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RAYS AND THE FIXED POINT PROPERTY IN

NONCOMPACT SPACES

By

Tadeusz Dobrowolski and Witold Marciszewski*

Abstract. We are concerned with the question of whether a

noncompact space with a nice local structure contains a ray, i.e.,a

closed homeomorph of [0,1). We construct rays in incomplete

locally path connected spaces, and also,in noncompact metrizable

convex sets; as a consequence these spaces lack the fixed point

property. On the other hand, we give an example of a noncompact

(nonmetrizable) convex subset C of a locally convex topological

vector space E which has the fixed point property.

1. Introduction

The classicalSchauder-Tichonoff theorem states that, for a convex subset C

of a locally convex topological vector space, the compactness of C implies the

fixed point property of C. In [K], V. Klee observed that thisimplication can be

reversed for a large class of topological vector spaces (including Banach spaces).

His approach was very elementary; namely, he showed that every convex

noncompact subset of a respective topological vector space contains a closed

homeomorphic copy of [0,1),called a (topological) ray. By (a littleaddition to)

the Tietze theorem, a ray R in a normal topological space X is a retract of X;

and since [0,1)lacks the fixed point property, so does the space X. (Let us point

out that, in a nonmetric case, even if one constructs a ray in a convex set C,

then C may not be normal and one cannot conclude that C lacks the fixed point

property.) Klee has asked a question of whether an arbitrary noncompact

convex subset C of a topological vector space E contains a ray (or lacks the

fixed point property). He specified that the case of metrizable E is of some
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interest.In such a case, we obviously can assume that E is a complete metric

linear space. Then, either C is not closed in E or C is completely metrizable. If

C is not closed in E then, it is easy to construct a ray "through" a sequence

{xn} cz C that converges to a point x^ eE＼C. If C is completely metrizable,

then either C is locally compact or nonlocally compact; the locally compact case

has been solved by Klee (see 2.1). The case of infinite-dimensional, completely

metrizable, nonlocally compact C is treated in Proposition 3.1; we invoke

therein a certain general statement concerning approximation of maps into C, a

particular case of which yields the existence of a ray in C.

We also provide an answer to Klee's question in case of a nonmetric space

E. In Example 4.1 we construct a convex, noncompact subset W (of a compact

convex set)in a locally convex topological vector space E such that W has the

fixed point property (and does not contain a ray). On the other hand, we

observe that every convex subset C (in an arbitrary topological vector space)

which is not totallybounded must both contain a ray and lack the fixed point

property.

It is reasonable to ask a more general question of whether a noncompact

metrizable space with a nice local structure contains a ray. In particular, of

whether a noncompact absolute retract contains a ray. In general, thisis not the

case, as classical examples of the "broken comb" and the "hedgehog" spaces

show, see [C]. A special case of our Theorem 2.5 states that every absolute

retract space X which is either locally compact or not completely metrizable

contains a ray. For X which is not completely metrizable, the absolute retract

property can be relaxed to the LC°-property. It is reasonable to ask the

following

1.1. Question. Let X be a completely metrizable absolute retract without

the fixed point property. Does X contain a ray?

As far as we know, this question was tackled previously by S. Reich and

Y. Stemfeld in [RS] who obtained an affirmative answer for some "hedgehog"-

like spaces. More recently, V. Okhezin [O] has obtained some partial answer to

this question as well.

Our approach to construct a ray in a noncompact X is very elementary. We

simply find a completion X of (X,d), where d is some incomplete admissible

metric on X (observe that every noncompact space X admits an incomplete

metric d, see [E, 4.3.E(d)]). Having done this, we then construct a Peano

continuum YU {xqo}, where Y is a nonempty subset of X and Xoo g X＼X. Next,

there exists an arc a : [0,1]―>･YUixoo} joining an element y e Y with Xoo- The
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restriction of a to [0,1) gives us a required closed embedding of [0,1) into X.

