SPINOR-GENERATORS OF COMPACT EXCEPTIONAL LIE GROUPS F_{4}, E_{6} AND E_{7}

By
Takashi Miyasaka, Osamu Shukuzawa and Ichiro Yokota

1. Introduction

We know that any element A of the group $S O(3)$ can be represented as

$$
A=A_{1} A_{2} A_{1}^{\prime}, \quad A_{1}, A_{1}^{\prime} \in S O_{1}(2), A_{2} \in S O_{2}(2)
$$

where $S O_{k}(2)=\left\{A \in S O(3) \mid A e_{k}=e_{k}\right\}(k=1,2)([1])$. In the present paper, we shall show firstly that the similar results hold for the groups $S U(3)$ and $S p(3)$ (Theorem 1). Secondly, we shall show that any element α of the simply connected compact Lie group F_{4} (resp. E_{6}) can be represented as
where $\operatorname{Spin}_{k}(9)=\left\{\alpha \in F_{4}, \mid \alpha E_{k}=E_{k}\right\} \quad$ (resp. $\operatorname{Spin}_{k}(10)=\left\{\alpha \in E_{6} \mid \alpha E_{k}=E_{k}\right\}$ (Theorem 5 (resp. Theorem 7))). Lastly, we shall show that any element α of the simply connected compact Lie group E_{7} can be represented as

$$
\alpha=\alpha_{1} \alpha_{2} \alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{1}^{\prime \prime}, \quad \alpha_{1}, \alpha_{1}^{\prime}, \alpha_{1}^{\prime \prime} \in \operatorname{Spin}_{1}(12), \alpha_{2}, \alpha_{2}^{\prime} \in \operatorname{Spin}_{2}(12)
$$

where $\operatorname{Spin}_{k}(12)=\left\{\alpha \in E_{7} \mid \alpha \kappa_{k}=\kappa_{k} \alpha, \alpha \mu_{k}=\mu_{k} \alpha\right\}$ (Theorem 10).
In this paper we follow the notation of [2].
2. Spinor-generators of the groups $S O(3), S U(3)$ and $S p(3)$

Let \boldsymbol{H} be the quaternion field with basis $1, \boldsymbol{i}, \boldsymbol{j}$ and \boldsymbol{k} over \boldsymbol{R}. Then we can express each element $a=a_{0}+a_{1} \boldsymbol{i}+a_{2} \dot{j}+a_{3} \boldsymbol{k} \in \boldsymbol{H}$ in the following polar form

$$
a=r(\cos \theta+u \sin \theta), \quad u^{2}=-1(u \in \boldsymbol{H}), r=|a|=\sqrt{\sum_{k=0}^{3} a_{k}^{2}}, \theta \in \boldsymbol{R} .
$$

Received September 10, 1997.
Revised December 3, 1997.

Hereafter, we briefly denote by $r e^{u \theta}$ an element $r(\cos \theta+u \sin \theta)$ after the model of complex numbers.

The classical groups $S O(n), S U(n)$ and $S p(n)$ are respectively defined by

$$
\begin{aligned}
S O(n) & =\left\{\left.A \in M(n, \boldsymbol{R})\right|^{t} A A=E, \operatorname{det} A=1\right\} \\
S U(n) & =\left\{A \in M(n, \boldsymbol{C}) \mid A^{*} A=E, \operatorname{det} A=1\right\} \\
S p(n) & =\left\{A \in M(n, \boldsymbol{H}) \mid A^{*} A=E\right\}
\end{aligned}
$$

where we follow the usual convention for matrices: $M(n, K)$ (= the set of square matrices of order n with coefficients in $K=\boldsymbol{R}, \boldsymbol{C}$ or $\boldsymbol{H}),{ }^{t} A, A^{*}\left(=\overline{{ }^{\bar{A}}} \boldsymbol{A}\right), E(=$ the unit matrix) and det (= the determinant).

Theorem 1. (1) Any element $A \in S O(3)$ can be represented as

$$
A=A_{1} A_{2} A_{1}^{\prime}, \quad A_{1}, A_{1}^{\prime} \in S O_{1}(2), A_{2} \in S O_{2}(2)
$$

where $S O_{k}(2)=\left\{A \in \operatorname{SO}(3) \mid A e_{k}=e_{k}\right\} \cong \operatorname{Spin}(2)(k=1,2), e_{1}={ }^{t}(1,0,0), e_{2}=$ ${ }^{t}(0,1,0)$.
(2) Any element $A \in S U(3)$ can be represented as

$$
A=A_{1} A_{2} A_{1}^{\prime}, \quad A_{1}, A_{1}^{\prime} \in S U_{1}(2), A_{2} \in S U_{2}(2)
$$

where $S U_{k}(2)=\left\{A \in S U(3) \mid A e_{k}=e_{k}\right\} \cong \operatorname{Spin}(3)(k=1,2)$.
(3) Any element $A \in S p(3)$ can be represented as

$$
A=A_{1} A_{2} A_{1}^{\prime}, \quad A_{1}, A_{1}^{\prime} \in S p_{1}(2), A_{2} \in S p_{2}(2)
$$

where $S p_{k}(2)=\left\{A \in \operatorname{Sp}(3) \mid A e_{k}=e_{k}\right\} \cong \operatorname{Spin}(5)(k=1,2)$.

Proof. It suffices to prove (3), because we can reduce (1) and (2) to the particular case of (3) in the proof below. First, for a given element $A \in S p(3)$, suppose $A e_{1}={ }^{t}\left(a_{1}, a_{2}, a_{3}\right), a_{2} \neq 0\left(a_{k} \in \boldsymbol{H}(k=1,2,3)\right)$. Then there exist an element $u \in \boldsymbol{H}$ satisfying $u^{2}=-1$ and a real number $\alpha \in \boldsymbol{R}$ such that $a_{3} a_{2}^{-1}=$ $\left(\left|a_{3}\right| /\left|a_{2}\right|\right) e^{u x}$. Choose $\theta \in \boldsymbol{R}$ such that $\cot \theta=\left|a_{3}\right| /\left|a_{2}\right|$ and set

$$
B_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{u \alpha / 2} \cos \theta & -e^{-u \alpha / 2} \sin \theta \\
0 & e^{u \alpha / 2} \sin \theta & e^{-u \alpha / 2} \cos \theta
\end{array}\right) \in S p_{1}(2) .
$$

Then we get

$$
B_{1} A e_{1}={ }^{t}\left(b_{1}, 0, b_{3}\right), \quad b_{1}, b_{3} \in \boldsymbol{H}
$$

Next suppose $b_{3} \neq 0$. Then there exist an element $v \in \boldsymbol{H}$ satisfying $v^{2}=-1$ and a real number $\beta \in \boldsymbol{R}$ such that $b_{1} b_{3}^{-1}=\left(\left|b_{1}\right| /\left|b_{3}\right|\right) e^{\nu \beta}$. Choose $\varphi \in \boldsymbol{R}$ such that $\cot \varphi=-\left|b_{1}\right| /\left|b_{3}\right|$ and set

$$
B_{2}=\left(\begin{array}{ccc}
e^{-\nu \beta / 2} \cos \varphi & 0 & -e^{\nu \beta / 2} \sin \varphi \\
0 & 1 & 0 \\
e^{-\nu \beta / 2} \sin \varphi & 0 & e^{\nu \beta / 2} \cos \varphi
\end{array}\right) \in S p_{2}(2) .
$$

Then we get

$$
B_{2} B_{1} A e_{1}={ }^{t}\left(c_{1}, 0,0\right), \quad c_{1} \in \boldsymbol{H}
$$

Since $\left|c_{1}\right|=1$, we can say $c_{1}=e^{w \gamma}\left(w^{2}=-1, w \in \boldsymbol{H}, \gamma \in \boldsymbol{R}\right)$. Set

$$
B_{2}^{\prime}=\left(\begin{array}{ccc}
e^{-w \gamma} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{w \gamma}
\end{array}\right) \in S p_{2}(2)
$$

Then, since it follows $B_{2}^{\prime} B_{2} B_{1} A e_{1}=e_{1}$, i.e., $B_{2}^{\prime} B_{2} B_{1} A \in S p_{1}(2)$, we can set $B_{2}^{\prime} B_{2} B_{1} A=B_{1}^{\prime} \in S p_{1}(2)$. This implies

$$
A=A_{1} A_{2} A_{1}^{\prime}, \quad A_{1}, A_{1}^{\prime} \in S p_{1}(2), A_{2} \in S p_{2}(2)
$$

3. Some ellements of $\operatorname{Spin}_{k}(9), \operatorname{Spin}_{k}(10)$ and $\operatorname{Spin}_{k}(12)$.

As for the definitions of $\operatorname{Spin}_{k}(9), \operatorname{Spin}_{k}(10)$ and $\operatorname{Spin}_{k}(12)(k=1,2)$, see Section 4, 5 and 6.

