# LC-DECOMPOSABILITY AND THE AR-PROPERTY IN LINEAR METRIC SPACES 

By

Nguyen To Nhu, Tran Van An and Pham Quang Trinh


#### Abstract

We investigate the AR-property for convex sets in nonlocally convex linear metric spaces. We introduce the notion of LC-decomposability for convex sets and prove that any LCdecomposable convex set is an AR.


## 1. Introduction

Detecting the AR-property for convex sets in linear metric spaces is of great importance since Dobrowolski and Torunczyk [4] proved the following theorem:

Theorem A. (i) A complete separable linear metric space $X$ is homeomorphic to Hilbert space if and only if $X$ is an $A R$.
(ii) A compact convex set $X$ in a linear metric space is homeomorphic to Hilbert cube if and only if $X$ is an $A R$.

For about fifteen years many efforts were made to find out whether the assumption of AR-property in Dobrowolski-Torunczyk's theorem is essential. This question has been answered partly by Cauty [3], who recently proved the following theorem:

Theorem B. There exists a $\sigma$-compact linear metric space which is not an $A R$.

By a theorem of Torunczyk [12], the completion of any non-AR-linear metric space is still a non-AR-space. Therefore Theorem B shows that the ARproperty assumption in Theorem A (i) is essential. However, it is unknown

[^0]whether the AR-property assumption can be removed from Theorem A (ii). This is still one of the most interesting (and difficult!) questions in the theory of non-locally convex linear metric spaces.

By Theorem B, convex sets in linear metric spaces may be not $A R$-spaces. So it is essential to establish conditions for convex sets to be $A R^{\prime} s$. And the results in [7] and [8] become valuable because of Cauty's theorem.

In [7] it was shown that if a convex set $X$ in a linear metric space can be pushed into its locally convex subsets by arbitrarily small maps, then $X$ is an AR. In this paper, we genelize the result of [7] by demonstrating that if a convex set $X$ can be broken into finite convex sets, each of them can be pushed into its locally convex subsets by arbitrarily small maps, then $X$ is an $A R$.

Following [7], a subset $X$ in a linear metric space is an $L C$-set if for every $\varepsilon>0$ there exists a $\delta=\delta(\varepsilon, X)$ such that for any finite set $A \subset X$ with $\operatorname{diam} A<\delta$ we have $\operatorname{diam}(\operatorname{conv} A)<\varepsilon$.

Observe that any set in a locally convex linear metric space is an LC-set.
We say that a subset $X$ in a linear metric space $E$ is a strongly LC-set if $[X]$ is an LC-set, where $[X]=\{\lambda x: \lambda \in[0,1]$ and $x \in X\} \subset E$.

Let $X$ be a subset in a linear metric space and $\varepsilon>0$. We say that $X$ is an $\varepsilon$ $L C$-set if there exists a strongly LC-subset $Y$ of $X$ such that

$$
\begin{equation*}
\|x-[Y]\|<3^{-1} \delta(\varepsilon,[Y]) \quad \text { for every } x \in X \tag{1}
\end{equation*}
$$

We say that a finite family $\left\{A_{1}, \ldots, A_{n}\right\}$ of subsets in a linear metric space $X$ is linearly independent if for every $x_{i} \in \operatorname{span} A_{i}, i=1, \ldots, n$, the set $\left\{x_{1}, \ldots, x_{n}\right\} \backslash\{\theta\}$, where $\theta$ denotes the zero element of $X$, is a linearly independent subset of $X$.

Let $X$ and $Y$ be subsets in a linear metric space. We say that $X$ and $Y$ are topologically summable if whenever $U$ is an open subset of $X$ and $V$ is an open subset of $Y$, the set $U+V$ is open in $X+Y$.

Definition. We say that a convex set $X$ in a linear metric space is $L C$ decomposable if $\theta \in X$, and for every $\varepsilon>0$ there exists positive numbers $\varepsilon_{i}$, $i=1, \ldots, n$, with $\sum_{i=1}^{n} \varepsilon_{i} \leq \varepsilon$, and linearly independent, topologically summable, $\varepsilon_{i}$-LC-subsets $X_{i}$ of $X$ such that $X=\operatorname{conv}\left(X_{1} \cup \cdots \cup X_{n}\right)$.

Our result in this paper is the following:
Theorem 1. Any LC-decomposable convex set is an $A R$.

