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Abstract. Let X be a complex manifold, M a real analytic sub-

manifold of XR, T*X the cotangent bundle to X, T^X the con-

ormal bundle to M in X. Assume that T^X is regular and CR in

T*X. We then show that TjfrXis locally defined as the zero-set of

the real and/or imaginary part of holomorphic symplectic coor-

dinates of T*X. It is well known that the similar description of M

in local complex coordinates of X is true only if M is Levi flat.As

an application we obtain a generalization of the celebrated edge of

the wedge Theorem.

§1. Let X be a complex manifold of dimension n, tc: T*X ―> X the

cotangent bundle to X, t*X the bundle T*X with the 0-section removed, a =

<xR + -/-la7 (resp. a{= dan) = aR + ^/^k^1) the canonical 1-form (resp. 2-form)

on T*X. Let X* (resp. (T*X)R) be the real analytic manifold underlying to X

(resp. T*X); we have diagonal identifications:

j _ y _ <y

(1.1) X11 ^ X xx X, T{XR) ^TXxTXTX ~ {TX)R, T*(XR) & {T*X)R.

A complex analytic submanifold Fc t*X is C-involutive (resp. Lagrangian, resp.

isotropic) if at each pe V the tangent plane v(p) ― TpV verifies v±(p) c= v(p)

(resp. v±(p) = v(p), resp. ^(i?) => v(p)). (The planes u(/7) themselves will be called

in the corresponding manner.) V is called regular when a.＼v̂ 0. A real analytic

submanifold A <= T*XR is called ^-Lagrangian when X(p) : =' T^A is Lagrangian

for aR(p). A is called 1-symplectic when aJ(/?) is non-degenerate on X{p). All

submanifolds of T*X (resp. T*Xi?) will be Cx -conic (resp. R+-conic).

Let Af be a real analytic submanifold of XR of codim /, and T^X the

conormal bundle to M in X identified, via the third of (1.1), to an ^-Lagrangian
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submanifold of T*XR. We fix p e f*MX, n{p) = z, and define

(1.2) im(p) = 7>r^x, rzcM = tzm n V=Tr2M.

We define the Levi form Lm(p) of M at p as the restrictionto TfM of the

Hermitian form ddr＼{z),where r＼is a function with r＼＼M= 0 and dr＼(z)―p. We

denote by s~m~'°(p)the numbers of respectively positive, negative, and null

eigenvalues of Lm(p).

We complete r＼to a system of independent equations (^)/=i
/
= 0 for M,

and give a parametric representation of TLX:

(1.3) *l/:MxRl T*MX, (z;(tj))^

(

z;J2 tjdrj(z)]

We take the composition ＼jio (j x x id) where j is the map in (1.1). (This just

means, for coordinates z = x + V^ly e X, to consider ＼j/as a function of (z,z)

rather than (x,y).) By the aid of ＼bo (Z"1 x id), we get the identifications:

(1.4) &m(p)

xm(p) n V^iAM(p)

■ u; ^2 h^ri + ^ri (z)u + ^^ri (z)^ I

J J

dr＼(z)u + dr＼{z)u ―
･

;(tj)eRl

= {(u;1 ddri(z)u + ddr＼(z)u)]dr＼{z)u = Q,ddr＼(z)ue

t;xz + V^it*xz} e {(o;vy,v e t^xz n V=＼t*mxx},

(z = n(p)). It follows

(1.5) XM(p) n V^lXM{p) * Ker LM(p) R (T*MX2 n V^T*MXZ)

Put yM(z) = 6imc(T^XznV^＼T^Xz); we get from (1.5)

rank Lm{p) = dim T"ZCM ―dim Ker Lm{p)

(1.6)

= (n - /- dimc(AM(/>) n ＼/=TAm(/?))) + 2yM(z)

Let M c X and /?e T^X.

