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DERIVATION OF WIGNEITS SEMI-CIRCLE LAW

FOR A CLASS OF MATRIX ENSEMBLES

VIA BROWNIAN MOTION

By

Tsuyoshi Hiratsuka* and Nariyuki Minami*

Abstract. Introducing a fictitioustime evolution in a random matrix

model having Gaussian entries,we prove that the empirical distri-

bution of the scaled eigenvalues of the random matrix converges in

probability to the Wigner's semi-circlelaw.

1. Introduction

The semicircle law as a limiting distribution of eigenvalues of large random

matrices is well known since Wigner's work in 1950's. ([11]. See the introduction

of [9] for a nice historical account.) As a theorem in probability theory, the

following beautiful result was obtained as early as in 1970's by L. Arnold and

R. Wegmann. Namely let {Xki]kJ> 1} be a family of real random variables

defined on a common probability space (Q,^,P). Assume that {Xki;l > k > 1}

are independent, among which {Xkk',k> 1} are identically distributed with dis-

tribution function G, and {XkfJ > k> 1} are also identically distributed with

distribution function H which has finitepositive variance v ― a2. Suppose further

that Xki = Xik, so that Q^ = {Xkij^Jn)nk
/=1

is a real symmetric n x n random

matrix. Then it was proved ([2],[1],[10]) that with probability one, the empirical

distribution

of the eigenvalues
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of Q^ converges weakly to the semicirclelaw with "radius" l^Jv defined by

(1) MdX)=±l[_^yfc](x)y/4^*dx.

Since then, many differentapproaches have been made to the semicirclelaw,

revealing its various differentaspects. Among these works, Chan [3],Rogers and

Shi [8] considered fictitioustime evolution of a Gaussian matrix ensemble, to obtain

another proof of the convergence (in probability) to the semicircle law. (The idea

of introducing a fictitioustime evolution goes back to Dyson [4],and further dis-

cussed by McKean [6].)Namely, suppose each Xu above not only is a mean zero

Gaussian random variable, but alsois the Ornstein-Uhlenbeck process {Xki{t)}t>Q

leaving its Gaussian distribution invariant. If we let Q^n＼t) = (Xki(t)/y/n)^.
/=1,

then we have a matrix valued stationary Gaussian process, and the empirical dis-

tribution

A

7=1 '

of the eigenvalues

)!?＼t)<--.<W(t)

of Q^n＼t) also forms a stationary stochastic process {/i)"} taking values in the

space Ji＼(R) of all probability measures on R. It is easily seen that it has con-

tinuous sample paths, if Ji＼{R) is equipped with the topology of weak conver-

gence. Then Chan, Rogers and Shi proved that as n ―>･oo, the sequence of pro-

cesses {fi"}, n=l,2,... converges in distribution to the trivial deterministic

process {/it} such that jnt= //£,for all t > 0. If we look at one-dimensional

distributions of these processes, we obtain the convergence in probability of

//")= fj£>to the semicircle law /xvw.

Now the purpose of the present paper is twofold: First, we shall simplify

the above summerized work by Chan, Rogers and Shi by directly deriving the

stochastic differentialequation satisfiedby the empirical measure process {jut }t.

In fact, Chan et al. (and also Dyson and McKean) investigated the stochastic

differentialequation satisfiedby the eigenvalues A- (?) of Q^n＼t),but because of

the singularity of its coefficients,special effort was needed to prove the absense

of collision between the eigenvalues. But it should be noted that the empirical

measure process {fif }n which is the object of our study, is well defined without

caring the possible degeneracy of eigenvalues. On the other hand, the stochastic

differentialequation governing ＼u, }, can be derived by simply applying Ito's
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formula to the trace of the resolvent of Q^(t). Secondly, we treat a wider class

of Gaussian matrix ensembles so that it includes the so called GOE, GUE and

GSE (see Mehta [7] for definitions),thus showing again the universal nature of

Wigner's semicircle law.