Notation and conventions. In this paper, all maps are assumed to be continuous. By a linear metric space we mean a topological vector space $X$ which is metrizable. The zero element of $X$ is denoted by $\theta$. We equip $X$ with an F-norm $\|\cdot\|$ such that, see [11]

$$
\|\lambda x\| \leq\|x\| \quad \text { for every } x \in X \text { and } \lambda \in \mathbb{R} \text { with }|\lambda| \leq 1 .
$$

Let $A$ be a subset of a linear metric space $X$. By span $A$ we denote the linear subspace of $X$ spanned by $A$ and by conv $A$ we denote the convex hull of $A$ in $X$. We also use the following notation:

$$
\begin{gathered}
{[A]=[0,1] A=\{\lambda x: \lambda \in[0,1], x \in A\}=\operatorname{conv}\{A \cup\{\theta\}\} ;} \\
\|x-A\|=\inf \{\|x-y\|: y \in A\} \text { for } x \in X ; \\
\operatorname{diam} A=\sup \{\|x-y\|: x, y \in A\} .
\end{gathered}
$$

For undefined notation, see [1], [2] and [11].

## 2. The key for the proof

In our proof of Theorem 1, we use some ideas from [7] [8] and [10]. The following characterization of ANR-spaces, established in [6], is the key for our proof of the main result in this paper.

Let $X$ be a metric space. For a given open cover $\mathscr{U}$ of $X$, let $\mathscr{N}(\mathscr{U})$ denote the nerve of $\mathscr{U}$. The nerve $\mathcal{N}(\mathscr{U})$ of $\mathscr{U}$ is the simplicial complex

$$
\left\{\sigma: \sigma=\left\langle U_{1}, \ldots, U_{n}\right\rangle, U_{i} \in \mathscr{U}, n \in N\right\}
$$

made up of all $\sigma=\left\langle U_{1}, \ldots, U_{n}\right\rangle$ for which $\bigcap_{i=1}^{N} U_{i} \neq \varnothing$. The simplicial complex $\mathscr{N}(\mathscr{U})$ will be endowed with the Whitehead topology (see [1] or [5] for a discussion). Denote

$$
\operatorname{mesh} \mathscr{U}=\sup \{\operatorname{diam} U: U \in \mathscr{U}\} .
$$

Let $\left\{\mathscr{U}_{n}\right\}$ be a sequence of open covers of a metric space $X$. We say that $\left\{\mathscr{U}_{n}\right\}$ is a zero sequence if mesh $\mathscr{U}_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Finally, define

$$
\mathscr{U}=\bigcup_{n=1}^{\infty} \mathscr{U}_{n} \quad \text { and } \quad \mathscr{K}(\mathscr{U})=\bigcup_{n=1}^{\infty} \mathscr{N}\left(\mathscr{U}_{n} \cup \mathscr{U}_{n+1}\right),
$$

and for any $\sigma \in \mathscr{K}(\mathscr{U})$, let

$$
n(\sigma)=\sup \left\{n \in N: \sigma \in \mathscr{N}\left(\mathscr{U}_{n} \cup \mathscr{U}_{n+1}\right)\right\}
$$

Observe that

$$
\mathscr{N}\left(\mathscr{U}_{n} \cup \mathscr{U}_{n+1}\right) \cap \mathscr{N}\left(\mathscr{U}_{n+1} \cup \mathscr{U}_{n+2}\right)=\mathscr{N}\left(\mathscr{U}_{n+1}\right) \quad \text { for every } n \in N
$$

We say that a map $f: \mathscr{U} \rightarrow X$ is a selection if $f(U) \in U$ for every $U \in \mathscr{U}$.
The proof of Theorem 1 is based on the following:

Theorem 2 [6] (See also [9]). A metric space $X$ with no isolated points is an ANR if and only if there is a zero sequence $\left\{\mathscr{U}_{n}\right\}$ of open covers of $X$ such that for any selection $g: \mathscr{U} \rightarrow X$, there exists a map $f: \mathscr{K}(\mathscr{U}) \rightarrow X$ so that $\operatorname{diam}\left(f\left(\sigma_{k}\right) \cup g\left(\sigma_{k}^{0}\right)\right) \rightarrow 0$ if $n\left(\sigma_{k}\right) \rightarrow \infty$ for any sequence of simplices $\left\{\sigma_{k}\right\}$ in $\mathscr{K}(\mathscr{U})$, where $\sigma^{0}$ denote the set of all vertices of $\sigma$.

Now, assume that $X$ is an LC-decomposable convex set. To show that $X$ is an $A R$, we aim to verify the conditions of Theorem 2. Our first step is to describe a sequence $\left\{\mathscr{U}_{n}\right\}$ of open covers of $X$ as stated in Theorem 2.

