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ON HYPOELLIPTICITY FOR A CLASS OF
PSEUDO-DIFFERENTIAL OPERATORS

By

Nobuo NAKAZAWA

1. Introduction and Results

We shall study hypoellipticity for a class of pseudo-differential operators
which includes the operator —a(x)A+1 with a(x) >0 as a typical example.
We shall use the Weyl symbols and the Weyl calculus in this paper. For the
Weyl calculus we refer to Hormander [2]. Let p(x,&) e S™(= S/ (R™)), ie.,
|pE;))(x, &) < (?M;(é)’”_‘“' for (x,¢&) e R*" and any multi-indices « and f, where

= (XX €RY, E= (G E) R (O =1+ E7, €= XL 151
piy(x.&) = 82DEp(x,&) and Dy = (Di,...,D,) = =idy = —i(8/0x1,....0/0x,).
We define for ue ¥

xX+y .

,g)wyww>d¢

Pu=p"(x,D)u= (2r)™" J (J'e"‘-*‘--")-fp(

where x-¢&=x& + - +x,6, and & denotes the Schwartz space of rapidly
decreasing functions on R”. We call the symbol p(x, &) the Weyl symbol of P and
write o,(P)(x,&) = p(x,&). For pseudo-differential operators we also refer to
Kumano-go [5] and Shubin [7].

For simplicity we denote p"(x, D) and a,.(P)(x,&) by p(x, D) and a(P)(x,&)
respectively, in this paper.

DeFINITION 1.1. Let x" € R". We say that P is hypoelliptic at x° if there
exists a neighborhood U of x° such that
U Nsing supp Pu = UNsingsuppu  for ue H_,,

where singsuppu denotes the singular support of u, H_, = US H; and H; denotes
the Sobolev space of order s e R.
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We impose the following conditions on p(x, &):
(A-0) The symbol p(x,&) can be written in the form
p(x, é) - pm(x7 é) +Pm—1 (x7 6) +pm—2(xa 5) +me3(X, 6)*

where pn_j(x,&) € S”7 (0 <j <3) and p,_;(x,&) is homogeneous of degree
m—jin & for |£|>1 (0 <j<2).

(A-1) There exist a neighborhood U of 0 in R" and C > 0 such that
s(x, 6) = pm(x, é) + Rer—l(xa é) + Repm—Z(xa é) = _C<é>mV3
for (x,&) e U x R".

(A-2) There exist a neighborhood U of 0, constants ¢y > 0 and Cy € R such
that

Re(p(x, D)u,u) = cofltlpys-y — Collullas
for ue CF(U), where (u,v) = [u(x)v(x)dx and [Jul|, = ((D>*u, (D)>*u)'/>.
(A-3) There exist a neighborhood U of 0 and r € Z with 0 < r < n such that
Pm(x, &) #0 if xeU, |¢ =1 and x' = (x1,...,x,) #0,
where we consider x’ =0 if r = 0.

(A-4) There exists a neighborhood U of 0 such that for any v > 0 there is a
constant C, > 0 satisfying

n

(i) | l% 2(log<¢>>'“‘ Pl (x, OIE M < vs(x, &) + CEY™,
a|+|p|=
o'=0

n

(i) log{&Impm-1(x, )K"+ D (logl&)Imp, 4 (x, )&
Py
< ws(x, &) 4+ CKEY™?
if xeU and [£] > 1, where o' = (ay,..., ).
We note that (A-3) is always valid if » = 0. Now we can state our main

theorem.

THEOREM 1.2.  Under (A-0)—(A-4), p(x, D) is hypoelliptic at x = 0.
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Now we mention several known results relating to the above theorem.

REesuLT 1. Hérmander [1] constructed a local parametrix at 0 of the
operator

Ly = a(x)(=8)" + (~A)",
where m,m’ e Z, (= NU{0}) and m > m’, under the following conditions:
(B-1) a(x) e C* and a(x) > 0.
(B-2) In a neighborhood of 0
|D{a(x)| < Mga(x)"™"" (1 -1 2 0,0 < v < {2(m — m")} ).
Therefore, L; is hypoelliptic at 0 under the above conditions.