Observe that such an embedding will be uniformly continuous with respect to

the natural metrics on [0,1) and d. This however does not bear any restriction

because given any closed embedding p : [0,1) ― X, we can apply the HausdortT

metric extension theorem (see [E. p. 369]) to find a metric d on X, so that p will

be an isometric embedding. It is clear now that p will extend to an embedding

of [0,1]into X. Summarizing, a noncompact metrizable space X contains a ray if

and only if X admits an admissible incomplete metric d and a path p : [0,1] ―>X

such that p(t) e X for every 0 < t < 1 and p(l) eX＼X.

Here is how one can obtain such a path p for an LC°-space X which is not

completely metrizable. We find a completely metrizable enlargement I of I

so that every path in X can be instantly homotopied to a path in X. Such an

enlargement X can be found for every LCn (or, locally contractible) space X

which is not completely metrizable; we additionally can require that X is LCE

(locally contractible) and that X＼X is locally ^-negligiblein X (see Proposition

2.8). A corresponding result for absolute neighborhood retract spaces X was

previously obtained by Toruficzyk in [Tor21.

2. LC§-spaees containinga ray

Let us startwith the following observation due to Klee [K] which can be

also found in [Cl.

2.1. Proposition. Every noncompact, connected, locally connected, locally

compact metrizable space contains a ray {and consequently, lacks the fixed point

property). □

The above fact admits the following reformulation.

2.2. Proposition. Let X be a noncompact metrizahle space. Then X

contains a ray if and only if X admits a completion X such that for some

Xoo g X ＼X, and connected, locally connected, completely metrizable subspace Y of

X, the space Y U {xqo } is locally connected.

Proof. Assume that X contains a ray R. Let d be a metric on the one-

point compactification of R. By the Hausdorff theorem on extending metrics

[E, p. 369], there exists an admissible metric on X whose restrictionto R is d.

Now, clearly our condition is satisfiedwith Y = R.
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To show the converse statement observe that 7U{xoo} is completely

metrizable, locally connected and connected. This yields that Y U {xqq } is path

connected; hence an argument from the Introduction works. □

The following abstractionof [Tori, Proposition 2.1]has been suggested to

us by H. Torunczyk.

2.3. Proposition. Let X be a metrizahle {resp., completely metrizable)

space and 3~be a set of pairs (U, V) of open subsets of X satisfying the following

properties:

(a) V £ 17 for every (U,V)e3T

(b) for every x e X and every open neighborhood U of x there exists an open

neighborhood V c U of x such that (U, V) e ^",

(c) for every (U,V) e&~ and every open sets U', F'gl if U £ U' and

V £ F then (U',Vf)e$~.

Then there exists an admissible metric (resp.,complete metric) d on X such thatfor

every x e X and r e (0,1) the pair of open balls(BAx, r),B^ix, r/8)) belongs to 2T.

Proof. By induction we will construct a sequence of admissible metrics dn

on X such that for every new and open set V such that diam^n+1 V < 1 there

exists an open U such that (U,V)e&~ and diamdiU < (n + l)~l2-(n+V for

i = 0,...,≪.

Let do be any admissible metric (resp., complete metric) on X and suppose

that metrics do,...,dn have been defined. Let

*=
|

^e = p^(jc,(≫i + l)-12-^+2))|xeJr|.

By (b), for every x e X we can find an open neighborhood Vx of x such that

(Ux, Vx) e 3~.From a result of Michael [Mi, p. 165] it follows that there existsan

admissible metric dn+＼on X such that every set of dn+i-diameter less than 1 is

contained in some set Vx. Obviously, conditions (c) guarantees that dn+＼has the

required property.

We define the metric d by the formula

00
d{x,y) = J2 min(4(x,j),2-("+1)) forx,yeX.

n=Q

If our initial metric ^o is complete then from the inequality d(x,y) >

min^oC^j)^"1) it follows that d is also complete. Fix xeX and re (0,1).
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Let n e a> be such that 2~(n+1) < r < 2~n. Since r/8 < 2~^n+^ we have