Let us now turn to the precise formulation of our result.For 5 = 0,1,2,3 and

I <k <l, let XJf) are independent real random variables obeying the Gaussian

distribution of mean zero and variance (e^f)2. Let us further define {A£/(0h>o

to be the solution of the following stochastic differentialequation:

(2)

41(0) = Ak.n

)(t)dt+ ^dB^(t)

(s)where B^j's are mutuallyindependent 1-dimensionalstandard Brownian motions,

which are also independent of A^j's. Then each process {A^5)(/)},>0is the

stationary Ornstein-Uhlenbeck process which has the normal distribution

N(0Jali)2) as its invariant distribution.If we set, for k > I,

and

Ak.l
J F(0)

ALk

~Al,k

R(s)
~Bl,k

then we automaticallyhave

Ak.At) -

so that the n x n real matrix

{

Y(0)(t)Xl,kV)

~Al,kV)

if .s= 0

if 5= 1.2.3

If 5 = 0

if s = 1,2,3

if s = 0

if s = 1,2, 3,

*i5)(O:=(A$(OW£B

is symmetric for s = 0 and skew-symmteric for s= 1,2,3

Finallylet

e<">(o :=
1 3

vn .v=o
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where es are 2x2 matrices defined by

e°:={l

(°

;)

1)

e＼

<?3 :=
0 )

Here we consider es as if they were scalar,so thatits product with any n x n

matrix A actuallymeans

Aes ―

( anes

an＼es

aXnes )

which is a 2n x In matrix, each ajkes being a 2 x 2 block. With this definition,

Q^n＼t)is a stationary stochastic process whose values are In x In Hermitian, self-

dual matrices in the sense that

(v2)eww(V2)r = eww,

where /, is the n x n identity matrix and T denotes the transpose.

Now let

^(t)<...<^(t)

be the eigenvaluesof Q^Ht) and define theirempiricaldistributionby

1 2n

;=1 7

It is clear that {n＼" }t>0 is a stationary stochastic process taking values in Jt＼{R).

Since Q^{t) is continuous in t,ju, is also continuous in t as we have suggested.

This may be most easily seen by considering the Stieltjes transform of the mea-

sure frt (dx), which turns out to be equal to the trace of the resolvent of Q^n＼t).

Namely if for z in the complex upper half-plane H we set

RW(t) = (Q^(t)-zi2nr＼

then we have

J―dn＼dx)=±-Tr{4n)(t))

r x ―z zn
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The right hand side is continuously dependent on the entries of the Hermitian

matrix Q^(t), and hence is continuous in t.On the other hand, continuity in t of

the lefthand sideimplies that of /4"＼because a sequence of probability measures

{vn＼n converges weakly to a probability measure v if and only if

vJdx)

x ― z

v(dx)

x ― z

for each z e H.

In order to state our result,let 0>n be the probability distribution of the

process {/4 } induced on the space of all continuous functions from [0,oo) to

Jti(R)

<£,:=C([0, oo);.*,(*)).

^ji is equipped with the topology of uniform convergence on compacta. Let also

Sv be the probability measure concentrated on the constant path fi(t)= ju"v.Now

we can state our main result.

Theorem. Suppose a^ 's satisfy the following conditions:

1. sup^o^ < oo;

2. v = Yls^oi^jk) does not depend on j＼k (j < k).

Then as n ―>oo, &, converges weakly to Sv on %g.

Looking at the distribution of /A , we obtain the following

Corollary. Set ju^ = //q , namely let //") be the empirical distributionof

the eigenvalues of Q^> = J2s=o%n es/Vn- Then as a sequence of Ji＼(R)-valued

random variables,{ju^} converges in probability to the semicircle law ju^,.That is,

ifp('i') ^ a metric on Ji＼{K) which generates the topology of weak convergence;

then for any s > 0,

P(p(uM,ti)>e)^0 f/i-oo).

Before closing this section,let us discuss some special cases. See Mehta [7]

fr≫rriptQiic

(i) Suppose Ojk'= y/v/2 for all j > k and s = 0,1,2, 3, with a positive con-

stant y. In this case, every 2*1 {j < k) are identically distributed according to

N(Q,v/4). If we further suppose or) ― ＼/v/2,then the resulting matrix ensemble

coincideswith the so calledGaussian symplecticensemble (GSE).
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(ii)Suppose of = of = y^/2 (j < k) and of = of = 0. In this case,

= O(")(0) is unitarily equivalent to

1
(

o

o

so that each of the eigenvalues Aj of Q^ is double. Hence if ^f1 (j = 1,...,≪)

are the eigenvalues of (XJ, ' + V^Txi )/Jn, we have

tlM =
1 "^E^

Now if we further suppose a^ ― y/v, then the random Hermitian matrix

Xn + V^AXn forms the so called Gaussian unitary ensemble (GUE).