Let $\left\{\varepsilon_{n}\right\}=\left\{2^{-n}\right\}$. By the LC-decomposability of $X$, for every $n \in N$ there exist positive numbers $\varepsilon_{i}^{n}, i=1, \ldots, m(n)$, with

$$
\begin{equation*}
\sum_{i=1}^{m(n)} \varepsilon_{i}^{n} \leq 2^{-n} \tag{2}
\end{equation*}
$$

and linearly independent, topologically summable, $\varepsilon_{i}^{n}$-LC-subsets $G_{i}^{n}$ of $X$, $i=1, \ldots, m(n)$, such that $X=\operatorname{conv}\left(\bigcup_{i=1}^{m(n)} G_{i}^{n}\right)$.

By definition for each $i=1, \ldots, m(n)$ there exists a strongly LC-subset $F_{i}^{n} \subset G_{i}^{n}$ such that

$$
\left\|x-\left[F_{i}^{n}\right]\right\|<3^{-1} \delta_{i}^{n} \quad \text { for every } x \in G_{i}^{n}
$$

where

$$
\delta_{i}^{n}=\delta\left(\varepsilon_{i}^{n},\left[F_{i}^{n}\right]\right) \quad \text { for } i=1, \ldots, m(n)
$$

Denote

$$
\begin{equation*}
X_{i}^{n}=\left[G_{i}^{n}\right] \text { and } Y_{i}^{n}=\left[F_{i}^{n}\right] \text { for } i=1, \ldots, m(n) \tag{3}
\end{equation*}
$$

Then $X=\operatorname{conv}\left(\bigcup_{i=1}^{m(n)} X_{i}^{n}\right)$ and $Y_{i}^{n}$ is an LC-set for every $i=1, \ldots, m(n)$. We claim that

Claim 1. $\left\|x-Y_{i}^{n}\right\|<3^{-1} \delta_{i}^{n}$ for every $x \in X_{i}^{n}$.

Proof. For every $x \in X_{i}^{n}$, we have $x=\lambda g$ for some $g \in G_{i}^{n}$ and $\lambda \in[0,1]$. Take $f \in Y_{i}^{n}$ such that

$$
\left\|g-Y_{i}^{n}\right\|<3^{-1} \delta_{i}^{n}
$$

Then $\lambda f \in Y_{i}^{n}$ and

$$
\|x-\lambda f\|=\|\lambda g-\lambda f\| \leq\|g-f\| \leq\left\|g-Y_{i}^{n}\right\|<3^{-1} \delta_{i}^{n} .
$$

The claim is proved.
Observe that for any finite set $A \subset Y_{i}^{n}, i=1, \ldots, m(n)$, with

$$
\begin{equation*}
\operatorname{diam} A<\delta_{i}^{n} \quad \text { we have } \operatorname{diam}(\operatorname{conv} A)<\varepsilon_{i}^{n} . \tag{4}
\end{equation*}
$$

For every $i=1, \ldots, m(n)$, let $\mathscr{W}_{i}^{n}$ be an open cover of $X_{i}^{n}$ such that

$$
\begin{equation*}
\operatorname{diam} W<6^{-1} \delta_{i}^{n} \quad \text { for every } W \in \mathscr{W}_{i}^{n} \tag{5}
\end{equation*}
$$

Denote

$$
\begin{equation*}
V\left(W_{1}^{n}, \ldots, W_{m(n)}^{n}\right)=W_{1}^{n}+\cdots+W_{m(n)}^{n}, \quad \text { where } W_{i}^{n} \in \mathscr{W}_{i}^{n}, i=1, \ldots, m(n) \tag{6}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mathscr{U}_{n}=\left\{U=V\left(W_{1}^{n}, \ldots, W_{m(n)}^{n}\right) \cap X: W_{i}^{n} \in \mathscr{W}_{i}^{n}, i=1, \ldots, m(n)\right\} . \tag{7}
\end{equation*}
$$

Since $X_{1}^{n}, \ldots, X_{m(n)}^{n}$ are topologically summable, $V=V\left(W_{1}^{n}, \ldots, W_{m(n)}^{n}\right)$, see (6), is open in $X_{1}^{n}+\cdots+X_{m(n)}^{n}$. Since $\theta \in X_{i}^{n}, i=1, \ldots, m(n)$, see (3), we get

$$
X=\operatorname{conv}\left(\bigcup_{i=1}^{m(n)} X_{i}^{n}\right) \subset X_{1}^{n}+\cdots+X_{m(n)}^{n}
$$

Therefore $U=V \cap X$ is open in $X$ for every $U \in \mathscr{U}_{n}$.
Our aim is to prove that the sequence $\left\{\mathscr{U}_{n}\right\}$ of open covers of $X$, defined by (7), satisfies the conditions of Theorem 2. We first show:

