MICROLOCAL COMPLEX FOLIATION OF *R*-LAGRANGIAN CR SUBMANIFOLDS

By

Giuseppe ZAMPIERI

Abstract. Let X be a complex manifold, M a real analytic submanifold of X^R , T^*X the cotangent bundle to X, T_M^*X the conormal bundle to M in X. Assume that T_M^*X is regular and CR in T^*X . We then show that T_M^*X is locally defined as the zero-set of the real and/or imaginary part of holomorphic symplectic coordinates of T^*X . It is well known that the similar description of M in local complex coordinates of X is true only if M is Levi flat. As an application we obtain a generalization of the celebrated edge of the wedge Theorem.

§1. Let X be a complex manifold of dimension $n, \pi: T^*X \to X$ the cotangent bundle to X, \dot{T}^*X the bundle T^*X with the 0-section removed, $\alpha = \alpha^R + \sqrt{-1}\alpha^I$ (resp. $\sigma(=d\alpha) = \sigma^R + \sqrt{-1}\sigma^I$) the canonical 1-form (resp. 2-form) on T^*X . Let X^R (resp. $(T^*X)^R$) be the real analytic manifold underlying to X (resp. T^*X); we have diagonal identifications:

(1.1)
$$X^{\mathbf{R}} \stackrel{j}{\cong} X \times_X \overline{X}, \quad T(X^{\mathbf{R}}) \stackrel{j'}{\cong} TX \times_{TX} T\overline{X} \simeq (TX)^{\mathbf{R}}, \quad T^*(X^{\mathbf{R}}) \stackrel{'j'}{\xleftarrow} (T^*X)^{\mathbf{R}}.$$

A complex analytic submanifold $V \subset \dot{T}^*X$ is *C*-involutive (resp. Lagrangian, resp. isotropic) if at each $p \in V$ the tangent plane $v(p) = T_p V$ verifies $v^{\perp}(p) \subset v(p)$ (resp. $v^{\perp}(p) = v(p)$, resp. $v^{\perp}(p) \supset v(p)$). (The planes v(p) themselves will be called in the corresponding manner.) *V* is called regular when $\alpha|_V \neq 0$. A real analytic submanifold $\Lambda \subset T^*X^R$ is called *R*-Lagrangian when $\lambda(p) := T_p\Lambda$ is Lagrangian for $\sigma^R(p)$. Λ is called *I*-symplectic when $\sigma^I(p)$ is non-degenerate on $\lambda(p)$. All submanifolds of T^*X (resp. T^*X^R) will be C^{\times} -conic (resp. R^+ -conic).

Let *M* be a real analytic submanifold of $X^{\mathbb{R}}$ of codim *l*, and $T_{M}^{*}X$ the conormal bundle to *M* in *X* identified, via the third of (1.1), to an *R*-Lagrangian

Received June 20, 1995.

submanifold of T^*X^R . We fix $p \in \dot{T}^*_M X, \pi(p) = z$, and define

(1.2)
$$\lambda_M(p) = T_p T_M^* X, \quad T_z^C M = T_z M \cap \sqrt{-1} T_z M.$$

We define the Levi form $L_M(p)$ of M at p as the restriction to $T_z^C M$ of the Hermitian form $\partial \bar{\partial} r_1(z)$, where r_1 is a function with $r_1|_M \equiv 0$ and $\partial r_1(z) = p$. We denote by $s_M^{+,-,0}(p)$ the numbers of respectively positive, negative, and null eigenvalues of $L_M(p)$.

We complete r_1 to a system of independent equations $(r_j)_{j=1,...,l} = 0$ for M, and give a parametric representation of $T_M^* X$:

(1.3)
$$\psi: M \times \mathbb{R}^l \xrightarrow{\sim} T^*_M X, \quad (z; (t_j)) \mapsto \left(z; \sum_j t_j \partial r_j(z)\right).$$

We take the composition $\psi \circ (j^{-1} \times id)$ where j is the map in (1.1). (This just means, for coordinates $z = x + \sqrt{-1}y \in X$, to consider ψ as a function of (z, \bar{z}) rather than (x,y).) By the aid of $\psi \circ (j^{-1} \times id)$, we get the identifications:

