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WHEN IS AN ORDERED FIELD A METRIC SPACE?

Dedicated to the memory of my colleague,W. Harold "Harry" Row, Jr

By

David E. Dobbs

Abstract. Let (i7, <) be an ordered field. With respect to the order

topology, F is a Tychonoff uniform space. F is metrizable if and only

if there is a countable set {b＼,... ,bn:...} of positive elements of F

such that if b is any positive element of F, there exists n > 1 such

that 0 < bn < b. If F is denumerable or Archimedean, then this

metrizability condition is satisfied. For each uncountable cardinal

number N, there exist ordered fields, F＼ and Fj, each of cardinality ft,

such that the order topology on F＼ (resp, F2) is (resp., is not)

metrizable.

1. Introduction

Our startingpoint is the observation that the set R of real numbers has many

compatible structures. For instance, R is both an ordered field and a metric

space. Some other familiar ordered fields,such as the fieldQ of rational numbers,

also have structures as metric spaces, and so it seems natural to ask if every

ordered fieldis a metric space. More precisely, one may ask, given an ordered

field(F, <), if the order topology on F (in the sense of [7])is metrizable, in which

case one would say that F is metrizable. Despite the evidence afforded by R and

Q, the answer is in the negative, for Theorem 2.6 establishes that for each

uncountable cardinal number N, there exist ordered fields,F＼ and Fj, each of

cardinality N, such that F＼is metrizable and F-iis not metrizable. This result is

best-possible,since Corollary 2.4 establishesthat each countable ordered fieldis

metrizable. Moreover, as suggested by the examples of R and Q, Corollary 2.5

establishes that each Archimedean field is metrizable. (Background on the
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"Archimedean" concept will be recalledin Section 2. For the moment, we recall

that each ordered field F has characteristiczero and, hence, contains an iso-

morphic copy of Q. It is well known that F is Archimedean if and only if Q is

order-theoreticallydense in F.) Despite the examples of R and Q, Remark 2.7 (a)

shows that the order topology of a metrizable ordered fieldneed not be separable.

One may conclude, by comparing Corollary 2.5 and Remark 2.7 (a), that the

metrizability of the usual topology on R is essentiallydue to the order-theoretic

density of Q in R, rather than the topological density of Q in R. In fact,Theorem

2.2 gives the following order-theoretic characterization of metrizable ordered

fields(F, <): there is a countable set {b＼,...,bn,...} of positive elements of F

such thatif b is any positive element of F, there existsn>＼ such that 0 < bn < b.

Theorem 2.6 and Remark 2.7 are essentiallyalgebraic. In these results,one

constructs linear orders on monomials involving possibly infinitely many vari-

ables, and the ordered fields that result from these constructions are certain

function fieldsor fieldsof formal Laurent series.On the other hand, Theorem 2.2

results from an analysis of the order topology on any arbitrary ordered field.

Although this topology need not be metrizable, it does produce a Tychonoff

uniform space: see Lemma 2.1 (b) for a proof of uniformity that uses results on

topological groups and Remark 2.3 for the sketch of a proof that uses only

general topology.

For background on uniform spaces and other aspects of general topology, we

refer the reader to [7].For the rudiments on ordered fields,see [1] and [3].As for

notation, it will be convenient to let |≫S|denote the cardinality of a set S; and if

(F, <) is an ordered field,to let F+ denote {a e F |0 < a}, the set of positive

elements in F.

2. Results

Let (F, <) be an ordered field.In particular, (F, <) is a partially ordered (in

fact, linearly ordered) set, and so < induces an order topology ZT ― 3T{F) on

(the set underlying) F. According to [7, Exercise I, page 57], a subbase for 5"

consists of the sets (―oo, b) := {c e F | c < b} and (a, oo) := {c e F ＼a < c], as a

and b vary over the elements of F. It is then easy to see that a basis for 2T

consists of all the sets having one of the forms (a,b) := {c e F＼ a < c < b},

(―00,6), and (a, oo), as a and b vary over the elements of F. It will be con-

venient to define the {canonical) uniformity for F to be <% := °U{F'):=

{[/gfxF| There exists b e F+ such that {(x, y) e F x F : ＼x- y＼< b} c £/}.