Lemma 1. $\left\{\mathscr{U}_{n}\right\}$ is a zero sequence of open covers of $X$.
Proof. As we have seen, $U$ is open in $X$ for every $U \in \mathscr{U}_{n}$. Let us prove that $\mathscr{U}_{n}$ covers $X$ for every $n \in N$. For a given point $x \in X$, take $x_{i} \in X_{i}^{n}, \lambda_{i} \geq 0$, $i=1, \ldots, m(n)$, with $\sum_{i=1}^{m(n)} \lambda_{i}=1$, such that $x=\sum_{i=1}^{m(n)} \lambda_{i} x_{i}$. Note that $\lambda_{i} x_{i} \in X_{i}^{n}$ for $i=1, \ldots, m(n)$. Take $W_{i}^{n} \in \mathscr{W}_{i}^{n}$ so that $\lambda_{i} x_{i} \in W_{i}^{n}$ for $i=1, \ldots, m(n)$. Let $V=V\left(W_{1}^{n}, \ldots, W_{m(n)}^{n}\right)$, see (6). Then $U=V \cap X \in \mathscr{U}_{n}$ and $x \in U$, see (7). Consequently, $\mathscr{U}_{n}$ covers $X$.

Now, we shall show that $\left\{\mathscr{U}_{u}\right\}$ is a zero sequence. In fact, we are going to prove

$$
\begin{equation*}
\operatorname{diam} U<2^{-n} \quad \text { for every } U \in \mathscr{U}_{n} . \tag{8}
\end{equation*}
$$

In fact, given $U \in \mathscr{U}_{n}$ we have $U=V \cap X$, where

$$
V=V\left(W_{1}^{n}, \ldots, W_{m(n)}^{n}\right)=W_{1}^{n}+\cdots+W_{m(n)}^{n}, \quad \text { see }(6) .
$$

Therefore, for every $x, y \in V, x=\sum_{i=1}^{m(n)} x_{i}, y=\sum_{i=1}^{m(n)} y_{i}$, where $x_{i}, y_{i} \in W_{i}^{n}$, for $i=1, \ldots, m(n)$. Observe that $\delta_{i}^{n} \leq \varepsilon_{i}^{n}$, for $i=1, \ldots, m(n)$. Therefore from (2) and (5) we get

$$
\begin{aligned}
\|x-y\| & \leq \sum_{i=1}^{m(n)}\left\|x_{i}-y_{i}\right\| \leq \sum_{i=1}^{m(n)} \operatorname{diam} W_{i}^{n} \\
& <\sum_{i=1}^{m(n)} 6^{-1} \delta_{i}^{n}<\sum_{i=1}^{m(n)} \varepsilon_{i}^{n} \leq 2^{-n} .
\end{aligned}
$$

Consequently diam $V<2^{-n}$. Since

$$
\operatorname{diam} U=\operatorname{diam}(V \cap X) \leq \operatorname{diam} V<2^{-n}
$$

the inequality (8) is established. The lemma is proved.
Let $U_{j} \in \mathscr{U}_{n}, j=1, \ldots, k$, where

$$
\begin{equation*}
U_{j}=V\left(W_{1}^{n}(j), \ldots, W_{m(n)}^{n}(j)\right) \cap X=\left(W_{1}^{n}(j)+\cdots+W_{m(n)}^{n}(j)\right) \cap X \tag{9}
\end{equation*}
$$

Then we have
Lemma 2. If $\bigcap_{j=1}^{k} U_{j} \neq \varnothing$, then $\bigcap_{j=1}^{k} W_{i}^{n}(j) \neq \varnothing$ for every $i=1, \ldots, m(n)$.
Proof. For every $x \in \bigcap_{j=1}^{k} U_{j}$, we have $x=\sum_{i=1}^{m(n)} x_{i}(j)$, where $x_{i}(j) \in$ $W_{i}^{n}(j)$ for $j=1, \ldots, k$ and $i=1, \ldots, m(n)$, see (9). Then for every $j=1, \ldots, k$ we have

$$
\sum_{i=1}^{m(n)}\left(x_{i}(j)-x_{i}(1)\right)=\theta .
$$

Observe that $x_{i}(j)-x_{i}(1) \in \operatorname{span} X_{i}^{n}$ for every $i=1, \ldots, m(n)$. By the linear independence of $\left\{X_{i}^{n}, i=1, \ldots, m(n)\right\}$ we conclude that

$$
x_{i}(j)=x_{i}(1) \quad \text { for every } j=1, \ldots, k \quad \text { and } \quad i=1, \ldots, m(n)
$$

Consequently, letting

$$
y_{i}=x_{i}(j)=x_{i}(1) \quad \text { for } i=1, \ldots, m(n)
$$

we get

$$
y_{i} \in \bigcap_{j=1}^{k} W_{i}^{n}(j) \text { for every } i=1, \ldots, m(n)
$$

The lemma is proved.