(1.4)

$$\lambda_{M}(p) = \left\{ \left(u; \sum_{j} t_{j} \partial r_{j} + \partial \partial r_{1}(z)u + \partial \bar{\partial} r_{1}(z)\bar{u} \right); (t_{j}) \in \mathbb{R}^{l}, \\ \partial r_{1}(z)u + \bar{\partial} r_{1}(z)\bar{u} = 0 \right\}, \\ \lambda_{M}(p) \cap \sqrt{-1}\lambda_{M}(p) = \left\{ (u;^{t} \partial \bar{\partial} r_{1}(z)u + \partial \partial r_{1}(z)u); \partial r_{1}(z)u = 0, \partial \bar{\partial} r_{1}(z)\bar{u} \in \\ T_{S}^{*}X_{z} + \sqrt{-1}T_{S}^{*}X_{z} \right\} \oplus \left\{ (0;v); v \in T_{M}^{*}X_{z} \cap \sqrt{-1}T_{M}^{*}X_{z} \right\},$$

 $(z = \pi(p))$. It follows

(1.5)
$$\lambda_M(p) \cap \sqrt{-1}\lambda_M(p) \simeq \operatorname{Ker} L_M(p) \oplus (T_M^* X_z \cap \sqrt{-1} T_M^* X_z)$$

Put $\gamma_M(z) = \dim_C(T_M^*X_z \cap \sqrt{-1}T_M^*X_z)$; we get from (1.5)

(1.6)
$$\operatorname{rank} L_{M}(p) = \dim T_{z}^{C}M - \dim \operatorname{Ker} L_{M}(p)$$
$$= (n - l - \dim_{C}(\lambda_{M}(p) \cap \sqrt{-1}\lambda_{M}(p))) + 2\gamma_{M}(z)$$

Let $M \subset X$ and $p \in \dot{T}_M^* X$.

THEOREM 1.1. Assume that $\dot{T}_M^* X$ is regular at p and verifies

(1.7) $\dim(\lambda_M(p) \cap \sqrt{-1}\lambda_M(p)) \equiv \text{const in a neighborhood of } p.$

Then we may find local complex symplectic coordinates $(z;\zeta) = (z',z'';\zeta',\zeta'') \in \dot{T}^*X$, $z = x + \sqrt{-1}y$, $\zeta = \zeta + \sqrt{-1}\eta$ such that $p = (0; i \, dy_1)$ and:

(1.8)
$$\dot{T}_M^* X = \{(z;\zeta) \in \dot{T}^* X; y' = \zeta' = 0, \zeta'' = 0\}.$$

PROOF. (a) We put $\Lambda_M = T_M^* X$. Regularity of Λ_M at p means that $\lambda_M(p)$ meets the complex plane spanned by the radial vector field at p along a real line. In this situation it is well known that Λ_M can be interchanged, by a complex symplectic transformation χ , with the conormal bundle to a hypersurface, and that $s^- = 0$ at $\chi(p)$ for such hypersurface. But we have indeed $s^- \equiv 0$ in a neighborhood of $\chi(p)$ by (1.7), because the constancy of $s^{\pm} - \gamma$ is a symplectic invariant due to (1.6). Thus this hypersurface is in fact the boundary of a pseudoconvex domain. By the same reason $s^+ \equiv \text{const.}$ Thus it is not restrictive to assume from the beginning M to be the boundary of a pseudoconvex domain with dim (Ker L_M) $\equiv \text{const}(\text{say } d)$. By [F], [R] (and [S]) M is locally foliated by the integral leaves of Ker L_M ; these are complex manifolds of dim d (since they have complex tangent planes of the corresponding dim). (For a new proof with some improvements of the results on Levi foliations see also [Z].)

(b) There is a foliation of T_M^*X at p whose leaves are complex sections of T_M^*X over the leaves of M. In fact let Γ be a complex leaf of M defined, in complex coordinates $z = (z_1, z', z'') \in X$, by $z_1 = z' = 0$, and let $p = (0; i \, dy_1)$. One has

(1.9)
$$L_M(p')(w, \cdot) = 0 \quad \forall w \in \mathbb{C}^d_{z''} \quad \forall p' \in T^*_M X \cap \pi^{-1}(\Gamma) \text{ close to } p.$$

In fact if $r|_M \equiv 0$ with $\partial r(z) = p$, then clearly $\partial_{z''} \partial_{\bar{z}''} r \equiv 0$ on Γ and if by absurd $\partial_{z'} \partial_{\bar{z}''} r \neq 0$ at some point of Γ close to z, then the pseudoconvexity of M should be violated.