Bd{x,rl^)^Bd^2{x,rl^) and therefore diam^tfrffor/S) < 2"(B+2> < 1. By the

property of dn+2 we can find an open set U such that (U,Bj(x, r/8)) e
≪^"

and

diam^,. [/<(≪ + 2)-12-(K+2) for i = 0,..., n + 1. Hence

diamdU < (n + 2){n + 2yl2^n+2^ +
oo

£

i=n+2

2~(*+i)- 2-(≪+1) < r

The above inequalityshows that U £ Bd(x,r) and by (c) we conclude that the

pair (Bd(x,r),Bd(x,r/&))belongs to 9~. Q

2.4. Corollary. Let X be a metrizableL,Cn-space,new. Then thereexists

an admissible metric d on X such that for every xeX and re (0,1) each

continuous map f : dlk+l ―>Bd(x,r/&) can be extended to a continuous map

F:Ik+l -+Bd(x,r), 0 < k < n.

Proof. Apply 2.3 for the set ST = {(U, V)＼U and V are open subsetsof X

such that every continuous map / : dlk+1 ―>V can be extended to a continuous

map F:Ik+1 ^U,Q<k<n＼. □

2.5. Theorem. Let X be a metrizable 1LCR-space. If either X is noncompact,

connected and locally compact or X is not completely metrizable then X contains

a ray.

Proof. The locally compact case was settled in Proposition 2.1.

Assume that X is not completely metrizable. Then the metric d given by

Cor. 2.4 is not complete. Let (xn)nem be a Cauchy sequence in (X,d) which

is not convergent. For every n e a we can find a path pn : [0,1] ― X such

that pn(0) = xn,pn{＼)= *≪+i and diam^([0,1]) < 20d(xn,xn+＼). One can easily

check that the set Y = ＼Jne(OPn{[0,1])is closed in X, noncompact, connected,

locally connected and locally compact. By 2.1, Y contains a ray which is also a

closed subset of X. n

We see that a key ingredient in proving Theorem 2.5 was Proposition 2.3

which itselfis an abstraction of [Tori, Proposition 2.1]. The latter fact has been

used by Toranczyk (see [Tori, Proposition 2.2]) to show that every absolute

retract space X admits a so-called regular metric d. The last means that

whenever (X,d) is isometrically (or more generally, uniformly) embedded onto

a closed subset of a metric space (Y,p), then there exists a retraction
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r : (Y,p) ―>(X,d) which is regular, i.e., for every s > 0 there exists <5> 0 such

that whenever distp(x,X) < S, then d(r(x),x)<e. This fact provides an

alternative proof of Theorem 2.5 for the case of noncompletely metrizable,

absolute retract space X as follows. Embed isometrically (X,d) as a closed

subset of a normed space (E, ||･ ||)(see [BP, p. 49]), and let r : (E, ||･ ||) -> (X,d)

be a regular retraction. Since X is not completely metrizable, we can find a

piecewise linear map <f>:[0,1) ―≫E with the nodes (i.e., the points of the set

{<t>(t)＼</>is not affine at t} U {^(0)}) lying in X and with limr_i j(t) e X＼X, where

X is the closure of X in the completion E of E. Using the regularity of r, we can

construct <f>in such a way that lim^i r{<f){t))― lim^i <j>{t).This easily yields the

existence of a ray in r(^([0,1))) £ X (see the Introduction).

Observe that in the above argument we rather used the fact that (X, d) was

not complete, than X is not completely metrizable. Consequently, if X has the

fixed point property then any regular metric on X must be complete (otherwise,

X would contain a ray, contradicting the fixed point property). Since, for

completely metrizable X, the construction of [Tori] yields a complete regular

metric on X, it suggests that every regular metric on X must be complete. Here

is a simple counterexample.

2.6. Example. The standard Euclidean metric on (0,1] is regular. (Let

(0,1] be a closed subset of a metric space (X,p), let Un =

＼J{B(t, (l//i) - f)|0 < t < (l//i)} (here B(x,e) denotes the open ball at x and

radius e), and define inductively a retraction r: X ―>(0,1] as follows:

r(X＼U＼) ― {1}, r transforms the boundaries of U＼ and of Ui onto {1} and

{1/2}, respectively, and the set U＼＼U2 onto [1/2,1], and so on.) □

Having in mind Question 1.1, it is reasonable to ask

2.7. Question. Let X be a completely metrizable absolute retract space

without the fixed point property. Does X admit an incomplete regular metric?