## 3. Proof of the main result

In this section, we prove Theorem 1. Since $X$ is contractible, it suffices to show that $X$ is an $A N R$, see [2]. We are going to verify the conditions of Theorem 2 for the sequence $\left\{\mathscr{U}_{n}\right\}$, defined in Section 2, see (7).

By Lemma $1,\left\{\mathscr{U}_{n}\right\}$ is a zero sequence of open covers of $X$. Let $\mathscr{U}=\bigcup_{n=1}^{\infty} \mathscr{U}_{n}$ and let $g: \mathscr{U} \rightarrow X$ be a selection. For every $U \in \mathscr{U}$ we have $U \in \mathscr{U}_{n}$ for some $n \in N$. Hence $U=V \cap X$, where

$$
\begin{equation*}
V=V\left(W_{1}^{n}, \ldots, W_{m(n)}^{n}\right)=W_{1}^{n}+\cdots+W_{m(n)}^{n} \tag{10}
\end{equation*}
$$

Since $g(U) \in X=\operatorname{conv}\left(\bigcup_{i=1}^{m(n)} X_{i}^{n}\right)$, we have

$$
\begin{equation*}
g(U)=\sum_{i=1}^{m(n)} \lambda_{i} x_{i}, \quad \text { where } x_{i} \in X_{i}^{n}, \lambda_{i} \geq 0 \quad \text { and } \quad \sum_{i=1}^{m(n)} \lambda_{i}=1 . \tag{11}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\lambda_{i} x_{i} \in W_{i}^{n} \quad \text { for every } i=1, \ldots, m(n) \tag{12}
\end{equation*}
$$

In fact, since $g(U) \in V=W_{1}^{n}+\cdots+W_{m(n)}^{n}$, we have $g(U)=\sum_{i=1}^{m(n)} z_{i}$, where $z_{i} \in W_{i}^{n}$ for $i=1, \ldots, m(n)$. Therefore

$$
\sum_{i=1}^{m(n)}\left(z_{i}-\lambda_{i} x_{i}\right)=\theta
$$

Observe that $z_{i}-\lambda_{i} x_{i} \in \operatorname{span} X_{i}^{n}$ for every $i=1, \ldots, m(n)$. By the linear independence of $\left\{X_{i}^{n}, i=1, \ldots, m(n)\right\}$ we have $\lambda_{i} x_{i}=z_{i} \in W_{i}^{n}$ for every $i=$ $1, \ldots, m(n)$. The claim is established.

Since $x_{i} \in X_{i}^{n}, i=1, \ldots, m(n)$, by Claim 1 there exist $y_{i} \in Y_{i}^{n}, i=1, \ldots, m(n)$ such that

$$
\begin{equation*}
\left\|x_{i}-y_{i}\right\|<3^{-1} \delta_{i}^{n} \quad \text { for every } i=1, \ldots, m(n) \tag{13}
\end{equation*}
$$

We define

$$
\begin{equation*}
f(U)=\sum_{i=1}^{m(n)} \lambda_{i} y_{i} \tag{14}
\end{equation*}
$$

(Observe that $f: \mathscr{U} \rightarrow X$ may not be a selection: Theorem 2 requires $g: \mathscr{U} \rightarrow X$ be a selection, but it does not require $f: \mathscr{U} \rightarrow X$ to be so.)

From (2) (4) (11) (13) and (14) we get

$$
\begin{align*}
\|f(U)-g(U)\| & \leq \sum_{i=1}^{m(n)}\left\|\lambda_{i} x_{i}-\lambda_{i} y_{i}\right\| \\
& \leq \sum_{i=1}^{m(n)}\left\|x_{i}-y_{i}\right\|<\sum_{i=1}^{m(n)} 3^{-1} \delta_{i}^{n}  \tag{15}\\
& \leq \sum_{i=1}^{m(n)} 3^{-1} \varepsilon_{i}^{n}<2^{-n}
\end{align*}
$$

for every $U \in \mathscr{U}_{n}$.
Now, using the convexity of $X$ we extend $f: \mathscr{U} \rightarrow X$ affinely to a map, which is still denoted by $f, f: \mathscr{K}(\mathscr{U}) \rightarrow X$. We claim that $f$ satisfies the required conditions.