RESULT 2. Katsuta [4] showed that the existence of a local parametrix at 0
of the operator

Ly = —a(x)A + 1,
when L, satisfies (B-1) and the following condition:

(B-3) There exist a neighborhood U of 0, 6 € R with 0 <6 < 1 /2 and M >0
such that

0ya(x)] < Ma(x)'*" (xe U,1<j<n).

Consequently L, is hypoelliptic at 0 under (B-1) and (B-3).

REsULT 3. We showed in [6] that L; is hypoelliptic at 0 under (B-1) and the
condition

(B-4) there exists a neighborhood U of 0 such that Ora(x)=0 if xe U,
a(x) =0 and |« = 2.

Concerning the above results, it is easy to see that (B-2) implies (B-3) and
that (B-3) does (B-4) under the assumption (B-1). Furthermore, if L, satisfies
(B-1) and (B-4), then L, satisfies (A-0)—(A-4). This follows from Propositions 4.1
and 4.2 in Section 4 (see Section 4).

In addition, (A-1) and (A-2) are satisfied if the following conditions are
satisfied (see Proposition 4.1 below):
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(A-1)" there exists a neighborhood U of 0 such that

pm(-x7 g) > O, Repmvl(-\l é) = 07 Rer—z(V’Q é) > 0
for xe U and [{| = 1.

(A<2) P (0,€) =0 for any & e R" with [¢| =1 and fe Z" with || <2 if
pm(0,E%) =0 for some &% e R" with |&°] = L.

The plan of this paper is as follows. In Section 2, we give a general criterion
of hypoellipticity which is a simple variant of criteria given in Kajitani and
Wakabayashi [3] and Wakabayashi and Suzuki [8]. We also reduce the operator
p(x,D) € S to p(x,D) € S?. In Sectition 3, we complete the proof of Theorem
1.2. Finally in Sectition 4, we give some remarks and examples.

The author wishes to thank Professors S. Wakabayashi and M. Suzuki for
their valuable advice and encourgement.

2. Preliminaries

In this section, we shall give propositions for the proof of Theorem 1.2
and reduce the problem for p(x,D) to the problem for p(x,D)=
<D>—m/2+1p(x’ D)<D>_m/2+1.

First we assume that p(x,&) e S” and that p(x,&) satisfies (A-3). Let
x% = (0,x") e U, and choose ¢(x") e CS(R"") so that

o 02 L On
sy = [ X3P (= < ),
2 (1)(" _ x0/1| > 2)’

where x” = (x,41,...,%,) € R"". Here we consider x = 0 and ¢(x") =0 if r = n.
Define

A(x", &) = As(x", & 5,a,N)
= (=s+ ap(x")) log¢¢> + Nlog(1 +31]*),
pa(x, D) = (e )(x", D)p(x, D)(e")(x", D).
The following proposition is essentially due to Kajitani and Wakabayashi (3]

and Wakabayashi and Suzuki [8].

PROPOSITION 2.1. Assume that there exist a neighborhood U, of x°,
h,h,l5€R, ag >0, Ny, so€ R and y(x') € Cy (R") satisfying x(x') =1 near 0 so
that for any a > ap, N > Ny, s > sq there are constants 6y > 0 and C > 0 such that
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llull, < Clpalx, Dyully, + llully -y + 11 = 2ully,), (2.1)

Jor ue Ci-(Up) if 0 <6 <. Here we consider y(x') =1 if r = 0. Then p(x, D) is
hypoelliptic at x° namely, x° ¢ singsuppu if ue H_, and x° ¢ singsupp p(x, D)u.

Proor. Let ue H_. . Then there exists a constant s’ € R such that ue Hy.
Assume that x° ¢ singsuppp(x, D)u. For simplicity we assume that r <n—1.
Then there is a neighborhood U, = U{ x U/" of x° such that

Uc cUNUN{x=(x,x")eR"|x" - x| <1},
sing supp p(x, D)uN U, = 0.

where 4 « = B means that 4 is compact and included in the interior of B.
Choose a neighborhood U, = U; x Uy of x° W(x')e Cy(U|) and ¥ (x") e
Cy(U/") so that
UccU,
¥, (x)=1 in U,
Y (x"y=1 in U,.