We denote by $g: M \to M' \simeq \mathbb{R}^{2n-l-2d}$ the foliation of M, and set $R = g^{-1}(M \cap C_{z_1})$. We remark that R is a CR manifold (of CR dim d) due to dim $(TR \cap \sqrt{-1}TR) \equiv d$. Let $j: R \hookrightarrow X$, and let $Y = p_1 \circ j^C(\mathbb{R}^C)$ where $p_1: X \times \overline{X} \to X$. Y is a complex manifold with dim(Y) = d + 1 by the above remark. Moreover since $\overline{Z}g = 0 \forall$ antiholomorphic tangent vector field $\overline{Z} \in T^{0,1}R(=\{0\} \times T^C R \hookrightarrow TX \times_X T\overline{X}|_M)$, then g extends to a holomorphic function $\tilde{g}: Y \to C_{z_1}$. In complex coordinates in which $g: (z_1, z'') \to z_1$, we have $R = \mathbb{R}_{x_1} \times \{0\} \times C_{z''}^d$. Since $S \supset R$, then we may write $r = y_1 + 0(|z'|)(0(|(z_1, z'')|) + O(|z'|))$. Thus for $\Gamma = C_{z''}^d$, we have

(1.10)
$$\partial_{\bar{z}}(\partial_z r|_{\Gamma}) (\equiv (\partial_{\bar{z}'}\partial_z r)|_{\Gamma}) \equiv 0$$
 (i.e. $\partial_z r|_{\Gamma}$ is holomorphic).

In fact $\partial_{z_1}r|_{\Gamma} \equiv -\sqrt{-1}$ and $\partial_{\overline{z}'}\partial_{z_i}r|_{\Gamma} \equiv 0 \ \forall i \neq 1$ by (1.9). Thus we have a foliation of T_M^*X by the complex leaves $\Gamma_t = \{(z; t\partial r(z)); z \in \Gamma\}, t \in \mathbb{R}$. This gives a projection

$$(1.11) \qquad \qquad \rho: \Lambda_M \to \Lambda'.$$

with complex fibers.

(c) We note that $\overline{Z}_e = 0 \forall \overline{Z} \in T^{0,1} \Lambda_M$ (due to Ker $\rho' = \lambda_M \cap \sqrt{-1}\lambda_M$); thus *e* extends to a holomorphic map $\tilde{\rho} : V \to \Lambda'^C$ where *V* is the partial complexification of *V* in T^*X , and Λ'^C a complexification of Λ' . Note here that such *V* exists because Λ_M is CR in T^*X by (1.7)

We claim that V is a regular involutive submanifold of T^*X , and $\tilde{\rho}$ is the projection along the bicharacteristic leaves of V. In fact if v = TV and v^{\perp} is the symplectic orthogonal, then v^{\perp} and Ker $\tilde{\rho}'$ are two complex bundles on V of dim d which verify $v^{\perp}|_{\Lambda_M} = \text{Ker } \tilde{\rho}'|_{\Lambda_M} (= \lambda_M \cap \sqrt{-1}\lambda_M)$. Thus $v^{\perp} = \text{Ker } \tilde{\rho}'$ which proves the claim. Let $V' = V/\sim$, where \sim is the equivalence relation which identifies all points of V in the same bicharacteristic leaf; then $V' \equiv {\Lambda'}^C$.

Clearly $v' = v/v^{\perp}$ and thus σ induces a non-degenerate form σ' on V'. We also have $\lambda' = \lambda_M/v^{\perp} = \lambda_M/(\lambda_M \cap \sqrt{-1}\lambda_M)$; thus Λ' is **R**-Lagrangian and **I**-symplectic in V'.