(iii)Finally suppose of = yfi (j < k) and o^ =0 {s = 1,2,3). Then QW

is unitarily equivalent to

i
(xl°> I o ＼

V*＼
O

|
A-fj

to

If

i again as in (ii),the empirical distribution of the eigenvalues of Q^ is equal

the empirical distribution of the eigenvalues of the n x n matrix Xn /＼/n.

rijj = y/2v, then the random real symmetric matrix XJi forms the so called

Gaussian orthogonal ensemble (GOE).

2. Proof of the Main Theorem

2.1. A Tightness Criterion

As is usual in the proof of limit theorems for stochastic processes, we shall

first show the tightness of the sequence {&≫},>{ of probability measures on %g,

and then show the uniqueness of its limit point. For this purpose, we prepare a

tightness criterion of a fairly general nature, which we have formulated after an

analogous proposition in [5].

Let /o > 0 be a continuous real valued function on R which tends to infinity

as |x| ―>･oo. Let further {fj}j>＼ be a sequence of complex-valued bounded con-

tinuous functions on R. We assume that the sequence {fj}j>＼ determines a prob-

ability measure on R in the sense that if ju,v e Ji＼{R), and if <//,.//>= <v, fj} for

every j > 1, then one has pi = v. Finally let ^c be the space of all continuous

complex-valued paths.
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Proposition 1. Suppose that for n>＼ and for gPn-almost every /ie^ji,

i^nfo} ― JRfo(x)^t(dx) is finiteand is continuous in t.Let Pj, j > 0, n > 1, he

the image measure of £?ninduced on ^c by the mapping [i.^ <//.,^->.If for each

j > 0, the sequence {Prj}n>＼ of probability measures is tight on ^c, then {^n}n is

tight on %g.

The proof of this proposition will be given in the Appendix.

Let us apply this criterion to {&,} in our Theorem. If we let fo(x) = x2 and

fj{x) ―l/(x ―Zj) with a sequence {z,} which is dense in H, then these functions

satisfythe requirements stated just before Proposition 1. Since &, is the distri-

bution in %M of the process {/4 }, P^ is that of the process

<^'/°> =
^D^W)2

= Yn Tr^W(0)2,

which is obviously finite and continuous in t. Hence the first assumption of the

Proposition 1 is satisfied.

In order to verify the tightness of the sequence {Pj}n>＼ for each j > 0, we shall

derive the stochastic differential equation satisfied by the process {({if ,j;>}f>0.

But before doing so, let us prove that under the condition 1 of Theorem, one can

assume a^ = 0 for all k > 1, which we shall do in order to simplify the calcu-

lation. For this purpose, let Q^n＼t) be the same matrix as Qj>n＼t) except that all

its diagonal entries are set to be zero, and let fi} be the empirical measure of the

eigenvalues of Qn{t). Then by the resolvent identity, we get for any fz(x) ―

＼/{x-z) with zeH,

</4wU>-<A("U>

f /in)(dx)

Jr x-z

)~(n)/ j ＼

R X ― Z

=
2^|Tr{fi(ll)(0-

1

2n

1

zI2n}-l-Tr{Qin)(t)-zI2n}-1

Trjdiag^W, ･･･,X<£>(t))e0■{&"＼t) - zl2nyl{Q^(t) - zl2ny1}

1 / 1

<
― max ―
2n ＼＼<j<nJn

<
1

(Im Z)2

1

lifMl)

max |40)(

＼<j<n JJ
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where ||■||denotes the norm by the inner product (A,B) = Tr(AB*) and * means

the adjoint. Hence for any T > 0 and e > 0,

i sup I

o<?<r

<p

<

(

(") r ＼ / ~in) r ＼
^

＼

Mt ,/z>-</4
j,/z>|

>£)

1

(Imz)2

n /
<Tp{

-
i

= max sup ＼XJf*＼t)＼>e|
^i^≪o</<r JJ )

sup ＼X^＼t)＼> (Imz)2^
<t<T )

In order to estimate the probabilityon the right hand side,let{Y(t)} be the

stationaryOrnstein-Uhlenbeck process with the standard normal distribution

as its stationary measure. Then the process {XJ--(t)} has the same distribution

as {a- Y(t)}. On the other hand, {Y(t)} is equivalent in distribution to the pro-

cess {e"tB(e2t)},{B(t)} being the standard Brownian motion. Hence letting C =

sup-^jUy < oo, we obtain the following bound:

n
£

7=1

p( sup |*f(O|>(Imz)
＼0<t<T

<nP＼ sup ＼Y(t)＼>

＼0<t<T

<nP

(

sup ＼B{t)＼>

＼0<t<e2T

2v^)

(Imz)2

C
Sy/n 1

(Imz)2

C
sy/n)

which tends to zero as n ―>･oo. From these considerations,itis now clear that the

two sequences of processes {/Jf } and {fit } have the same limiting distribution

(if any) in %#.