Lemma 2 (Section 4 and [2]). (1) Let $\alpha_{1}(a)$ be the mapping $\alpha(a)$ defined in [2] Lemma 2.(1). Then $\alpha_{1}(a)$ belongs to $\operatorname{Spin}_{1}(9) \subset \operatorname{Spin}_{1}(10) \subset \operatorname{Spin}_{1}(12)$.
(2) For $a \in \mathfrak{C}, a \neq 0$, let $\alpha_{2}(a): \mathfrak{I} \rightarrow \mathfrak{J}$ be the mapping defined by changing all of the indices from k to $k+1$ (index modulo 3) in the definition of $\alpha(a)$ of [2] Lemma 2.(1), that is,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\xi_{1}^{\prime}=\frac{\xi_{3}+\xi_{1}}{2}-\frac{\xi_{3}-\xi_{1}}{2} \cos 2|a|-\frac{\left(a, x_{2}\right)}{|a|} \sin 2|a| \\
\xi_{2}^{\prime}=\xi_{2} \\
\xi_{3}^{\prime}=\frac{\xi_{3}+\xi_{1}}{2}+\frac{\xi_{3}-\xi_{1}}{2} \cos 2|a|+\frac{\left(a, x_{2}\right)}{|a|} \sin 2|a|
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{1}^{\prime}=x_{1} \cos |a|+\frac{\overline{a x_{3}}}{|a|} \sin |a| \\
x_{2}^{\prime}=x_{2}-\frac{\left(\xi_{3}-\xi_{1}\right) a}{2|a|} \sin 2|a|-\frac{2\left(a, x_{2}\right) a}{|a|^{2}} \sin ^{2}|a| \\
x_{3}^{\prime}=x_{3} \cos |a|-\frac{\overline{x_{1} a}}{|a|} \sin |a|,
\end{array}\right.
\end{aligned}
$$

where $\alpha_{2}(a) X=X^{\prime}$. Then $\alpha_{2}(a)$ belongs to $\operatorname{Spin}_{2}(9) \subset \operatorname{Spin}_{2}(10) \subset \operatorname{Spin}_{2}(12)$.
Lemma 3 (Section 5 and [2]). (1) Let $\beta_{1}(a)$ be the mapping $\beta(a)$ defined in [2] Lemma 2.(2). Then $\beta_{1}(a)$ belongs to $\operatorname{Spin}_{1}(10) \subset \operatorname{Spin}_{1}(12)$.
(2) For $a \in \mathfrak{C}, a \neq 0$, let $\beta_{2}(a): \mathfrak{J}^{C} \rightarrow \mathfrak{J}^{C}$ be the mapping defined by changing all of the indices from k to $k+1$ (index modulo 3) in the definition of $\beta(a)$ of [2] Lemma 2.(2), that is,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\xi_{1}^{\prime}=-\frac{\xi_{3}-\xi_{1}}{2}+\frac{\xi_{3}+\xi_{1}}{2} \cos 2|a|+i \frac{\left(a, x_{2}\right)}{|a|} \sin 2|a| \\
\xi_{2}^{\prime}=\xi_{2} \\
\xi_{3}^{\prime}=\frac{\xi_{3}-\xi_{1}}{2}+\frac{\xi_{3}+\xi_{1}}{2} \cos 2|a|+i \frac{\left(a, x_{2}\right)}{|a|} \sin 2|a|
\end{array}\right. \\
& \left\{\begin{array}{l}
x_{1}^{\prime}=x_{1} \cos |a|+i \frac{\overline{a x_{3}}}{|a|} \sin |a| \\
x_{2}^{\prime}=x_{2}+i \frac{\left(\xi_{3}+\xi_{1}\right) a}{2|a|} \sin 2|a|-\frac{2\left(a, x_{2}\right) a}{|a|^{2}} \sin ^{2}|a| \\
x_{3}^{\prime}=x_{3} \cos |a|+i \frac{\overline{x_{1} a}}{|a|} \sin |a|,
\end{array}\right.
\end{aligned}
$$

where $\beta_{2}(a) X=X^{\prime}$. Then $\beta_{2}(a)$ belongs to $\operatorname{Spin}_{2}(10) \subset \operatorname{Spin}_{2}(12)$.
Lemma 4 (Section 6 and [2]). (1) Let $\gamma_{1}(a)$ be the mapping $\gamma(a)$ defined in [2] Lemma 3.(1). Then $\gamma_{1}(a)$ belongs to $\operatorname{Spin}_{1}(12)$.
(2) For $a \in \mathbb{C}, a \neq 0$, let $\gamma_{2}(a): \mathfrak{B}^{C} \rightarrow \mathfrak{B}^{C}$ be the mapping defined by changing all of the indices from k to $k+1$ (index modulo 3) in the definition of $\gamma(a)$ of [2] Lemma 3.(1), that is,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1} \\
\xi_{2}^{\prime}=\frac{\xi_{2}-\xi}{2}+\frac{\xi_{2}+\xi}{2} \cos 2|a|+\frac{\left(a, y_{2}\right)}{|a|} \sin 2|a| \\
\xi_{3}^{\prime}=\xi_{3} \\
x_{1}^{\prime}=x_{1} \cos |a|-\frac{\overline{a y_{3}}}{|a|} \sin |a| \\
x_{2}^{\prime}=x_{2}+\frac{\left(\eta_{2}+\eta\right) a}{2|a|} \sin 2|a|-\frac{2\left(a, x_{2}\right) a}{|a|^{2}} \sin ^{2}|a| \\
x_{3}^{\prime}=x_{3} \cos |a|-\frac{\overline{y_{1} a}}{|a|} \sin |a| \\
\eta_{2}^{\prime}=\frac{\eta_{2}-\eta}{2}+\frac{\eta_{2}+\eta}{2} \cos 2|a|-\frac{\left(a, x_{2}\right)}{|a|} \sin 2|a| \\
\eta_{3}^{\prime}=\eta_{3} \\
y_{1}^{\prime}=y_{1} \cos |a|+\frac{\overline{a x_{3}}}{|a|} \sin |a| \\
y_{2}^{\prime}=y_{2}-\frac{\left(\xi_{2}+\xi\right) a}{2|a|} \sin 2|a|-\frac{2\left(a, y_{2}\right) a}{|a|^{2}} \sin { }^{2}|a| \\
y_{3}^{\prime}=y_{3} \cos |a|+\frac{\overline{x_{1} a}}{|a|} \sin |a| \\
\eta_{1}^{\prime}=\eta_{1} \\
\eta^{\prime}=-\frac{\eta_{2}-\eta}{2}+\frac{\eta_{2}+\eta}{2} \cos 2|a|-\frac{\left(a, x_{2}\right)}{|a|} \sin 2|a|,
\end{array}\right. \\
& \xi^{\prime}=-\frac{\xi_{2}-\xi}{2}+\frac{\xi_{2}+\xi}{2} \cos 2|a|+\frac{\left(a, y_{2}\right)}{|a|} \sin 2|a|
\end{aligned}
$$

where $\gamma_{2}(a)(X, Y, \xi, \eta)=\left(X^{\prime}, Y^{\prime}, \xi^{\prime}, \eta^{\prime}\right)$. Then $\gamma_{2}(a)$ belongs to $\operatorname{Spin}_{2}(12)$.
(3) Let $\delta_{1}(a)$ be the mapping $\delta(a)$ defined in [2] Lemma 3.(2). Then $\delta_{1}(a)$ belongs to $\operatorname{Spin}_{1}(12)$.
(4) For $a \in \mathbb{C}, a \neq 0$, let $\delta_{2}(a): \mathfrak{B}^{C} \rightarrow \mathfrak{B}^{C}$ be the mapping defined by changing all of the indices from k to $k+1$ (index modulo 3) in the definition of $\delta(a)$ of [2] Lemma 3.(2), that is,

$$
\begin{aligned}
& \left\{\begin{array}{l}
\xi_{1}^{\prime}=\xi_{1} \\
\xi_{2}^{\prime}=\frac{\xi_{2}+\xi}{2}+\frac{\xi_{2}-\xi}{2} \cos 2|a|-i \frac{\left(a, y_{2}\right)}{|a|} \sin 2|a| \\
\xi_{3}^{\prime}=\xi_{3} \\
x_{1}^{\prime}=x_{1} \cos |a|+i \frac{\overline{a y_{3}}}{|a|} \sin |a| \\
x_{2}^{\prime}=x_{2}-i \frac{\left(\eta_{2}-\eta\right) a}{2|a|} \sin 2|a|-\frac{2\left(a, x_{2}\right) a}{|a|^{2}} \sin ^{2}|a| \\
x_{3}^{\prime}=x_{3} \cos |a|+i \frac{\overline{y_{1} a}}{|a|} \sin |a| \\
\left\{\begin{array}{l}
\eta_{2}^{\prime}=\frac{\eta_{2}+\eta}{2}+\frac{\eta_{2}-\eta}{2} \cos 2|a|-i \frac{\left(a, x_{2}\right)}{|a|} \sin 2|a| \\
\eta_{3}^{\prime}=\eta_{3} \\
y_{1}^{\prime}=y_{1} \cos |a|+i \frac{\overline{a x_{3}}}{|a|} \sin |a| \\
y_{2}^{\prime}=y_{2}-i \frac{\left(\xi_{2}-\xi\right) a}{2|a|} \sin 2|a|-\frac{2\left(a, y_{2}\right) a}{|a|^{2}} \sin { }^{2}|a| \\
y_{3}^{\prime}=y_{3} \cos |a|+i \frac{\overline{x_{1} a}}{|a|} \sin |a| \\
\eta_{1}
\end{array}\right. \\
\left\{\begin{array}{l}
\xi^{\prime}=\frac{\xi_{2}+\xi}{2}-\frac{\xi_{2}-\xi}{2} \cos 2|a|+i \frac{\left(a, y_{2}\right)}{|a|} \sin 2|a| \\
\eta_{2}+\eta \\
2
\end{array} \frac{\eta_{2}-\eta}{2} \cos 2|a|+i \frac{\left(a, x_{2}\right)}{|a|} \sin 2|a|\right.
\end{array}\right.
\end{aligned}
$$