In Lemma 2.1 (b), we show that, in the terminology of [7], °Uis a uniformity and
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the topology of this uniformity coincides with the order topology ST. We assume

familiarity with this terminology, as well as the notion of a "base" of a uni-

formitv ＼1.na^e 1771.

Lemma 2.1. Let {F,$ ) be the topological space arising from an ordered field

F and its order topology 3~. Then:

(a) (F,3T) is a Hausdorff topological group {with respect to addition).

(b) (F, 3T) is a uniform space with uniformity °U.

(c) (i7, $~) is a completely regular space.

Proof, (a) If a < b e F, put 5 :― (b ― a)/2, and observe that a e

(a-6,a + S), be{b-3,b+8), and (a -S,a + 3) 0 (b -d,b + 8) = 0. It follows

that 3~is a Hausdorjff topology on F. We show next that, with this topology, F

(under addition) is a topological group.

Consider the additive inverse map ―: F ―> F, given by a i―>―a for all a e F.

Under this map, the inverse image of (a,b) is (―b,―a), the inverse image of

(―oo, Z>) is (―b,cc), and the inverse image of (a, oo) is (―oo,― a). Thus, the

inverse image of each basic open set is open, and so ― is a continuous function.

It remains to prove that the addition map + : F x F ―>■F, (a, b) *―>a + b, is also

continuous.

We shall show that + is continuous at each (a, /?)e F x F. Suppose that

+(a.,/3) e (a,b) for some a<b in F; that is, a < a + fi < b. Put e :=

min(b ―(a +/?), (a + /?) ―a). Now, if <5> 0 with ai,^ ef satisfying |ai ― a| < 8

and |/?!―fi＼< S, then we see, by the triangle inequality [3, (iv), page 8], that

| + (a,,ft) - +(a,fi)＼ = |(a, +ft) - (a + ^)| < |a, - a| + |ft - ^| < S + S = 25.

Thus, if we take 3 := e/2, we find that | + (ai,ft)―h(a,^)| < £, so that

+(oci,ft) e (a,Z?). The above argument applies formally as well if one supposes

that either +(a,/?) e (―oo,b) or +(cc,/3) e (a, oo). In view of the above description

of a basis for ^~, this establishes that + is continuous and completes the proof

that F is a topological group.

(b) We claim that a fundamental basis of the ^"-neighborhoods of 0 in F is

given by all the sets of the form (S.S) as 5 varies over the elements of F+.

Indeed, if 0 e (a,b), then S := min(―a,b) satisfies 0 e (S,S) £ (a,b). Similarly,

given 0 e (a, oo), use 8 := ―a; and given 0 e (― oo,/>), use <S:= b. This proves the

claim.

Since (a) ensures that (F, 3~) is a topological group, we see, by combining the

above claim with [5, Proposition 5, page 53], that (F, 3~) is a uniform space
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and that a base for its uniformity W is given by all the sets of the form

L(3) := {(x, y) e F x F x
~
y e (―3,3)} as 3 varies over the elements of F+.

According to [7, page 177, lines 21-23], thisbase determines W entirely,namely,

W ―{U ^ F x F |There exists 3 e F+ such that L(S)^U}. In view of the

definitionsof L(3) and <%(F), it follows that HT = %{F). In particular,<% = <%{F)

is a uniformity. Moreover, [5, Proposition 5, page 53] also establishes that the

topology of the uniformity iV (that is, of <%),is the topology of the topological

group (F, .T), namely, ST. This completes the proof of (b).

(c) According to [5, Theorem 5, page 49], any Hausdorff topological group is

completely regular. Apply (a). □

Let F be an ordered field.Then Lemma 2.1 (a),(c) ensure that F, in its order

topology ST, is a completely regular T＼-space; that is, a Tychonoff space, to use

terminology as introduced in [7, page 117].In thisregard, itis natural to consider

metrizability,for the celebrated metrization theorem of Urysohn [7, Theorem 16,

page 125] implies that any second-countable Tychonoff space is metrizable. We

shall say that F is (pseudo-)metrizable in case (F, .T) is (pseudo-)metrizable in the

sense of [7, page 124]; that is,in case 2T is induced by some (pseudo-)metric on F.

Metrizability resultsfor uniform spaces are classical(cf.the Alexandroff-Urysohn

metrization theorem [7, page 186]), as are metrizability results for topological

groups (cf.[6]).While much of Lemma 2.1 works for any Abelian topological

group, we next use the field structure of the ordered field F (specifically,that

0 < 1/2 < 1) to characterize when F is (pseudo-)metrizable.