We now discuss a way of obtaining LC°-spaces which are not completely

metrizable by employing the following notion of local ≪-iomotopy negligibility

due to Torunczyk [Tor2]. A subset A of a metrizable space Y is locally n-

negligible, 0 < n < oo, if for every y e Y and for every neighborhood U of y,

there exists a neighborhood V of y, V £ U, such that each map f(lk,dlk) ―>

(V,V＼A) can be homotopied, via a homotopy (ht) :(Ik,dlk)-> (U,U＼A),

0 < t < 1, to h＼so that hx{Ik) c C/＼J, 0 < & < n + 1, see [Tor2]. Here by 7°we

mean a fixed one-point set,and dl°= 0; k < n + I means "0 < k < n if n ^ oo
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and k e m if n― oo. Locally go-negligible sets are simply called locally negligible

sets.It can easily be shown (see [Tor2, Remark 2.5])that whenever Y is an LC°-

space and A a locally 1-negligible subset of Y, then X = Y＼A is an LCe-space.

If additionally Y is completely metrizable and A is not an iv-subset of Y, then

X is an LC§-space which additionally is not completely metrizable.

Our Proposition 2.3 enables us to derive the following result on enlarging

incomplete LCn-spaces to complete ones.

2.8. Proposition. Let Y he a metrizable space and let X be an 1LCn-space

{resp.,X is an absolute neighborhood retract space) such that X a Y. Then X can

be enlarged to X £ y such that

(i) X is a Gs-subset of Y,

(ii) X is an TLCn-space (resp., X is an absolute neighborhood retract space),

(iii)X＼X is locally n-negligible{resp., locally homotopy negligible)in X.

In addition, given a finite-dimensionalpolyhedron K, dim(X) < n+＼, and a map

f :K ―≫X, there exists a homotopy (ht) : K ―>X such that h$ =f and ht{K) c X

for t > 0.

The proof of the absolute neighborhood retract case of 2.8 has been

provided in [Tor2, Proposition 4.1]. Since then the fact has become very useful.

We hope that the cases of finite n or locally contractible X (treated in

Proposition 2.9 below) will also find their applications.

Here is how the case of n = 0 can be applied to obtain a proof of 2.5 for

an LC§-space which is not completely metrizable. Embed X in a completely

metrizable space Y, and let X be an enlargement from 2.8. Then, by 2.8(1),X is

also completely metrizable and therefore X＼X ^ 0. By the 'addition' part of

2.8, one can find a path h:[0,l]-+X such that />((0,1])c X and p(0) e X＼X.

Hence, X contains a ray.

Proof of 2.8. Let us firstprovide an argument for the case where X is an

absolute neighborhood retract space (more direct than that of [Tor2, Propo-

sition 4.1]).Embed Y as a closed linearly independent subset of a normed space

E (see [BP, p. 49]). Then X is a closed subset of Eq = span(X). Write r for a

retraction of an open subset Uq in Eq onto X. Let U be an open set in E such

that U f)Eq = Uq. By the theorem of Lavrentiev, r can be extended to a map

f : Uq ―>Eq, where Uq a Uq cz UHEq, Eq is the closure of Eq in the completion

of E and Uo is a (^-subset of UHEq. Let X = {y e YD UQ＼r(y)=y). Let

U'Q = r"1^). We see that Uq <= E'o c £/D Eq. Since J5q is a linear subspace of
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Eq,Eq＼ER is locally homotopy negligible in Eq. It follows that UC＼Eq＼U (and

hence Uf＼Eo＼U) is locally homotopy negligible in UCiEq. Since UHEq is an

absolute neighborhood retract, by [Tor2, Theorem 3.1], X is also an absolute

neighborhood retract.It is easy to see that (iii)holds.