where $\delta_{2}(a)(X, Y, \xi, \eta)=\left(X^{\prime}, Y^{\prime}, \xi^{\prime}, \eta^{\prime}\right)$. Then $\delta_{2}(a)$ belongs to $\operatorname{Spin}_{2}(12)$.

4. $\operatorname{Spin}(9)$-generators of the group F_{4}

The simply connected compact Lie group F_{4} is given by

$$
F_{4}=\left\{\alpha \in \operatorname{Iso}_{R}(\mathfrak{I}) \mid \alpha(X \times Y)=\alpha X \times \alpha Y\right\}
$$

The group F_{4} has subgroups

$$
\operatorname{Spin}_{k}(9)=\left\{\alpha \in F_{4} \mid \alpha E_{k}=E_{k}\right\}(k=1,2),
$$

where $E_{1}=(1,0,0 ; 0,0,0), E_{2}=(0,1,0 ; 0,0,0) \in \mathfrak{I}$, which is isomorphic to the usual spinor group $\operatorname{Spin}(9)$ ([2], [3]).

Theorem 5. Any element $\alpha \in F_{4}$ can be represented as

$$
\alpha=\alpha_{1} \alpha_{2} \alpha_{1}^{\prime}, \quad \alpha_{1}, \alpha_{1}^{\prime} \in \operatorname{Spin}_{1}(9), \alpha_{2} \in \operatorname{Spin}_{2}(9)
$$

Proof. For a given element $\alpha \in F_{4}$, it suffices to show that there exist $\alpha_{1} \in \operatorname{Spin}_{1}(9)$ and $\alpha_{2} \in \operatorname{Spin}_{2}(9)$ such that $\alpha_{2} \alpha_{1} \alpha E_{1}=E_{1}$. Now, for $\alpha E_{1}=$ $\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, x_{2}, x_{3}\right)=X_{0}$, choose $a \in \mathbb{C}$ such that $\left(a, x_{1}\right)=0,|a|=\pi / 4$, and define $\alpha_{1}(a) \in \operatorname{Spin}_{1}(9)$ of Lemma 2.(1). Then we get

$$
\alpha_{1}(a) X_{0}=\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime} ; x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)=X_{1} . \quad \xi_{1}^{\prime}=\xi_{1}, \xi_{2}^{\prime}=\xi_{3}^{\prime} \in \boldsymbol{R}, x_{k}^{\prime} \in \mathbb{C} .
$$

If $x_{1}^{\prime} \neq 0$, define $\alpha_{1}\left(\pi x_{1}^{\prime} / 4\left|x_{1}^{\prime}\right|\right) \in \operatorname{Spin}_{1}(9)$. Then we get

$$
\alpha_{1}\left(\pi x_{1}^{\prime} / 4\left|x_{1}^{\prime}\right|\right) X_{1}=\left(\xi_{1}^{\prime \prime}, \xi_{2}^{\prime \prime}, \xi_{3}^{\prime \prime} ; 0, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right)=X_{2}, \quad \xi_{1}^{\prime \prime}=\xi_{1}^{\prime}, \xi_{k}^{\prime \prime} \in \boldsymbol{R}, x_{k}^{\prime \prime} \in \mathbb{C} .
$$

The condition $X_{2} \times X_{2}=0$ of the above form is equivalent to the following equations:

$$
\begin{align*}
& \xi_{2}^{\prime \prime} \xi_{3}^{\prime \prime}=0, \quad \xi_{3}^{\prime \prime} \xi_{1}^{\prime \prime}=x_{2}^{\prime \prime} \overline{x_{2}^{\prime \prime}}, \quad \xi_{1}^{\prime \prime} \xi_{2}^{\prime \prime}=x_{3}^{\prime \prime} \overline{x_{3}^{\prime \prime}}, \\
& \overline{x_{2}^{\prime \prime} x_{3}^{\prime \prime}}=0, \quad \xi_{2}^{\prime \prime} x_{2}^{\prime \prime}=0, \quad \xi_{3}^{\prime \prime} x_{3}^{\prime \prime}=0 . \tag{*}
\end{align*}
$$

By the first equation $\xi_{2}^{\prime \prime} \xi_{3}^{\prime \prime}=0$ of $(*)$, it is enough to consider the two cases: (I) $\xi_{2}^{\prime \prime}=0,(\mathrm{II}) \xi_{2}^{\prime \prime} \neq 0$ and $\xi_{3}^{\prime \prime}=0$.
(I) Because of $(*)$ and $\xi_{2}^{\prime \prime}=0$, we have $x_{3}^{\prime \prime} \overline{x_{3}^{\prime \prime}}=0$, hence $x_{3}^{\prime \prime}=0$. Therefore X_{2} is of the form

$$
X_{2}=\left(\xi_{1}^{\prime \prime}, 0, \xi_{3}^{\prime \prime} ; 0, x_{2}^{\prime \prime}, 0\right), \quad \xi_{1}^{\prime \prime}=\xi_{1}^{\prime}, \xi_{3}^{\prime \prime} \in \boldsymbol{R}, x_{2}^{\prime \prime} \in \mathbb{C} .
$$

Choose $b \in \mathbb{C}$ such that $\left(b, x_{2}^{\prime \prime}\right)=0,|b|=\pi / 4$, and define $\alpha_{2}(b) \in \operatorname{Spin}_{2}(9)$ of Lemma 2.(2). Then

$$
\alpha_{2}(b) X_{2}=\left(\xi_{1}^{(3)}, 0, \xi_{3}^{(3)} ; 0, x_{2}^{(3)}, 0\right)=X_{3}, \quad \xi_{1}^{(3)}=\xi_{3}^{(3)} \in \mathbb{R}, x_{2}^{(3)} \in \mathbb{C} .
$$

If $x_{2}^{(3)}=0$, then by the condition $X_{3} \times X_{3}=0$ we have that $\left(\xi_{1}^{(3)}\right)^{2}=\left(\xi_{3}^{(3)}\right)^{2}=$ $x_{2}^{(3)} \overline{x_{2}^{(3)}}=0$ so that $X_{2}=0$, which is a contradiction. Hence $x_{2}^{(3)} \neq 0$. Consider $\alpha_{2}\left(\pi x_{2}^{(3)} / 4\left|x_{2}^{(3)}\right|\right) \in \operatorname{Spin}_{2}(9)$. Then

$$
\alpha_{2}\left(\pi x_{2}^{(3)} / 4\left|x_{2}^{(3)}\right|\right) X_{3}=\left(\xi_{1}^{(4)}, 0, \xi_{3}^{(4)} ; 0,0,0\right)=X_{4}, \quad \xi_{1}^{(4)}, \xi_{3}^{(4)} \in \boldsymbol{R} .
$$

From $X_{4} \times X_{4}=0$, we have $\xi_{3}^{(4)} \xi_{1}^{(4)}=0$. If $\xi_{3}^{(4)}=0$, then $X_{4}=E_{1}$ since $\xi_{1}^{(4)}=$ $\operatorname{tr}\left(X_{4}\right)=\operatorname{tr}\left(E_{1}\right)=1$. If $\xi_{1}^{(4)}=0$, consider $\alpha_{2}(\pi / 2) \in \operatorname{Spin}_{2}(9)$. Then

$$
\alpha_{2}(\pi / 2) X_{4}=\left(\xi_{1}^{(5)}, 0,0 ; 0,0,0\right)=X_{5}, \quad \xi_{1}^{(5)}=\xi_{3}^{(4)} \in \boldsymbol{R}
$$

Thus we obtain $X_{5}=E_{1}$.
(II) Because of the condition $\xi_{2}^{\prime \prime} x_{2}^{\prime \prime}=0$ in (*), we have $x_{2}^{\prime \prime}=0$. Therefore X_{2} is of the form

$$
X_{2}=\left(\xi_{1}^{\prime \prime}, \xi_{2}^{\prime \prime}, 0 ; 0,0, x_{3}^{\prime \prime}\right), \quad \xi_{k}^{\prime \prime} \in \boldsymbol{R}, x_{3}^{\prime \prime} \in \mathbb{C}
$$

Then $\alpha_{1}(\pi / 2) X_{2}$ is nothing but X_{2} in Case (I), so that Case (II) can be reduced to Case (I).