Theorem 1.1. Assume that TLX is regular at p and verifies

(1.7) dim{Xm(p) H v―TXm(p)) = constin a neighborhood of p
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Then we may find local complex symplectic coordinates (z;£)= (z',z";C',C")e

t*X, z = x + y/^ly,C = + y/^lij such that p = (0;i dy＼) and:

(1.8) t*X = {(z-0 e t*X-y' = £ = 0,C" = 0}.

Proof, (a) We put Am = TMX. Regularity of Am at p means that Xm{p)

meets the complex plane spanned by the radial vector field at p along a real

line. In this situation it is well known that Am can be interchanged, by a

complex symplectic transformation /, with the conormal bundle to a hyper-

surface, and that s~= 0 at %(p) for such hypersurface. But we have indeed

s~ = 0 in a neighborhood of %(p) by (1.7), because the constancy of s± ―y is a

symplectic invariant due to (1.6). Thus this hypersurface is in fact the boundary

of a pseudoconvex domain. By the same reason s+ = const. Thus it is not

restrictive to assume from the beginning M to be the boundary of a pseu-

doconvex domain with dim (Ker Lm) = const (say d). By [F],[R] (and [S]) M is

locally foliated by the integral leaves of Ker Lm', these are complex manifolds of

dim d (since they have complex tangent planes of the corresponding dim). (For

a new proof with some improvements of the results on Levi foliations see also

[Z].)

(b) There is a foliation of TMX at p whose leaves are complex sections of

TMX over the leaves of M. In fact let F be a complex leaf of M defined, in

complex coordinates z = (z＼,z',z")e X, by z＼= z' ―0, and let p = (0;i dy{).

One has

(1.9) LM(p'){w,-) = 0 VweC?,, Vp' e TMXnn-l(T) close to p.

In fact if r＼M = 0 with 8r(z) ―p, then clearly dz"dz≫r= 0 on F and if by

absurd dz>dz≫r# 0 at some point of F close to z, then the pseudoconvexity of M

should be violated.

We denote by g : M - M' ~ R2n-l-2d the foliation of M, and set R =

g-l{Mf＼CZx). We remark that R is a CR manifold (of CR dim d) due to dim

(TRC＼ V^ITR) = d. Let j :R^X, and let Y = p＼of{Rc) where pi :Ix

X ―>X. Y is a complex manifold with dim( Y) = d + 1 by the above remark.

Moreover since Zg = 0V antiholomorphic tangent vector fieldZ e T°:lR(―{0}x

T R<-+ TX xj TX＼M), then g extends to a holomorphic function g : Y ―>CZl.

In complex coordinates in which g :(zi,z") ―*■z＼,we have R = RXl x {0} x Cdz,,.

Since 5 =>i?, then we may write r = yx + 0(|z'|)(0(|(zi,z")|)+ O(＼z'＼).Thus for

F = Cf,,,we have

(1.10) df{8zr＼r)(= (8?dzr)＼r) = 0 (i.e.dzr＼ris holomorphic).
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Zlr|r= - V^T and d^dZir＼r= 0 Vi # 1 by (1.9). Thus we have a

foliation of TLX by the complex leaves Tt ―{(z; tdr(z));zgH, te R. This gives

a projection

(1.11) p:AM^A',

with complex fibers.

(c) We note that Ze = 0VZe T0-1AM (due to Ker pf = kM D V^Am); thus

e extends to a holomorphic map p : V ―≫A'c where F is the partial complex-

ification of V in T*X, and A'c a complexification of A'. Note here that such V

exists because A^ is CR in t*X by (1.7)

We claim that V is a regular involutive submanifold of t*X, and p is the

projection along the bicharacteristicleaves of V. In factif v = TV and u-1is the

symplectic orthogonal, then v1- and Ker p' are two complex bundles on V of

dim d which verify i^Ia^ = Ker p'＼Am{―Xm D v/-T/Im)- Thus y1 = Ker^' which

proves the claim. Let V ― V/~, where ~ is the equivalence relation which

identifies all points of V in the same bicharacteristicleaf; then V = A'c.

Clearly v' ― v/v1- and thus a induces a non-degenerate form a1 on V'. We

also have 2! = Xm/v1- ―Im/{^m H V―I^-m)', thus A' is ^-Lagrangian and /-

symplectic in V.

