contain $\alpha(t)$. Since \mathscr{H} is 0 -dimensional, we may assume that $C \notin \mathscr{H}$. By the definition of u, C is not contained in $\alpha(t)$.

We consider two cases:

CASE 1. $\alpha(t)$ is indecomposable.
By [7, 1.52.1 (2)], $\beta(u)$ is contained in the composant of $\alpha(t)$ which contains A. Then there exists a proper subcontinuum D of $\alpha(t)$ such that $D \cap A \neq \varnothing \neq D \cap \beta(u)$. Growing D by using an order arc from D to $\alpha(t)$, we may assume that D is not contained in C and $D \notin \mathscr{H}$. Let $\varepsilon_{t}>0$ be such that $\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \subset(0,1), \alpha\left(t-\varepsilon_{t}\right)$ is not contained in $D, \alpha\left(t-\varepsilon_{t}\right)$ is not contained in C and $\alpha\left(t+\varepsilon_{t}\right)$ does not contain C.

In order to show that ε_{t} has the required properties, let $s \in\left(t-\varepsilon_{t}, t\right)-\mathscr{G}$ and $r \in\left(t, t+\varepsilon_{t}\right)-\mathscr{G}$. Then $\alpha(s) \cap D \neq \varnothing$ and $\alpha(s)-D \neq \varnothing$.

If $D-\alpha(s) \neq \varnothing$, then we may apply Lemma 1 to the pairs $\alpha(s)$ and $D ; D$ and C; C and $\alpha(r)$, and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$.

If $D \subset \alpha(s)$, then we may apply Lemma 1 to the pairs $\alpha(s)$ and $C ; C$ and $\alpha(r)$, and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$.

CASE 2. $\alpha(t)$ is decomposable.
In this case $\alpha(t)=E \cup F$, where E and F are proper subcontinua of $\alpha(t)$. We may assume that $E, F \notin \mathscr{H}$ and $E-C \neq \varnothing \neq F-C$.

Let $\varepsilon_{t}>0$ be such that $\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \subset(0,1), \alpha\left(t-\varepsilon_{t}\right)$ is not contained in any of the sets C, E and F, and C is not contained in $\alpha\left(t+\varepsilon_{t}\right)$.

Let $s \in\left(t-\varepsilon_{t}, t\right)-\mathscr{G}$ and $r \in\left(t, t+\varepsilon_{t}\right)-\mathscr{G}$. Then $\alpha(s)$ is not contained in any of the sets E, F and C. Since $\alpha(s)$ is a proper subcontinuum of $\alpha(t), E-\alpha(s) \neq \varnothing$ or $F-\alpha(s) \neq \varnothing$. Suppose, for example, that E is not contained in $\alpha(s)$.

If $E \cap C \neq \varnothing$, then we may apply Lemma 1 to the pairs $\alpha(s)$ and $E ; E$ and $C ; C$ and $\alpha(r)$, and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$.

If $F \cap C \neq \varnothing$, then we may apply Lemma 1 to the pairs $\alpha(s)$ and $E ; E$ and F; F and $C ; C$ and $\alpha(r)$, and conclude that $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $c(X)-\mathscr{H}$.

This completes the proof of the existence of ε_{t}.

Now we are ready to prove Lemma 2.
Let $t \in \mathscr{G}$ and let $\varepsilon_{t}>0$ be as before. We claim that if $s, r \in\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right)-\mathscr{G}$, then $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$. Indeed, if t is between s and r, this claim follows from the choice of ε_{t}, and if, for example, $s, r<t$, then fix $r_{1} \in\left(t, t+\varepsilon_{t}\right)-\mathscr{G}$. By the choice of ε_{t}, both pairs $\alpha(s), \alpha\left(r_{1}\right)$ and $\alpha(r), \alpha\left(r_{1}\right)$ can be joined by an arc in $C(X)-\mathscr{H}$. Thus, $\alpha(r), \alpha(s)$ can be joined by an arc in $C(X)-\mathscr{H}$.