Here we consider W;(x’) =1 if r = 0. Then there is a positive constant & such
that

p(x") = |x" = x| =2 for x" e U'\U;.
Fix 7> s and choose a >0, N, se R so that a > ay, N = Ny, s = 5o and

2ae —s=h+m—1—5,
1<l +5— ae, (2.2)
2N > s —s" +max{lj — 1, +m, 15}

It follows from the symbol calculus that there exists a symbol g(x”,¢)
(= q(x",&6)) € C([0,1]; S°) satistying

(e™)(x",D)(e ) (x",D)g(x",D) — I € S~ uniformly in 6 € [0,1]. (2.3)
We have
p(x, D)(F1(x")Wa(x")u(x))
=¥ (x")¥P2(x")p(x, D)u(x) + [p(x, D), ¥1(x") o (x")u(x),  (2.4)

where [4,B] = AB — BA. Operating (e ~*)(x", D) to the both sides of (2.4) we
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have
Pa(x, D)(e ) (x", D)g(x", D)(¥1(x')¥a(x")u(x))
= (e"M)(x", D) (¥1(x')¥2(x")p(x, D)u(x))
+ (€M (", D)([p(x, D), Wi (x)¥a(x")]u(x))
+ (€M) (", D)p(x, D)((e*)(x", D)e ™ (x", D)g(x", D) — I)
X (F1(x") W2 (x" Ju(x))
=h+h+/6
Put v; = (e7*)(x", D)q(x", D)(¥1(x')¥2(x")u(x)). Then we have
pa(x, D)vs(x) = fi + 1o + f.
Since W1 (x")¥2(x")p(x, D)u(x) € H,, there is a constant C such that
Ifill, <C for 0 <6< 1.
Here and after the constants do not depend on ¢ unless stated. By (2.3) we have
IAll, <C for 0<s<1.
As for f, we know that
[p(x, D), W1 (x) ¥ (x")]u(x)
= [p(x, D), W1 ()2 (x"Ju(x) + ¥1 (x) [p(x, D), ¥ (x")u(x),
and
supp a([p(x, D), ¥1(x")|¥2(x")) = = (U}\Uj) x U x R" mod S~
supp a(¥1(x")[p(x, D), ¥2(x")]) = = U{ x (U\U}) x R"mod S~
In virtue of (A-3), we have
ue C* in (U\U;) x U/
Therefore there exists a constant C such that
(e (x", D)[p(x, D), ¥ 1 (x")[¥2(x")ull, <C for 0 <5< 1.
For x" e U\U}

e A" < (Y2 for 0 <o < 1.
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Then by (2.2) we obtain, with some C > 0,
H(e"‘)(x”,D)‘I‘l(x’)[p(x, D),‘I’z(x’)]uH,2 <C for0<d<l.
Therefore there is a constant C such that

172

L, <C for0<d<1.
Hence, we have
[pa(x,D)vsll;, < C for 0 <6< 1.
Let ¥ e Cj*(Uy) satisfy
¥(x)=1 in U,

Then

lpa(x, D)(¥ (x)vs(x))]l;,, < C for 0 <d < 1.
If 0 <d<1 then

Y (x)05(x) € Hy—s08 < Humax{t 1,11, 1} -

Therefore by using an inequality (2.1) with u = Wu;, we have

I¥vslly, < Clllpalx, DYWrslly, + [[Poslly -y + (1= x(x")Ps

|13)7
for 0 <46 <dp. Since W(x')¥(x")u(x) belongs to C* in {x’' # 0}, we have
(1= x(x")Pusll;, < C" for 0<6<1

with some C’ > 0. We can find a constant C” so that

1 "
Cll¥oslly 1 < 51wl + C"ul

o
Then we obtain, with another constant C,

[Posll, < C for 0 < <.
Therefore, we have

lvsll;, < C for 0 <& <y,

modifying C if necessary. This means that {vs} is bounded in a Hilbert space Hy,.
So we can see that there exists a subsequence which converges weakly in Hj,.
Therefore we have

vo = (e7)(x", D)g(x", D; 0)¥; (x") ¥ (x" )u(x) € Hy.
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Let Us(c < U,) be a neighborhood of 0 satisfying

p(x") <& for xe Us.
Then
MY < (T < (N
for x € Us. Since (e™)(x”, D)vg — ¥ 1(x")¥W2(x")u(x) € H.., we have
u(xye H* in Us,
which implies that

x" ¢ sing supp u.
This completes the proof of Proposition 2.1. O
Next, we shall give the reduction as mentioned before. In addition to (A-3),
we assume that p(x,¢) satisfies (A-0)—(A-2) and (A-4). Put
5(x,D) = (DY~ p(x, DYDY "/,
ar(x,8) = <O " pn(x,9),
a1(x, &) = (& Py (x,€),

