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RAYS AND THE FIXED POINT PROPERTY IN
NONCOMPACT SPACES

By

Tadeusz DoBrowoLsSKI and Witold MARCISZEWSKI*

Abstract. We are concerned with the question of whether a
noncompact space with a nice local structure contains a ray, i.e., a
closed homeomorph of [0,1). We construct rays in incomplete
locally path connected spaces, and also, in noncompact metrizable
convex sets; as a consequence these spaces lack the fixed point
property. On the other hand, we give an example of a noncompact
(nonmetrizable) convex subset C of a locally convex topological
vector space E which has the fixed point property.

1. Imtroduction

The classical Schauder-Tichonoff theorem states that, for a convex subset C
of a Jocally convex topological vector space, the compactness of C implies the
fixed point property of C. In [K], V. Klee observed that this implication can be
reversed for a large class of topological vector spaces (including Banach spaces).
His approach was very elementary; namely, he showed that every convex
noncompact subset of a respective topological vector space contains a closed
homeomorphic copy of [0,1), called a (topological) ray. By (a little addition to)
the Tietze theorem, a ray R in a normal topological space X is a retract of X;
and since [0,1) lacks the fixed point property, so does the space X. (Let us point
out that, in a nonmetric case, even if one constructs a ray in a convex set C,
then C may not be normal and one cannot conclude that C lacks the fixed point
property.) Klee has asked a question of whether an arbitrary noncompact
convex subset C of a topological vector space E contains a ray (or lacks the
fixed point property). He specified that the case of metrizable E is of some
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interest. In such a case, we obviously can assume that E is a complete metric
linear space. Then, either C is not closed in E or C is completely metrizable. If
C is not closed in E then, it is easy to construct a ray “through” a sequence
{x»} = C that converges to a point x., € E\C. If C is completely metrizable,
then either C is locally compact or nonlocally compact; the locally compact case
has been solved by Klee (see 2.1). The case of infinite-dimensional, completely
metrizable, nonlocally compact C is treated in Proposition 3.1; we invoke
therein a certain general statement concerning approximation of maps into C, a
particular case of which yields the existence of a ray in C.

We also provide an answer to Klee’s question in case of a nonmetric space
E. In Example 4.1 we construct a convex, noncompact subset W (of a compact
convex set) in a locally convex topological vector space E such that W has the
fixed point property (and does not contain a ray). On the other hand, we
observe that every convex subset C (in an arbitrary topological vector space)
which is not totally bounded must both contain a ray and lack the fixed point
property.

It is reasonable to ask a more general question of whether a noncompact
metrizable space with a nice local structure contains a ray. In particular, of
whether a noncompact absolute retract contains a ray. In general, this is not the
case, as classical examples of the “broken comb” and the “hedgehog” spaces
show, see [C]. A special case of our Theorem 2.5 states that every absolute
retract space X which is either locally compact or not completely metrizable
contains a ray. For X which is not completely metrizable, the absolute retract
property can be relaxed to the LC%property. It is reasonable to ask the
following

1.1. QuUEsTION. Let X be a completely metrizable absolute retract without
the fixed point property. Does X contain a ray?

As far as we know, this question was tackled previously by S. Reich and
Y. Sternfeld in [RS] who obtained an affirmative answer for some “hedgehog’”’-
like spaces. More recently, V. Okhezin [O] has obtained some partial answer to
this question as well.

Our approach to construct a ray in a noncompact X is very elementary. We
simply find a completion X of (X,d), where d is some incomplete admissible
metric on X (observe that every noncompact space X admits an incomplete
metric d, see [E, 4.3.E(d)]). Having done this, we then conmstruct a Peano
continuum Y U {x}, where Y is a nonempty subset of X and x € X\X. Next,
there exists an arc a: [0,1] —» YU {x,} joining an element y € ¥ with x,. The
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restriction of a to [0,1) gives us a required closed embedding of [0,1) into X.
Observe that such an embedding will be uniformly continuous with respect to
the natural metrics on [0,1) and d. This however does not bear any restriction
because given any closed embedding p : [0,1) — X, we can apply the Hausdorff
metric extension theorem (see [E. p. 369]) to find a metric d on X, so that p will
be an isometric embedding. It is clear now that p will extend to an embedding
of [0,1] into X. Summarizing, a noncompact metrizable space X contains a ray if
and only if X admits an admissible incomplete metric 4 and a path p: [0,1] — X
such that p(¢) e X for every 0 <7< 1 and p(1) e X\X.