Theorem 2.2. Let F be an ordered field, with canonical uniformity $/. Then

the following conditions are equivalent:

(1) F is metrizable;

(2) % has a countable base;

(3) There exists a countable set {61,62,...} £=F+ such that for each beF+,

there exists n > 1 so that 0 < 6M < 6.

Proof. By Lemma 2.1 (b), F (with its order topology) is a uniform space.

Hence, by [7, Metrization Theorem 13, page 186], (2) holds if and only if F is

pseudo-metrizable. Since Lemma 2.1 (a) ensures that F is Hausdorff, it then

follows that (2) ■<=>(1). (See the comments in [7, page 186] concerning the

metrization theorem of Alexandroff-Urysohn.) It remains to show that (2) ≪=>(3).

For each b e F+, let Ub := {(x, y) e F x F : ＼x― y＼< b}. Thus, the above

definition of the uniformity % may be rewritten a.s^/ = ＼U^FxF＼ There exists



When is an ordered fielda metric space? 329

6 e F+ such that Ut^U}. In particular, Ub e % for each beF+. Moreover,

if 0 < bn < b in F, then Ubn ^ Ub. Thus, if {61,62, ･･■} is as in (3), then

{Ub^Ub,,...} forms a (countable) base for %. Therefore, (3) =$>(2).

Finally, we show that (2) => (3). Suppose that 88 = {B＼,B2,...} is a

countable base for the uniformity ･3U. Let b e F+. Since [//,e ^, it follows from

the definition of "base" that Bn c jjb for some n. However, by the definition of

%, there exists cn e F+ such that UCn £ 5W. (Note that cn depends on n but not on

b.) Hence, ＼x― y＼< cn => (x, y) e UCn => (x, y)e Bn =4>(x, y) e Ub => ＼x― y＼< b

in F. Taking y := 0, we conclude that ＼x＼< cn =^ |x| < 6 in i7. If b < cn, then

x := (b + cn)/2 satisfies |x| = x < cM and |x| > b, a contradiction. (We have just

used that 1/2 > 0, which is, of course, valid in any ordered field. Two sentences

hence, we shall use the fact that 1/2 < 1.) Therefore, cn < b. Hence, bn := cn/2

satisfies 0 < bn < cn < b. It follows that the set {61,62,...} is as in (3). □

Although it was convenient to use material concerning topological groups

from [5] in proving Lemma 2.1, we pause next to sketch how a direct proof of

Lemma 2.1 (b) may be accomplished by using only background on uniform

spaces from [7]. Of course, a purely topological approach (as in the proof of

Theorem 2.2) has natural overlaps with an approach that invokes results on

topological groups. For instance, the reader willhave noticed that for b e F+, the

set Uh in the proof of Theorem 2.2 is the same as the set L{b) in the proof of

Lemma 2.1. We used the notation L(b) because this corresponds to the notation

of Husain [5, page 52] that supports the resultsinvoked from [5]:his L(U) is just

our Lib) in case U = (―b,b).

Remark 2.3. A proof of Lemma 2.1 (b) that avoids citing results on to-

pological groups can proceed as follows. First, one shows directly that % = %(F)

is a uniformity. To do so, one must verify conditions (a)-(e) in the definition of

"uniformity" in [7, page 176]. Condition (a) follows because 0 < b for all b e F+;

(b) follows because |jc― _y|= ＼y― x＼ for all jc,y e F; (c) follows essentially by

the triangle inequality, because U＼,̂ U c F x F and c := b/2 imply that

[/fo[/fc U; (d) follows because Ub s C/ £ F x F and [/(.cKcfxF imply

that £/mjn(6iC)̂t/flK; and (e) follows immediately from the definition of %.

Since % is a uniformity, it induces a topology 3 on F. According to [7, page

178], this topology is given by 3 = {T ^ F ＼for all z e T, there exists U e % such

that {y e F ＼(z, y) e U} ^ T}. We proceed to show that 3 = $~.

First, we show that each ^"-subbasic open set is open in 3. We give the proof

for sets of the form (―oo,b), leaving the similar proof for the sets (a, oo) to the
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reader. Fix b e F. It is enough to show that if z < b in F, then there exists d e F+

such that if y e F and |z - y＼< d, then >> < b. Observe that d := b - z works, for

―d < z ― y < d and y < z + d = b.