1< >
ap(x, &) = <& ppa(x,&) - 1 D (85,06,KET Y (0 O (x, £))EY T

Jok=1

1 & ) |
T4 D0 (0K Ty (3, ) (0,

jk=1

and
a(x,&) = ar(x, &) + a1 (x,&) + ap(x, &),

b(x,&) =p(x,&) —a(x, ).
Then we have a(x,&) € S?, b(x,&) € S7! and
p(x,D) = a(x,D) + b(x, D).

Since (D) is elliptic, p(x, D) is hypoelliptic at 0 if p(x, D) is hypoelliptic at O.
By (A-4) there is a constant C’ such that

Rea(x, &) > (&7 (S(X» H-c Z {rs(x, ) + Cv<f>'”_3})»

Jok=1

> (ETH(1 = C')s(x, &) = C'CKE™ Y
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if v>0 and xe U. We choose v >0 so that C'v <1/2. Then we have
Rea(x,&) = $<&™ s(x, &) — €&

By virtue of (A-1), we see that a(x,¢) satisfies the following:

(A-1) There exist a neighborhood U of 0 and a constant C such that

Rea(x,&) > —C(&E™ (xe V).

By the deﬁnitién of a(x,&), we have for ue C§*(U)

Re(a(x, D)u,u) = Re(<DY>™"/*p(x, D){DY "> u, u) — Re(b(x, D)u,u)
= Re(p(x, DDy, (DY ) — Re(b(x, D)u,u).  (2.5)

Let U; be a neighborhood of 0 satisfying U; < < U, and choose y € Cj*(U) so
that y(x) = 1 near U). Then for each s there exists C; >0 such that

(1= )<DY™ " ully < Collull_y  for ue C§F (Ur).
Assume that ue Cy(U;), and put v = y(DY"/?*1y. Then we have
Re(a(x, D)u,u) = Re(p(x, D)u, ) — Re(b(x, D)uyu) — C(lull®y + ol2-)

2 2 2
2 COHUH;/Z——I = C'([[ullZy 2 + lolly2-2)

co 2 —mj2+1, 12 2
2 5 llullg = coll (=)D a5 oy — CrullZy )

v

€0 2 y 2
5””“0 - C(]H”H_l/2~

Therefore the following condition is satisfied:

(A-Z) There exist a neighborhood U, of 0 and constants ¢y > 0 and Cj such
that

Re(a(x. D)u.u) = 3 [lully = Collul2, o for ue G5 (V).
By (A-3) we see that
(A-3) there exists a neighborhood U of 0 such that
ad(x,&) #0 if x=(x',x")eU, |&=1 and x' #0,
where

ad(x, &) = |E 7" P p(x, &) for [¢] = 1.
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Next we consider (A-4). Let |«|+|f] =2 and «’ = 0. Then
(log<&») ™ alf) (x, &)<y
= (log¢&») ™ |82(<EY ™™ 2P (x, ))[<E M
< <:>—'"+2<log<é>)'“’p£:(,, (x, &)<y

p> i (10802 &7 ply) (x, K

o +oc =
al>0
< WETs(x, &) + CXEY T+ Cr(10g<E) N P, E)EY 2
+ Ca(10g<ED) P pm(x, E)|KEY™ (2.6)

if v>0, where C; and C, are some positive constants. Note that

(08¢ /P, )Y ™2 = \ P, E)CEY " 2(EY " (log(E))

(P (3, E)CEY™™E 1 (E) 72 (log( &)™)

l\)\'— l\.JI»—l

s(x, E)(EYT™HE L ClEyTIHE

<

+3 (O #(10g<e)™

for ¢ > 0. Let ¢ =1/3. Then we have

(10g<EN ™/ pm(x, E)CEY™? < (x EEYTE 4 ey

Therefore for any v > 0 there are constants C, and C/ such that

(log<&») ™ a5 (%, )< < ws(x, &)<Ey ™2 + &y~
< 2vRea(x, &) + CI(ETA
Similarly we can deal with (ii) in (A-4). Then we have the following:

(A-4) There is a constant C, > 0 such that

M) Y (log<&nMaly (x, KM < vRea(x, &) + C(EYT,
o]+ [B=2
o' =0
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(ii) > (log<&)imalf) (x,&)[<E> W < vRea(x.&) + €,y

lo+18=1
a’=0

if xeU.