Here is how one can obtain such a path p for an LC%space X which is not
completely metrizable. We find a completely metrizable enlargement X of X
so that every path in X can be instantly homotopied to a path in X. Such an
enlargement X can be found for every LC® (or, locally contractible) space X
which is not completely metrizable; we additionally can require that X is LC®
(locally contractible) and that X \X is locally n-negligible in X (see Proposition
2.8). A corresponding result for absolute neighborhood retract spaces X was
previously obtained by Torunczyk in {Tor2].

2. LC'-spaces containing a ray

Let us start with the following observation due to Klee [K] which can be
also found in [C].

2.1. PROPOSITION. Every noncompact, connected, locally connected, locally
compact metrizable space contains a ray (and consequently, lacks the fixed point
property). O

The above fact admits the following reformulation.

2.2. PROPOSITION. Let X be a noncompact metrizable space. Then X
contains a ray if and only if X admits a completion X such that for some
X € X\X, and connected, locally connected, completely metrizable subspace Y of
X,

3

the space Y U {x} is locally connected.

Proor. Assume that X contains a ray R. Let 4 be a metric on the one-
point compactification of R. By the Hausdorff theorem on extending metrics
[E, p. 369], there exists an admissible metric on X whose restriction to R is d.
Now, clearly our condition is satisfied with ¥ = R.
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To show the converse statement observe that Y U{x,} is completely
metrizable, locally connected and connected. This yields that YU {x,} is path
connected; hence an argument from the Introduction works. 0O

The following abstraction of [Torl, Proposition 2.1] has been suggested to
us by H. Torunczyk.

2.3. PROPOSITION. Let X be a metrizable (resp., completely metrizable)
space and T be a set of pairs (U, V) of open subsets of X satisfying the following
properties:

(@) VU for every (U, V)eT

(b) for every x € X and every open neighborhood U of x there exists an open

neighborhood V <= U of x such that (U, V)e T,
(c) for every (U,V)e T and every open sets U, V' <X if Uc U and
V'CV then (U,V')ed.
Then there exists an admissible metric (resp., complete metric) d on X such that for
every x € X and r € (0,1) the pair of open balls (B;(x,r), B;(x,r/8)) belongs to T .

ProoF. By induction we will construct a sequence of admissible metrics d,
on X such that for every n e w and open set ¥ such that diamg,_, ¥V < 1 there
exists an open U such that (U,V)eJ and diamgU < (n+1)"'2-¢+) for
i=0,...,n

Let dy be any admissible metric (resp., complete metric) on X and suppose
that metrics d,...,d, have been defined. Let

U= {UX = (n] By (x, (n+1)"1270+) x e X}.
i=0
By (b), for every x € X we can find an open neighborhood V, of x such that
(Uy, Vi) € 7. From a result of Michael [Mi, p. 165] it follows that there exists an
admissible metric d,.; on X such that every set of d,,-diameter less than 1 is
contained in some set V.. Obviously, conditions (¢) guarantees that d,.; has the
required property.
We define the metric d by the formula

d(x,y) = Z min(d,(x, y),2~ D) forx,ye X.
n=0

If our initial metric dyp is complete then from the inequality d(x,y) >
min(dp(x,y),27") it follows that d is also complete. Fix x€ X and re (0,1).
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Let new be such that 2D <r <27 Since r/8 <2 ™) we have
By(x,7/8) < By,,(x,7/8) and therefore diamg,,,Bu(x,r/8) <2~ "*+2 < 1. By the
property of d,., we can find an open set U such that (U, By(x,r/8)) € J and
diamg U < (n+2)7'2=("*2) for i=0,...,n+ 1. Hence

e 0]
diamyU < (n+2)(n+2)7'27 2 + 3~ 270 = 270D <,
i=n+2
The above inequality shows that U < By(x,r) and by (c) we conclude that the
pair (By(x,r), Bs(x,r/8)) belongs to 7. O