Assume that X is an LC "-space. Denote by Fa completion of Y. Let d be

a metric on X satisfying the assertion of 2.4. By the Lavrientiev theorem, the

metric d can be extended to a G$ -subset Y of the closure of X in Y. Now, it is

easy to see, that given y e Y, every map / : dlk ―≫B(y, e)C＼X extends to a map

/': /* -> B(y, 16e) flX for 0 < k < n + 2. According to Eilenberg―Wilder ter-

minology (and used in [Tor2]), the set X is LCn rel. Y at each point yet. We

can now apply [Tor2, Theorem 2.8] to conclude that Y＼X is locally n-

homotopy negligible, and that the 'addition' part of 2.8 holds with X being

replaced by Y.

Set X = YHY. We easily check that (i),(iii)and the 'addition' part of 2.8

hold for such X. It remains to show that X is an LCn-space. Pick x e X, a map

/ : dlk ―>B(x,s), 0 < k < n + 2. By the 'addition' part, / can be homotopied

within B(x, e) to a map f＼: dlk ―>B(x, e) D X. By the above property of d,f＼can

be extended to a map Ik ― B(x, 16s) HZ. This shows that/can be extended to

a map I* ―>5(3c,16e), hence x is an LCn-space. D

2.9. Proposition. Let X be a metrizahle locally contractible space. Then X

can be enlarged to a completely metrizable space X such that

(i) X is locally contractible,

(ii) X＼X is locally homotopy negligiblein X.

In addition, given a finite-dimensionalpolyhedron K and a map f : K ―≫X, there

exists a homotopy (ht): K ― X such that ho ―f and ht(K) c X for t > 0.

Proof. We use a similar construction as in the proof of 2.3. We will

construct an admissible metric d in X such for every x e X and r e (0,1) the ball

Bd{x,r/%) can be contracted within the ball Bd(x,r) by a homotopy which can

be extended to a homotopy contracting the corresponding ballin the completion

I of I with respect to d.

By induction we will construct sequences of admissible metrics dn on X,

locally finite open covers %n of X and families of homotopies 2tfn=

{hu : U x [0,1] ― X＼U e %,} satisfying the following conditions for every n e a>:

(a) V(C/ E%n)hu e Jfw is a contraction of U in X,

(b) V(t/ e <^)V(i < /i)dianu hv(U x [0,11) < (n + l)"^"^1),
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(c) V(t/ #B)V(./ < n)V(F g %)V(x,y eUf) K)V(f e [0,l])V(i < n)

di(hv(x,t),hv(y,t))< (n+iyl2-^
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(d) every set of ^4+i-diameter less than 1 is contained in some set U e%n

We start the construction with any admissible metric do on X. Using the

local contractibility of X we find %q and M'o in order to satisfy (a) and (b).

Suppose that metrics do,
■■.,

dn, covers %o,..., <%n-i and families Jf o,
■･ ･,

^n-＼

have been constructed for n > 1. Again using the local contractibility of X one

can easily find a locally finite open cover %n and a family of homotopies 2tfn

satisfying (a) and (b). Since the covers <%o,... ,<%n-＼ are locally finite, we can

additionally assure (c). Finally, a metric dn+＼ can be obtained from the result of

Michael [Mi, p. 165].

We define a metric d by the formula

00

£

n=0

d(x,y) = J2 min(dn(x,y),2-{n+l)) for x,y e X

Let X be the completion of X with respect to the metric d. Fix x e X and

r e (0,1). We will show that the ball Bd(x, r/8) can be contracted within the ball

Bd(x, r). Let n e w be such that 2"("+1) < r < 2~n.We take felandK 2~(w+3)

such that Bd(x,r/S) ^Bd{pd,s). Since s < 2"(w+3) we have Bd(xt,s)C＼X ^

Bdn+2(xl,s)f)X and therefore diamdn+2Bd(x',s)f]X < 2~("+2)< 1. By the property

(d) of dn+2, we can find an open set U e %n+＼ such that Bd(xt,s)C＼X £ C/. Let

C([0,1],#) denotes the space of continuous maps from [0,1] into X equipped

with the standard (complete) supremum metric. We will check that the map

g:U ^ C([0,l],X) defined by

g{u)(t)=hu(u,t) for u e U and t e [0,1]

is uniformly continuous (in fact, Lipschitz). Let y,zeU be such that

d(y,z) < 2~(k+2＼for k > n + 1. Then dk+＼(y,z)< 1 and (d) implies that y,zeV

for some V e Uk. From (c) it follows that di{hu{y,t),hu{z,t)) < {k+iyl2^k+l＼

for every t e [0,1] and i < k. Therefore

</(Atf(y,O,MV)) < (k+lXk+l)-1!-^ +
00

£

i=k+l

2-('+i) = 2~k

This means that the distance between g(y) and g{z) is less than or equal 2 k.