(d) We take complex symplectic coordinates (z;Q e t*X,z = (z',z"),C =

(£,£),z = x+V=ly,C = Z + V::lil s.t:

V = t*X' x Cd, V = t*X＼ AM = A' x Cd, X' = Cn~d, p = (0;i dyj.

We note that any #-Lagrangian 1-symplectic submanifold of t*Cn~d can be

transformed, by a complex symplectic transformation, into t^dCn~d; thus after

this transformation AM = T*dCn~d x Cd. Q.E.D.

§2. We suppose in this section that M is a real analytic generic submanifold

of Xs (i.e.yM = 0) of codim /, and that TMX verifies(1.7) over an open cone

U c tlfX. {t^X is automatically regular because yM ― 0.) Let ^m＼x and ^m＼x

be the sheaves of resp. CR microfunctions and CR hyperfunctions along M.

These are concentrated in degree s^ and s~^,0respectively (cf.[K-S]). We recall

that &M＼x, (defined as RrM(&x)[l] with (9X denoting the sheaf of holo-

morphic functions on X), turns out to coincide with the sheaf of the s^-th

cohomology of the tangential 5-complex over (usual) hyperfunctions Mm- Let

sp : HsM(n~l(g8M＼x)) ―> Hs~m{^M＼X) be the spectral morphism, and define

(2.1) WF{f) = supp(sp(f)),feHs-(<%Mlx).
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WF coincides, at least for s^ ― 0, with the usual analytic wave front set (cf.

[B-C-T]). According to [S-K-K], [K-S], the symplectic transformation which

gives (1.8) can be quantized to an isomorphism:

(2.2) <£M]X~ ^Rn-dxC^x[-s^].

Thus ^m＼x is isomorphic, upto a shift―sj^,to the sheaf of usual microfunctions

with holomorphic parameters. In particular, according to [S-K-K]:

Hsm[(^m]^x)＼u satisfiesthe principle of the analytic contination along the

integral leaves of Xm H s/^AIm-

Let 5 be an open convex cone of TmX := M xx TX/TM. We recall that a

domain W a X is said to be a wedge with profile 3 when Cm{X＼W) V＼8― 0

(where CV(-) denotes the Whitney normal cone along M). Let n be a closed

convex proper cone of TLX with rj=3 M. We have

(2.3) HfrTLWw)
b

lim Hj(W,&x)
w

where W ranges through the family of wedges with profile 5 = int r＼oathe interior

of the antipodal of the polar to r＼.(h is called the boundary values morphism.)

Fix ze M,ze n(U), write z = (z',z"), M = M' x Y (Y a polydisc with

center z").

Proposition 2.1. Let M be real analytic generic and satisfy (1.7) in U.

Let rj'j= M' xZj,j=l,...,N, he closed convex proper cones of U', and let

FjeHsm{{WJ x Y)C＼B,&x) where B (resp. Wj) ranges through the family of

neighborhoods of z {resp. of wedges of X' with profile 8'j= M' x int Z°a).Assume

J2jKfj) = °-Then there exist Ftje Hs~M((w;jxYi)n B, &x) with YY cz Y and with

Wjj wedges with profile and proper subcone of the convex hull 8'y of d＼,8'y

Fij = -Fjt Fj =
J2Ftj V/.

i

Proof. Let fi = b(Fj)＼v. Then supp (fj) a (U^foTli/;)) x Y = (M x

＼jiH{ZinZj))x y.

Observe that H^^Cm^u satisfiesa kind of "transveral softness" with

respect to the complex foliation of T^X; thisfollows easily from (2.2). Thus we

can decompose fj = J^ifil with WF(fy) a (^. x Y＼)= [n't^n]) x Y＼for fj't3 r＼＼

and over a (possibly smaller) neighborhood of z.If we observe that int(^'ri^')oa

equals the convex hull of int^'oa, int?/joa and use (2.3), we get the conclusion.

Q.E.D.
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