2.4, CorOLLARY. Let X be a metrizable LC"-space, n € w. Then there exists
an admissible metric d on X such that for every x€ X and re(0,1) each
continuous map f : 0I**' — By(x,r/8) can be extended to a continuous map
F:I*' - By(x,r), 0 <k <n.

Proor. Apply 2.3 for the set I = {(U, V)|U and V are open subsets of X
such that every continuous map f : 7! — V' can be extended to a continuous
map F:I*'' - U,0<k<n}. [

2.5. THEOREM. Let X be a metrizable L.C%-space. If either X is noncompact,
connected and locally compact or X is not completely metrizable then X contains
a ray.

Proor. The locally compact case was settled in Proposition 2.1.

Assume that X is not completely metrizable. Then the metric d given by
Cor. 2.4 is not complete. Let (x,),., be a Cauchy sequence in (X,d) which
is not convergent. For every new we can find a path p,:[0,1] - X such
that p,(0) = xp, pn(1) = x,41 and diamgp,([0, 1]) < 20d(x,, X»41). One can easily
check that the set ¥ =], __ pa([0,1]) is closed in X, noncompact, connected,
locally connected and locally compact. By 2.1, Y contains a ray which is also a
closed subset of X. O

We see that a key ingredient in proving Theorem 2.5 was Proposition 2.3
which itself is an abstraction of [Torl, Proposition 2.1]. The latter fact has been
used by Toruniczyk (see [Torl, Proposition 2.2]) to show that every absolute
retract space X admits a so-called regular metric 4. The last means that
whenever (X,d) is isometrically (or more generally, uniformly) embedded onto
a closed subset of a metric space (Y,p), then there exists a retraction
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r:(Y,p) — (X,d) which is regular, i.e., for every ¢ > 0 there exists d > 0 such
that whenever dist,(x,X) < d, then d(r(x),x) <e This fact provides an
alternative proof of Theorem 2.5 for the case of noncompletely metrizable,
absolute retract space X as follows. Embed isometrically (X,d) as a closed
subset of a normed space (E, || - ||) (see [BP, p. 49]), and let r: (E, || - ||) — (X,d)
be a regular retraction. Since X is not completely metrizable, we can find a
piecewise linear map ¢:[0,1) — E with the nodes (i.e., the points of the set
{(2)|# is not affine at £} U {#(0)}) lying in X and with lim,,; ¢(¢) € X \X, where
X is the closure of X in the completion £ of E. Using the regularity of r, we can
construct ¢ in such a way that lim,; 7(#(¢)) = lim,_,; ¢(¢). This easily yields the
existence of a ray in r(¢([0,1))) € X (see the Introduction).

Observe that in the above argument we rather used the fact that (X, d) was
not complete, than X is not completely metrizable. Consequently, if X has the
fixed point property then any regular metric on X must be complete (otherwise,
X would contain a ray, contradicting the fixed point property). Since, for
completely metrizable X, the construction of [Torl] yields a complete regular
metric on X, it suggests that every regular metric on X must be complete. Here
is a simple counterexample.

2.6. ExampLE. The standard Euclidean metric on (0,1] is regular. (Let
(0,1] be a closed subset of a metric space (X,p), let U,=
U{B(1,(1/n) — 1)|0 < t < (1/n)} (here B(x,e) denotes the open ball at x and
radius ¢), and define inductively a retraction r:X — (0,1] as follows:
r(X\U) = {1}, r transforms the boundaries of U; and of U, onto {1} and
{1/2}, respectively, and the set U;\U, onto [1/2,1], and so on.) O

Having in mind Question 1.1, it is reasonable to ask

2.7. QuesTION. Let X be a completely metrizable absolute retract space
without the fixed point property. Does X admit an incomplete regular metric?