Consequently, the map g can be extended to a continuous map

(j:C1^C/-> C([0,1],X). Obviously, Bd{x,r/S) c Cl^C/ and the homotopy
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H : Bd(x, r/8) x[O,＼]-+X defined by

H(y, t) = G{y){t) for y e Bd{x, r/8) and t e [0,1]

is a contraction of Bd{x,r/$) in X. Using the condition (b) one can easily

calculate that diamjH(Bd(x,r/Z) x [0,1]) < 2-(n+1) < r hence H(Bd(x,r/S) x

[0,1]) £ Bd(x,r). Property (ii) and the 'addition' part of 2.9 can be verified in the

same way as in the proof of 2.8. □

We do not know whether or not Proposition 2.9 holds in a version of 2.8.

Such a version can be obtained if the answer to the following question is

affirmative.

2.10. Question. Let A be a locally homotopy negligible subset of a locally

contractible space X. Is X＼A locally contractible?

Note that the complement X＼A enjoys the following strong version of the

LC00-property: For every xeX＼A and neighborhood U of x there exists a

neighborhood F of x, V ^ U, such that spheres of all dimensions in V are

contractible in U. Aiming at a negative answer to 2.10, it follows from [Tor2,

Theorem 3.1] that X cannot be an absolute neighborhood retract. Let us

consider the example of Borsuk of a compactum X ―Xq＼J{j^=lXl which is

locally contractible but not an absolute neighborhood retract; we employ the

notation of [Bor, p. 125]. It is easy to see that the identity map on X can be

arbitrarily closely approximated by maps (even retractions) into (J^LjA^.

Hence, Xq is locally homotopy negligible in X. (Since ＼J
=lX£

is locally finite

dimensional and locally contractible,it is an absolute neighborhood retract; this

provides another counterexample to the converse implication of [Tor2, Theorem

3.1].) For an arbitrary subset A of Xq, form the space Ya = A U {J1°=lX£.

Clearly, A is locally homotopy negligible in Ya. Yet, it can be shown that Ya is

locally contractible as well, and hence Ya cannot serve as a suitable solution

to 2.10.

3, Convex sets which lack the fixed point property

First we show that every noncompact convex subset C of a metric linear

space lacks the fixed point property. As said in the Introduction, it is enough to

settlethe case of an infinite-dimensional, nonlocally compact closed subset C in

a complete metric linear space E.
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3.1. Proposition. Let C be a nonlocally compact closed convex subset of a

separable completely metrizable linear space E. Then, every map of a separable,

completely metrizable, finite-dimensional space M into C can be strongly

approximated by a closed embedding.

Proof. By [DT] and [D], the space C enjoys the so-called strong

approximation property, i.e.,given an open cover % of C, every map

RneNIn ―>･C can be ^-approximated by a map g so that {g{In)} =＼forms a

discretefamily in C. Next, since C is locally contractible,and hence, is LCn

for every n, our statement can be obtained by inspectingreasonings of [Tor3,

p. 2551, see also [Bol, p. 1271 and [Bo2, p.101 □

3.2.Remark. In 3.1, M can be replaced by an arbitrary separable,

completely metrizable absolute neighborhood space. (Apply the approach of

rTor3, p. 2551.) H

A discussion from the Introduction and the statement of 3.1 yield the

following answer to a question of Klee [Kl.