We have just completed the proof of Theorem 5.

5. $\operatorname{Spin}(10)$-generators of the group E_{6}

The simply connected compact Lie group E_{6} is given by

$$
E_{6}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{J}^{C}\right) \mid \alpha X \times \alpha Y=\tau \alpha \tau(X \times Y),\langle\alpha X, \alpha Y\rangle=\langle X, Y\rangle\right\}
$$

The group E_{6} has subgroups

$$
\operatorname{Spin}_{k}(10)=\left\{\alpha \in E_{6} \mid \alpha E_{k}=E_{k}\right\}(k=1,2)
$$

which is isomorphic to the usual spinor group $\operatorname{Spin}(10)$ ([2], [3]).
Lemma 6. (1) For any element

$$
X=\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, 0,0\right), \quad \xi_{k} \in C, x_{1} \in \mathbb{C}^{C}
$$

of \mathfrak{J}^{C}, there exists some element $\alpha_{1} \in \operatorname{Spin}_{1}(10)$ such that

$$
\alpha_{1} X=\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime} ; 0,0,0\right), \quad \xi_{1}^{\prime}=\xi_{1}, \xi_{k}^{\prime} \in C
$$

(2) For any element

$$
X=\left(\xi_{1}, 0,0 ; 0, x_{2}, x_{3}\right), \quad \xi_{1} \in C, x_{k} \in \mathbb{C}^{C}
$$

of \mathfrak{J}^{C}, there exists some element $\alpha_{1} \in \operatorname{Spin}_{1}(9)$ such that

$$
\alpha_{1} X=\left(\xi_{1}, 0,0 ; 0, x_{2}^{\prime}, x_{3}^{\prime}\right), \quad \xi_{1}^{\prime}=\xi_{1} \in C, x_{2}^{\prime} \in \mathbb{C}^{C}, x_{3}^{\prime} \in \mathbb{C}
$$

Proof. (1) For $x_{1}=p+i q(p, q \in \mathbb{C})$, choose $a \in \mathbb{C}, a \neq 0$, such that $(a, p)=(a, q)=0$, and define $\alpha_{1}(\pi a / 4|a|) \in \operatorname{Spin}_{1}(9)$ of Lemma 2.(1). Then

$$
\alpha_{1}(\pi a / 4|a|) X=\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime} ; x_{1}^{\prime}, 0,0\right)=X_{1}, \quad \xi_{1}^{\prime}=\xi_{1}, \xi_{2}^{\prime}=\xi_{3}^{\prime} \in C, x_{1}^{\prime} \in \mathbb{C}^{C}
$$

Next, for $x_{1}^{\prime}=p^{\prime}+i q^{\prime}\left(p^{\prime}, q^{\prime} \in \mathbb{C}\right)$, choose $b \in \mathbb{C}, b \neq 0$, such that $\left(b, p^{\prime}\right)=$
$\left(b, q^{\prime}\right)=0$, and define $\beta_{1}(\pi b / 4|b|) \in \operatorname{Spin}_{1}(10)$ of Lemma 3.(1). Then

$$
\beta_{1}(\pi b / 4|b|) X_{1}=\left(\xi_{1}^{\prime \prime}, 0,0 ; x_{1}^{\prime \prime}, 0,0\right)=X_{2}, \quad \xi_{1}^{\prime \prime}=\xi_{1} \in C, x_{1}^{\prime \prime} \in \mathbb{C}^{C} .
$$

Next, for $x_{1}^{\prime \prime}=p^{\prime \prime}+i q^{\prime \prime}\left(p^{\prime \prime}, q^{\prime \prime} \in \mathbb{C}\right)$, if $q^{\prime \prime} \neq 0$, define $\alpha_{1}\left(\pi q^{\prime \prime} / 4\left|q^{\prime \prime}\right|\right) \in \operatorname{Spin}_{1}(9)$. Then

$$
\alpha_{1}\left(\pi q^{\prime \prime} / 4\left|q^{\prime \prime}\right|\right) X_{2}=\left(\xi_{1}^{(3)}, \xi_{2}^{(3)}, \xi_{3}^{(3)} ; p^{(3)}, 0,0\right)=X_{3}, \xi_{1}^{(3)}=\xi_{1}, \xi_{3}^{(3)}=-\xi_{2}^{(3)} \in C, p^{(3)} \in \mathbb{C}
$$

Finally, if $p^{(3)} \neq 0$, define $\beta_{1}\left(\pi p^{(3)} / 4\left|p^{(3)}\right|\right) \in \operatorname{Spin}_{1}(10)$. Then we get

$$
\beta_{1}\left(\pi p^{(3)} / 4\left|p^{(3)}\right|\right) X_{3}=\left(\xi_{1}^{(4)}, \xi_{2}^{(4)}, \xi_{3}^{(4)} ; 0,0,0\right), \quad \xi_{1}^{(4)}=\xi_{1}, \xi_{k}^{(4)} \in C
$$

as desired.
(2) At first, we show that for any element

$$
Z=\left(\zeta_{1}, 0,0 ; 0, z_{2}, z_{3}\right), \quad \zeta_{1} \in \boldsymbol{R}, z_{k} \in \mathfrak{C}
$$

there exists $\alpha_{1} \in \operatorname{Spin}_{1}(9)$ such that

$$
\alpha_{1} Z=\left(\zeta_{1}^{\prime}, 0,0 ; 0, z_{2}^{\prime}, 0\right), \quad \zeta_{1}^{\prime} \in \boldsymbol{R}, z_{2}^{\prime} \in \mathbb{C} .
$$

In fact, if $z_{2} z_{3} \neq 0$, choose $t>0$ such that $\cot \left(t\left|z_{2} z_{3}\right|\right)=-\left|z_{2}\right| /\left|z_{3}\right|$, and define $\alpha_{1}\left(t \overline{z_{2} z_{3}}\right) \in \operatorname{Spin}_{1}(9)$. Then we get $\left(z_{3}\right.$-part of $\left.\alpha_{1}\left(t \overline{z_{2} z_{3}}\right) Z\right)=0$. If $z_{2}=0$, then $\alpha_{1}(\pi / 2) Z$ is of the form as desired. Now for a given element $X=$ $\left(\xi_{1}, 0,0 ; 0, x_{2}, x_{3}\right) \in \mathfrak{J}^{C}$, express it as $X=Y+i Z, Y, Z \in \mathfrak{I}$ and apply the result above to Z, then we get the required form $\alpha_{1} X=\alpha_{1} Y+i \alpha_{1} Z$.

Theorem 7. Any element $\alpha \in E_{6}$ can be represented as

$$
\alpha=\alpha_{1} \alpha_{2} \alpha_{1}^{\prime}, \quad \alpha_{1}, \alpha_{1}^{\prime} \in \operatorname{Spin}_{1}(10), \alpha_{2} \in \operatorname{Spin}_{2}(10) .
$$

Proof. For a given element $\alpha \in E_{6}$, set $\alpha E_{1}=\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, x_{2}, x_{3}\right)=X_{0} \in$ \mathfrak{J}^{C}. By Lemma 6.(1), we can take $\alpha_{1} \in \operatorname{Spin} i_{1}(10)$ such that

$$
\alpha_{1} X_{0}=\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}, \xi_{3}^{\prime} ; 0, x_{2}^{\prime}, x_{3}^{\prime}\right)=X_{1}, \quad \xi_{1}^{\prime}=\xi_{1}
$$

because the subspaces $\left\{\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, 0,0\right) \in \mathfrak{J}^{C}\right\}$ and $\left\{\left(0,0,0 ; 0, x_{2}, x_{3}\right) \in \mathfrak{J}^{C}\right\}$ are invariant under the action of the elements of $\operatorname{Spin}_{1}(10)$, respectively. From the condition $X_{1} \times X_{1}=0$, we have $\xi_{2}^{\prime} \xi_{3}^{\prime}=0$. As a result, the argument is divided into the following three cases:
(I) Case $\xi_{2}^{\prime}=0, \xi_{3}^{\prime} \neq 0$. From $X_{1} \times X_{1}=0$, we have $\xi_{3}^{\prime} x_{3}^{\prime}=0$, hence $x_{3}^{\prime}=0$. Therefore X_{1} is of the form

$$
X_{1}=\left(\xi_{1}^{\prime}, 0, \xi_{3}^{\prime} ; 0, x_{2}^{\prime}, 0\right), \quad \xi_{1}^{\prime}=\xi_{1}
$$