We now discuss a way of obtaining LC®-spaces which are not completely
metrizable by employing the following notion of local n-homotopy negligibility
due to Toruniczyk [Tor2]. A subset 4 of a metrizable space Y is locally n-
negligible, 0 <# < oo, if for every ye Y and for every neighborhood U of y,
there exists a neighborhood ¥V of y, ¥ < U, such that each map f(I*,aI*) —
(V,V\4) can be homotopied, via a homotopy (k) : (I*,dI¥) — (U, U\A),
0<r<1,toh sothat hy(I*) c U\A, 0 <k <n+1, see [Tor2]. Here by I° we
mean a fixed one-point set, and 0I° = f; k < n+ 1 means “O <k <n if n#
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and k € w if n = 0. Locally co-negligible sets are simply called locally negligible
sets. It can easily be shown (see [Tor2, Remark 2.5]) that whenever Y is an LC®-
space and A4 a locally 1-negligible subset of Y, then X = Y'\4 is an LC%space.
If additionally Y is completely metrizable and A is mot an F,-subset of Y, then
X is an LC%space which additionally is not completely metrizable.

Our Proposition 2.3 enables us to derive the following result on enlarging
incomplete LC"-spaces to complete ones.

2.8. PROPOSITION. Let Y be a metrizable space and let X be an LC"-space
(resp., X is an absolute neighborhood retract space) such that X = Y. Then X can
be enlarged to X < Y such that

(i) X is a Gj-subset of Y,

(i) X is an LC"-space (resp., X is an absolute neighborhood retract space),

(iti) X\X is locally n-negligible (resp., locally homotopy negligible) in X.
In addition, given a finite-dimensional polyhedron K, dim(K) < n+ 1, and a map
f: K — X, there exists a homotopy (h,) : K — X such that hy = f and h(K) < X
for t > 0.

The proof of the absolute neighborhood retract case of 2.8 has been
provided in [Tor2, Proposition 4.1]. Since then the fact has become very useful.
We hope that the cases of finite n or locally contractible X (treated in
Proposition 2.9 below) will also find their applications.

Here is how the case of » =0 can be applied to obtain a proof of 2.5 for
an LC%space which is not completely metrizable. Embed X in a completely
metrizable space ¥, and let X be an enlargement from 2.8. Then, by 2.8(i), X is
also completely metrizable and therefore X\X # ¢J. By the ‘addition’ part of
2.8, one can find a path A :[0,1] — X such that p((0,1]) = X and p(0) e X\ X.
Hence, X contains a ray.

ProorF oF 2.8. Let us first provide an argument for the case where X is an
absolute neighborhood retract space (more direct than that of [Tor2, Propo-
sition 4.1]). Embed Y as a closed linearly independent subset of a normed space
E (see [BP, p. 49]). Then X is a closed subset of Ey = span(X). Write r for a
retraction of an open subset Uy in E; onto X. Let U be an open set in E such
that UNEy = Uy. By the theorem of Lavrentiev, r can be extended to a map
#: Uy — Ey, where Uy « Uy = UNEy, Ey is the closure of Ey in the completion
of E and U, is a Gs-subset of UNE;. Let X ={ye YNTl#(y) = »}. Let
Uy = ?“(,\7 ). We see that Uy = Ej =« UNE,. Since E; is a linear subspace of
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Eo, Eg\Ey is locally homotopy negligible in E,. It follows that U N Ey\U (and
hence UNEy\U) is locally homotopy negligible in UN E,. Since UNEy is an
absolute neighborhood retract, by [Tor2, Theorem 3.1}, X is also an absolute
neighborhood retract. It is easy to see that (iii) holds.