Let $\sigma=\left\langle U_{1}, \ldots, U_{k}\right\rangle \in \mathscr{K}(\mathscr{U})=\bigcup_{n=1}^{\infty} \mathscr{N}\left(\mathscr{U}_{n} \cup \mathscr{U}_{n+1}\right)$. Take $p \in N$ so that

$$
U_{1}, \ldots, U_{p} \in \mathscr{U}_{n(\sigma)} \quad \text { and } \quad U_{p+1}, \ldots, U_{k} \in \mathscr{U}_{n(\sigma)+1}
$$

Let $\sigma=\left\langle\sigma_{0}, \sigma_{1}\right\rangle$, where

$$
\begin{equation*}
\sigma_{0}=\left\langle U_{1}, \ldots, U_{p}\right\rangle \quad \text { and } \quad \sigma_{1}=\left\langle U_{p+1}, \ldots, U_{k}\right\rangle \tag{16}
\end{equation*}
$$

Our next step is to compute $\operatorname{diam} f\left(\sigma_{i}\right)$ for $i=0,1$. Let

$$
\begin{equation*}
g\left(U_{j}\right)=\sum_{i=1}^{m(n(\sigma))} \lambda_{i}(j) x_{i}(j) \text { and } f\left(U_{j}\right)=\sum_{i=1}^{m(n(\sigma))} \lambda_{i}(j) y_{i}(j) \tag{17}
\end{equation*}
$$

where

$$
\lambda_{i}(j) x_{i}(j) \in W_{i}^{n(\sigma)}(j), y_{i}(j) \in Y_{i}^{n(\sigma)}, \lambda_{i}(j) \geq 0, \quad i=1, \ldots, m(n), j=1, \ldots, p
$$

and

$$
\sum_{i=1}^{m(n(\sigma))} \lambda_{i}(j)=1 \quad \text { for every } j=1, \ldots, p
$$

Observe that $U_{j}=V_{j} \cap X, j=1, \ldots, p$, where

$$
\begin{equation*}
V_{j}=V\left(W_{1}^{n(\sigma)}(j), \ldots, W_{m(n(\sigma))}^{n(\sigma)}(j)\right)=W_{1}^{n(\sigma)}(j)+\cdots+W_{m(n(\sigma))}^{n(\sigma)}(j) . \tag{18}
\end{equation*}
$$

Since $\bigcap_{j=1}^{p} U_{j} \neq \varnothing$, from Lemma 2 we obtain

$$
\bigcap_{j=1}^{p} W_{i}^{n(\sigma)}(j) \neq \varnothing \quad \text { for every } i=1, \ldots, m(n(\sigma))
$$

Therefore from (5) we get

$$
\begin{equation*}
\operatorname{diam} \bigcup_{j=1}^{p} W_{i}^{n(\sigma)}(j)<2\left(6^{-1} \delta_{i}^{n(\sigma)}\right)=3^{-1} \delta_{i}^{n(\sigma)}, \tag{19}
\end{equation*}
$$

for every $i=1, \ldots, m(n(\sigma))$. Denote

$$
\begin{equation*}
A_{i}=\left\{\lambda_{i}(j) y_{i}(j): j=1, \ldots, p\right\} \quad \text { for } i=1, \ldots, m(n(\sigma)) . \tag{20}
\end{equation*}
$$

Since $\theta \in Y_{i}^{n(\sigma)}$, see (3), it follows that

$$
\begin{equation*}
A_{i} \subset Y_{i}^{n(\sigma)} \quad \text { for } i=1, \ldots, m(n(\sigma)) \tag{21}
\end{equation*}
$$

We claim that
Claim 2. diam $A_{i}<\delta_{i}^{n(\sigma)}$ for every $i=1, \ldots, m(n(\sigma))$.

Proof. From (5) (12) (13) and (19) we obtain

$$
\begin{aligned}
\left\|\lambda_{i}(j) y_{i}(j)-\lambda_{i}\left(j^{\prime}\right) y_{i}\left(j^{\prime}\right)\right\| \leq & \left\|\lambda_{i}(j) y_{i}(j)-\lambda_{i}(j) x_{i}(j)\right\| \\
& +\left\|\lambda_{i}(j) x_{i}(j)-\lambda_{i}\left(j^{\prime}\right) x_{i}\left(j^{\prime}\right)\right\| \\
& +\left\|\lambda_{i}\left(j^{\prime}\right) x_{i}\left(j^{\prime}\right)-\lambda_{i}\left(j^{\prime}\right) y_{i}\left(j^{\prime}\right)\right\| \\
\leq & \left\|y_{i}(j)-x_{i}(j)\right\|+\operatorname{diam} \bigcup_{j=1}^{p} W_{i}^{n(\sigma)}(j) \\
& +\left\|y_{i}\left(j^{\prime}\right)-x_{i}\left(j^{\prime}\right)\right\| \\
< & 3^{-1} \delta_{i}^{n(\sigma)}+3^{-1} \delta_{i}^{n(\sigma)}+3^{-1} \delta_{i}^{n(\sigma)}=\delta_{i}^{n(\sigma)}
\end{aligned}
$$