T. Miyasaka, O. Shukuzawa and I. Yokota

Thus, for $X_{1} \in \mathfrak{J}^{C}$, we can take $\alpha_{2} \in \operatorname{Spin}_{2}(10)$ such that

$$
\alpha_{2} X_{1}=\left(\xi_{1}^{\prime \prime}, 0, \xi_{3}^{\prime \prime} ; 0,0,0\right)=X_{2},
$$

in the same way as in Lemma 6.(1). Then, from $X_{2} \times X_{2}=0$, we have $\xi_{1}^{\prime \prime} \xi_{3}^{\prime \prime}=0$. Combined with $\left\langle X_{2}, X_{2}\right\rangle=1$, we have also that

$$
X_{2}=\left(\xi_{1}^{\prime \prime}, 0,0 ; 0,0,0\right),\left(\tau \xi_{1}^{\prime \prime}\right) \xi_{1}^{\prime \prime}=1 \quad \text { or } \quad X_{2}=\left(0,0, \xi_{3}^{\prime \prime} ; 0,0,0\right),\left(\tau \xi_{3}^{\prime \prime}\right) \xi_{3}^{\prime \prime}=1
$$

Thus we obtain that there exist some elements $\varepsilon_{2}(t) \in \operatorname{Spin}_{2}(10)$ and $\alpha_{2}(\pi / 2) \in$ $\operatorname{Spin}_{2}(9)$ such that

$$
\varepsilon_{2}(t) X_{2}=E_{1} \quad \text { or } \quad \varepsilon_{2}(t) \alpha_{2}(\pi / 2) X_{2}=E_{1}
$$

where $\varepsilon_{2}(t) \in \operatorname{Spin}_{2}(10)$ is defined by

$$
\varepsilon_{2}(t)\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, x_{2}, x_{3}\right)=\left(e^{i t} \xi_{1}, \xi_{2}, e^{-i t} \xi_{3} ; e^{-i t / 2} x_{1}, x_{2}, e^{i t / 2} x_{3}\right), \quad t \in \boldsymbol{R}
$$

(cf. [2] Lemma 10.(1)).
(II) Case $\xi_{2}^{\prime} \neq 0, \xi_{3}^{\prime}=0$. From $X_{1} \times X_{1}=0$, we have $\xi_{2}^{\prime} x_{2}^{\prime}=0$, hence $x_{2}^{\prime}=$ 0 . Therefore X_{1} is of the form

$$
X_{1}=\left(\xi_{1}^{\prime}, \xi_{2}^{\prime}, 0 ; 0,0, x_{3}^{\prime}\right), \quad \xi_{1}^{\prime}=\xi_{1}
$$

Thus, by considering $\alpha_{1}(\pi / 2) X_{1}$, where $\alpha_{1}(\pi / 2) \in \operatorname{Spin}_{1}(9)$, this can be reduced to Case (I).
(III) Case $\xi_{2}^{\prime}=\xi_{3}^{\prime}=0$. By Lemma 6.(2), we can take $\alpha_{1}^{\prime} \in \operatorname{Spin}_{1}(9)$ such that

$$
\alpha_{1}^{\prime} X_{1}=\left(\xi_{1}^{\prime \prime}, 0,0 ; 0, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right)=X_{2}, \quad \xi_{1}^{\prime \prime}=\xi_{1}, x_{2}^{\prime \prime} \in \mathfrak{C}^{C}, x_{3}^{\prime \prime} \in \mathfrak{C} .
$$

Then, from $X_{2} \times X_{2}=0$ we have $x_{3}^{\prime \prime} \overline{x_{3}^{\prime \prime}}=0$, hence $x_{3}^{\prime \prime}=0$. Thus, for $X_{2}=$ $\left(\xi_{1}^{\prime \prime}, 0,0 ; 0, x_{2}^{\prime \prime}, 0\right) \in \mathfrak{I}^{C}$, we can take $\alpha_{2} \in \operatorname{Spin}_{2}(10)$ such that

$$
\alpha_{2} X_{2}=\left(\xi_{1}^{(3)}, 0, \xi_{3}^{(3)} ; 0,0,0\right)=X_{3}
$$

because of the result for $\operatorname{Spin}_{2}(10)$ similar to Lemma 6.(1) for $\operatorname{Spin}_{1}(10)$. Hence this can be reduced to Case (I), because X_{3} is nothing but X_{2} in Case (I).

We have just completed the proof of Theorem 7.

6. $\operatorname{Spin}(12)$-generators of the group E_{7}

The simply connected compact Lie group E_{7} is given by

$$
E_{7}=\left\{\alpha \in \operatorname{Iso}_{C}\left(\mathfrak{P}^{C}\right) \mid \alpha(P \times Q) \alpha^{-1}=\alpha P \times \alpha Q,\langle\alpha P, \alpha Q\rangle=\langle P, Q\rangle\right\} .
$$

The group E_{7} has subgroups

$$
\operatorname{Spin}_{k}(12)=\left\{\alpha \in E_{7} \mid \alpha \kappa_{k}=\kappa_{k} \alpha, \alpha \mu_{k}=\mu_{k} \alpha\right\} \quad(k=1,2)
$$

where κ_{k} and μ_{k} are defined by

$$
\begin{aligned}
& \kappa_{k}(X, Y, \xi, \eta)=\left(-\left(E_{k}, X\right) E_{k}+4 E_{k} \times\left(E_{k} \times X\right),\left(E_{k}, Y\right) E_{k}-4 E_{k} \times\left(E_{k} \times Y\right),-\xi, \eta\right), \\
& \mu_{k}(X, Y, \xi, \eta)=\left(2 E_{k} \times Y+\eta E_{k}, 2 E_{k} \times X+\xi E_{k},\left(E_{k}, Y\right),\left(E_{k}, X\right)\right)
\end{aligned}
$$

respectively, e.g., when $k=1$, for $P=\left(\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, x_{2}, x_{3}\right),\left(\eta_{1}, \eta_{2}, \eta_{3} ; y_{1}, y_{2}, y_{3}\right)\right.$, $\xi, \eta) \in \mathfrak{B}^{C}$,

$$
\begin{aligned}
& \kappa_{1} P=\left(\left(-\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, 0,0\right),\left(\eta_{1},-\eta_{2},-\eta_{3} ;-y_{1}, 0,0\right),-\xi, \eta\right), \\
& \mu_{1} P=\left(\left(\eta, \eta_{3}, \eta_{2} ;-y_{1}, 0,0\right),\left(\xi, \xi_{3}, \xi_{2} ;-x_{1}, 0,0\right), \eta_{1}, \xi_{1}\right) .
\end{aligned}
$$

Then $\operatorname{Spin}_{k}(12)$ is isomorphic to the usual spinor group $\operatorname{Spin}(12)$ ([2], [4]).

Lemma 8. For an element $P=\left(\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, x_{2}, x_{3}\right),\left(\eta_{1}, \eta_{2}, \eta_{3} ; y_{1}, y_{2}, y_{3}\right)\right.$, $\xi, \eta) \in \mathfrak{B}^{C}$ satisfying $P \times P=0$, it holds the following
(1) $\xi_{1} \eta_{1}+\xi_{2} \eta_{2}+\xi_{3} \eta_{3}+2\left(x_{1}, y_{1}\right)+2\left(x_{2}, y_{2}\right)+2\left(x_{3}, y_{3}\right)-3 \xi \eta=0$,
(2) $\xi_{2} \xi_{3}-\eta_{1} \eta-x_{1} \overline{x_{1}}=0$,
(3) $\xi_{3} \xi_{1}-\eta_{2} \eta-x_{2} \overline{x_{2}}=0$,
(4) $\xi_{1} \xi_{2}-\eta_{3} \eta-x_{3} \overline{x_{3}}=0$,
(5) $\xi_{1} x_{1}+\eta y_{1}-\overline{x_{2} x_{3}}=0$,
(6) $\xi_{2} x_{2}+\eta y_{2}-\overline{x_{3} x_{1}}=0$,
(7) $\xi_{3} x_{3}+\eta y_{3}-\overline{x_{1} x_{2}}=0$,
(8) $\eta_{2} \eta_{3}-\xi_{1} \xi-y_{1} \overline{y_{1}}=0$,
(9) $\eta_{3} \eta_{1}-\xi_{2} \xi-y_{2} \overline{y_{2}}=0$,
(10) $\eta_{1} \eta_{2}-\xi_{3} \xi-y_{3} \overline{y_{3}}=0$,
(11) $\eta_{1} y_{1}+\xi x_{1}-\overline{y_{2} y_{3}}=0$,
(12) $\eta_{2} y_{2}+\xi x_{2}-\overline{y_{3} y_{1}}=0$,
(13) $\eta_{3} y_{3}+\xi x_{3}-\overline{y_{1} y_{2}}=0$,
(14) $\eta_{3} x_{1}+\xi_{2} y_{1}+\overline{y_{2} x_{3}}=0$,
(15) $\eta_{3} x_{2}+\xi_{1} y_{2}+\overline{x_{3} y_{1}}=0$,
(16) $\eta_{2} x_{3}+\xi_{1} y_{3}+\overline{y_{1} x_{2}}=0$,
(17) $\eta_{1} x_{3}+\xi_{2} y_{3}+\overline{x_{1} y_{2}}=0$.

