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ZERO-DIMENSIONAL SUBSETS OF HYPERSPACES

By

Alejandro ILLANES

Abstract. Let X be a metric continuum, let 2% be the hyperspace of
all the nonempty closed subsets of X and let C(X) be the hyperspace
of subcontinua of X. In this paper we prove:

THEOREM 1. If # is a O-dimensional subset of 2%, then 2% — #
is connected.

THEOREM 2. If # is a closed O-dimensional subset of C(X)
such that C(X) —{A4} is arcwise connected for each A e A, then
C(X)— # is arcwise connected.

Theorem 2 answers a question by Sam B. Nadler, Jr.

Introduction

Throughout this paper X denotes a nondegenerate continuum, i.e., a compact
connected metric space, with metric d. Let 2% be the hyperspace of nonempty
closed subsets of X, with the Hausdorff metric H, and let C(X) be the hyperspace
of subcontinua of X.

J. Krazinkiewicz proved in [5] that if & is a 0-dimensional subset of C(X),
then C(X) — 5 is connected. In this paper we use Krasinkiewicz’ result to prove
the following theorem:

THEOREM 1. If # is a O-dimensional subset of 2%, then 2X — # is connected.

On the other hand, in Krasinkiewicz’ Theorem the word “connected” can not
be replaced by “arcwise connected”. Even if X is the sin(1/x)-continuum and 4 is
the limit segment, then C(X)— {4} is not arcwise connected. In [7, Question
11.17], Nadler asked the following question: if 2 is a compact 0-dimensional

1991 Mathematics Subject Classification. Primary: 54B20
Key Words and Phrases: Arcwise connected, Hyperspace, 0-dimensional
Received August 3, 1999



250 Alejandro ILLANES

subset of C(X) and if C(X) — {4} is arcwise connected for each 4 € #, does it
follow that C(X) — & is arcwise connected? This question has been affirmatively
answered for the following particular cases:

— if # has two elements (Nadler and Quinn, [8, Lemma 2.4]),

— if # is finite (Ward, [9])

— if o is numerable (Illanes, [3], this result was rediscovered by Hosokawa
in {1]).

Furthermore, in [3], the author showed that any two elements of C(X) — #
can be joined by an arc which intersects # only a finite number of times.

In this paper we finally solve the general question by proving the following
theorem.

THEOREM 2. If # is a closed O-dimensional subset of C(X) such that
C(X) — {4} is arcwise comnected for each Ae #, then C(X)}— # is arcwise
connected.

Proof of Theorem 1

Throughout this section # will denote a O-dimensional subset of 2¥. By
Krasinkiewicz’ result in [5], C(X) — # is connected. Let ¥ be the component of
2% — # which contains C(X) — #.

In order to prove that 2¥ — # is connected, it is enough to prove that & is
dense in 2X. Since the subset of 2% which consists of all the nonempty finite
subsets of X is dense in 2%, we only need to prove the following claim:

Claim. For each finite subset F = {pi,...,pn} of X and for each &> 0,
there exists an element L € ¥ such that H(F,L) <e.

Let F={p1,...,pm} and &> 0.

Take an order arc y from a fixed one-point set {po} to X (see [7, 1.2] for the
definition of order arc). Since # is O-dimensional, there exists an element
Mey—# < C(X)— o such that H(M,X) <¢/2 and M is nondegenerate.
Choose points qi,...,qm € M such that d(p;,q;) <¢&/2 for each ie{1,...,m}.
Let {U,},>, be a sequence of proper open subsets of M such that ¢, € U, for
every n=1, U o c(lh)oU;o cl(Us) o Us > ..., cl{U,) — {q1} (conver-
gence in 2¥) and M # cl(U)) c {ge X :d(q,q1) < &/2}.

Let ILp= {ql,...,qm}U(BdM(U])UBdM(Uz)UBdM(U3)U ) Clearly,
Lo €2*. Fix a nondegenerate subcontinuum D of U; —cl(U;). Then the set
{LoU{x}€2¥:xe D} is a nondegenerate subcontinuum of 2%. Since # is
0-dimensional, there exists a point xo € D such that LoU {xo} ¢ 5.
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Define L = LoU {xo}. Then Le2¥ — # and H(F,L) <e.

