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A CHARACTERIZATION OF GEODESIC HYPEMSPHERES

OF QUATEMNIONIC PMOJECTIVE SPACE

By

Juan de Dios Perez

Abstract. We study a condition that allows us to characterize

geodesic hyperspheres among allrealhypersurfacesof quaternionic

projectivespace.

1. Introduction

Along this paper M will denote a connected real hypersurface of the

quatemionic projective space QPm, m>3, endowed with the metric g of

constant quatemionic sectional curvature 4. Let TV be a unit local normal vector

field on M and U( ― ―JtN, i= 1,2,3, where {Ji}i=i2 3 *s a local basis of the

quatemionic structure of QPm, [2]. Let us denote by D1 = Span{C/i, U2, U3}

and by D its orthogonal complement in TM.

If A denotes the Weingarten endomorphism of M we have the

Theorem A, [1]. Let M he a real hypersurface of QPm, m>2. Then

g(AD,D-L) = {0} if and only if M is congruent to an open part of one of the

following real hypersurfaces of QPm:

i) a geodesic hyper sphere,

ii) a tube of some radius r, 0 < r < n/2, around the canonically {totally

geodesic) embedded quaternionic projective space QPk, k e {1,..., m ―2},

iii)a tube of some radius r, 0 < r < n/4, around the canonically (totally

geodesic) embedded projective space CPm.

Let us denote by R the curvature tensor of M. In [4] we have proved

that there do not exist real hypersurfaces of QPm, m>2, such that

<j(R(X,Y)AZ) = 0, for any X, Y,Z tangent to M, where a denotes the cyclic

sum.
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The purpose of the present paper is to study a weaker condition than the

one considered in [4].Concretely we propose to study real hypersurfaces of QPm

such that

(1.1) a(R{X,Y)AZ)=O

for any X,Y,Z e D. We shall prove the following

Theorem. Let M he a real hypersurface of QPm, m > 3. Then M satisfies

(1.1) if and only if it is congruent to an open part of a geodesic hyper sphere

of QPm.

2. Preliminaries

Let Ibe a tangent vector field to M. We write JtX = <f>tX+fi(X)N,

i= 1,2,3, where faX is the tangent component of JtX and fi(X) = g(X, Ui),

i= 1,2,3. As jf ― ―Id,i = 1,2,3, where Id denotes the identity endomorphism

on TQPm, we get

(2.1) fiX = -X+ft{X)Uu M+tX) = O, ^Ui = O, i = 1,2,3

for any X tangent to M. As JjJj= ―JjJi= Jk, where (ij,k) is a cyclicper-

mutation of (1,2,3) we obtain

(2.2) faX = $dkX -Mx)Uj = -+k+jX+fj(JOuk

and

(2.3) ft(X) =fj{jkX) = -M+jX)

for any X tangent to M, where {i,j,k) is a cyclic permutation of (1,2,3). It is

also easy to see that for any X, Y tangent to M and i= 1,2,3,

(2.4) gfaX, Y)+g(XJiY) = 0, gi^XJJ) = g(X, Y) -ft{X)fi{Y)

and

(2.5) iiUj = -tjUi=Uk

(i,j,k) being a cyclic permutation of (1,2,3). Finally from the expression of the

curvature tensor of QPm, m > 2, we have that the curvature tensor of M is given
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(2.6) R(X, Y)Z = g(7, Z)X - g{X, Z)Y +
^{gfa

Y, Z)^X - gfaX, Z)^ Y

1=1

+ 2g(X, ft Y)+tZ} + g(A Y, Z)AX - g(AX, Z)A Y

for any if, 7, Z tangent to M, see [3].

3. Proof of the Theorem

Let {Ei,...,E4m-4} be an orthonormal basis of D at any point of M.

If in (1.1) we take Z = Ej, Y = faEj, from (2.6) and applying the formulas

(2.1) to (2.5) we have for any XeD

(3.1) {g(^X,AEj) - giAX^EjftEj + {g(AX,Ej) + g^X.A^Ej)}^

+ {2g(AX, fcEj) - g(foX, AEj) + g(<t>2X,AfaEj)}^ + {g(^2X: AEj)

+ g(fcX, AfrEj) - 2g(AX, </>2Ej)}</>3Ej- 2g(X, Ej^AEj

- 2g(X, hEj)4iAE] + 2g{X, ^E^AEj + 2g(+xX, Ej^A^Ej

+ 2g(<j>2X,EjfaAhEj + 2g(fcX, Ej^A^Ej - {g{Ej, AEj)

+ g{+lEj,AhEj)}4lX-{g(hEJiAEJ)+g{hEj^＼EJ)}+2X

+ {g(+2Ej,AEj) - g{^EhA^Ej)}^X + 2(j>xAX = 0

If now we take the scalar product of (3.1) and U＼ and sum ony we obtain

(3.2) g(02X,AU2)+g(<{>3X,AU3)=Q

for any XeD.

The same reasoning taking in (1.1) Z ― Ej, Y = <f>2Ejand considering the

scalar product of the result and U2 gives us

(3.3) g(tlX,AUl)+gfoX,AU3)=O

for any XeD.

If we repeat the above computation for Z = Ej, Y = <f>3Ejand take the U3-

component we get

(3.4) g(+lX,AUl)+g(+2X,AU2)=0

for any XeD. Thus from (3.2),(3.3) and (3.4) we have

(3.5) g(4,X,AUi)=0, 1 = 1,2,3
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for any X e D. Thus g(AD,D1) = {0} and from Theorem A, M must be

congruent to an open part of either i),ii) or iii)appearing in such a Theorem.

Let us consider the case iii)of a tube of radius r, 0 < r < n/4, over CPm.

The principal curvatures on D are cot(r) and -tan(r) both with multiplicity

2(m ―1). As m>3 we can consider unit X,WeD such that Span

{X, fax, faX, faX)} 1 Span { W, fa W, fa W, fa W} and such that X and fax are

principal with principal curvature cot(r) and faW is principal with principal

curvature ―tan(r).Thus if in (1.1) we take Y = fax and Z = faW, by the first

identity of Bianchi we should have -(tan(r) +coi{r))R{X,faX)faW = 0. But

applying (2.6) thisimplies (tan(r) +cot{r))faW = 0 which is impossible.

In the case ii) of Theorem A we also have two distinct principal curvatures

on D and a reasoning similar to the above one proves that this case cannot

occur.

On the other hand, geodesic hyperspheres have only one principal curvature

on D, thus they satisfy(1.1) and this finishes the proof.
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