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SPACELIKE MINIMAL SURFACES

LGRENTZIAN SPACE

By

Makoto Sakaki

IN 4-DIMENSIQNAL

FORMS

Abstract. We give a necessary and sufficientcondition for the exis-

tence of spacelike minimal surfacesin 4-dimensional Lorentzian space

forms, which is a generalization of the Ricci condition for minimal

surfaces in 3-dimensional Riemannian space forms.

1 Introduction

Let Nn(c) and N"(c) denote the ^-dimensional simply connected Riemannian

space form and Lorentzian space form of constant curvature c,respectively.Every

minimal surface in N3(c) may be seen as a minimal surface in N4(c). We note

that N3(c) is naturally included in N4(c), and every minimal surface in N3(c)

may be seen also as a spacelike minimal surface in N4(c). So minimal surfaces

in N3(c) can be generalized into two ways, that is, minimal surfaces in N4(c)

and spacelike minimal surfaces in N4(c). Then it seems interesting to compare

the geometry of (spacelike) minimal surfaces in N4(c) and N4(c).

Let M be a minimal surface in N3(c) with induced metric ds2 and Gaussian

curvature K. Then M satisfies the Ricci condition, that

ds2 ― y/c ―K ds2 is flat at points where K < c. Conversely,

is, the metric

let M be a 2-

dimensional simply connected Riemannian manifold with metric ds1 and

Gaussian curvature K (< c). If M satisfiesthe Ricci condition, then there exists

an isometric minimal immersion of M into N3(c) (cf. [4]). Hence, the Ricci

condition is a necessary and sufficientcondition for the existence of minimal

surfaces in N3(c).

In [2, Th. 1],the Ricci condition is generalized for minimal surfacesin N4(c).

In this paper, we give another generalization for spacelike minimal surfaces in

Nf{c).
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Theorem, (i) Let M be a spacelike minimal surface in Nf(c). We denote

by K, Kv and A the Gaussian curvature, the normal curvature and the Laplacian of

M, respectively.Then

(1) Aiog{(c-iq2 + jO =

at points where (c ―K) + K^ > 0, and

(2) A tan"1
(

8Z

Kv

c-K

)

2KV

at points where K ^ c.

(ii) Conversely, let M be a 2-dimensional simply connected Riemannian

manifold with Gaussian curvature K (^ c) and Laplacian A. If Kv is a function on

M satisfying(1) and (2), then there exists an isometric minimal immersion of M

into N?(c) with normal curvature Kv.

Remark. The condition (1) is equivalent to that the metric

ds2 = {{c-K)2+Kf}l/*ds2

is flatat points where {c ―K) + K2 > 0. Here ds2 is the induced metric on M.

Using the divergence theorem for (1) and (2),we get the following corollaries.

Corollary 1. Let M be a compact spacelike minimal surface in N*(c) with

Gaussian curvature K and normal curvature Kv.

(i) If (c - K)2 + K^ > 0 on M, then M is of genus 1.

(ii)If K is constant, then K ― c or K = 0.

Corollary 2. Let M be a compact spacelikeminimal surfacein N^{c) with

Gaussian curvatureK and normal curvatureKv.

(i) If K^c on M, then JM Kv dM = 0.

(ii)If K 7^c and Kv does not change sign on M, then Kv = 0.

in

The auther wishes to thank the referee for useful suggestions.

2. Preliminaries

In this section, we recall the method of moving frames for spacelike surfaces

N?(c). Unless otherwise stated, we shall use the following convention on the
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ranges of indices:

1 <A,B,--- <4, 1 </,./,･･･ <2, 3<<x,#--- < 4.

Let {e^} be an oriented local orthonormal frame fieldin Nf(c), and {coA} be

the dual coframe. Here the Lorentzian metric of Nf(c) is given by

ds2 = (co1)2 + (co2)2 + (co3)2 - (co4)2.