2.2. Stochastic Differential Equations for </4 ,/o) ani* ^e Tightness of

As was already noted, we have

04fl)>/o> =
^

Tr(gW(0)2 =
^

Tr(Xw(0)2.

Since XM(r) = ^Lo^w^CO^ ^s Hermitian and self-dual, l^0^) is real sym-

metric and Xn＼t) is real skew-symmetric for s= 1,2,3. Since we are assuming

xf＼t) = 0, it is not difficultto see that
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Tr(XJt)2)

{ ＼s=0

= 2Tri

^＼t)es

)

i

s=l

Jtf≫(02-£*<

4E E

s=0 1 <j<k<n

E E 4'≪2

451

On the other hand, each XJ£'(t)satisfiesthe stochastic differentialequation (2)

Hence applying Ito'sformula, we can proceed as follows:

J
/

(n)

jC ＼d<M ,/o> =
4

2^

2

i
e

5=0 ＼<j<k<n

£ £ {2A|≫ <≫ + (<)2}

3
£

s=Q 1 <j<k<n
jk 1 ~2 ^ y^ ^ J ^ '

s=0 ＼<i<k<n l<i<k<n＼s=O /

= -±TTXn(t)2dt +
^2

/ (≪)
,fo>dt +

(

■

"-^vdt + dMM

9
vdt + dMn(t),

where we have used the second condition

MM)
4

4

r

Jo

of Theorem and have set

E E

j=0 ＼<j<k<n

V V tf&diV

i
e

j=0 1 <j<k < n

< (0

Having obtained the stochastic differentialequation governing </4" ,/o>, let us

now prove the tightness of the sequence of processes {<//, ,fo}}n>＼-

Actually much stronger assertion holds:

Proposition 2.

in t £ [0, T] for any

With probability one, we have lim^oc^
>
fo} = v uniformly

T>0.
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Proof. For notational simplicity,set ZJi) = (u,＼ /n>. Then ZJt) satisfies

Zn(t) = ZB(0) +
J'{ (l

-
%

- ZH{s)＼ ds + Mn{t).

By Doob's martingale inequality, the orthogonality of martingales M^'At), s =

0,1,2,3, j< k, and a1j) ~ N(0, (ojj?)2),one shows for each T > 0 and a > 0,

p( sup Mn(t)2 >a) < -E[Mn(T)2}
＼0<t<T J a

l

a

1

a

16

16

3

< 16

E E

5=0 1 <j<k < n

3

£[J

o

r(≪M)2*]

£ E(^)4r
1 <j<k<n s=0

v2T

an4

n(n

Letting a ―n a with 0 < a < 1, we have

rp( sup ＼Mn{t)＼2>n~A
~^ ＼0<t<T J

2

1) ..(
an2/

< const.̂

n

1

n2
< oo

and hence by the Borel-Cantelli'slemma, we get for any T > 0,

sup ＼Mn(t)＼2

0<t<T

= (9(n-*) (n ― oo)

with probability one.

Next we prove that ZM(0) ―>■v almost surely. For this purpose we note that

＼<j<k<n

2

-

1 <j<k < n

-a

t

s=0
E^Wi

.9=0

v ―>■ v
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E[(Zn(0)-E[ZJ0)])2] =
4

E E^'W-t^)2)2]

＼<j<k<n 5=0

453

＼<j<k<ns=Q

Since the right hand side is summable in n, we see that Zw(0) - E[Zn(O)] ―>0

almost surely.

Now let us fix an co from our basic probability space for which the above

two assertions on Mn(t) and Zn(0) hold. Since Zw(?) > 0, we see from the equa-

tion for Zn(t),

0<Zn(t) <Zn{0) + vt + Mn(t).

Hence Zn(t), n = 1,2,..., are uniformly bounded on each finiteinterval [0,7].

If we denote this bound by Ct, then the same equation shows that

＼Zn{t)- Zn{s)＼< (2v + CT)＼t-s＼+ ＼Mn(t)- Mn{s)＼

for s,te [0,T]. Since the sequence of functions {Mn(-)} are equi-continuous on

[0,T], we see from thisinequality that {Zn(-)}n is also equi-continuous on [0,T].

