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LC-DECOMPOSABILITY AND THE AR-PMQPEMTY IN

LINEAR METRIC SPACES

By

Nguyen To Nhu, Tran Van An and Pfaam Quang Trinh

Abstract. We investigatethe AR-property for convex setsin non-

locally convex linear metric spaces. We introduce the notion of

LC-decomposability for convex sets and prove that any LC-

decomposable convex setis an AR.

1. Introduction

Detecting the AR-property for convex setsin linear metric spaces is of great

importance since Dobrowolski and Torunczyk [4] proved the following theorem:

Theorem A. (i) A complete separable linear metric space X is homeo-

morphic to Hilhert space if and only if X is an AR.

(ii)A compact convex set X in a linear metric space is homeomorphic to

Hilhert cube if and only if X is an AR.

For about fifteenyears many effortswere made to find out whether the

assumption of AR-property in Dobrowolski-Torunczyk's theorem is essential.

This question has been answered partly by Cauty [3],who recentlyproved the

following theorem:

Theorem B. There exists a a-compact linear metric space which is not

an AR.

By a theorem of Torunczyk [12], the completion of any non-AR-linear

metric spaceis stilla non-AR-space. Therefore Theorem B shows that the AR-

property assumption in Theorem A (i)is essential.However, it is unknown
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whether the AR-property assumption can be removed from Theorem A (ii).

This is stillone of the most interesting (and difficult!)questions in the theory of

non-locally convex linear metric spaces.

By Theorem B, convex setsin linear metric spaces may be not AR-spa.ces.

So it is essential to establish conditions for convex sets to be AR's. And the

resultsin [7] and [8] become valuable because of Cauty's theorem.

In [7] it was shown that if a convex set X in a linear metric space can be

pushed into its locally convex subsets by arbitrarily small maps, then X is an

AR. In this paper, we genelize the result of [7] by demonstrating that if a

convex set X can be broken into finiteconvex sets,each of them can be pushed

into its locally convex subsets by arbitrarily small maps, then X is an AR.

Following [7], a subset X in a linear metric space is an LC-set if for

every 8 > 0 there exists a 8 = <5(e,X) such that for any finite set A c: X with

diam A < 5 we have diam(conv A) < e.

Observe that any set in a locally convex linear metric space is an LC-set.

We say that a subset if in a linear metric space E is a strongly LC-set if [X]

is an LC-set, where [X] = {Xx : X e [0,1] and xel}c£,

Let X be a subset in a linear metric space and e > 0. We say that X is an e-

LC-set if there exists a strongly LC-subset Y of X such that

II*-[Fill <3-1<5(e,[F]) for every x e X. (1)

We say that a finitefamily {A＼,....,An] of subsets in a linear metric space

X is linearly independent if for every xt e span At,i = 1,...,≪, the set

{jci,...,xw}＼{0}, where 8 denotes the zero element of X, is a linearly inde-

pendent subset of X.

Let X and Y be subsets in a linear metric space. We say that X and Y are

topologically summable if whenever (7 is an open subset of X and V is an open

subset of Y, the set U + V is open in X + 7.

Definition. We say that a convex set X in a linear metric space is LC-

decomposable if 9 e X, and for every s > 0 there exists positive numbers S(,

i= l,...,n, with 5Z"=i£;< e, and linearly independent, topologically summable,

Ei-LC-subsets Xt of X such that X = conv(X＼ U ･･･U Xn).

Our resultin thispaper is the following:

Theorem 1. Any LC-decomposahle convex setis an AR.
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Notation and conventions. In thispaper, all maps are assumed to be

continuous. By a linear metric space we mean a topologicalvector space X

which is metrizable.The zero element of X is denoted by 9. We equip X with an

F-norm ||･|| such that,see [11]

＼＼Xx＼＼< ||x|| for everyx e X and X e R with|A|< 1.

Let A be a subset of a linear metric space X. By span A we denote the

linearsubspace of X spanned by A and by conv A we denote the convex hullof

A in X. We also use the following notation:

[A] = [0,＼]A= {Xx : X e [0,1],x e A} = conv{A U {d}};

＼＼x- A＼＼= M{＼＼x- y＼＼:y e A} forxeX;

diam^4 = sup{||x―j>||: x,y e A}.

For undefined notation,see [11,[21 and [111.

2. The key for tie proof

In our proof of Theorem 1, we use some ideas from [7] [8] and [10]. The

following characterization of ANR-spaces, established in [6],is the key for our

proof of the main result in this paper.