We can define the connection forms {cog} by

A

Then

(3) i + ≪>a = 0, ojf = co4A

The structureequations are given by

(4)

(5)

(6)

dwj

where 1 < A,B < 3.

dcoA = -^^^b A mB

B

c

coi Aft)£ +
1

2

CD

= ceB(S£dBD-S£8Bc)

where £g= 1 for 1 < B < 3 and £4= ―1.

Let M be an oriented spacelike surface in N^{c), that is, the induced metric

on M is Riemannian. We choose the frame {eA} so that {e,} are tangent to M.

Then coa = 0 on M. In the following, our argument will be restricted on M.

By (4)

0

So there is a symmetric tensor hfj

(7)

E tof A CO1

such that

EV

j

where hf:are the components of the second fundamental form of M.

The Gaussian curvature K and the normal curvatureKv of M are given bv

(8) dco＼―Kco1 a co2, d(o＼―Kvioxa co2.

Then by (3),(5),(6) and (7) we have

(9) K = c + h＼xhL- (h3n)2- h*h* + (*>n)2
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and

(10)
Kv
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{h'h'-hU'+hU'-hU")

The mean curvature vector H of M Is given by

≫-＼

The surface M is called minimal if H

>>･*■

3. Proof of Theorem

/, a

0 on M,

(i) As M is a spacelikeminimal surfacein Nf(c), using the notationsin

Section 2, we may write

(11) co＼ ― scox-＼-tco1, co＼ = ten1 ― sco1

By (9) and (10)

(12) K c-s2

≫f

t2 + u2 + v2, Kv =

MCO1 + vco ,

2(sv ― tu)

Using (4), (5), (6) and (11) we have

dco＼ = ds a co1 ― sco＼a co2 + dt a co2 ― tco2 a col

3 2 3 4
= ―(Oj Aft), ―(Da A CO,

(tea1 ―sco2) a co2 ― col a (uco1 + vco2)

So, using the notation like

we get

≪,>

ds S＼O>1

= ((ol)icol + (col2)2co2

+ S2CQ2, dt = t＼COX + ti(D2,

= -≫? col = i00

<

l){col + {(dI)2co2

2s{co＼)＼+ 2t(co＼)2- v(col)＼Jru(a>l)2 = -$2 + h.

Similarly, from the exterior derivative of (o＼, co* and w＼,

2s(co＼)2 - 2t(co＼)i- v(a>l)2 - u{col)＼= s＼+ t2,

2u(co＼)＼+ 2v(cq＼)2 - t{co＼)＼+ s((ol)2 = -u2 + v＼

2u{a>＼)2 - 2v(co＼)i - t(coj)2 - s(col)i = u＼+ v2.

= V 0[ ― UCO2

=≪,<



Therefore we have

(13)

where * denotes

Set

and

(14)

Is

t

u
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-t v u

s ―u v

-v t s

u ―s t/ ＼

2a>＼

2

-"I

(*≪43)

the Hodge star operator

X

z

= s2

= s2

u

＼v

＼ /

/ ＼

on M.

-t v u

s ―u v

-v t s

u ―s t

＼

/

* ds + dt＼

*dt ― ds

*du + dv

*dv ― du J

-t2-u2 + v2, Y = 2(st - uv)7

+ t2 + u2 + v2, W = 2(su + tv).
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Let Ay (1 < i,j < 4) denote the cofactorsof A. Then, noting (12) and (14), we

can see that.