By the Ascoli-Arzela's theorem, any subsequence of {Zn} contains a further sub-

sequence which converges uniformly to some z(-) on each finiteinterval [0,T].

This limit z(-) satisfiesthe equation

z(t)=v+＼ (v-z(s)) ds
Jo

and hence we conclude z(i) = v. D

23. The Stochastic DifferentialEquation for </4" ,/z> and the Tightness

of WLm

In order to obtain the desired stochastic differentialequation, we shall apply

Ito's formula to

</4"U> = Yn Tr(£W(0 " zhnY1 =: Yn Tr R^

where we set R(t) =R<f＼t) = (Q{n)(t)- zlln)~x.But for this purpose, we need

some formula for the derivatives of the right hand side with respect to the entries

of Q^n＼t).Namely let Q ― Yll=o Q^es be a 2m x 2m self-dual Hermitian matrix

so that Q^ is real symmetric, and Q^ (s= 1,2,3) are real skew-symmetric. If



1,2,3

n

-- Xkl {t)dt+okl dBkl {t)>

)

+
Alk

£
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we let R = {Q - zI2n)~l= ELo r(s)^ foraze H> then sinceR is also self"dual

R.W is symmetric and R^ (s = 1,2,3) are skew-symmetric.Now itis easy to see

for k ^ /, 1 < k,I < n, that

and

d2R

a(ei0),)2

82R

= -4TrJ?≪}

1

~2n

1

+

+

1

-R{(Ekl + Elk)e0}R

-RUEkl - E!k)es}R, s= 1,2,3

}

Tn dX≪{t)

2

}

Vlf≪))2

dR

dR

= 2R{(Ekl + Elk)e0}R{(Ekl + Elk)e0}R

= 2RUEkl - Elk)es}R{{Ekl - Elk)es}R, s =

where we have defined the matrix Ekl as (Ekl)tj=3^3^ for ij,k,l = 1,2

Now remembering that xl$(t) = 0 for all s and fc,and that X(,s)=

according to s = 0 or s # 0, we apply Ito's formula to Tr R(t), to obtain

E E

5=0 ＼<k<l<n

A

3
E E

^=0 ＼<k<l<n

SR{t)

A d2R(t)

S{
n{s))

Y, Tr[R(t){(Ekl+Elk)e0}R(t)]

t

n s=＼

Tr[R(t){(Ekl-Elk)es}R(t)]Ll-X^(t) dt+atf dB$(t)X

Tr[R(t){(Ekl + Elk)e0}R(t){(Ekl + Elk)e0}R(t)](a^)2 dt

V Yl Tr[*(O{(£w - Elk)es}R(t){(Ekl- Elk)es}R{t)]{a^)2dt

ln^X<U<n

1

W^fe

2

4^

2

4^

1<k<l<n

E E

＼<k<l<n s=＼
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Y Tr{*(0(4J)(0^)*(0}<&

EE Tr{R(t)^EklesdB^)R(t)}

/= 1,2,3,4, and Mn(t) separately,

can rewrite the expression for a! (t) as follows:

a^t)
1

V Tr{R(t)(X^(t)es)R(t)}

4!B£-EA
(')d('M
pyn5z I

s 0,1,2,3

455

An^Uk%

1

w^/h

+
^E E ^

Tr{/J(O(^w^)/f(O(^^)^(O} A

s=0 k,l=＼

+ Y1 E (^)2 Tr{i?(r)(£^o)i?(r)(^%)i?(0} A

jfc,/=i

~ 9^2
E E (ff≪)2Tr{/5(0(£we,)iJ(0(£^)/J(0} *

" j=Oit,/=l

a{?＼t)dt - dMn[t) + af{i) dt + af[i) dt + af＼t) dt

Let us examine a}＼t),

To begin with, we

4≪v^

1

An

1
Tn

Tv{R(t)Q^(t)R(t)}

{TrR(t)+zTr(R(t))2}

1/>) f ＼^Z/,,W d f＼

In treating a^＼t),a" (t) and a^＼t), we need the following formula: for general

complex In x In matrices A = Y^t=o^ et and B = Xw=o^e'> one nas

Tr{(E^es)A(E73es)B} -'