We will show that L e Z.

Foreachn>1, let 4, = M — U, ¢ M — cl(U,). Take an order arc y, from
A, to M. Since M —cl(U,4,) is an open subset of M, there exists a (non-
degenerate) subarc o, of y, such that each of its elements is contained in
M —cl(U,y1) and 4, € 0,. Consider the set 6, = {LUK : K € 5,}. It is easy to
show that 0, is a (nondegenerate) order arc from LU 4, to some element in 2%,
Since # is O-dimensional, we can choose an element B, =LUK, €0, — #
where K, € g,. Notice that 4, = K, = 4,.1.

Next, we will check that every component of B, intersects L. Let C be a
component of B,. Since the subarc of 6, which joins LU A4, and B, is an order
arc, then (see [7, 1.8]), CN(LUA4,) # &. If CNL = ¢, we can take an element
x € CNA,. Let C; be the component of 4, which contains x. Thus C; = C, and
by ([7, 20.2]), @ # CiNBdy(U,) = CNL. This contradiction completes the
proof that CNL # .

As a consequence of the claim of the paragraph above, we obtain that every
component of B, intersects B,.

>

Let By = L. Notice that B,_; is a proper subset of B, for every n > 1. By
[7, 1,8], there exists a map f,:[0,1] — 2¥ such that §,(0) = B,_|, ,(1) = B,,
and if 0 <s< <1, then f,(s) is a proper subset of f,(1).

For each n > 1, let o, : [0,1] — 2% be a map such that «,(0) = Bdy(U,+2),
ap(1) =M and if 0 <s<t<1, then a,(s) is a proper subset of «,(z). Since
Bda(Ups2) © Upyt — cl(Uyy3), there exists 7, >0 such that o,(z,) < U,y —
Cl(Un+3).

Let ¢,:[0,1] x [0,1] — 2™ be given by ,(s,t) = a,(st,) UB,(¢). It is easy
to check that ¢, is continuous, one-to-one, ¢,(0,1) = B, and ¢,(0,0) = B,_;. Let
9, = 0,([0,1] x [0,1]). Then %, is a 2-cell. By [2, Theorem IV 4|, 4, — # is
connected and contains B,_; and B,.

Let 4= U{%,:n>1}. Then % is a connected subset of 2¥ — # and
contains the element By =L. On the other hand, since 4, - M, and
An = B, = M for each n > 1, we conclude that B, — M and M e clyx(%). This
implies that ¥ « #. Therefore, L € . This completes the proof of the claim and
thus the proof of Theorem 1. [ |

Proof of Theorem 2

Throughout this section 2# will denote a closed 0-dimensional subset of C(X)
such that C(X) — {4} is arcwise connected for each 4 € #.
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Lemva 1. If AL BeC(X)—#, ANB#F, A—B+# and B—A# &,
then A and B can be joined by an arc in C(X)— H#.

ProoF. Fix a component C of ANB. Then C is a proper subcontinuum of
both 4 and B. Let a,f:[0,1] - AUB be maps such that o(0) = C = §(0),
a(l1) =A, p(1) =B and s < r implies that a(s) (resp., B(s)) is a proper sub-
continuum of () (resp., B(f)) (see [Nd78, 1.8]). Let ¥ =[0,1] x [0,1]. Define
9:%— C(4UB) by:

o(s, 1) = a(s) U B(1).

Clearly, ¢ is continuous, ¢(1,0) = 4 and ¢(0,1) = B. If D is a component of
@ '(#), then (D) is a connected subset of #. Thus (D) has exactly one
element. Therefore, D is a component of ¢~ !(E) for some E € #.

Since ¢(1,0) and ¢(0,1) ¢ # and # is compact, there exists 0 <r < 1/2
such that {([1 —r,1] x [0,/])U([0,7] x [l = r, 1)} No 1 (#) = &.

Let Gy =(0,1-rx{0})U{0} x[0,1—7]) and G, = ({1} x[r 1)U
([r, 1] x {1}). Let G= G UG,Up !(#). Then G is a compact subset of %.