Next, we prove that each 3-open set T is open in 2T. Fix z eT.lt suffices to

find a ,^-basic open set V such that z e V ^ T. Now, because T e 3, we can

choose U £ W such that {j e F |(z, j) e [/} g J. Then, by the definition of °ll,

there exists b e F+ such that {(≪,i?)e F x F : ＼u― v＼< b} c jj. Evidently, V :=

(z ― b,z + b) is a 5~-basic open set such that z e V. Moreover, V £ 71. In fact,

F £ {y e F |(z, _y)e C/}. Indeed, if y e V, then (z, _y)e U because ＼z― y＼< Z).

This completes the proof that 3 = 2T.

Since 5" = 3 is the topology of the uniformity %, we can conclude that

(F, &") is a uniform space with uniformity 6U. In other words, we have completed

the alternate proof of Lemma 2.1 (b).

The next two corollaries show that many familiar ordered fields are

metrizable.

Corollary 2.4. Each countable ordered field is metrizable.

Proof. Let F be a countable ordered field.Then F is metrizable by Theorem

2.3, since {b＼,b2,...}:= F+ satisfiescondition (3) in Theorem 2.3. □

Recall that an ordered fieldF is said to be Archimedean if for each ae F+,

there exists a positive integer n such that na > 1. It is known that if F is an

ordered field,then: F is Archimedean ≪=>F is order-isomorphic to a subfield of the

fieldR of allreal numbers <& Q is dense in F (in the sense that, whenever a < b in

F, there exists c e Q^ F such that a < c <b). Accessible references are available

for what we need of the forgoing, as follows. See [1, Theorem 2, page 92] for a

proof that R is Archimedean; and adapt the proof of [1, Theorem 3, page 93] to

see that Q is dense in any Archimedean field.

Corollary 2.5. Each Archimedean fieldis metrizable.

Proof. Let F be an Archimedean field.As noted in the Introduction, we

may view Q as a subfield of F and, as such, Q is dense in F, by the above

remarks. It follows that F is metrizable by Theorem 2.3, since {b＼,b2,
■..}:=

Q+

satisfiescondition (3) in Theorem 2.3. □

It should be noted that neither Corollary 2.4 nor Corollary 2.5 includes the

other. For instance, R is an Archimedean field which is not countable. On the
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other hand, by changing the field of coefficientsfrom R to Q in the argument

supporting [3,(4),pages 15-16], we see that the (countable) fieldQ{X) of rational

functions in one variable over Q can be given the structure of an ordered field

which is not Archimedean. Some of the orders introduced in Theorem 2.6 will

extend this construction to arbitrarilymany variables.

By Corollary 2.4, all countable ordered fields are metrizable; and by Cor-

ollary 2.5, at least some uncountable ordered fields are metrizable. (Recall that

the Introduction raised the question of generalizing the fact that the most familiar

uncountable field,R, is metrizable. Corollary 2.5 recovers thisfact.)On the other

hand, the next result shows, in particular, that some uncountable ordered fields

are not metrizable. We explicitlyassume the Axiom of Choice, in order to be able

to use the standard facts about the arithmetic of infinitecardinal numbers (cf.[4,

oases 96-981).

Theorem 2.6. For each uncountable cardinal number K, there exist ordered

fields,F＼ and F2, each of cardinality K, such that F＼is metrizable and F2 is not

Proof. We begin with some general observations that will be used

repeatedly. Let (K, <) be an ordered field and choose a set / of cardinality N.

Well-order /; by abus de langage, let < denote a well-ordering of /. Let { Yj＼ie 1}

denote a set of algebraically independent indeterminates indexed by /. Let

R :― K[{ Yi＼ie /}], the ring of polynomials in the variables Y( with coefficients in

K; and let L := K({Yj＼i e I}), the field of rational functions over K in the

variables Y,. Since L is the quotient field of R, every structure of R as an ordered

(integral) domain can be uniquely extended to give L the structure of an ordered

field [1, Theorem 12, page 49]. Before creating some ordered structures for R and

L, we discuss (lexicographic and reverse lexicographic) orders on monomials. As

terminology in this area varies in the literature and our set / is typically infinite,

we shall do this in some detail.