(

We apply this formula to A = R(t)=J2LoR{s)e5 and B = (R(t))2 = YLq{R2){s) es

If we note that R{*]k= (R2)^l = 0 holds for s = 1,2,3 and I < k < n, we get
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4B)(') = Ti E ^?f Tr{(Ekleo)R(t)(Elkeo)(R(t))2}
Zn k,i=＼

2 ＼Srr(°V
2^2 2^ t0*/ )

kJ=＼

1

±(4?f

{

Kll ＼K )kk

Rll ＼K )kk

-E4"(≪2)
kk

a{Z＼t) =
Aj2 iZ^kif

Tr{(Ekles)R(t)(Elkes)(R(t))2}

ln s=＼k,l=l

2 3 n

5=1 fc,/=1

k,l=＼ I

Hence from the second

4"'w+≪?'(') =

where we have set

i(4

condition

≫2l

I

≫)4<

＼K )kk

(K )kk

V

of our Theorem,

E

£ *>2)2? - E<(
k,l=＼

gTr*W)

v(n

k=l

Rll ＼R )kk

i?2n(0)

1

R )kk }

(i***1)-*

(≫) f＼/n{n) ―f

af{t)

Collecting these terms, we obtain

(3) d(fi<r＼fzy = {*<# ,/z> +
2

+ (4")w-≪f(

n
£

k=i

＼ (≪)
)-a5

~^L^Rkk＼K )kk

/
(≪)

(ft y

(')

}

Rkk(K )kk

k=＼

)+<d"),f,>(tir) W"

t))dt+ dMn{t)
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Now let Pnz be the probability distribution of the process {</4" ,fz}}t

on ^c Since the sequence of the probability distribution of </4 ,/z>

and! sinne

5<^),/r>+|(^")

1

< -

1

and hence

If we apply this to R

Im z > 0, then

and

8 ,＼ v

+

A*

2 (Imz)2

/
(") r

＼

/ M

v 1

+
2

1

Imz (lmz)2

lim Mn(t) = 0
n―>oc

= A^e0

＼s=0

3
E

s=l

A^*A{s)

R2

Ais)*es

J

-A
dzJ'/

11
14'l2

s=Oj,k=l
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induced

is tight,

with Q self-dual Hermitian and

2 Im z

is bounded in n and /, the tightness of the sequence {Pnz}n of probability mea-

sures on &c is an immediate consequence of the following proposition.

Proposition 3. With probability one, we have

uniformly on [0, oo), and

lim a{"＼t)=lima{"＼t)=O

uniformly on each interval [0, 71, T > 0.

Proof. For a general complex 2≪x 2n matrix -4 = XlLo^^' A^ =

(Ajk)"k=＼, we have

Tr(A*A) = 2Tr

(Q-zhn)-1 or

s=oj,k=i z (Imz)
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i t
＼(≪2)

s=Oj,k=l

jk I 2
Tr((J?*)2J?2) <

n

(Im z)4

We now estimate,for a fixedzeH, a?'it) and aC'(i) as follows:

K;(OI ^ j?^/5≪^5w
V

V

i4a)(oi=
^2

2

~2n1

1

-7?

I
Tr{R(tyR(t)}

I. n

V(Imz)2

3 n

EE<

s=Oj,k=l

3 n

j=O;,A:=l

i

I n

4])2 T^E

i
Tr{(R(t)2y(R(t)2)}

kles)R(t)(Ekles)R{t)2}

M2

5=0 j,k=＼

3

＼Rkj ＼R )jk

t=0

<
V

V1

V

Hence we arrive at

as n ― oo.

- Tr{R{t)*R(t)}

/ n / n

V(lmz)2＼

J

(lmz)4

sup 1^(01
t>0

= (9(n~l)

i
Tr{(R(t)2y(R(t)2)}

I (≪)sup ＼a5

t>0

(01 = (P(n-1)

In order to treatMM), we introduce the matrix valued Brownian motion

B(t) = EloB{s)(t)es with E${t) = <$B$. Then we get



so that
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dMJt) =

RT,zW = lA
Jo

1

2n^/n

1

Tr{R(t)2 dB(t)}

M 3
(i?(f)2)(0) dM°＼t) - ^2{R(t)2){s) dB^(t)

3

E E

5=0 1 <_/'<£･ < ≪

E E woW <

4 i £ (^Vfiwo2)

~T^M Jos=0 1 <j<k<

<

<

≪3J

T＼

o 2

2vT

TT{(R(t)*)2(R(t))2}dt

≪2(Imz)4

fz>-<Mo,fz>

2<^>/*> +

1

< -
a
E[＼Mn(T)＼2}

K

"s>
!/

:

)

(s)

jk

＼2dt

＼anzj

+ K^,/z>

}

("44}ds
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□

dt

n^/n

2

riyfh

E[＼Mn(t)＼2} =

Hence by the martingale inequality,

p( sup ＼Mn(t)＼2>a)

＼0<t<T J

The restis the same as in the proof of Proposition 2.