Let X be a metric space. For a given open cover ^l of X, let jV(%) denote

the nerve of °U.The nerve Jf{%) of % is the simplicial complex

{a:a=(Uu...,Un), UteW, n e N}

made up of all a = (Ui,...,Un) for which f].=lUj # 0. The simplicial complex

JfifU) will be endowed with the Whitehead topology (see [1] or [5] for a dis-

cussion). Denote

mesh % = supjdiam U:Ue<%}.

Let {%n} be a sequence of open covers of a metric space X. We say that

{<%,} is a zero sequence if mesh °Un― 0 as n ―>■oo.

Finally, define

oo

n=l

%n and
oo

jr(*)= U ^･(*≫u*II+1)

≫=1

and for any a e Jf (#), let

n{a) = sup{≪ eN : a e Jf{%n U %n+＼)}
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Observe that

Jf{fUnU <#,+!)(1Jf{mn+＼U ^+2) = ^(^n+i) for everyneN.

We say that a map / : % -* X is a selectioniff(U) e U for every U e%.

The proof of Theorem 1 is based on the following:

Theorem 2 [6] (See also [9]). A metric space X with no isolated points is

an ANR if and only if there is a zero sequence {%,} of open covers of X such

that for any selection g : <% ―>X, there exists a map f : $C{%) ―≫X so that

diam(f{ok)＼J 9{o＼)) -≫0 if w(fffc)―*oo for any sequence of simplices {o^} in

Jf(%), where a0 denote the set of all vertices of a.

Now, assume that X is an LC-decomposable convex set.To show that X is

an AR, we aim to verify the conditions of Theorem 2. Our firststep is to

describea sequence ＼°Un＼of open covers of X as statedin Theorem 2.

Let {sn} = {2~n}.By the LC-decomposability of X, for every n e N there

existpositivenumbers e",i= 1,...,m(n), with

m{n)
I>?<2-* (2)

and linearly independent, topologically summable, sf-LC-subsets Gf of X,

i=＼,...,m{n), such that X = convfUS°G").

By definitionfor each i=l,...,m(n) there

F? c Gnt such that

where

Denote

Then X = conv

claim that

＼＼x-[F≪＼＼＼<3-l8!

existsa strongly LC-subset

for every xe Gf,

V = 5{£,[F?]) fori = l,...,#n(i!)

X? = [G?] and Y? = [F?] for i = 1,...,/w(/i)
(3)

(US0*/1) and Yt is an LC-set for every/ = i,■･-,'≪(≪)■We

Claim 1. ＼＼x- Yp＼＼< 3-lS?for every x e X*
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Proof. For every x e X", we have x ―kg for some g e G" and Xe [0,1]

Take / e Y/* such that

llfl-yiio-1^.

Then If e Y? and

||x - A/||= ||^ - A/||< ||9 -f＼＼< ＼＼g-Y?＼＼< T'd*.

The claim is proved.

Observe that for any finite set A c= Y", i = 1,... ,m(≪), with

For every i

Denote

diam A < 5" we have diam(conv A) < e?.

l,...,m(≪),let W" be an open cover of X? such that

diam W < 6~lS" for every W e W"

(4)

(5)

n^r,---,^W) = ^r + --- + ^(K), where ^"6#7＼i = l,...,m(ii). (6)

Let

Vn = {u= V(W?,..., ffyni: W? e Hr^i = 1,...,m(≪)}. (7)

Since X?,..., X^n) are topologically summable, V= V(W?,..., W^{n)), see (6),is

open in Xf -＼ + X＼y Since OeXp,i=l,.. .,m(n), see (3), we get

X =convI
m{n)
U V

)

i― Yn -i- 4- Yn

Therefore U ― VC＼X is open in X for every U <%,.

Our aim is to prove thatthe sequence {%n} of open covers of X, definedby

(7), satisfiesthe conditionsof Theorem 2. We firstshow:

Lemma 1. ＼°Un＼is a zero sequence of open covers of X.

Proof. As we have seen, U is open in X for every U <%,. Let us prove

that %n covers X for every ne N. For a given point x e X, take X; e X", Xt > 0,

i = 1,...,m{n), with Y!S ^ = h such that x = ££> ktxi.Note that A/x,-e 17

for / = 1,...,/≪(≪).Take W^ e #;n so that ktXi e wp for i = 1,...,m(≪). Let

K= K(^1",...,J^W), see (6). Then U=VnXe<Wn and x e U, see (7).

Consequently, <^w covers X.