We shall say that a monomial Y x■■■Y " in R is in canonical form if

i＼< ･ ･■< /, in the well-ordering < on / and wi,...,wM are positive integers.

Suppose that u = Y 1■■■Y " and v= Y?1 ■■■Yfkk are distinct monomials in

canonical form. We say that u -< v if one of the following sets of conditions holds:

h <j＼ (in /); h =j＼, m＼ <pu i＼=j＼, mi = p＼, i2 <J2, i＼=j＼, mx =pu i2 =j2,

wi2 < p2, etc. Notice that each nonzero polynomial w e R can be written uniquely

as w = cc＼w＼+ ･･ ･ + ttdWd, where ai,..., a^ e ^＼{0} and the w, are monomials (in

canonical form) satisfying ＼v＼-<;･■･-< wj. (By convention, we take 1 e K to be the
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"empty monomial" and 1 -< w for every other monomial w.) In stating the "key

fact" below, it will be convenient to call <x＼W＼the miminal term of w and 0LdWd the

maximal term of w.

The key fact is that if w>i and W2 are nonzero polynomials in R, then the

minimal (resp., maximal) term of w＼W2 is the product of the minimal (resp.,

maximal) term of w＼ and the minimal (resp., maximal) term of w>2. This is easily

seen by applying the following observation to the descriptions of w＼ and wi as

sums of scalar multiples of monomials in ascending -<-order. If w, v, and w are

monomials such that u -< v, then uw -< vw. We next proceed to define two useful

ordered domain structures on R.

Given distinct polynomials u and v in R, write w := v ―u as above; namely,

w = a＼W＼+ ■■■+ ttdWd, where ot＼,...,ocje A^＼{0} and the wt are monomials

satisfying wi -<･･･-< wj. We say that u <＼ v <^> a^ > 0 in the given order on K;

and that u <2 v -^ ol＼>0 in the given order on K. Of course, one then obtains

binary relations <i and <2 on R by interpreting <,- as "<,- or =". We claim

that <i and <2 each give R the structure of an ordered domain. Indeed, the

above "key fact" shows that the product of <,-positive elements is <,-positive;

and by an easy case analysis, we can check directly that the sum of <,-positive

elements is also <-positive. Passing to the quotient field by [1, Theorem 12, page

49], we then extend these orders to obtain the ordered field structures (L, < i) and

{L, <2). It will be convenient to refer to <i as the maximal order on L and to

<2 as the minimal order on L. With these preliminaries in hand, we can now

proceed to construct the required ordered fields F＼ and Fi.

The field F＼ will take the form Q({ Y(＼ie I})(X) and it will be constructed by

using both types of orders, <i and <2, that were introduced above. To begin

the construction, take / to be a set of cardinality H. With K ＼―Q in the above,

we obtain the <2-ordered field structure on the field K＼ = Q({Yj＼ieI}). (New

notation is needed for the following reason. Although K＼ has, to this point,

played the role of L, it is about to play the role of K as we continue to apply the

above preliminaries.) Observe that ＼K＼＼= max(|^|, |/|) = max(tto,^) = N- Next,

choose X to be an indeterminate over K＼. Then, with K＼ playing the role of K

and {X} playing the role of {Yj＼iel}, we obtain the <i-ordered field structure

on the field F＼:― K＼{X) ― Q({Yj＼i e I})(X). (The previous considerations apply,

as the construction of the field does not require the assumption that the set of

variables has a specific cardinality.) Observe that |Fi| = max(|A^i|,tto) = N- It

remains to show that F＼ is metrizable. We shall do so by verifying condition (3)

in Theorem 2.2.

Consider a nonzero element f e F＼. Write f = q/h, where q and h are



When is an ordered fielda metric space? 333

nonzero elements in A^i[X], the ring of polynomials in the variable X with

coefficients in K＼. By the definition of <＼, f e Ff if and only if the terms of

maximal degree in g and h have coefficients (in K＼) with the same sign (without

loss of generality, both positive). Now, suppose that / e F^ (with g and h each

having a positive leading coefficient). Put n := max(deg(g),deg(/z)). By the above

comments, ＼/X"+leF^. Moreover, by the definition of <i, we have that

h <i gXn+x, since the leading coefficient of gXn+x ― h is the leading coefficient of

g, which is positive in K＼. It follows that 0 < l/Xn+l <＼ glr1 =/. Therefore,

{bub2, ...}:= {l/X, l/X2, l/X3, ...} satisfies condition (3) in Theorem 2.2, and

so F＼ is metrizable, as asserted.