(d) We take complex symplectic coordinates $(z;\zeta) \in \dot{T}^*X$, z = (z', z''), $\zeta = (\zeta', \zeta')$, $z = x + \sqrt{-1}y$, $\zeta = \xi + \sqrt{-1}\eta$ s.t.:

$$V = \dot{T}^* X' \times \mathbb{C}^d, \quad V' = \dot{T}^* X', \quad \Lambda_M = \Lambda' \times \mathbb{C}^d, \quad X' = \mathbb{C}^{n-d}, \quad p = (0; i \, \mathrm{dy}_1).$$

We note that any **R**-Lagrangian *I*-symplectic submanifold of $\dot{T}^* C^{n-d}$ can be transformed, by a complex symplectic transformation, into $\dot{T}^*_{R^{n-d}} C^{n-d}$; thus after this transformation $\Lambda_M = T^*_{R^{n-d}} C^{n-d} \times C^d$. Q.E.D.

§2. We suppose in this section that M is a real analytic generic submanifold of $X^{\mathbb{R}}$ (i.e. $\gamma_M = 0$) of codim l, and that $\dot{T}_M^* X$ verifies (1.7) over an open cone $U \subset \dot{T}_M^* X$. ($\dot{T}_M^* X$ is automatically regular because $\gamma_M = 0$.) Let $\mathscr{C}_{M|X}$ and $\mathscr{B}_{M|X}$ be the sheaves of resp. CR microfunctions and CR hyperfunctions along M. These are concentrated in degree s_M^- and s_M^- , 0 respectively (cf. [K-S]). We recall that $\mathscr{B}_{M|X}$, (defined as $\mathbb{R}\Gamma_M(\mathscr{O}_X)[l]$ with \mathscr{O}_X denoting the sheaf of holomorphic functions on X), turns out to coincide with the sheaf of the s_M^- -th cohomology of the tangential $\overline{\partial}$ -complex over (usual) hyperfunctions \mathscr{B}_M . Let sp: $H^{s_M^-}(\pi^{-1}(\mathscr{B}_{M|X})) \to H^{s_M^-}(\mathscr{C}_M|_X)$ be the spectral morphism, and define

(2.1)
$$WF(f) = \operatorname{supp}(\operatorname{sp}(f)), f \in H^{\bar{s}_{M}}(\mathscr{B}_{M|X}).$$

364

WF coincides, at least for $s_M = 0$, with the usual analytic wave front set (cf. [B-C-T]). According to [S-K-K], [K-S], the symplectic transformation which gives (1.8) can be *quantized* to an isomorphism:

(2.2)
$$\mathscr{C}_{M|X} \simeq \mathscr{C}_{\mathbb{R}^{n-d} \times \mathbb{C}^d|X}[-s_M^-]$$

Thus $\mathscr{C}_{M|X}$ is isomorphic, up to a shift $-s_{\overline{M}}$, to the sheaf of usual microfunctions with holomorphic parameters. In particular, according to [S-K-K]:

 $H^{s_{\overline{M}}}(\mathscr{C}_{M|X})|_{U}$ satisfies the principle of the analytic continuation along the integral leaves of $\lambda_{M} \cap \sqrt{-1}\lambda_{M}$.

Let δ be an open convex cone of $T_M X := M \times_X TX/TM$. We recall that a domain $W \subset X$ is said to be a wedge with profile δ when $C_M(X \setminus W) \cap \delta = \emptyset$ (where $C_M(\cdot)$ denotes the Whitney normal cone along M). Let η be a closed convex proper cone of $T_M^* X$ with $\eta \supset M$. We have

(2.3)
$$H^{j}_{\eta}(T^{*}_{M}X, \mathscr{C}_{M|X}) \stackrel{b}{\leftarrow} \lim_{\overrightarrow{W}} H^{j}(W, \mathscr{O}_{X}),$$

where W ranges through the family of wedges with profile $\delta = int \eta^{oa}$ the interior of the antipodal of the polar to η . (b is called the *boundary values* morphism.)

Fix $z \in M, z \in \pi(U)$, write z = (z', z''), $M = M' \times Y$ (Y a polydisc with center z'').