Therefore, in order to prove Theorem 1.2 it suffices to show that p(x,D) is
hypoelliptic at 0 under (A-l)—(A—4).

We need a simple variant of the Fefferman-Phong inequality to prove
Theorem 1.2.

PROPOSITION 2.2. Let g(x,&) € S? satisfy
4, < Cup& ™ for (x,¢) € R” x R”.

Let U and U, be open sets in R" satisfying Uy < = U. If q(x,&) >0 for xe U,
then there exists a constant C = C({C. 3}, U, Uy) such that

(ax, D),u) = ~Clull} for ue G (Uy). (2.7)

PrOOF.  We choose a cut-off function y € C*(R") so that

x(x) =1 in a neighborhood of Uj.
Then

(q(x’ D)uv u) = (;((x)q(x, D)ua u) + ((1 - X(x))q(x, D)u7 u)'

Since x(x)q(x,&) =0, we can apply the Fefferman-Phong inequality. So there
exists a constant C such that

(x(x)q(x, Dyu,u) = = Cllullg  for ue C(Uy).
On the other hand,
(1 = x(x)q(x, D)u,u) =0 for ue CL(Uy)

since y =1 in a neighborhood of U, and u e C5(Ur). Therefore we obtain the
estimate (2.7). 0
3. Proof of Theorem 1.2

In this section, we shall show that p(x,D) is hypoelliptic at 0 applying
Proposition 2.1. Put

Pa(x, D) = (e7™)(x", D)p(x, D)(e*)(x", D).

Then we can write
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Pa(x, ) = e M Va(x, &) + b(x, &))"

=a(x, &)+ b(x, &) + i{A,a}(x, &) — 1(Hessa)( Hy)

+ Z yulhe = Agg Ay, )aé, (x,¢)

]k r+1

) ZZ ga Ny — Ao A )ay (x,€)

j 1 k=r+1

+ = Z{AC] Ay Ya(x, &)+ r(x, &),
j =r+1
where a(x, E)tb(x, &) = a(a(x, D)b(x, D))(x, &), {a,b}(x, &) = > idag (x, &by (x, &)
— ay(x,0)be (x,£)}, (Hessa)(x,&) stands for the Hessian matrix of a(x,¢),
(Hess a)(dz) =" oz(Hess a)(x, &)z, Hp does the Hamilton vector field of A(x, &),
Ay (x,8)=(0/0x))A(x, &), Ay, (x, 5)262/(@xj6xk)A(x,f) and r(x,&)e() S '
Let

e>0

= (Rea)(x,D) + Co{D> ",

where Cy is the constant in (A-2). Let U and U, be neighborhoods of 0 which
appeared in (A-1)—(A-4). We may assume that U; = = U. Then by (A-2) we have

(Au,u) > %Hu”é for ue CF(Uy). (3.1)

Further, we have

Re(pp(x, D)u,u) > (Au,u) — Cllullfm

- Z I(OP({A¢, Ay, Yaz)u, u))|

j r+1

Z Z ‘Op /SI\ A&,xk ) \)u u)|

]1k1+1

1 n
~5 Y 10P(Agn Ay = Ay A )ag Ju, u)

Jiok=r+1

'(Op({A Ima1}+ (Hessa)(— HA))u,u>

1,1 1
= (du,u) — Cllull®y ;s — 51 — 5 12

g3k =35 L, (3.2)
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where Op(g) denotes the pseudo-differential operator with the Weyl symbol
q(x, &).