We pause to give a different construction of a satisfactory F＼. Unlike the

above two-step construction, we now simply consider the field F* = K((X)) of

formal Laurent series in an analytic indeterminate X with coefficients in an

ordered field K, where K is assumed to have cardinality N. (For example, K could

be the above field K＼.) Observe that the ring S := ^[[Z]] of formal power series

over K has cardinality equal to ＼Kf° = NN°. Since N > No, it follows from the

GCH (Generalized Continuum Hypothesis) [4, page 102] that ＼S＼= N. (We

assume the GCH here in order to proceed with the alternate construction of F＼.)

It follows that F*, which is the quotient field of S, also has cardinality N.

Next, we define a binary relation on S. If u and v are distinct elements of S,

there exists a nonnegative integer n and elements ao,a＼,a2,... eK such that

≪o # 0 and v ― u = Xn(ao + a＼X + aiX2 + ■■･).We say that u < v in S if and

only if ao > 0 in K. It is easy to verify that S acquires the structure of an ordered

domain in this way. We extend this in the only possible way to an ordered field

structure on F*. It follows that when a nonzero element w e F* is expressed

(uniquely) as w = Xn(ao + a＼X + a2X2 + ･ ･ ･), for some integer n and elements

dj e K with a$ # 0, then: w > 0 in F* 44> ao > 0 in K. Therefore, if

w = Xn(a0 + a＼X + a2X2 H ) > 0, we have that 0 < X"+l < w in F*, since

w-Xn+1 =Xn{a0 + (al-＼)X + a2X2+ ■■■)> 0 in F*. Hence, {bub2, ...}:=

{Xn e F* ＼ne Z} satisfies condition (3) in Theorem 2.2. Therefore, F* is met-

rizable, thus completing the proof that F* has all the asserted properties of F＼.

We turn now to the more delicate task of constructing a satisfactory F2. This

field will take the form F2 := K({Yj＼i e /}) discussed in the preliminaries, and it

will be constructed by using the maximal order, < i. For the specifics, we take K

to be any ordered field of cardinality H, and we take / to be the set of all

countable ordinal numbers. We pause to explain that / is well-ordered under the

usual order relation on ordinal numbers. To see this, it is helpful to view / as

Q'＼{Q}, where Q denotes the first uncountable ordinal number and Q.' denotes
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the set of all ordinal numbers that are less than or equal to Q. Since Q' is known

to be well-ordered [7, Summary 22 (a)] and its maximal element is Q, one easily

concludes that Q'＼{Q} is also well-ordered. Next, we show that (F2, <i) is not

metrizable, by proving that if {Z>i,&2,...} is any countable subset of i^"1",then

{b＼,b2,...} does not satisfy condition (3) in Theorem 2.2.

For each n, fix a description of bn as a ratio of polynomials in variables

drawn from {Yt＼ie 1} and with coefficientsin K. Let J be the subset of /

consisting of all the indexes / such that Yt appears (with nonzero coefficient)in

either a numerator or a denominator of at least one of the bn. Since Q' is well-

ordered, it follows from [7, Theorem 9, page 14] that / has a supremum, say j, in

Q'. Since / is countable and Q <£/, a fundamental result(and the main reason we

termed thisconstruction "delicate" above) [7, Theorem 23, page 30] ensures that

j ^ O; that is,j e I. Put k :=j + 1 e /. It follows from properties of the ordinal

numbers that X < k for each X e J.

Consider g := Y^ e F2, and let / := g~x. By the definition of the maximal

order, g > 0 in F2, hence, / > 0 in Fj. Now, let N and D be the numerator and

denominator, respectively,of some bn. Since bn eF2+, the definition of <i allows

us to suppose, without loss of generality,that both TV and D have maximal terms

with positive coefficients.The next observation fundamentally uses the con-

struction of the maximal order, the above conclusion concerning k, and the "key

fact" in the preliminaries. Observe that D <＼ Yk ―g and 1 <i YkN = gN,

whence / = g~l <i N. Therefore , 0 <! (l/l^2) = (f/g) <} (N/D) = bn. As k

does not depend on n, it follows that {61,^2, ･･･} does not satisfycondition (3) in

Theorem 2.2. Therefore, by Theorem 2.2, (/% <i) is not metrizable.