Proof. These are immediate from the straightforward computation of $P \times P=0$. (Note that those are not all of the relations followed by $P \times P=0$.)

Lemma 9. (1) For any element $P \in \mathfrak{B}^{C}$, there exists some element $\alpha_{1} \in$ $\operatorname{Spin}_{1}(12)$ such that

$$
\alpha_{1} P=\left(\left(\xi_{1}, 0,0 ; 0, x_{2}, x_{3}\right),\left(\eta_{1}, \eta_{2}, \eta_{3} ; 0, y_{2}, y_{3}\right), \xi, \eta\right)
$$

In particular, if an element $P=\left(\left(0, \xi_{2}, \xi_{3} ; x_{1}, 0,0\right), \quad\left(\eta_{1}, 0,0 ; 0,0,0\right), 0, \eta\right) \in \mathfrak{P}^{C}$ satisfies the conditions $P \times P=0$ and $\langle P, P\rangle=1$, then there exists some element
$\alpha_{1} \in \operatorname{Spin}_{1}(12)$ such that

$$
\alpha_{1} P=1, \quad \text { where }!=(0,0,0,1) \in \mathfrak{B}^{C} .
$$

(2) For any element $P \in \mathfrak{B}^{C}$, there exists some element $\alpha_{2} \in \operatorname{Spin}_{2}(12)$ such that

$$
\alpha_{2} P=\left(\left(0, \xi_{2}, 0 ; x_{1}, 0, x_{3}\right),\left(\eta_{1}, \eta_{2}, \eta_{3} ; y_{1}, 0, y_{3}\right), \xi, \eta\right)
$$

In particular, if an element $P=\left(\left(\xi_{1}, 0, \xi_{3} ; 0, x_{2}, 0\right),\left(0, \eta_{2}, 0 ; 0,0,0\right), 0, \eta\right) \in \mathfrak{P}^{C}$ satisfies the conditions $P \times P=0$ and $\langle P, P\rangle=1$, then there exists some element $\alpha_{2} \in \operatorname{Spin}_{2}(12)$ such that

$$
\alpha_{2} P=1 .
$$

Proof. (1) The first half is the very [2] Proposition 4.(2). We shall now prove the latter half. For an element $P=\left(\left(0, \xi_{2}, \xi_{3} ; x_{1}, 0,0\right),\left(\eta_{1}, 0,0 ; 0,0,0\right), 0, \eta\right) \in$ \mathfrak{B}^{C}, act $\alpha_{1} \in \operatorname{Spin}_{1}(12)$ that is given in the first half which is composed of the elements of $\operatorname{Spin}_{1}(12)$ defined in Lemmas 2, 3 and 4, on P. Then we get

$$
\alpha_{1} P=\left((0,0,0 ; 0,0,0),\left(\eta_{1}^{\prime}, 0,0 ; 0,0,0\right), 0, \eta^{\prime}\right)=P_{1}
$$

because the subspaces $\left\langle\mathfrak{B}^{C}\right\rangle_{1},\left\langle\mathfrak{B}^{C}\right\rangle_{1}^{\prime}$ and $\left\langle\mathfrak{B}^{C}\right\rangle_{1}^{\prime \prime}$ of \mathfrak{B}^{C} are invariant under the action of the elements of $\operatorname{Spin}_{1}(12)$ defined in Lemmas 2, 3 and 4, respectively, where

$$
\begin{aligned}
\left\langle\mathfrak{B}^{C}\right\rangle_{1} & =\left\{\left(\left(\xi_{1}, 0,0 ; 0,0,0\right),\left(0, \eta_{2}, \eta_{3} ; y_{1}, 0,0\right), \xi, 0\right) \in \mathfrak{B}^{C}\right\}, \\
\left\langle\mathfrak{B}^{C}\right\rangle_{1}^{\prime} & =\left\{\left(\left(0, \xi_{2}, \xi_{3} ; x_{1}, 0,0\right),\left(\eta_{1}, 0,0 ; 0,0,0\right), 0, \eta\right) \in \mathfrak{B}^{C}\right\}, \\
\left\langle\mathfrak{B}^{C}\right\rangle_{1}^{\prime \prime} & =\left\{\left(\left(0,0,0 ; 0, x_{2}, x_{3}\right),\left(0,0,0 ; 0, y_{2}, y_{3}\right), 0,0\right) \in \mathfrak{B}^{C}\right\} .
\end{aligned}
$$

From $P \times P=0$, we have $\eta_{1}^{\prime} \eta^{\prime}=0$ by Lemma 8.(2). As a result, the argument is devided into the following three cases:
(I) Case $\eta_{1}^{\prime}=0, \eta^{\prime} \neq 0 . P_{1}$ is of the form $P_{1}=((0,0,0 ; 0,0,0),(0,0,0 ; 0,0,0)$, $\left.0, \eta^{\prime}\right)$. Now, for $\theta \in C$ satifying $(\tau \theta) \theta=1$, define the mapping $\epsilon_{1}(\theta): \mathfrak{B}^{C} \rightarrow \mathfrak{B}^{C}$ as follows.

$$
\begin{aligned}
& \epsilon_{1}(\theta)\left(\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, x_{2}, x_{3}\right),\left(\eta_{1}, \eta_{2}, \eta_{3} ; y_{1}, y_{2}, y_{3}\right), \xi, \eta\right) \\
& \quad=\left(\left(\theta^{-2} \xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, \theta^{-1} x_{2}, \theta^{-1} x_{3}\right),\left(\theta^{2} \eta_{1}, \eta_{2}, \eta_{3} ; y_{1}, \theta y_{2}, \theta y_{3}\right), \theta^{2} \xi, \theta^{-2} \eta\right)
\end{aligned}
$$

Then $\epsilon_{1}(\theta) \in \operatorname{Spin}_{1}(12)$. Therefore, noting that $\left(\tau \eta^{\prime}\right) \eta^{\prime}=\left\langle P_{1}, P_{1}\right\rangle=1$, choose $\theta \in C$ such that $\theta^{2}=\eta^{\prime}$ and set $\epsilon_{1}(\theta)$. Then we get $\epsilon_{1}(\theta) P_{1}=1$.
(II) Case $\eta_{1}^{\prime} \neq 0, \eta^{\prime}=0$. By considering $\gamma_{1}(\pi / 2) P_{1}$, where $\gamma_{1}(\pi / 2) \in$ $\operatorname{Spin}_{1}(12)$ of Lemma 4.(1), this can be reduced to Case (II).
(III) Case $\eta_{1}^{\prime}=\eta^{\prime}=0$. This does not occur, because $\left\langle P_{1}, P_{1}\right\rangle=1$.
(2) It is similarly verified by using $\operatorname{Spin}_{2}(12)$ instead of $\operatorname{Spin}_{1}(12)$ in the proof of (1).

Theorem 10. Any element $\alpha \in E_{7}$ can be represented as

$$
\alpha=\alpha_{1} \alpha_{2} \alpha_{1}^{\prime} \alpha_{2}^{\prime} \alpha_{1}^{\prime \prime}, \quad \alpha_{1}, \alpha_{1}^{\prime}, \alpha_{1}^{\prime \prime} \in \operatorname{Spin}_{1}(12), \alpha_{2}, \alpha_{2}^{\prime} \in \operatorname{Spin}_{2}(12) .
$$

Proof. For a given element $\alpha \in E_{7}$, it suffices to show that there exist $\alpha_{1}, \alpha_{1}^{\prime} \in \operatorname{Spin}_{1}(12)$ and $\alpha_{2} \in \operatorname{Spin}_{2}(12)$ such that $\left.\alpha_{1}^{\prime} \alpha_{2} \alpha_{1} \alpha\right]=1$. In fact, since an element $\alpha \in E_{7}$ belongs to $E_{6}\left(\subset E_{7}\right)$ if and only if α fixes an element 1 , i.e., $\alpha 1=1$ ([4]), it follows $\alpha_{1}^{\prime} \alpha_{2} \alpha_{1} \alpha \in E_{6}$, which implies that $\alpha \in E_{7}$ can be represented as a required form by Theorem 7. Now, set

$$
\alpha!=\left(\left(\xi_{1}, \xi_{2}, \xi_{3} ; x_{1}, x_{2}, x_{3}\right),\left(\eta_{1}, \eta_{2}, \eta_{3} ; y_{1}, y_{2}, y_{3}\right), \xi, \eta\right)=P_{0} \in \mathfrak{B}^{C} .
$$

Then, by Lemma 9.(1), we can take $\alpha_{1} \in \operatorname{Spin}_{1}(12)$ such that

$$
\alpha_{1} P_{0}=\left(\left(\xi_{1}^{\prime}, 0,0 ; 0, x_{2}^{\prime}, x_{3}^{\prime}\right),\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}, \eta_{3}^{\prime} ; 0, y_{2}^{\prime}, y_{3}^{\prime}\right), \xi^{\prime}, \eta^{\prime}\right)=P_{1}
$$