Assume that X is an LC"-space. Denote by ¥ a completion of Y. Let d be
a metric on X satisfying the assertion of 2.4. By the Lavrientiev theorem, the
metric d can be extended to a Gs-subset ¥ of the closure of X in ¥. Now, it is
easy to see, that given y e Y, every map f : oI — B(y,6) N X extends to a map
f:I* - B(5,16e)N X for 0 <k < n+2. According to Eilenberg—Wilder ter-
minology (and used in [Tor2]), the set X is LC™ rel. ¥ at each point j € ¥. We
can now apply [Tor2, Theorem 2.8] to conclude that Y\X is locally n-
homotopy negligible, and that the ‘addition’ part of 2.8 holds with X being
replaced by Y.

Set ¥ = YN Y. We easily check that (i), (iii) and the ‘addition’ part of 2.8
hold for such X. It remains to show that X is an LC"-space. Pick % € X, a map
f:0I* = B(%,¢), 0 <k <n+2. By the ‘addition’ part, f/ can be homotopied
within B(%,¢) to a map f; : I — B(%,¢) N X. By the above property of d, fi can
be extended to a map I* — B(%,16¢) N X. This shows that f can be extended to
a map I¥ — B(%,16¢), hence % is an LC"space. [

2.9. PROPOSITION. Let X be a metrizable locally contractible space. Then X
can be enlarged to a completely metrizable space X such that

() X is locally contractible,

(ii) X\X is locally homotopy negligible in X.
In addition, given a finite-dimensional polyhedron K and a map f : K — X, there
exists a homotopy (h,): K — X such that hy =f and h(K) < X for t > 0.

ProOF. We use a similar construction as in the proof of 2.3. We will
construct an admissible metric d in X such for every x € X and r € (0, 1) the ball
By(x,7/8) can be contracted within the ball B;(x,r) by a homotopy which can
be extended to a homotopy contracting the corresponding ball in the completion
X of X with respect to d.

By induction we will construct sequences of admissible metrics d, on X,
locally finite open covers %, of X and families of homotopies 3, =
{hy : U x [0,1] = X|U € %,} satisfying the following conditions for every n € w:

(a) Y(U € Un)hy € 5, is a contraction of U in X,

(b) V(U € Un)V(i < n) diamg, hy(U x [0,1]) < (n+1)"1270+D),
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(€) VUeU )G <nNVeU)V(x,yec UNV)V(te[0,1])V(i < n)
di(hV(x7 t)>hV(y7 t)) < (n + 1)_12_(n+1)’

(d) every set of d,41-diameter less than 1 is contained in some set U € %,,.

We start the construction with any admissible metric dy on X. Using the
local contractibility of X we find %y and #, in order to satisfy (a) and (b).
Suppose that metrics dj, ..., d,, covers %y,...,%,—1 and families 5#,..., # 1
have been constructed for n > 1. Again using the local contractibility of X one
can easily find a locally finite open cover %, and a family of homotopies #,
satisfying (a) and (b). Since the covers %y,..., %1 are locally finite, we can
additionally assure (c). Finally, a metric d,; can be obtained from the result of
Michael [Mi, p. 165].

We define a metric d by the formula

d(x,y) = Z min(d,(x,y),2~ ") forx,ye X.
n=0

Let X be the completion of X with respect to the metric d. Fix x € X and
re (0,1). We will show that the ball B,(x,r/8) can be contracted within the ball
By(x,r). Let n € w be such that 2-"*1) < r < 27" We take x’ € X and s < 2~("+3)
such that By(x,r/8) < By(¥,s). Since s<2 "3 we have By(¥,s)NX <
By, ,(¥,s)NX and therefore diamg,_,B;(x,s) N X < 22 < 1. By the property
(d) of dyi2, we can find an open set U € %, such that By(x/,s)NX < U. Let
C([0,1], X) denotes the space of continuous maps from [0,1] into X equipped
with the standard (complete) supremum metric. We will check that the map
g: U — C([0,1],X) defined by