3.3.Corollary. Every noncompact convex subset of a metriclinearspace

containsa ray, and thereforefailsthe fixed point property. □

Let us recall that a subset A of a topological vector space E is said to be

totallybounded, if for every neighborhood U of 0 in E there are x＼,xi,...xneE

such that A c (J"_i*i + U.

3.4. Theorem. Let C be a convex subset of a topological vector space E. If

C is not totallybounded, then C contains a ray and does not have the fixed point

property.

Proof. We can assume (see [KN, p. 50]) that E = f|a Ea, where each Ea is

a complete metric linear space. Let 7ta: E ―>Ea be the projection. If each nx(C)

is compact, then C, as a subset of the compact set Yl^n^C), would be totally

bounded. Consequently, there exists a such that Ca = na(C) is a noncompact,

convex subset of the metric linear space (Ea, |･|a).By 3.3, there exists a closed

embedding p : [0,1) ―≫■Ca. We may assume that p is piecewise linear.

To see this firstwe approximate p by a piecewise linear map p' : [0,1) ―>Ca

in a following way. We construct piecewise linear maps p':＼l- 2~w,
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1 _ 2-"-1] -> Ca, n = 0,1,..., so that ＼p{t)-/>i(f)|a< 2~w for every 1 - 2~n <

t <＼ ―2~n~l.The map p' is defined as the union of p'0,p[,....Using the fact

that p is closed and the approximation property of p' one can easily see that the

image p'([0,1)), a closed subset of Ca, is a noncompact, connected, locally

compact LC°-space. Therefore, by 2.5 we can find a closed embedding

p" : [0,l)-≫//([Q, 1)). Since //([0,1]) is a union of a locally finite family of

segments we may assume that p" is piecewise linear.

Now, we take the increasing sequence {tn}, 0 < tn < 1, limtn = 1 such that/?

is affine on each subinterval [tn,tn+i].Put xn =p(tn). We claim that p can be

lifted' to a map q: [0,1) ―>C, that is, we have naq ―p. To arrange that, pick

yn e ft"1-^} flC. Let g be an affine map on each [tn,tn+＼)joining yn with yn+＼.

Clearly, q is continuous and naq = p since %a is linear. It follows that q is a

closed embedding.

Let us now show that C fails to have the fixed point property. We simply

will exhibit a retraction r : C -> i?, where J? = g([0,1)). Write / : Ca ->/>([0,1))

for a retraction (Ca is metrizable!). By our construction, 7ia|i?is a homeo-

morphism of R onto p([0,1)). Let s be the inverse of na＼R.It is clear that

r = st'ita.is a required retraction. □

4. A noneompaet convex set with tie fixed point property

In Example 4.1 below we will show that Theorem 3.4 cannot be extended to

all totallybounded noncompact convex sets C in topological vector spaces E. In

view of 3.3, C must be nonmetric. Surprisingly, a suitable C can be found in a

locally convex space E. This provides a negative answer to a question of Klee

[K, p. 32].

4.1. Example. There exists a locally convex topological vector space E

and a noncompact convex subset W of E which has the fixed point property.

Let K = co＼+ ＼be the compact space of all ordinals < a>＼with the order

topology. Consider the Banach space C(K). Let E = C(K)* be the dual of C(K)

equipped with the weak* topology. The space E can be identified with the space

of all regular Borel measures on K. Since K is scattered (i.e.does not contain

any dense-in-itselfsubset) every measure ＼ie E is purely atomic (has countable

support supp(/i)),see [R].

Let C be the subspace of E consisting of probability measures and let

W = {fie C|supp(/i) £ coi}.(Clearly, W is dense in C, and since C is compact,

W is totally bounded.)
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4.2. Lemma. The space W has the fixed point property.

Proof. Let /: W ― W be a continuous map. For every a < co＼,let

Wa ―{fi e W＼supp(pi) c= [0,a]}. The convex set Wa, regarded as a subspace of

all probability measures in the dual space C([0,a])* with the weak* topology, is

closed, and therefore, W& is compact. Since the compact space [0,a] is met-

rizable, C([0, a])is separable and therefore the weak* topology in C([0,a])* and

Wa is metrizable. For infinite a the space Wa is infinite-dimensional and by

Keller's Theorem (see [BP]) is homeomorphic to the Hilbert cube Iw.