From $P_{1} \times P_{1}=0$, we have $\eta_{1}^{\prime} \eta^{\prime}=0$ by Lemma 8.(2). As a result, the argument is devided into the following three cases:
(I) Case $\eta_{1}^{\prime}=0, \eta^{\prime} \neq 0$. By Lemma 8.(6) and (7), we get $y_{2}^{\prime}=y_{3}^{\prime}=0$. Furthermore we get $\xi^{\prime}=0$ by Lemma 8.(1). Therefore P_{1} is of the form

$$
P_{1}=\left(\left(\xi_{1}^{\prime}, 0,0 ; 0, x_{2}^{\prime}, x_{3}^{\prime}\right),\left(0, \eta_{2}^{\prime}, \eta_{3}^{\prime} ; 0,0,0\right), 0, \eta^{\prime}\right) .
$$

Then, by Lemma 8.(8), we have $\eta_{2}^{\prime} \eta_{3}^{\prime}=0$. Hence there are three cases to be considered.
(I.A) Case $\eta_{2}^{\prime}=0, \eta_{3}^{\prime} \neq 0$. By Lemma 8.(15), we get $x_{2}^{\prime}=0$, that is, P_{1} is of the form

$$
P_{1}=\left(\left(\xi_{1}^{\prime}, 0,0 ; 0,0, x_{3}^{\prime}\right),\left(0,0, \eta_{3}^{\prime} ; 0,0,0\right), 0, \eta^{\prime}\right) .
$$

Then, applying Lemma 9 .(2) to $\alpha_{1}(\pi / 2) P_{1}$, where $\alpha_{1}(\pi / 2) \in \operatorname{Spin}_{1}(9)$, we can obtain that there exists some element $\alpha_{2} \in \operatorname{Spin}_{2}(12)$ such that $\alpha_{2} \alpha_{1}(\pi / 2) P_{1}=1$.
(I.B) Case $\eta_{2}^{\prime} \neq 0, \eta_{3}^{\prime}=0$. By Lemma 8.(16), we get $x_{3}^{\prime}=0$, that is, P_{1} is of the form

$$
P_{1}=\left(\left(\xi_{1}^{\prime}, 0,0 ; 0, x_{2}^{\prime}, 0\right),\left(0, \eta_{2}^{\prime}, 0 ; 0,0,0\right), 0, \eta^{\prime}\right)
$$

Thus we can easily obtain the required result by Lemma 9.(2).
(I.C) Case $\eta_{2}^{\prime}=\eta_{3}^{\prime}=0 . P_{1}$ is of the form

$$
P_{1}=\left(\left(\xi_{1}^{\prime}, 0,0 ; 0, x_{2}^{\prime}, x_{3}^{\prime}\right),(0,0,0 ; 0,0,0), 0, \eta^{\prime}\right)
$$

Here we distinguish the following cases:
(1.C.1) When $x_{2}^{\prime} \neq 0, x_{3}^{\prime} \neq 0$. By Lemma 6.(2), we can take $\alpha_{1}^{\prime} \in \operatorname{Spin}_{1}(9)$ such that

$$
\begin{aligned}
\alpha_{1}^{\prime} P_{1}=\left(\left(\xi_{1}^{\prime \prime}, 0,0 ; 0, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right),(0,0,0 ; 0,0,0), 0, \eta^{\prime \prime}\right), \xi_{1}^{\prime \prime} & =\xi_{1}^{\prime}, \eta^{\prime \prime}=\eta^{\prime} \in C, \\
x_{2}^{\prime \prime} & \in \mathbb{C}^{C}, x_{3}^{\prime \prime} \in \mathbb{C} .
\end{aligned}
$$

Then, by Lemma 8.(4) we have $x_{3}^{\prime \prime} \overline{x_{3}^{\prime \prime}}=0$, hence $x_{3}^{\prime \prime}=0$. Thus we easily obtain the required result by Lemma 9.(2).
(I.C.2) When $x_{2}^{\prime}=0, x_{3}^{\prime} \neq 0$. Considering $\alpha_{1}(\pi / 2) P_{1}$, where $\alpha_{1}(\pi / 2) \in$ $\operatorname{Spin}_{1}(9)$, we can easily obtain the required result by Lemma 9.(2).
(I.C.3) When $x_{2}^{\prime} \neq 0, x_{3}^{\prime}=0$. We can easily obtain the required result by Lemma 9.(2).
(I.C.4) When $x_{2}^{\prime}=x_{3}^{\prime}=0$. We can easily obtain the required result by Lemma 9.(2).
(II) Case $\eta_{1}^{\prime} \neq 0, \quad \eta^{\prime}=0 . \quad$ By considering $\delta_{1}(\pi / 2) P_{1}$, where $\delta_{1}(\pi / 2) \in$ $\operatorname{Spin}_{1}(12)$ of Lemma 4.(3), this can be reduced to Case (I).
(III) Case $\eta_{1}^{\prime}=\eta^{\prime}=0 . P_{1}$ is of the form

$$
P_{1}=\left(\left(\xi_{1}^{\prime}, 0,0 ; 0, x_{2}^{\prime}, x_{3}^{\prime}\right),\left(0, \eta_{2}^{\prime}, \eta_{3}^{\prime} ; 0, y_{2}^{\prime}, y_{3}^{\prime}\right), \xi^{\prime}, 0\right)
$$

Now, as is similar to Lemma 9.(1), we obtain that, for any element $P \in \mathfrak{P}^{C}$, there exists some element $\alpha_{1} \in \operatorname{Spin}_{1}(12)$ such that

$$
\alpha_{1} P=\left(\left(\xi_{1}, \xi_{2}, \xi_{3} ; 0, x_{2}, x_{3}\right),\left(\eta_{1}, 0,0 ; 0, y_{2}, y_{3}\right), \xi, \eta\right)
$$

Note that the invariant subspaces $\left\langle\mathfrak{B}^{C}\right\rangle_{1},\left\langle\mathfrak{B}^{C}\right\rangle_{1}^{\prime}$ and $\left\langle\mathfrak{B}^{C}\right\rangle_{1}^{\prime \prime}$ of \mathfrak{B}^{C} under the action of the elements of $\operatorname{Spin}_{1}(12)$ defined in Lemmas 2, 3 and 4. Then, applying the result above to the present Case (III), we can take $\alpha_{1}^{\prime} \in \operatorname{Spin}_{1}(12)$ such that

$$
\alpha_{1}^{\prime} P_{1}=\left(\left(\xi_{1}^{\prime \prime}, 0,0 ; 0, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right),\left(0,0,0 ; 0, y_{2}^{\prime \prime}, y_{3}^{\prime \prime}\right), \xi^{\prime \prime}, 0\right)=P_{2}
$$

Therefore we have $\xi_{1}^{\prime \prime} \xi^{\prime \prime}=0$ by Lemma 8.(8). Hence there are three cases to be considered.
(IIII.A) Case $\xi_{1}^{\prime \prime}=0, \xi^{\prime \prime} \neq 0$. By Lemma 8.(12) and (13), we get $x_{2}^{\prime \prime}=x_{3}^{\prime \prime}=0$. Then P_{2} is of the form

$$
P_{2}=\left((0,0,0 ; 0,0,0),\left(0,0,0 ; 0, y_{2}^{\prime \prime}, y_{3}^{\prime \prime}\right), \xi^{\prime \prime}, 0\right)
$$

Thus, by considering $\gamma_{1}(\pi / 2) P_{2}$, where $\gamma_{1}(\pi / 2) \in \operatorname{Spin}_{1}(12)$ of Lemma 4.(1), this can be reduced to Case (I.C).
(III.B) Case $\xi_{1}^{\prime \prime} \neq 0, \xi^{\prime \prime}=0$. By Lemma 8.(15) and (16), we get $y_{2}^{\prime \prime}=y_{3}^{\prime \prime}=0$. Therefore this is reduced to Case (I.C).
(III.C) Case $\xi_{1}^{\prime \prime}=\xi^{\prime \prime}=0 . P_{2}$ is of the form

$$
P_{2}=\left(\left(0,0,0 ; 0, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right),\left(0,0,0 ; 0, y_{2}^{\prime \prime}, y_{3}^{\prime \prime}\right), 0,0\right)
$$

Here we distinguish the following cases:
(IIII.C.1) When $x_{2}^{\prime \prime} \neq 0$. By Lemma 9.(2), there exists some element $\alpha_{2} \in$ $\operatorname{Spin}_{2}(12)$ such that

$$
\alpha_{2} P_{2}=\left(\left(0, \xi_{2}^{(3)}, 0 ; x_{1}^{(3)}, 0, x_{3}^{(3)}\right),\left(\eta_{1}^{(3)}, \eta_{2}^{(3)}, \eta_{3}^{(3)} ; y_{1}^{(3)}, 0, y_{3}^{(3)}\right), \xi^{(3)}, \eta^{(3)}\right)=P_{3}
$$