g(u)(t) = hy(u,t) forue Uandte[0,1]

is uniformly continuous (in fact, Lipschitz). Let y,ze U be such that
d(y,z) <2=®+2_ for k > n+ 1. Then di,1(y,z) < 1 and (d) implies that y,ze V
for some V € Uy. From (c) it follows that dy(hy(y, 1), hu(z, 1)) < (k+ 1) 712~k
for every t€[0,1] and i < k. Therefore

d(hu(y,0),hy(z,0) < (k+ 1)k + 172760 4 S~ 270+ — 5k,
i=k+1

This means that the distance between g(y) and g(z) is less than or equal 27%.
Consequently, the map ¢ can be extended to a continuous map
G:ClyU — C([0,1],X). Obviously, By(x,r/8) < ClzU and the homotopy
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H : By(x,r/8) x [0,1] — X defined by
H(y,t) = G(y)(t) forye By(x,r/8)and e |0,1]

is a contraction of By(x,7/8) in X. Using the condition (b) one can easily
calculate that diamyH(Bs(x,r/8) x [0,1]) < 2-™) <r hence H(By(x,r/8) x
[0,1]) = Ba(x,r). Property (ii) and the ‘addition’ part of 2.9 can be verified in the
same way as in the proof of 2.8. O

We do not know whether or not Proposition 2.9 holds in a version of 2.8.
Such a version can be obtained if the answer to the following question is
affirmative.

2.10. QUESTION. Let A4 be a locally homotopy negligible subset of a locally
contractible space X. Is X'\ 4 locally contractible?

Note that the complement X \ 4 enjoys the following strong version of the
LC®-property: For every xe X\A4 and neighborhood U of x there exists a
neighborhood V of x, ¥V < U, such that spheres of all dimensions in ¥ are
contractible in U. Aiming at a negative answer to 2.10, it follows from [Tor2,
Theorem 3.1] that X cannot be an absolute neighborhood retract. Let us
consider the example of Borsuk of a compactum X = XU UZ';IX,: which is
locally contractible but not an absolute neighborhood retract; we employ the
notation of [Bor, p. 125]. It is easy to see that the identity map on X can be
arbitrarily closely approximated by maps (even retractions) into Uzo:lX -
Hence, X, is locally homotopy negligible in X. (Since U;O=1X ¢ is locally finite
dimensional and locally contractible, it is an absolute neighborhood retract; this
provides another counterexample to the converse implication of [Tor2, Theorem
3.1].) For an arbitrary subset 4 of X;, form the space Y, =AUUZ°:1X,:.
Clearly, 4 is locally homotopy negligible in Y. Yet, it can be shown that Y, is
locally contractible as well, and hence Y, cannot serve as a suitable solution
to 2.10.

3. Convex sets which lack the fixed point property

First we show that every noncompact convex subset C of a metric linear
space lacks the fixed point property. As said in the Introduction, it is enough to
settle the case of an infinite-dimensional, nonlocally compact closed subset C in
a complete metric linear space E.
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3.1. PrROPOSITION. Let C be a nonlocally compact closed convex subset of a
separable completely metrizable linear space E. Then, every map of a separable,
completely metrizable, finite-dimensional space M into C can be strongly
approximated by a closed embedding.

Proor. By [DT] and [D], the space C enjoys the so-called strong
approximation property, i.e., given an open cover % of C, every map
@, xI" — C can be %-approximated by a map g so that {g(I™)},>, forms a
discrete family in C. Next, since C is locally contractible, and hence, is LC"
for every n, our statement can be obtained by inspecting reasonings of [Tor3,
p. 255], see also [Bol, p. 127] and [Bo2, p.10]. O

3.2. RemMARk. In 3.1, M can be replaced by an arbitrary separable,
completely metrizable absolute neighborhood space. (Apply the approach of
[Tor3, p. 255].) O

A discussion from the Introduction and the statement of 3.1 yield the
following answer to a question of Klee [K].