PROPOSITION 2.1. Let M be real analytic generic and satisfy (1.7) in U. Let $\eta'_j = M' \times Z_j, j = 1, ..., N$, be closed convex proper cones of U', and let $F_j \in H^{\overline{s_M}}((W'_j \times Y) \cap B, \mathcal{O}_X)$ where B (resp. W'_j) ranges through the family of neighborhoods of z (resp. of wedges of X' with profile $\delta'_j = M' \times \operatorname{int} Z_j^{oa}$). Assume $\sum_j b(F_j) = 0$. Then there exist $F_{ij} \in H^{\overline{s_M}}((W'_{ij \times Y_1}) \cap B, \mathcal{O}_X)$ with $Y_1 \subset Y$ and with W'_{ij} wedges with profile and proper subcone of the convex hull δ'_{ij} of δ'_i, δ'_j :

$$F_{ij} = -F_{ji}$$
 $F_j = \sum_i F_{ij} \ \forall j.$

PROOF. Let $f_j = b(F_j)|_U$. Then supp $(f_j) \subset (\bigcup_{i \neq j} (\eta'_i \cap \eta'_j)) \times Y = (M \times \bigcup_{i \neq j} (Z_i \cap Z_j)) \times Y$.

Observe that $H^{s_M}(C_{\min})|_U$ satisfies a kind of "transveral softness" with respect to the complex foliation of $T^*_M X$; this follows easily from (2.2). Thus we can decompose $f_j = \sum_i f_{ij}$ with $WF(f_{ij}) \subset (\tilde{\eta}'_{ij} \times Y_1) = (\tilde{\eta}'_i \cap \tilde{\eta}'_j) \times Y_1$ for $\tilde{\eta}'_i \supset \eta'_i$ and over a (possibly smaller) neighborhood of z. If we observe that $\operatorname{int}(\eta'_i \cap \eta'_j)^{oa}$ equals the convex hull of $\operatorname{int} \eta'_i^{oa}$, $\operatorname{int} \eta'_j^{oa}$ and use (2.3), we get the conclusion. Q.E.D.

Giuseppe ZAMPIERI

References

- [B-F] E. Bedford, J. E. Fornaess, Complex manifolds in pseudoconvex boundaries, Duke Math. J. 48 (1981), 279-287.
- [B-C-T] M. S. Baouendi, C. H. Chang, F. Treves, Microlocal hypo-analyticity and extension of C.R. functions, J. of Diff. Geom. 18 (1983), 331–391.
- [D'A-Z] A. D'Agnolo, G. Zampieri, Generalized Levi's form for microdifferential systems, D-modules and microlocal geometry Walter de Gruyter and Co., Berlin New-York (1992), 25-35.
- [F] M. Freeman, Local complex foliation of real submanifolds, Math. Ann. 209 (1974), 1-30.
- [H] L. Hörmander, An introduction to complex analysis in several complex variables, Van Nostrand, Princeton N.J. (1966).
- [K-S] M. Kashiwara, P. Schapira, Microlocal study of sheaves, Astérisque 128 (1985).
- [R] C. Rea, Levi-flat submanifolds and holomorphic extension of foliations, Ann. SNS Pisa 26 (1972), 664–681.
- [S-K-K] M. Sato, M. Kashiwara, T. Kawai, Hyperfunctions and pseudodifferential equations, Springer Lecture Notes in Math. 287 (1973), 265-529.
- [S-T] P. Schapira, J. M. Trepreau, Microlocal pseudoconveexity and "edge of the wedge" theorem, Duke Math. J. 61 1 (1990), 105-118.
- [S] F. Sommer, Komplex-analytishe Blätterung reeler hyperflächen in Cⁿ, Math. Ann. 137 (1959), 392–411.
- [Tr] J. -M. Trépreau, Sur la propagation des singularités dans les varietés CR, Bull. Soc. Math. de France 118 (1990), 129–140.
- [Tu 1] A. Tumanov, Extending CR functions on a manifold of finite type over a wedge, Mat. Sb. 136 (1988), 129–140.
- [Tu 2] A. Tumanov, Connections and propagation of analyticity for CR functions, Duke Math. Jour. 73 1 (1994), 1-24.
- [Z] G. Zampieri, Canonical symplectic structure of a Levi foliation, Complex Geometry, Marcel-Dekker Publ. 173 (1995), 541–554.

Dep. of Math. UIUC Urbana IL 61801

Dip. di Matematica, Università di Padova, via Belzoni 7, I-35131 Padova, Italy

Zampieri@math.uiuc.edu Zampieri@.math.unipd.it