We will see that no component of ¢~ !(#) intersects both G; and G,.
Suppose, to the contrary, that there exists a component D of ¢ ! (#) such that
DNG) # @ and DN G, # . Then there exists an element E € # such that D is
a component of ¢ '(E). Let z=(5,1)e DNG, and w = (u,v) € DNG,. Then
a(s) UB(r) = p(z) = p(w) = a(u) U f(v). Notice that s =0 or t =0. If s =0, then
¢(z) < B. This implies that a(z) = 4N B. Hence a(u) = C. Thus u = 0. This is a
contradiction since w € G,. A similar contradiction can be obtained assuming that
t = 0. Therefore, no component of ¢~!(#°) intersects both G, and G..

We are ready to apply the Cut Wire Theorem ([7,20.6]) to the compact space
¢~!(#) and the closed sets o' (#) N G, and ¢~ ()N G,. Thus there exist two
disjoint closed sets H,, H, in % such that ¢~ ! (#) = HHUH,, ¢ (#)NG, < H,
and ¢~ (#)N G, = Hy. Define L; = GUH; and L, = G,UH>. Then L; and L,
are disjoint closed subsets of 4. Thus there exist two disjoint open subsets U; and
U, of € such that Ly < U; and L, = U,.

Let U be the component of U; which contains G; and let A/ be the com-
ponent of ¥ — U which contains G,. It is easy to prove that ¥ — M is connected.
Since % is locally connected M is closed in ¢ and Bdy (M) < Bdg(U) < Bdy(U}).
Let L =Bdy(M). Then LN (L UL,) = . Since Gy =« ¥ — M, L separates G
and G, in %. Since ¥ is unicoherent ([6, Thm. 2 II, §57, Ch. VIII]), L is a
subcontinuum of %.

Since [0,7] x [l —r,1] is a connected subset of & that intersects both G
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and G, we obtain this set intersects L. Similarly L intersects [1 —r, 1] x [0,7].
Then the set Lo = LU ([1 —r, 1] x [0,#])U ([0, 7] x [l —#,1]) is a subcontinuum of
% — ¢! (#). Since ¥ is locally connected, there exists an open connected (and
then arcwise connected) subset ¥ of % such that Lo = V = € — ¢! (#). Let 4 be
an arc in V joining (1,0) and (0,1). Therefore, ¢(4) is a path in C(X)— #
joining 4 and B. |

LemMa 2. If A,Be C(X)—# and A = B # A, then A and B can be joined
by an arc in C(X)— #.

Proor. By [7, 1.8], there is an order arc from A4 to B. That is, there is a
map o : [0,1] — C(B) such that «(0) = 4, «(1) = B and if s <1, then afs) is a
proper subcontinuum of «(z). Let 4 = o~ !(#).

First, we will show that for any ¢e ¥, there exists ¢ >0 such that
(t—é&,t+¢) <= (0,1) and for every se (t —¢,t) — % and every re (¢, +¢) — %,
a(s) and «(r) can be joined by an arc in C(X) — #.

Since a(r) e #, C(X)— {o(r)} is arcwise connected. Then there exists a
one-to-one map f: [0,1] - C(X) — {a(r)} such that $(0) = 4 and f(1) = B. Let
u=max{ve[0,1]; f(w) = a(¢) for eachwe[0,0]}. Then pS(u) is a proper
subcontinuum of «(7). Since f is continuous, there exists z e (u,1) such that
the continuum C= U{f(w):u<w <z} does not contain o(r). Since H# is
0-dimensional, we may assume that C ¢ #. By the definition of u, C is not
contained in (7).

We consider two cases:

Case 1. «a(¢) is indecomposable.

By [7, 1.52.1 (2)], () is contained in the composant of «(z) which con-
tains A. Then there exists a proper subcontinuum D of «(f) such that
DNA4 # @& # DN B(u). Growing D by using an order arc from D to a(), we may
assume that D is not contained in C and D¢ #. Let ¢ >0 be such that
(t—e,t+e)c(0,1), a(t — &) is not contained in D, «(t — ¢) is not contained in
C and a(t+¢) does not contain C.