3.3. COROLLARY. Every noncompact convex subset of a metric linear space
contains a ray, and therefore fails the fixed point property. O

Let us recall that a subset 4 of a topological vector space E is said to be
totally bounded, if for every neighborhood U of 0 in E there are x1,x3,...x, € E
such that 4 < (L x;+ U.

3.4. THEOREM. Let C be a convex subset of a topological vector space E. If
C is not totally bounded, then C contains a ray and does not have the fixed point

property.

ProOF. We can assume (see [KN, p. 50]) that E = [], E,, where each E, is
a complete metric linear space. Let 7, : E — E, be the projection. If each r,(C)
is compact, then C, as a subset of the compact set [], n,(C), would be totally
bounded. Consequently, there exists o such that C, = n,(C) is a noncompact,
convex subset of the metric linear space (E,,|-|,). By 3.3, there exists a closed
embedding p:[0,1) — C,. We may assume that p is piecewise linear.

To see this first we approximate p by a piecewise linear map p’ : [0,1) — C,
in a following way. We construct piecewise linear maps p/: [l —27",
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1-2"1 = C, n=0,1,..., so that |p(z) — p, ()|, <27 for every 1-27" <
t<1-2"1 The map p’ is defined as the union of py,p},.... Using the fact
that p is closed and the approximation property of p’ one can easily see that the
image p'([0,1)), a closed subset of C,, is a noncompact, connected, locally
compact LC%space. Therefore, by 2.5 we can find a closed embedding
p":[0,1) = p'([0,1)). Since p’([0,1]) is a union of a locally finite family of
segments we may assume that p” is piecewise linear.

Now, we take the increasing sequence {#,}, 0 < #, < 1, lim¢, = 1 such that p
is affine on each subinterval [t,,#,.1]. Put x, = p(#,). We claim that p can be
‘lifted’ to a map ¢:[0,1) — C, that is, we have m,g = p. To arrange that, pick
Yn € n;‘{x,,} NC. Let g be an affine map on each [t,, t,41] joining y, with yy41.
Clearly, ¢ is continuous and m,q = p since 7, is linear. It follows that ¢ is a
closed embedding.

Let us now show that C fails to have the fixed point property. We simply
will exhibit a retraction r: C — R, where R = ¢([0,1)). Write ¥ : C, — p([0,1))
for a retraction (C, is metrizable!). By our construction, m,|R is a homeo-
morphism of R onto p([0,1)). Let s be the inverse of m,|R. It is clear that
r=srm, is a required retraction. O

4. A noncompact convex set with the fixed point property

In Example 4.1 below we will show that Theorem 3.4 cannot be extended to
all totally bounded noncompact convex sets C in topological vector spaces E. In
view of 3.3, C must be nonmetric. Surprisingly, a suitable C can be found in a
locally convex space E. This provides a negative answer to a question of Klee
K, p. 32].

4.1. ExampLE. There exists a locally convex topological vector space E
and a noncompact convex subset W of E which has the fixed point property.

Let K = w; + 1 be the compact space of all ordinals < w; with the order
topology. Consider the Banach space C(K). Let E = C(K)" be the dual of C(K)
equipped with the weak* topology. The space E can be identified with the space
of all regular Borel measures on K. Since K is scattered (i.e. does not contain
any dense-in-itself subset) every measure p € E is purely atomic (has countable
support supp(u)), see [R].

Let C be the subspace of E consisting of probability measures and let
W = {u e Clsupp(i) € on}. (Clearly, W is dense in C, and since C is compact,
W is totally bounded.)
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4.2. LeMMA. The space W has the fixed point property.