As for I, Schwarz’ inequality shows that
|(Au, v)| < (Au,u)"*(Av,v)'"?

for u,ve G- (Uy). Let ue Cy*(U)). Since {As, A} €S2 (¢>0), we obtain

L< Y |(Au, Op({Ae, Ay Dl + Cliul|?, 4

j=rt1
< C(u, ) Plull_ypy + Cllull? 4. (33)
Therefore for any v > 0 there is a constant C, such that
I < v(du,u) + Collul2 4

Next we estimate /. We can see that

L<CY Y I0p(&™ Reay)ullgliul _y 2,

J=1 k=r+1
and
lOp(¢¢>~" Reay )ulls = (Op(<&) ™' Rea,) Op(¢&) ™" Reay Ju, u).
Set
c(x,8) = (<& Reay (x, )< ' Reay (x,£)).
We have

c(x,8) = (& (Reay (x,9)” +ri(x, ),
where r(x,¢) € S°. We choose a constant C so that
Rea(x,&) + CEY™ =0 for xe U,
that is, C is just the same appeared in (A-1). We write
c(x,&) = <& H(Rea(x,&) + €& ) 12 4 n(x,8).
Therefore
le(x,&)] < C'"(Rea(x,&) +1) (xeU).

So we obtain
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C'Rea(x,&)+1) + ¢(x,&) =0 (xe U).
Applying Proposition 2.2 we have
((C'Op(Rea) + c(x, D))u,u) = —Cllullj.
This shows that
|(e(x, DYu, u)| < C'(Au,u) + Cllull5.
So we have
D < v((Au, ) + ullg) + Gl - (3.4)

As for I3, we have

K<C Y [Op(Reas ulylul
Jyle=r+1

Let

¢(x, &) = (Reag,(x,8))f(Reag (x,£)).
Then

&(x,&) = (Reag, (x,€))* + ra(x,¢)
= {(Rea(x,&) + €O} +13(x,9),
where r(x, &), rj(x,&) € S® and the constant C is as in (A-1). Therefore we have
&(x,8)] < C'(Rea(x,&) + 1) (xe ),

for some C’. This gives

Iy < v(Au,) + ) + Cllull (3.5)
Choose W(&) € C*(R") so that

(1 (el =2
T@‘{o (e <1

~—

>

~—

For 0 <v <1 we put

qF(x,&) = (vRe a(x, &)+ C(&E T+ %{A,Imal} + %(Hessa)(—H@)‘P(své)

where the s, satisfy 0 <s, <1 and are determined later. By virtue of (A-4) we



On hypoellipticity for a class of pseudo-differential operators 271

can choose C, so that
gE(x,6)20 (xeU).

Therefore we have

3/2
2 . Sy
505 (x,€)] < <> (ca,,g 4O Ct—C, ,;)

14

1
Now we choose s, so that Cvsf <1, —sf,/z < 1. Then
v

02557 (x,9)] < CupdF T,
where C,y are independent of v. Therefore by Proposition 2.2 we have

(45" (x, D)u,u) = — Cllull5,

where C does not depend on v. Therefore
(Op({A, Imay} + 1 (Hess a)(—Hp))u,u)|
< v} (Op(Rea)u, u) + vC,lull, o + vClully + Cllul,.
Thus,
Iy < v((Au, ) + ull§) + Collull? . (3.6)
Consequenyly, by (3.1)—(3.6) we have
Re(pa (x, D)uu) = 2 [ulld = Cllull (3.7)
Schwarz’ inequality gives
Re(pa (x, D) u) < Clipa(x, Duf + 3l (3.8)
Therefore in virtue of (3.7) and (3.8), there is a constant C such that
llullg < CUUlpA(x, D)ully + flull_y)-
Applying Proposition 2.1 with x° e Uj, we see that jp(x, D) is hypoelliptic at 0.
This completes the proof of Theorem 1.2. O
4. Remarks and Examples

In this section we shall first study the conditions which we impose on p(x, &).
Finally we shall give several examples.
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PrOPOSITION 4.1. If (A-0), (A-1) and (A-2)’, then (A-1) and (A-2) hold.

Proor. It is obvious that (A-1) holds. Without loss of generality, we may
assume that

prn(()?ﬁ) =0 for lg’| > 1.

By using Taylor expansion and (A-2)/, we have

P8 =3 3;;, J (1= 0)*(2 p) (0. ) O
1B1=3

Changing the variable x to y so that x = vy where 0 < v <1, we write
v(y) =u(vy) for ueCy.