which proves the claim.
From (4) and from Claim 2 it follows that

$$
\begin{equation*}
\operatorname{diam}\left(\operatorname{conv} A_{i}\right)<\varepsilon_{i}^{n(\sigma)} \quad \text { for every } i=1, \ldots, m(n(\sigma)) \tag{22}
\end{equation*}
$$

For every $x \in \sigma_{0}$, we have $x=\sum_{j=1}^{p} \alpha_{j} U_{j}$ where $\alpha_{j} \geq 0$ and $\sum_{j=1}^{p} \alpha_{j}=1$. Then from (17) and (22) we obtain

$$
\begin{aligned}
\left\|f(x)-f\left(U_{1}\right)\right\| & =\left\|\sum_{j=1}^{p} \alpha_{j}\left(f\left(U_{j}\right)-f\left(U_{1}\right)\right)\right\| \\
& =\left\|\sum_{j=1}^{p} \alpha_{j} \sum_{i=1}^{m(n(\sigma))}\left(\lambda_{i}(j) y_{i}(j)-\lambda_{i}(1) y_{i}(1)\right)\right\| \\
& =\| \sum_{i=1}^{m(n(\sigma))} \sum_{j=1}^{p} \alpha_{j}\left(\lambda_{i}(j) y_{i}(j)-\lambda_{i}(1) y_{i}(1) \|\right. \\
& \leq \sum_{i=1}^{m(n(\sigma))}\left\|\sum_{j=1}^{p} \alpha_{j}\left(\lambda_{i}(j) y_{i}(j)-\lambda_{i}(1) y_{i}(1)\right)\right\| \\
& \leq \sum_{i=1}^{(m(n(\sigma))} \operatorname{diam}\left(\operatorname{conv} A_{i}\right)<\sum_{i=1}^{m(n(\sigma))} \varepsilon_{i}^{n(\sigma)}<2^{-n(\sigma)} .
\end{aligned}
$$

Similarly for every $x \in f\left(\sigma_{1}\right)$ we have

$$
\left\|x-f\left(U_{p+1}\right)\right\|<2^{-n(\sigma)-1}
$$

(Observe that $U_{i} \in \mathscr{U}_{n(\sigma)+1}$ for $i=p+1, \ldots, k$.)
Now for every $x \in \sigma$ we have $x=\alpha x_{0}+(1-\alpha) x_{1}$, where $x_{i} \in \sigma_{i}$ for $i=0,1$ and $\alpha \in[0,1]$. Let $y=\alpha U_{1}+(1-\alpha) U_{p+1}$. Then we get

$$
\begin{align*}
\|f(x)-f(y)\| & =\left\|\alpha\left(f\left(x_{0}\right)-f\left(U_{1}\right)\right)+(1-\alpha)\left(f\left(x_{1}\right)-f\left(U_{p+1}\right)\right)\right\| \\
& \leq\left\|f\left(x_{0}\right)-f\left(U_{1}\right)\right\|+\left\|f\left(x_{1}\right)-f\left(U_{p+1}\right)\right\|  \tag{23}\\
& <2^{-n(\sigma)}+2^{-n(\sigma)-1}<2^{-n(\sigma)+1}
\end{align*}
$$

Since $g$ is a selection, from (8) and (15) we get

$$
\begin{align*}
\left\|f(y)-f\left(U_{1}\right)\right\| & =\left\|\alpha f\left(U_{1}\right)+(1-\alpha) f\left(U_{p+1}\right)-f\left(U_{1}\right)\right\| \\
& =\left\|(1-\alpha)\left(f\left(U_{1}\right)-f\left(U_{p+1}\right)\right)\right\| \leq\left\|f\left(U_{1}\right)-f\left(U_{p+1}\right)\right\| \\
& \leq\left\|f\left(U_{1}\right)-g\left(U_{1}\right)\right\|+\left\|g\left(U_{1}\right)-g\left(U_{p+1}\right)\right\|+\left\|g\left(U_{p+1}\right)-f\left(U_{p+1}\right)\right\| \\
& <2^{-n(\sigma)}+2^{-n(\sigma)+1}+2^{-n(\sigma)}=2^{-n(\sigma)+2} . \tag{24}
\end{align*}
$$