ProofF. Let f: W — W be a continuous map. For every o < w;, let
W, = {ue W|supp(u) < [0,«]}. The convex set W,, regarded as a subspace of
all probability measures in the dual space C([0,«])* with the weak* topology, is
closed, and therefore, W, is compact. Since the compact space [0,«] is met-
rizable, C([0,«]) is separable and therefore the weak* topology in C([0,«])" and
W, is metrizable. For infinite « the space W, is infinite-dimensional and by
Keller’'s Theorem (see [BP]) is homeomorphic to the Hilbert cube I¢.

We will show that for some infinite « < w; we have f(W,) = W,. Therefore
f|Wy (and f) has a fixed point.

By induction we construct a strictly increasing sequence of countable
ordinals (as),., such that f(W, )< W, . Let ap=0 and suppose that
oo, . .., 0, have been defined. Since W,, is separable and every countable subset
of W is contained in W,, for some o < w; we can find a,.1 < w; such that
Wepi
sup{a,|n € w}. The set ), _.
therefore f(W,) = W,. O

contains f(W,,). We may assume that a,,; > o,. Now, we take o=
W, is dense in W, and f({),. . Wa) S U, ., War

new

4.3. REMARK. Since every closed separable subset of W is compact, W
does not contain a ray. This also follows from Lemma 4.3 and the following
property of W.

4.4. LemMA. The space W is normal.

PrROOF. By normality of the compact space C it is enough to prove that
disjoint closed subsets 4, B of W have disjoint closures in C. Assume, to the
contrary, that there exists pe ClcANClcB. Let o < w; be such supp(u) =
a+1U{w}. Let {fy|n € o} be the norm dense subset of {f € C(w; + 1)|f(B) =0
for any f > a}. Define open sets

Uy = {veCIV(iSn)(Uf,-dv—indu’ <$>}

Then for every ve (,., Us and every B < a we have v(8) = u(B). For f < w; let
gp be the characteristic function of the interval (f,w;] = [+ 1, w;]. The function
gp 1s continuous on w; + 1. Now, define by induction the increasing sequence §,
and measures v, in the following way:
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We set f, = « + 1. Suppose that f, and v for k < n have been defined. We
take the following neighborhood of u:

<

1
e

If n is even then take v, € ANV,; if n is odd then we choose v, e BNV,
Finally, we define B,,, = sup(supp(vx)).
Let f=sup B, and let the measure ve W be defined by:

#(7) fory <a
v(y) = { p(w)  fory=4p

0 otherwise

V, = {ve Clve U, and

J gp,4v — J gp,du

Let f e C(wy +1). Since v, € U, it follows that f[o,a] fav,— .[[0,:1] fdv. Also
va([0, &) — p([0,0]) = v([0, «]). We have

(B B) = V(B 1)) = jgﬂn dvy — j gp, diu = (1) = v(B).

Therefore v,((, B,]), va((B, ®1]) — 0. By continuity of f at f it also follows that
j(ﬁ g dm— Jig. 5 f @v =75 (B)v(B). Now we can evaluate that

j S dm= J 0a? O J wn? j o’ T J o "
= j[o’a] Jadv0+1(BE)+0= | fav

This shows that lim,v,=v in W. Therefore ve ANB contradicting our
assumption on sets A, B. O

Let us present another example of a noncompact convex set with the fixed
point property; this example has been suggested to us by Roman Pol.

4.5. ExampLE. Let S be the Z-product of intervals [0,1] in R, i.e.
S = {(x4) € [0, 1]”"|[{e < w1|x4 # 0} is countable} = R”".

The set S is a noncompact convex subset of the locally convex space R”' and S
has the fixed point property.

The fixed point property of S can be proved in a similar way as for the set
W of Example 4.1. Namely, let f: S — S be a continuous map and let
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Sy = {(xa) € S|xg = 0 for f > «}. Using the same argument as in the proof of
Lemma 4.2 one can find an infinite o such that f(S«) =S, (here again we
employ the fact that every countable subset of S is contained in Sp for some
B < w1). Since S, can be identified with the Hilbert cube [0,1])%, f has a fixed
point in S,.

By [E, 2.7.14] the space S is also normal.
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