(15)

(16)

(17)

(18)

and

(19)

An

A-n

-A43

A33 =

s(c- K) - vKv = sX + tY = sZ - uW,

t{c-K) + uKv = -tX + sY tZ-vW

A31 = -A23 = -u(c -K) + tKv = -uX -vY = uZ - sW,

AAX = An = -vie -K)- sKv = vX - uY = vZ - tW,

det A = (c - K)2 + K] = X2 + Y2 = Z2 - W2

By (12)-(19), at points where (c - K)2 + K* > 0

2a>＼

1

del A
{Au(*ds + dt) + A2＼(*dt- ds) + Ai＼{*du + dv) + A4＼(*dv - du)＼

_*d{(c-K)2 + K?}
|

4{(c-K)

_ 1

~4

+ K?}

XdY-YdX

2(X2 + Y2)

.. r/
^2 ^

XdY-YdX
* d lQg{(c - K) + *v2}+ ^TVTT^

2{X2 + Y
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Hence, by the exterior derivative of this equation, together with (8), we get the

equation (1).

Similarly, by (12)―(19),at points where K ^ c,

≫4
3

1

del A
{An{*ds + dt) + A23(*dt - ds) + A33(*du + dv) + A4?,(*dv - du)}

(c - K){*dKv) - Kv{*d{c - K)}

2{(c-K)2 + Kn

1
J -1= - * a tan

(

+

ZdW-WdZ

2(Z2 - W2)

ZdW-WdZ

2(Z2 - W1)

Hence, by the exterior derivative of this equation, together with (8), we get the

equation (2).

(ii)We may assume that M is a small neighborhood. Let ds2 be the metric

on M. As noted in the remark in the introduction, the condition (1) implies that

the metric

ds2 = {(c - K)2 + K2}1/4 ds2

is flat.So there exists a coordinate system (x＼x2) such that

ds2 = {{c - K)2 + K2}~l/4{(dx[)2 + (dx2)2}.

Set

col = {(c-K)2 + K2yl/* dx＼

so that {≪'} is an orthonormal coframe field with dual frame {e,-}.By

dco1 = ―Co]A m1
i
dco2 = -co2 a co1,

we can find that the connection form co＼= -co2 is given by

co＼= -co] = l-*d log{(c - K)2 + K?}.

As K =£c, we may choose smooth functionss and v so that

s1 - v2 = c - K, sv――-Kv.

Let E be a 2-plane bundle over M with metric <, > and orthonormal sections{ex}

such that

<e3,e3> = l, <e3,e4> = 0, <e4,c4> = -l.
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A
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Let h be a symmetric sectionof Horn(771/ x TM,E)

<**>=(;

and set

≫ = ―co＼ = sco1,

< col ~ va}2

such that

<≪>=(:;)

≪4

= -≫

=≫

―SCO"

= VCD1

We define a compatible connection ±V of E so that

where

≫i

^3 = (o＼e*, LVe4

= o4

{CO

1

2
* d tan l

Now, almost reversingthe argument in (i)

^}
satisfythe structureequations:

dco＼

daj＼ -aA

A CJQ＼

A
m＼

-co. A CO,

― coi a (o＼

dio＼

= a>4e3

(

Co＼
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Kv

c ―

with t ―u = 0, we can find that

dco＼ = ―col a a>l ―o)＼aco24 + ot' a co2

= -≪.

dm＼ ― ―co＼

A

A

dcoj= ―a>＼a co＼―co＼a co＼,

which are the integrabilityconditions.Therefore,by the fundamental theorem,

there existsan isometricimmersion of M into N*(c), which is minimal and has

normal curvature Kv.

4. Some Problems

Refering to our resultsand the case of minimal surfaces in N4(c), it should

be natural to consider the following problems (cf. [3], [1],[5], [6] and their

references).

Problem 1. Classify spacelike minimal surfaces with constant Gaussian cur-

vature in N?(c).

Problem 2. Classify spacelike minimal surfaces with constant normal cur-

vature in N?(c).
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Problem 3. Classify spacelike minimal surfaces in N*(c) which are locally

isometric to minimal surfaces in N3(c), or spacelike minimal surfaces in N?(c).

Of course, we may consider the higher codimensional problems. Here we

should note that a spacelike minimal surface with constant Gaussian curvature c

in Nf(c) may not be totallygeodesic. These problems will be discussed elsewhere.
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