2.4 Identificationof the Limiting Process. Completion of the Proof of

Theorem

The results of the previous two subsections show that the sequence {^>n＼n

consisting of the probability distributionsof the empirical measure process {juf }

satisfiesthe conditions of Proposition 1, and hence is tight. To prove the weak

convergence &, ― Sv on %^, let ^ be any weak limit of {£?,} along a subse-

quence {≪'}.If we define, for each T > 0 and z e H,

</"*≫

-i{＼

then Rt z(-)is a bounded continuous functionalon ^#
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Hence by the stochastic differentialequation for (/J? ,/z> and Proposition 3

E**[<!>T.Z]= lim E^'[a>T,z]
n'―xx,

lim E^tA^)]

= lim E＼

0

M^＼t)+Ua^＼s)-af＼s))ds
Jo

J

This shows thatif we let M(t,z;fi):= </i,,/z>,then for ^-almost all //e*^

M(t,z;u) satisfiesthe partialdifferentialequation

(4)
dM

(vM+l- z

＼
dM

+
＼
M

It was shown by Rogers and Shi [8] that for any /i0e Jf＼(R),the unique solution

of this partial differentialequation under the initialcondition M(0,z) = </*o,/2>

converges to

l(-z+^r^) =
1

Rx-z
fC(dx)

as t ―>･oo. Since the process {/it} is stationary under the probability measure gPCJ,,

this shows that the process {M(t,z;/u)} is the trivial non-random process which

equals to J(x ― z)~ltfv(dx) independently of t > 0. Since z e H is arbitrary, we

see ^ = ^. This completes the proof of our Theorem.

2.5 Almost Sure Convergence In the Path Space

Suppose aV = y/v for (j < k), a^ ― V2v, and a^ =0 for s = 1,2,3. Then

as was noted in the introduction, ju" is equal to the empirical distribution of the

eigenvalues of Xn (i)/＼/n.On the other hand, xi '(t)/＼/nsatisfiesthe conditions

of the theorem of Arnold and Wegmann which we quoted at the beginning of

this paper. Hence we have the weak convergence ＼im.n^xfiQ = nhw with proba-

bilityone. If we use thisfact,then we can prove the following assertion, which is

stronger than our main theorem.

Proposition 4. With probability one, we have the weak convergence

lim^oc fif' = ff uniformly in t e [0, T], for any T > 0.
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Proof. With probability one, we can pick and fix an co e Q for which the

following conditions hold:

(i)A#}(≪>)(･)-AC

(ii) the conclusion of Proposition 2 is valid;

(iii) the conclusion of Proposition 3 is valid for the choice of z = zy-,j > 1,

where {zy} is supposed to be dense in H.

Now let 8 be the probability measure on ^ji which is concentrated on the

single path {/4 (co)}r Then (ii) means in particular that the image measures of

8 induced on ^c by the mapping ju.i― <//.,/o>, where fo(x) = x2, is tight. On

the other hand, from (i), (ii) and the stochastic differential equation (4), we see

that the sequence of functions </4 ,/:>>, where fz(x) ― ＼/{x ― z), is uniformly

bounded and equi-continuous on each interval [0, 7"], T > 0. Hence by Ascoli-

Arzela's theorem, the sequence of image measures of 8 under the mapping

ju.i―>･<yW.,/,y> is tight. Hence by Proposition 1, the sequence {8^}n of probability

measures on %# is tight, or equivalently the sequence {//.^}w of functions is

relatively compact in %m. Let /i.(o°)be any of its limit along a subsequence {≪'}.

Letting n = n' ―> oo in the equation (4), we see that M(cc)(?,z) := <//, ,/z>

satisfies the partial differential equation (4) for z = Zj. Since {z,} is dense in H,

this is true for all zeH. But {i^' = ju" and M(t,z) = (a",/z> is a solution of

(4),we must have M^＼t,z) = ≪,/2> for allz e H and t > 0. Hence ^co) =

for all t > 0, completing the proof of Proposition 4.

uv

D

A Proof of the Tightness Criterion

In this appendix, we give a proof of Proposition 1.