122 Nguyen To Nhu, Tran Van An and Pham Quang Trinh

Now, we shall show that {<%u} is a zero sequence. In fact, we are going to

prove

diam U < 2~n for every U e %n. (8)

In fact, given U e%n we have U = VC＼X, where

V=V{W?,..., W£{n))= !＼? + -■■+ W^{n), see (6).

Therefore, for every x,y e V, x = Y£? xu y = Y£? yu where xh yt e Wtn, for

i ― 1,...,m(n). Observe that SJ < ef, for i = 1,...,m(n). Therefore from (2) and

(5) we get

m(n) m(n)
＼＼x-y＼＼< Y^Wxt-ytW < J2 diam K

<

1=1

m(n)

E

1=1

6~l8" <

/=1

m(n)

1=1

Consequently diam V < 2 n. Since

diam U = diam( V D X) < diam V < 2~n

the inequality(8) is established.The lemma is proved.

Let Uj e <%,,j = l,...,k, where

Uj = v{wju＼ ･■･. ^w(y)) m = (^(y) + ･･･ + ^:(n)(i))ni.

Then we have

(9)

Lemma 2. // fjjL,UJ * 0> then H;=i WiU) * 0 for every i=l,--
■>M≪)-

Proof. For every x e f). lUj, we have x = XXi xi(J)> where Xj(j) e

W"(j) for j ― 1,... ,k and / = 1,...,m(ri), see (9). Then for every j ― I,...,k

we have

m(n)
D

1=1

x/t/)-*/(!)) = 0

Observe that Xf(j)―x*(l) e span X" for every i = 1,...,m(n). By the linear

independence of {X", i ― 1,...,m(n)} we conclude that

xAj) = jc,-(1)for every / = ＼,...,k and i ― 1,..., m(n).
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Consequently,letting

yi = *U) = jc,-(1) for i = 1 m{n)

we get

k
yt e f] W"(j) for every i = 1,...,m(n)

7=1

The lemma is Droved.
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3. Proof of the main result

In this section, we prove Theorem 1. Since X is contractible, it sufficesto

show that X is an ANR, see [2]. We are going to verify the conditions of

Theorem 2 for the sequence {^in}, defined in Section 2, see (7).

By Lemma 1, {<%,} is a zero sequence of open covers of X. Let

% = U =l^n and let g : % -+ X be a selection. For every C/etwe have U e <%n

for some we N. Hence U = VC＼X. where

v=v(w?,...,wz{H)) = wl" + --. + wz{H)

Sinceg(U) el = conv(u2° X?}, we have

g(U) =

We claim that

m(n)

^2 hxii where xt e X", Xt > 0 and

XiXtg W" for every i = 1,..., m(n)

In fact,since g(U) e V =

zteW" for i=l,...,m(n)

(10)

m(n)
£

1=1

k = 1 (11)

(12)

Wi+---+Wm(n)> we have 9(V) = T!£?Zi,where

Therefore

m(n)

^(Z/ - XiXi)= 6

Observe that z,-- XiXte span X" for every i=l,...,m(n). By

pendence of {XfJ = 1,...,m(n)} we have AjXi= zte W"

1 m(n). The claim is established.

the linear inde-

for every i ―

Since jc*g X", i = 1,...,m(n), by Claim 1 there exist yt e Y", i= 1,...,m(n)

such that

Wxi-ytW <3-l8? for every i=l,...,m(n). (13)
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We define
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w(≪)
f(u) = Yl fa*

i=＼

(14)

(Observe that / : % ―≫･X may not be a selection:Theorem 2 requires g : <W ― X

be a selection, but it does not require / : % ― X to be so.)

From (2) (4) (11) (13) and (14) we get

m(n)
＼＼f(U)- g(U)＼＼< ^ll^-^ill

m(n)

<Y＼

1=1

miri)

1=1

＼xi-yt＼＼ <

m{n)

/=1

3~le" < 2~n

(15)

for every UeWH

Now, using the convexity of X we extend / : °U―>X affinely to a map,

which is stilldenoted by /,/ : Jf(%) ―>X. We claim that / satisfiesthe required

conditions.

Let a = <C/i,..., Uk) e /(t) = (J
=lJf{%n{)Wn+i).

Take p e N so that

Ui,...,UpeWn(a) and Up+h ... ,Uk e^n{ff)+i.