Let B be a unit ball centered at 0, y(x) € C;(B) with y(x) =1 in |x| <2/3, and
choose 0 < vp < 1 so that voB = U, where U is a neighborhood of 0 in (A-1). For
v with 0 < v < vy we put

DPm, \,(.X, f) =X (i‘f)}’?m(?@ é)qj(vé)v

where W(&) is the symbol used in Section 3. Then

o D)y = 2 [ ([ 9%, (52, ) ) de

=(2n)™" [ ([ =Py (V(y ;}),'D 0u(5) dy> dn

=q(y, D,V)Ul’(y)'

Thus we have
4v(y:1) = Py (vy» %)
= 2(¥)Pm (V Z) F(n)
=V (P)pm(vy,m)¥ ()

_ 7}11+3 Z ﬁ‘ X y J 0) ((’ﬂ”pm)(ﬁw 77) d@‘P( )
1B1=3
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and set

m—3

4,(ysn) =V""qu(y,m)-

Then
g, (y,m) =0 for (y,n) e R" x R".
Further we have
155 ()] < gy,
where the C, p are independent of v. Therefore by Proposition 2.2
(q,(y, Dy)vy, vy) = “CHL’v“i/th
for 0 <v<vy if ue Cf(U) and v,(y) = u(vy). Then
(@(3, Dy)vy, 03) = V"> (P (3, D)ty u(v))
=" ((p (X, D)uyu)  for ue Cf (U).

On the other hand,

oullny2 1 = @)™ | ™2 [ou(n)| dn

= (21) " | v, (vE) Py dE

J

= (2m) ™" | vE™ ()P dé.

Since

1
VUi = w1t + 5 -1

we have
1 m/2-1
<vé>m72 < (2‘,)771—2 (<§>m2 + (;E _ 1) ) lf m> 2

If m <2, then

<vé>m—2 < vm—2<é>m—2.

Therefore we obtain
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) 1 m/2—1 ,
ym—2-npym-2 <||u||m/21 + (;3 - 1) HVHO) if m>2,

2
R P if m=2,
e 17/ if m< 2.
Consequently, we have
(Pom,v (3, D)u,u) = _VC“u||r2n/2-l - CV”u”r2n/2—2'
Further, there exists a constant ¢ > 0 such that
Rep-i(x,&) + Repm-a(x,&) = el

if xe U and |&| = 1. Then there is a constant C’ such that
Re((Pm1 + pm-2) (%, DY) = oy = €'l
for ue C?(U). Taking v so that vC < ¢/2, we have

Re(p(x, D)) = (o5, D) + (09 (23 )l 1 = 08
+ (0n((1=2(%))pntox &) ) + Re(5, ) = it DYt

¢ . e
= 5”“”@/24 = Gllullyypy if ue Gy <§B>,

since Op(x(x/V)pm(x,&)(1 —¥(v¢)) and Op((1 — x(x/V)pm(x,&) are in S~
Therefore we know that (A-2) holds with U replaced by v/2B. O
PROPOSITION 4.2. We assume that (A-0), (A-1) and
(A-2)" there exists a neighborhood U of 0 such that
@) pmp(x,$) =0 (11 =2),
(1) Impy_ip(x,&) =0 (B =1),
if xeU, [{] =1 and pn(x,&) =0.
Then we have for any v > 0 there is a constant C, such that

D 1mipy (5 OKE T+ D Im i (x, OKE T < vs(x, &) + (Y™,
1Bi=2 1Bl=1

if xeU.
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Proor. Let

V={(x,&) eUx S ppulx,&) = 0},
and

1(x,) = Y Ipmipy (x5, OE 2+ D [Impy1p) (x, E)KE,
81=2 Bl=1

where S"~! denotes the (n — 1)-dimensional unit sphere. Then
I(x,¢)=0 in V.
Let v>0 and ¥, be a neighborhood of ¥ in R" x §"! satisfying
I(x,&) <ve for (x,&) eV,
where

C = mlr_l Repm72(xa ,:) > 0.
xelU
¢]=1

Then there is a constant ¢, > 0 such that
pm(x,&) = ¢, for (x,&) e (U x S"H\V,.
Therefore
Pm(x,8) = (&1E1%)1E)" 7,
if €] >1, (x,&/]¢]) € (U x S\ V,. Hence we have
I(x,8) < v(pp(x,&) + Repm-1(x,&) + Repp-a(x, &),
if (x,&/|¢]) e Ux S"""\V, and |&| » 1. This proves Proposition 4.2.
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Thus Proposition 4.1 and 4.2 imply that the operator L, defined in Section 1
satisfies (A-0)—(A-4) if it satisfies (B-1) and (B-4). In particular, L, is hypoelliptic

at 0 under the conditions (B-1) and (B-4).