By the tightness of the sequence {PR}*=＼, we can choose, for each s > 0, a

compact subset Kn of ^r such that

MP°n(K0)>i-^

Then we have

At := sup sup ＼c(t)＼< oo

c(-)eK0 te[0.T]

for any T > 0. On the other hand,

MT:={fi jfl(R)]ifi,foy^AT}

is a compact subset of Jt＼(R) for any T > 0, and

inf &n{nt e Mr, for any t e [0,T] and T > 0) > inf &>n(Ko) > 1 - e/2
≪>i ≪>i
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Next, for every j > 1, we can choose a compact subset K,-of %>c such that

n>＼

e

2J+i

because of the tightness of the sequence {Pj}%L＼- Let Jf be the Borel subset of

^jt denned by

Jf PI {!*(･)e %*＼M,eMT,te [0,T}} n 0 {MO e ^; <M0,^> e ^1
7>0

Then it is easily seen that

y>i

inf^(jT) >l-e.
n>＼

Now to finish the proof, we need to verify that the set Jf is compact in ^.

For this purpose, let {v(n＼-)}^=l be any sequence in Jf. Since, for every

j > 1, the sequence K^"H')>.//)}^li ls contained in Kj which is compact in ^c,

we can choose a subsequence {v^'^-)}^ of {v^-)}^ such that, for every j,

there exists a cJ'(-)e Kj which satisfies

<v(n/)(-),y;->-^(-) (/-oo).

On the other hand, for every t > 0, {v^"＼t)}^=lis a sequence in the compact

set Mf a Jt＼{R), so we can choose a subsequence {≪/,,(?)}^=1(which depends

on i) of {≪/}£! and v(t)e Jt＼{R) such that

Since we have

<v(0,j5> =
wiim<v^)(0,j5->

= ^(0,

for all 7 > 1, according to the assumption for {fj}j, this v(t) is uniquely deter-

mined by {n/}^j and does not depend on the choice of its subsequence. Hence

for every t > 0, we have

and

limv^ (t) = v{t)
/―>oo

<v(*U-> = C"(f).

Next let us prove that v(t)is a continuous function of t > 0. In fact,let t > 0

and let {tk}kL＼ be a sequence in [0,oo) which converges to t. Then there exists a

T e (0, oo) such that te [0, T] and tk e [0,T] for every A:> 1. Since v(tk)e MT
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and MT is compact in Jf＼{R),we can choose a subsequence {tkm}m=i an<^ ^

such that

lim v(tkm)= v in Jt＼(R).
m―>cc

Hence, according to the continuityof cJ(-),we have, for every j > 1,

(vjj} = lim <v(tkm)Jj>= lim ^(r,J = ^'(0 = <v(0,J$>.

Since {fj}Jl＼determines the probabilitymeasure uniquely,

v = v(t).

That is.the limit

lim v{tkm) = v(t)

is independent of the choices of the subsequence {km}^=l, and one has

lim v(tk)= v{t).
k―>m

Thus we have proved that {v^"1"1(t)}^ converges to v(t) for each t>0.

Let us finallyprove that this convergence is uniform in t e [0,T] for any

T > 0. For thispurpose, let p be a metric on Ji＼(R) which generates the topology

of the weak convergence of probability measures. If the convergence were not

uniform on some interval [0,71, then we would have

limsup sup p(v{ni)(t),v(t))> 0.

l^oo te[0,T]

Then there would exist a 5 > 0, a subsequence {≪/m}^=1 of the sequence {w/j^j.

and a sequence {tn,mYm=＼ m [0,7"] such that

P{^＼tnim)Atnlm))>S.

Furthermore, there exists a subsequence {≪^}^Li of the subsequence {≪/m}.

t e [0,rl. and u* e MT such that

Mm

m―>oc
l<

Thus letting m ― oo. we have

t and Mm v^(tn>) = u*
m-*oc m

p(/**,v{T))Z>S
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This means that,

K^,j5>-<v(t),j5->|>o

for some j>＼. Denote by rj the lefthand side of thisinequality.Then there

existsan mo > 1 such that,for every m> ntQ,

l<v(^U->-<v(^u>|>|.

This implies

limsup sup |<v^('U->-<>(?U->l>

m-≫co te[O,T]

1

2

which contradicts the uniform convergence on [0,T] of {<v^(0>.//>}/*li to

cj(t)= (v(t)jjy
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