Therefore from (23) and (24) we obtain

$$
\begin{aligned}
\left\|f(x)-f\left(U_{1}\right)\right\| & \leq\|f(x)-f(y)\|+\left\|f(y)-f\left(U_{1}\right)\right\| \\
& <2^{-n(\sigma)+1}+2^{-n(\sigma)+2}<2^{-n(\sigma)+3}
\end{aligned}
$$

for every $x \in \sigma$. Consequently

$$
\begin{equation*}
\operatorname{diam} f(\sigma)<2^{-n(\sigma)+4} \tag{25}
\end{equation*}
$$

Since $g$ is a selection, from (8) we get

$$
\begin{equation*}
\operatorname{diam} g\left(\sigma^{0}\right)<2^{-n(\sigma)+1} \tag{26}
\end{equation*}
$$

(Note that $\sigma^{0}$ denotes the set of all vertices of $\sigma$, meanwhile $\sigma_{0}$ is the simplex defined by (16).) Hence from (15) (25) and (26) we obtain

$$
\begin{aligned}
\left.\operatorname{diam}(f(\sigma)) \cup g\left(\sigma^{0}\right)\right) & \leq \operatorname{diam}(f(\sigma))+\left\|f\left(U_{1}\right)-g\left(U_{1}\right)\right\|+\operatorname{diam}\left(g\left(\sigma^{0}\right)\right) \\
& <2^{-n(\sigma)+4}+2^{-n(\sigma)}+2^{-n(\sigma)+1}<2^{-n(\sigma)+5}
\end{aligned}
$$

Therefore

$$
\operatorname{diam}\left(f(\sigma) \cup g\left(\sigma^{0}\right)\right) \rightarrow 0 \quad \text { as } n(\sigma) \rightarrow \infty
$$

Consequently, $X$ is an ANR by Theorem 2 and the proof of Theorem 1 is finished.

## Acknowledgement

The authors are grateful to the referee for his (her) comments.

## References

[1] C. Bessaga and A. Pelczynski, Selected Topics in Infinite-Dimensional Topology, PWN-Polish Scientific Publishers, Warsaw, 1975.
[ 2] K. Borsuk, Theory of Retracts, PWN-Polish Scientific Publishers, Warsaw, 1967.
[3] R. Cauty, Un Espace Metrique Lineaire qui N'est Pas un Retracte Absolu, Fund. Math. 144 (1994), 11-22.
[4] T. Dobrowolski and H. Torunczyk, On Metric Linear Spaces Homeomorphic to $\ell_{2}$ and Compact Convex Sets homeomorphic to Q, Bull. Acad. Sci. Ser. Sci. Math. 27 (1979), 883-887.
[5] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
[6] Nguyen To Nhu, Investigating the ANR-Property of Metric Spaces, Fund. Math. 124 (1984), 243-254; Corrections, 141 (1992), 297.
[7] Nguyen To Nhu, Admissibility, the Locally Convex Approximation Property and the AR-Property in Linear Metric Spaces, Proc. Amer. Math. Soc. 123 (1995), 3233-3241.
[8] Nguuyen To Nhu, The Finite Dimensional Approximation Property and the AR-Property in Needle Point Spaces, J. London Math. Soc. (To appear).
[9] Nguyen To Nhu and K. Sakai, The Compact Neighborhood Extension Property and Local Equiconnectedness, Proc. Amer. Math. Soc. 121 (1994), 259-265.
[10] Nguyen To Nhu, Jose M. R. Sanjurjo and Tran Van An, The AR-Property for Roberts' Example of a Compact Convex Set with No Extreme Points, Proc. Amer. Math. Soc. (To appear).
[11] S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific Publishers, Warsaw, 1984.
[12] H. Torunczyk, Concerning Locally Homotopy Negligible Sets and Characterization of $\ell_{2}$ manifolds, Fund. Math. 101 (1978), 93-110.

Nguyen To Nhu<br>Department of Mathematical Sciences<br>New Mexico State University<br>Las Cruces, NM 88003-8001, USA<br>Email address: nnguyen@nmsu.edu<br>Tran Van An<br>Pham Quang Trinh<br>Department of Mathematics,<br>University of Vinh, Nghe An, Vietnam


[^0]:    1991 Mathematics Subject Classification. Primary 46A16; Secondary 54G15.
    This paper was financially supported by the National Basic Research Program in Natural Sciences. Received January 19, 1995.
    Revised January 13, 1997.