ExampLE 4.3. Let A(x) e C* (1 <k < n) satisfy hy >0 and

e (x) =0 if xeR", h(x)=0 and |B]=2.

We assume that there exist constants Ci; >0 and my; > 0 such that for any

k,j=1,...,n

he(x) < ijhj(x)mkj.
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P68 =3 h()E +1.

k=1

Then, applying Theorem 1.2 and Proposition 4.2 we can see that p(x, D) is
hypoelliptic.
For ¢ > 0 we put

ExamprLE 4.4. Let n=2 and ¢ > 0. Put

p(x, &) = xted + fo(x0)E + 1.

Then p(x, D) is hypoelliptic. Indeed, by Proposition 4.1 p(x,¢) satisfies (A-0) with
m =2, (A-1), (A-2) and (A-3) with r = 1. Note that

IF1(0)] < CVITa(0) < C(f,(01E7 + 1¢77)
for |£| # 0. Therefore we have
Fo(x1)(10g<E>)% + | f1(x1)| log{ &)
- {Cxi‘(l +&)' < Clplx, ¢! if [&1] > [&al
T L Op(x, E T + Cp(x, E)ETVE H CETif 8] < 18-

This implies that p(x,&) satisfies (A-4).

ExampLE 4.5. Let n=2 and 0 <o < 2. Put
p(x, &) = folx1)&f +x1& + 1.

Let us prove that p(x,&) satisfies (A-0)-(A-4). It is obvious that p(x,¢)
satisfies (A-0) with m =2, (A-2) and (A-3) with r = 1. Fix v > 0. Assume that
x¥(log(&>)? = v. Then we have

Vo (x1)<E)? = vexp(—v="*(log(&))*)<&)

> y(ey? o)

> (&>
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if (&) > exp(v?/C=9)) This gives
x}(log(y)? < wp(x,&) + CKOH™ i | <1,
where C, is a constant. Similarly, we have
Vo (x1)CEDT 2 w(@P IO 5 ey
if |x1]’log(&) > v and (&) > exp(v=/3=)). This gives, with some constant C,,

111 1og(&y < vp(x,&) + CKE™ if |xy| < 1.

X1

Therefore p(x,&) satisfies (A-4), and p(x, D) is hypoelliptic.

ExamPLE 4.6. Let n=1 and Ce R\{0}. Then
p(x,D) = —x*ol — C%.
does not satisfy (A-2). If we choose

L [xexp(iCx7) (x #0),
= {5 (x=0)

then for ¢(x) e Cf (R)
{p(x, Dyu, 9y = {(=x*07 = CP)u, 9>
= —{03(x*u) — 80, (x*u) + (12x% + C?)u, )
= <0, 9>.
Therefore
p(x,D)u=0 in Z'(R).
However u 1s not differentiable at x = 0, that is,
0 € sing supp u.
Hence, p(x, D) is not hypoelliptic at x = 0.

ExampLE 4.7. Let Ce C. Then
p(x,D) = —xiA + C.
does not satisfy (A-4). Put

xt (x> 0),

u(x) = (Vl): = {() (x1 <£0),
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where A= (1++v1+4C)/2 and we take a branch of +/1+4C satisfying
Rev1+4C > 0. Since Redl>1/2 > —1, we have

d? \ PR
x5 ((0)l) = A= D)) in 2'(R).
X1
Therefore
x202 u(x) = (A - Du(x) in 9'(R").
1 X1
Obviously,

aﬁ/_u(x) =0 in 2'(R), (2<j<n).

Since (A —1)— C =0, we obtain

P(x,D)u=0 in 2'(R").

On the other hand, we have

0 € singsuppu.

Hence, p(x, D) is not hypoelliptic at x = 0.

N.

M.
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