In order to show that ¢ has the required properties, let s (f — ¢, ¢) — % and
re(t,t+e¢)—%. Then a(s)ND # & and a(s) — D # &.

If D—afs) # &, then we may apply Lemma 1 to the pairs «(s) and D; D
and C; C and «(r), and conclude that «(s) and «(r) can be joined by an arc in
C(X)— .
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If D <afs), then we may apply Lemma | to the pairs a(s) and C; C
and o«(r), and conclude that o(s) and o(r) can be joined by an arc in
C(X)— #.

Case 2. oftf) is decomposable.

In this case «(z) = EUF, where E and F are proper subcontinua of a(z). We
may assume that £, F¢ # and E— C# g #F — C.

Let & > 0 be such that (1 — &, +¢,) = (0,1), a(t — &) is not contained in any
of the sets C, E and F, and C is not contained in a(z+ ¢).

Let se (t—é&,1) —% and r e (1,1 +¢,) — %. Then a(s) is not contained in any
of the sets E, F and C. Since o(s) is a proper subcontinuum of a(t), E — a(s) # &
or F —o(s) # J. Suppose, for example, that E is not contained in a(s).

If ENC # (&, then we may apply Lemma 1 to the pairs a(s) and E; E and
C; C and «(r), and conclude that o(s) and «(r) can be joined by an arc in
C(X) — .

If FNC # &, then we may apply Lemma 1 to the pairs a(s) and E; E and F:
Fand C; C and «(r), and conclude that o(s) and «(r) can be joined by an arc in
c(X)— A

This completes the proof of the existence of ¢,.

Now we are ready to prove Lemma 2.

Let t € ¢ and let & > 0 be as before. We claim that if s,r € (1 — &/, ¢ + &) —9,
then a(s) and «(r) can be joined by an arc in C(X) — #. Indeed, if ¢ is between s
and r, this claim follows from the choice of ¢, and if, for example, s,7 < 7, then
fix r1 € (£, + &) — %. By the choice of ¢, both pairs «(s), «(r) and a(r), a(r)) can
be joined by an arc in C(X) — . Thus, a(r), a(s) can be joined by an arc in
CX)—#.

Given a number 7€ [0,1] — %, there exists ¢ > 0 such that (1 —e¢,7+¢)N
% = (. In this case, if 5,7 € (t — &, 1+ &) N[0, 1], then a(s) and a(r) can be joined
by an arc in C(X) — #.

For the open cover {(t —¢&,1+¢):1€]0,1]}, there exists 6 > 0 such that if
s,re[0,1] and |s—r| <4, then s,re (t—&,1+¢) for some te [0, 1].

Choose a partition 0=1f <t <---<t,=1 such that t,—#_; <J and
t;¢%9 for each i=1,2,... ,m.

Thus, for each ie1,2,...,m, a(t;-;) and «(#) can be joined by an arc in
C(X) — #. Therefore, A and B can be joined by an arc in C(X) — #. |

PrOOF OF THEOREM 2. We consider two cases:
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Case 1. X is indecomposable.

In this case C(X)—{X} is not arcwise connected (see [7, 1.51]). Then
X ¢ #. Given an element 4 € C(X) — (#U{X}), by Lemma 2, 4 and X can be
connected by an arc in C(X) — 7.

CASE 2. X is decomposable.

Let X = EUF, where E and F are proper subcontinua of X. Since # is
0-dimensional, we may assume that E, F ¢ #. Given an element 4 € C(X ) —
(#U{X}), taking an order arc from 4 to X, we can find an element
Be C(X)— #, such that 4 is a proper subcontinuum of BB#X, B—E#
and B— F # (. Notice that E— B # (J or F— B # (). Suppose, for example,
that £ — B # (J. By Lemma 1, the pairs E, B and E, F can be joined by an arc
in C(X) — 5, and by Lemma 2, 4 and B can be joined by an arc in C(X) -7
Then A can be joined to both E and F in C(X) — #. In the case that X ¢ #, by
Lemma 2, X can be joined to both E and F in C(X) — #. This completes the
proof that C(X) — # is arcwise connected. =
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