Given a number $t \in[0,1]-\mathscr{G}$, there exists $\varepsilon_{t}>0$ such that $\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \cap$ $\mathscr{G}=\varnothing$. In this case, if $s, r \in\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right) \cap[0,1]$, then $\alpha(s)$ and $\alpha(r)$ can be joined by an arc in $C(X)-\mathscr{H}$.

For the open cover $\left\{\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right): t \in[0,1]\right\}$, there exists $\delta>0$ such that if $s, r \in[0,1]$ and $|s-r|<\delta$, then $s, r \in\left(t-\varepsilon_{t}, t+\varepsilon_{t}\right)$ for some $t \in[0,1]$.

Choose a partition $0=t_{0}<t_{1}<\cdots<t_{m}=1$ such that $t_{i}-t_{i-1}<\delta$ and $t_{i} \notin \mathscr{G}$ for each $i=1,2, \ldots, m$.

Thus, for each $i \in 1,2, \ldots, m, \alpha\left(t_{i-1}\right)$ and $\alpha\left(t_{i}\right)$ can be joined by an arc in $C(X)-\mathscr{H}$. Therefore, A and B can be joined by an arc in $C(X)-\mathscr{H}$.

Proof of Theorem 2. We consider two cases:

Case 1. X is indecomposable.
In this case $C(X)-\{X\}$ is not arcwise connected (see [7, 1.51]). Then $X \notin \mathscr{H}$. Given an element $A \in C(X)-(\mathscr{H} \cup\{X\})$, by Lemma $2, A$ and X can be connected by an arc in $C(X)-\mathscr{H}$.

Case 2. X is decomposable.
Let $X=E \cup F$, where E and F are proper subcontinua of X. Since \mathscr{H} is 0 -dimensional, we may assume that $E, F \notin \mathscr{H}$. Given an element $A \in C(X)-$ $(\mathscr{H} \cup\{X\})$, taking an order arc from A to X, we can find an element $B \in C(X)-\mathscr{H}$, such that A is a proper subcontinuum of $B, B \neq X, B-E \neq \varnothing$ and $B-F \neq \varnothing$. Notice that $E-B \neq \varnothing$ or $F-B \neq \varnothing$. Suppose, for example, that $E-B \neq \varnothing$. By Lemma 1, the pairs E, B and E, F can be joined by an arc in $C(X)-\mathscr{H}$, and by Lemma 2, A and B can be joined by an arc in $C(X)-\mathscr{H}$. Then A can be joined to both E and F in $C(X)-\mathscr{H}$. In the case that $X \notin \mathscr{H}$, by Lemma 2, X can be joined to both E and F in $C(X)-\mathscr{H}$. This completes the proof that $C(X)-\mathscr{H}$ is arcwise connected.

Acknowledgments

The author wishes to thank Jorge M. Martinez for the useful conversations they had.

References

[1] H. Hosokawa, Arcwise connectedness of the complement in a hyperspace, Tsukuba J. Math., 20 (1996), 479-486.
[2] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton, New Jersey, 1948.
[3] A. Illanes, Arcwise disconnecting subsets of hyperspaces, Houston J. Math., 16, (1990), 1-6.
[4] A. Illanes and S. B. Nadler, Jr., Hyperspaces, Fundamentals and Recent Advances, Marcel Dekker, New York, 1999.
[5] J. Krasinkiewicz, No 0-dimensional set disconnects the hyperspace of a continuum, Bull. Pol. Acad. Sci., 19 (1971), 755-758.
[6] K. Kuratowski, Topology, vol. II, Academic Press, new York, 1968.
[7] S. B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, New York, 1978.
[8] S. B. Nadler, Jr. and J. Quinn, Continua whose hyperspace and suspension are homeomorphic, Topology Appl., 8 (1978), 119-126.
[9] L. E. Ward, Jr., A Cyclic connectivity theorem for hyperspaces, Topology Appl., 10 (1979), 291-295.

Instituto de Matemáticas, Unam
Circuito Exterior, Cd.
Universitaria, México
04510 , D.F., Mexico
e-mail address: illanes@gauss.matem.unam.mx

[^0]: 1991 Mathematics Subject Classification. Primary: 54B20
 Key Words and Phrases: Arcwise connected, Hyperspace, 0-dimensional
 Received August 3, 1999