We will show that for some infinitea < a>＼we have/(HPa) £ Wa. Therefore

f＼Wa (and /) has a fixed point.

By induction we construct a strictlyincreasing sequence of countable

ordinals {otn)neco such that f(WXn)^WXn+l. Let ao = 0 and suppose that

ao,... ,an have been defined. Since Wan is separable and every countable subset

of W is contained in Wa, for some a < (O＼we can find an+i < a>＼such that

Wun+l contains f(Wan). We may assume that aw+i > <xn.Now, we take a =

sup{an＼neoj}. The set [}newWan is dense in Wa and/(U,ew^J £ ＼)n
mW*

therefore f(Wa) e ^a. □

4.3. Remark. Since every closed separable subset of W is compact, W

does not contain a ray. This also follows from Lemma 4.3 and the following

property of W.

4.4. Lemma. The space W is normal.

Proof. By normality of the compact space C it is enough to prove that

disjoint closed subsets A, B of W have disjoint closures in C. Assume, to the

contrary, that there exists /ie ClcA D ClcB. Let a < co＼ be such supp(/i) ^

a + 1 U {coi}. Let ＼fn＼ne ca} be the norm dense subset of {/ e C{(O＼ + l)|/(^) = 0

for any B > a}. Define open sets

un =
l

v e C|V(i < n)

( I

fidn <

1 )

Al+l

Then for every v e f＼new Un and every j8<awe have v(/?) = n{fi). For /?< (O＼let

gp be the characteristic function of the interval (/?,coi] = [/?+ 1,g>i]. The function

$£is continuous on e≫i+ 1. Now, define by induction the increasing sequence f$n

and measures vn in the following way:
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We set /?0= a + 1. Suppose that /?,and v& for k < n have been defined. We

take the following neighborhood of u:

'-

v≫((A,,/r|)

v e C＼v e Un and

v(y) =

I

= v≫((j8II,a)i])

9pHdv - gKd＼k <

tiy)

/i(coi)

0

for y < a

for y ―P

otherwise

= 9pm dvn -* g$nd＼i

1

If n is even then take vn e A D Vn; if ≪is odd then we choose vn e BC＼Vn.

Finally, we define fin+l= sup(supp(vw)).

Let P ―sup Pn and let the measure v e W be defined by:

Let /eC(ct>i + l). Since vHeUn it follows that §[Q^fdvn -> ＼^a]fdv. Also

vB([0,a])- /i([0,a])= v([O,a]).We have

= ,z(a>i ) = v(/n

Therefore vn((aJn]),vn{(P,coi}) -> 0. By continuity of/at ftit also follows that

kf}nJ]fdVn ~"hnA^dV =/(^)V(^)- N0W We Catl evaluate that

＼fdVn = f fdvn + [ fdvn +
f

fdva +
f

f dvH
J J[o,≪] J(≪A] J(^.fl J(Ao≫i]

- f /Jv + 0+/OW)+Q=
f/rfv.

J[o,≪] J

This shows that limM vn = v In W. Therefore v e AHB contradicting our

assumption on sets A, B. □

Let us present another example of a noncompact convex set with the fixed

point property; thisexample has been suggested to us by Roman Pol.

4.5. Example. Let S be the E-product of intervals [0,1] in RWl, i.e.

S = {(xa) e [0,lp1{a < co!|jc≪̂ 0} is countable} c JT1.

The set S is a noncompact convex subset of the locally convex space R031 and S

has the fixed point property.

The fixed point property of S can be proved in a similar way as for the set

W of Example 4.1. Namely, let / : S ―*S be a continuous map and let
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Sa = {(xa) e S＼xp― 0 for /?> a}. Using the same argument as in the proof of

Lemma 4.2 one can find an infinite a such that f{Su) ^ Sx (here again we

employ the fact that every countable subset of S is contained in Sp for some

P < coi).Since Sa can be identified with the Hilbert cube [0,l]a,/ has a fixed

point in Sa.

By [E, 2.7.141 the space S is also normal.
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