Here, by Lemma 8.(3), we have $\eta_{2}^{(3)} \eta^{(3)}=0$. Hence there are three cases to be considered.
(III.C.1.1) Case $\eta_{2}^{(3)}=0, \eta^{(3)} \neq 0$. By Lemma 8.(5) and (7), we get $y_{1}^{(3)}=y_{3}^{(3)}=0$. Furthermore, we get $\xi^{(3)}=0$ by Lemma 8.(1). Then P_{3} is of the form

$$
P_{3}=\left(\left(0, \xi_{2}^{(3)}, 0 ; x_{1}^{(3)}, 0, x_{3}^{(3)}\right),\left(\eta_{1}^{(3)}, 0, \eta_{3}^{(3)} ; 0,0,0\right), 0, \eta^{(3)}\right)
$$

Here, by Lemma 8.(9), we have $\eta_{3}^{(3)} \eta_{1}^{(3)}=0$. Hence there are three cases to be considered.
(III.C.1.1.1) Case $\eta_{1}^{(3)}=0, \eta_{3}^{(3)} \neq 0$. By Lemma 8.(14), we get $x_{1}^{(3)}=0$. Then, considering $\alpha_{2}(\pi / 2) P_{3}$, where $\alpha_{2}(\pi / 2) \in \operatorname{Spin}_{2}(9)$, we can easily obtain the required result by Lemma 9.(1).
(III.C.1.1.2) Case $\eta_{1}^{(3)} \neq 0, \eta_{3}^{(3)}=0$. By Lemma 8.(17), we get $x_{3}^{(3)}=0$. Then we can easily obtain the required result by Lemma 9.(1).
(III.C.1.1.3) Case $\eta_{1}^{(3)}=\eta_{3}^{(3)}=0 . P_{3}$ is of the form

$$
P_{3}=\left(\left(0, \xi_{2}^{(3)}, 0 ; x_{1}^{(3)}, 0, x_{3}^{(3)}\right),(0,0,0 ; 0,0,0), 0, \eta^{(3)}\right)
$$

Here we distinguish the following cases:
(III.C.1.1.3.(i)) When $x_{1}^{(3)} \neq 0, x_{3}^{(3)} \neq 0$. As is similar to Lemma 6.(2), we obtain that there exists some element $\alpha_{2}^{\prime} \in \operatorname{Spin}_{2}(9)$ such that
$\alpha_{2}^{\prime} P_{3}=\left(\left(0, \xi_{2}^{(4)}, 0 ; x_{1}^{(4)}, 0, x_{3}^{(4)}\right),(0,0,0 ; 0,0,0), 0, \eta^{(4)}\right)=P_{4}, \begin{aligned} & \xi_{2}^{(4)}=\xi_{2}^{(3)}, \eta^{(4)}=\eta^{(3)} \in C, \\ & x_{1}^{(4)} \in \mathbb{C}, x_{3}^{(4)} \in \mathbb{C}^{C} .\end{aligned}$
Then, by Lemma 8.(2), we have $x_{1}^{(4)} \overline{x_{1}^{(4)}}=0$, hence $x_{1}^{(4)}=0$. Thus, considering $\alpha_{2}(\pi / 2) P_{4}$, where $\alpha_{2}(\pi / 2) \in \operatorname{Sin}_{2}(9)$, we can easily obtain the required result by Lemma 9.(1).
(III.C.1.1.3.(ii)) When $x_{1}^{(3)}=0, x_{3}^{(3)} \neq 0$. Considering $\alpha_{2}(\pi / 2) P_{3}$, where $\alpha_{2}(\pi / 2) \in \operatorname{Spin}_{2}(9)$, we can easily obtain the required result by Lemma 9.(1).
(IIII.C.1.1.3.(iii)) When $x_{1}^{(3)} \neq 0, x_{3}^{(3)}=0$. We easily obtain the required result by Lemma 9.(1).
(III.C.1.1.3.(iv)) When $x_{1}^{(3)}=x_{3}^{(3)}=0$. We easily obtain the required result by Lemma 9.(1).
(III.C.1.2) Case $\eta_{2}^{(3)} \neq 0, \eta^{(3)}=0$. By considering $\gamma_{2}(\pi / 2) P_{3}$, where $\gamma_{2}(\pi / 2) \in \operatorname{Spin}_{2}(12)$ of Lemma 4.(2), this can be reduced to Case (III.C.1.1).
(III.C.1.3) Case $\eta_{2}^{(3)}=\eta^{(3)}=0$. This does not occur. In fact, note that the subspace $\left\langle\mathfrak{B}^{C}\right\rangle_{2}$ of \mathfrak{B}^{C} is invariant under the action of the elements of $\operatorname{Spin}_{2}(12)$ defined in Lemmas 2, 3 and 4, where $\left\langle\mathfrak{B}^{C}\right\rangle_{2}=\left\{\left(\left(\xi_{1}, 0, \xi_{2}, ; 0, x_{2}, 0\right)\right.\right.$, $\left.\left.\left(0, \eta_{2}, 0 ; 0,0,0\right), 0, \eta\right) \in \mathfrak{B}^{C}\right\}$. Then, for $P_{3}=\alpha_{2} P_{2}$, that is,

$$
\begin{aligned}
& \left(\left(0, \xi_{2}^{(3)}, 0 ; x_{1}^{(3)}, 0, x_{3}^{(3)}\right),\left(\eta_{1}^{(3)}, 0, \eta_{3}^{(3)} ; y_{1}^{(3)}, 0, y_{3}^{(3)}\right), \xi^{(3)}, 0\right) \\
& \quad=\alpha_{2}\left(\left(0,0,0 ; 0, x_{2}^{\prime \prime}, x_{3}^{\prime \prime}\right),\left(0,0,0 ; 0, y_{2}^{\prime \prime}, y_{3}^{\prime \prime}\right), 0,0\right)
\end{aligned}
$$

where $\alpha_{2} \in \operatorname{Spin}_{2}(12)$, the condition $\eta_{2}^{(3)}=\eta^{(3)}=0$ contradicts $x_{2}^{\prime \prime} \neq 0$.
(IIII.C.2) When $x_{2}^{\prime \prime}=0, x_{3}^{\prime \prime} \neq 0$. By considering $\alpha_{1}(\pi / 2) P_{2}$, where $\alpha_{1}(\pi / 2) \in$ $\operatorname{Spin}_{1}(9)$, this can be reduced to Case (IIII.C.1).
(III.C.3) When $x_{2}^{\prime \prime}=x_{3}^{\prime \prime}=0, \quad y_{3}^{\prime \prime} \neq 0$. By considering $\gamma_{1}(\pi / 2) P_{2}$, where $\gamma_{1}(\pi / 2) \in \operatorname{Spin}_{1}(12)$, this can be reduced to Case (III.C.1).
(III.C.4) When $x_{2}^{\prime \prime}=x_{3}^{\prime \prime}=y_{3}^{\prime \prime}=0, y_{2}^{\prime \prime} \neq 0$. By considering $\alpha_{1}(\pi / 2) P_{2}$, where $\alpha_{1}(\pi / 2) \in \operatorname{Spin}_{1}(9)$, this can be reduced to Case (III.C.3).
(IIII.C.5) When $x_{2}^{\prime \prime}=x_{3}^{\prime \prime}=y_{2}^{\prime \prime}=y_{3}^{\prime \prime}=0$. It is obvious that this does not occur.

We have just completed the proof of Theorem 10.
Conjecture. We know that the simply connected compact exceptional Lie group E_{8} has subgroups $S s_{k}(16)=\left(E_{8}\right)^{\sigma_{k}}\left(\right.$ where $\left.\sigma_{k}=\exp \pi \kappa_{k}\right), k=1,2,3$ (which is isomorphic to $\operatorname{Spin}(16) / Z_{2}$ not $\left.S O(16)\right)$. Now the authors do not know if $S s_{1}(16)$ and $S s_{2}(16)$ generate the group E_{8} ?

References

[1] C. Chevalley, Theorey of Lie groups, Princeton Univ. Press, New Jersey, 1946.
[2] T. Miyasaka, O. Yasukura and I. Yokota, Diagonalization of an element P of \mathfrak{P}^{C} by the compact Lie group E_{7}, Tsukuba J. Math., 22 (1998), 687-703.
[3] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part I, $G=G_{2}, F_{4}$ and E_{6}, Tsukuba J. Math., 14 (1990), 185-223.
[4] I. Yokota, Realization of involutive automorphisms σ and G^{σ} of exceptional linear Lie groups G, Part II, $G=E_{7}$, Tsukuba J. Math., 14 (1990), 379-404.

Takashi Miyasaka Misuzugaoka High School Matsumoto 390-8602
Japan
Osamu Shukuzawa
ATL Sytems, Inc.
Kofu 400-0858
Japan
Ichiro Yokota
339-5, Okada-Matsuoka
Matsumoto 390-0312
Japan