Let <r= <<7o,o-i>,where

(to = <I/i,..., t^> and ffi= <l/p+1,...,£/Jk>. (16)

Our next step is to compute diam/(<7i) for i = 0,1. Let

where

and

9{Uj) =
J=l

))
W)xiU) and f(Uj) =

m{n{a))

£

i=＼

W)ytU) (17)

w)xtU) 6 wpa)u),yiU) e yr(ff)≫w)> o, ≪･=1,...,w(≫),7 = 1,...,/>

m{n{a))

£

i=l

Uj) = ＼ for every 7 = !,...,/>
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Observe that Ui = VjHX, j ―1,...,/?,where
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Vj = V(W^＼j),..., W$>ia))U)) = W*°＼j) + ■■■+Wn^{(j)){j). (18)

Since f]j=1Uj =£0, from Lemma 2 we obtain

f] Wfa＼j) # 0 for every /=!,..., m(n(a)).

7=1

Therefore from (5) we get

for every i

diam (J Wfa＼j)<2{6-ldfa))

7=1

= l,...,m(n((j)).Denote

Ai = {W)ytU) '■j = l≫･･ ･
>P}

for / = 1,..., m{n(a))

Since 9 e Y"{<7＼see (3), it follows that

Ai<zY"{a) for i= I,...,m(n((r)).

We claim that

Claim 2. diam At < 3"^ for every i = 1,..., m{n{o)).

Proof. From (5) (12) (13) and (19) we obtain

WWMJ) - WMJ')＼＼ < WWMJ) - WMJ)＼＼

+ ＼MJ)xtU)-Wt)xiU")＼＼

+ ＼＼W')xiU")-W)yiU')＼＼

<＼＼yi(j)-xt(j)＼＼+diam U Wf°＼j)

+ lb,-(/)-^(/)ll

< 3-lS"ia) + 3-lS"i<T) + 3-ldn{<T) = 8n{<j)

which proves the claim.

From (4) and from Claim 2 it follows that

diam(conv At) < e^ for every i = 1,..., m(n(a))

(19)

(20)

(21)

(22)
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For every x e 00, we have x = Y%=＼ ai^j where a, > 0 and Y%=＼ aj ― 1- Then

from (17) and (22) we obtain

ILA*)-/(tfi)|| =

<

p
£

7=1

p
£

7=1

i=＼

)

oiA/m-fm)

m(n(a))

1=1

1=1

(m(n(a))

) p
£

7=1

p
E

7=1

MUMJ) - WMV

*AW)yiU) - WMV)

m(n(a))

< 'V" diam(conv^) < £" e?(<7)< 2""^

i=l i=＼

Similarly for every xef(o＼) we have

＼＼x-f(Up+l)＼＼<2^-1.

(Observe that C/,-e tft,(,)+{ for i=p+l,...,k.)

Now for every x e a we have x = axo + (1 ―a)^i, where X( e <iifor i = 0,1

and a e [0,1]. Let y = af/i + (1 - ot,)Up+＼.Then we get

Il/W -/Mil = ||a(/(x0) -/(t/0) + (1 - a)(/(xO -/(£/,+i))||

< ll/(^o) -/(I7i)|| + ||/(x0 -f(Up+l)＼＼ (23)

Since ^ is a selection, from (8) and (15) we get

II/GO -/(^i)il = ll≪/(^) + (i - ≪)/(^+0 -/(^i)ll

= ||(1- a)(/(C/0 -/(C/P+1))|| < ||/(C/i)-/(^h-i)H

< ll/(f/i)- g(Ui)＼＼+ UK) - g(Up+l)＼＼+ ＼＼g(Up+l)~f(Up+l)＼＼

< 2-n{<f)_j_2-≪W+i _(_2-"(<T)= 2-n(ff)+2. (24)

Therefore from (23) and (24) we obtain

＼＼f{x)-f{Ux)＼＼< ＼＼f{x)-/M|| + ＼＼f{y)-f(Vx)＼＼

< 2-≫(ff)+i_l2-≪(ff)+2< 2-n(ff)+3
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for every x e a. Consequently

diam/((r) < 2~n^+4

Since a is a selection,from (8) we get
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(25)

diam^(cT°) <2~n{-a)+l. (26)

(Note that o° denotes the set of all vertices of a, meanwhile gq is the simplex

defined by (16).) Hence from (15) (25) and (26) we obtain

diam(/(cr)) Ugf(<70))< diam(/(a)) + ＼＼f{Ux)- g{U{)＼＼+ di&m(g(a0))

< 2-n(a)+4 _j_2~n(ff)_|_2-≪(<7)+1< 2-"(ff)+5.

Therefore

diam(/(ff) U g(a0)) ^0 as n(a) -> oo.

Consequently, X is an ANR by Theorem 2 and the proof of Theorem 1 is

■fN-B'H'Sohfl/l
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