It remains only to show that ＼Fj＼= N. According to the approach in

[7, Theorem 119, page 269], the ordinal number Q is the set of all ordinal

numbers that are less than Q; that is, Q = /. Therefore, |/| = |Q| = Ni. As

N > No, we have that N > Ni. Hence, ＼F2＼= max(|Z|, |/|)= max(H,Hi) = N. D

Remark 2.7. (a) It is interesting that even if an ordered fieldis metrizable,

the underlying topological space need not be separable. Indeed, a standard

metrization theorem [7, Theorem 17, page 125] ensures that any separable metric

space has cardinality at most |[0,l]0J＼= cN°= 2N°= c. Thus, if one takes / in

Theorem 2.6 to be such that |/| > 2C, then the order <i produces a metrizable

ordered field structure on Q({Y{＼ie I})(X) whose canonical topology is not

separable.

(b) If one takes / = K ―R in the construction of Fi in Theorem 2.6, the

resultis an ordered fieldstructure on F^ = R({Yj＼ie R}) which is not metrizable.
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In that case, ji^l = c = ＼R＼,and so a bijection F2 ―> R can be used to transfer the

structure from F2 to the set underlying R. In this way, the set underlying R can

be given the structure of an ordered field which is not metrizable. However, the

algebraic part of this structure is definitely not the usual field structure on R. The

point is that there is only one way to endow the usual field structure on R with

the structure of an ordered field, namely, a < b in R if and only if there exists

d e R＼{0} such that b ― a = d2 (cf. [1, Exercise 9, page 100]); and this structure is

the most familiar metrizable structure in mathematics.

The reader will have noticed that both the maximal order <
1 and the

minimal order <2 produce ordered field structures that are not Archimedean.

Thus, with N := c, if one takes F to be either of the fields constructed in Theorem

2.6 to have the properties asserted of F＼, then Fis a metrizable field of cardinality

c which is not Archimedean. As in the preceding paragraph, we can use a

bijection F ―>■R to transfer the structure from F to the set underlying R. In this

way, the set underlying R can be given the structure of a metrizable ordered field

which is not Archimedean. This new structure is not algebraically isomorphic to

the usual field structure on R, because we have seen that the latter admits only

one order, namely, the familiar Archimedean one.

As the minimal order <2 saw limited use in Theorem 2.6, we pause to note

how it can be used to give an example of the type noted in the preceding

paragraph, namely, a metrizable non-Archimedean structure on a field of car-

dinality c. Let us begin with the base field R and form the function field

L := R(Y), equipped with the minimal order, <2- By the above comments, we

need only verify that L is metrizable. For this, it suffices to show that the set

{b＼,bi,...} := {f/g e L＼f e Q+Xn for some n > 0,g e Q+} satisfies condition

(3) in Theorem 2.2. Indeed, by the definition of the minimal order, any positive

element in L has a numerator N and a denominator D whose terms of lowest

degree have positive coefficients. We seek/,g as above so that//g <2 (N/D). It

suffices to arrange that / <2 N and D <i g. The former is achieved since Q is

order-theoretically dense in R; the latter is arranged by taking g to be a a rational

number which exceeds the coefficient of the term of D of least degree.

(c) Let (F, <) be a partially ordered set. As in [8, page 821], a 7b-topology

3~ on Y is said to be order-compatible [with <) if, for all y＼ and yi in

Y : y＼ < y2 <^>yi e {y{＼ (where S denotes the closure in 3T of a set S £ Y). Any

partially ordered set admits an order-compatible topology. However, if (i7, <) is

an ordered field, then the order topology on F is not order-compatible (with <).

Indeed, since Lemma 2.1 (a) ensures that the order topology on F is T＼, we have

that { y] = { y＼ for each y e Y, although y < y + 1. Nevertheless, there is more
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than one 7o-topology on F which is order-compatible with <. To see this,since

< is a linear order, we may apply the criterionin [2, Corollary 2.7],noting that

no element in F has an "immediate successor" in F. (In detail,if a e F, then

a < 1 + Ifll;and if a < d in F, then a < (a + d)/2 < d.)
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