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Introduction

We know that any element A of the group $0(3) can be represented as

A=AlA1A[, AUA[ sSOl{2),A2eSO2(2)

where SOk(2) = {A e SO(3) ＼Aek = ek} (k = 1,2) ([1]).In the present paper, we

shall show firstlythat the similar results hold for the groups SU(3) and Sp(3)

(Theorem 1). Secondly, we shall show that any element a of the simply connected

compact Lie group F4 (resp. Ef,) can be represented as

ai,<x{e Spini(9), a2 e Spin2(9)
a = aia2a,,

(resp. ai,a{ e Spin＼(＼O), ct2e Spiri2(lO))

where Spint{9) ={ae F4, |ocEk = Ek) (resp. SpinalR) ―{gce E^＼gcE^ = ^j

(Theorem 5 (resp. Theorem 7))).Lastly, we shall show that any element a of the

simply connected compact Lie group E-j can be represented as

a = aio^aja^aj' a＼,ct[,<x" e Spin＼(＼2),0.2^2 e Spiri2{12)

where Spirik{＼2) = {a e Eq ＼cuKk = ^a, <xfik― juka} (Theorem 10)

In this paper we follow the notation of [2].

2. Spinor-generators of the groups SO(3), SU(3) and Sp(3)

Let H be the quaternion fieldwith basis 1,i,j and k over R. Then we can

express each element a = qq + a＼i+ #2/'+ a^k e H in the following polar form

3

a = r(cos# + wsin#), u2 = ―＼(ueH), r = ＼a＼= * ^a|,0 e /?.

＼A:=0
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Hereafter, we brieflydenote by reue an element r(cos 6 + u sin 0) after the model

of complex numbers.

The classicalgroups SO(n), SU(n) and Sp(n) are respectively defined by

SO(n) = {A M{n,R)＼tAA = E,detA = 1},

SU(n) = {A e M{n,C)＼A*A = E,detA = 1},

Sp{n) = {Ae M(n, H)＼A*A = E}

where we follow the usual convention for matrices: M(n,K) (= the set of square

matrices of order n with coefficientsin K = R,C or H), 'A, A*(= 'A), E (= the

unit matrix) and det (= the determinant).

Theorem 1. (1) Any element A e 5*0(3) can be represented as

A=AlA2A[, Al,A[eSOl{2),A2eSO2{2)

where SOk{2) = {A e S0{3)＼Aek = ek} ^ Spin{2) (k = 1,2), ex = '(1,0,0), e2 =

'(0,1,0).

(2) Any element A e 5*17(3) can be represented as

A = A＼A2A[, AuA[eSU1{2),A2eSU2(2)

where SUk{2) = {A e 5*7(3) |^^ = ^} ^ 5/7/≪(3)(fc =1,2).

(3) Any element A e 5/?(3) can be represented as

A = A1A2A[, AuA[eSpi{2),A2eSp2(2)

where Spk{2) = {A e Sp{3) | Aek = ek} ^ Spin{5) (k =1,2).

Proof. It sufficesto prove (3), because we can reduce (1) and (2) to the

particular case of (3) in the proof below. First, for a given element A e Sp(3),

suppose Ae＼ = '(≪i,a2,a^),a2 ＼=0 (ak eH (k = 1,2,3)). Then there exist an

element ugH satisfying u2 = ―1 and a real number aeR such that a^a^ =

(＼a^＼/＼a2＼)em.Choose 6eR such that cot#= lasl/lfldand set

Bx =

0

e"a/2cos6>

eua/2 sin 6

0 ＼

e-m/2cos6 )

e$Pi(2)
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Then we get

5i^i = r(6i,0,63), bxMeH.

Next suppose 63 # 0. Then there exist an element v e H satisfyingv2 = -1 and a

real number /? R such that bibj1 = (＼b＼＼/＼bT,＼)evP.Choose (peR such that

cot9> = ―|Z>i|/|^3|and set

Then we get

Since |ci|= 1

u e v@/2 cos (p

0

e-vfS/2§in

0

1

0

-ev^2sin(p＼

0

e*2cos<j> /

B2BlAel = t(cu0,0), cx e H

we can say c＼

B2 = I

e SP2{2).

ewy (w2 = -1, w e H, y e R). Set

e~wy

0

0

0 0 ＼

1 0

0 e^J

eSP2(2).

Then, since it follows B'2B2B＼Ae＼ = e＼, i.e., B'2B2B＼A e Sp＼(2), we can set

B'2B2BXA = B[e Spi(2). This implies

A = AXA2A' AuA[e SPl{2), A2 e Sp2{2).

3. Some elements of Spirik(9),SpinA 10) and Spirik(l2).

As for the definitions of Spirik(9), Spin^lO) and Spinic(＼2)(k = 1,2), see

Section 4, 5 and 6.

Lemma 2 (Section 4 and [2]). (1) Let aL＼(a)be the mapping ot(a)defined in [2]

Lemma 2.(1). Then ct＼(a)belongs to Spin＼{9)a Spin＼(lR)cz Spin＼{＼2).

(2) For ae£, a^O, let ct2{a): 3 "*■3 oe tne mapping defined by changing all

of the indices from k to k + I (index modulo 3) in the definitionof <x(a) of [2]

Lemma 2.(1), that is,
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<

<

where ot2(a)X= X'

i[

i =

<3

& + £l £3

2

2

£

3

2

£

i

cos2|a| -
＼a＼

-fi ... (a,x2)

-―cos 2 a +.,
2 ＼a＼

x{ ― x＼ cos＼a＼ + ―― sin|a|

x'
2 X2~

2＼a＼

x'3 = xj,.cos＼a ―

sin 21 a I ―

x＼a . . .

-―sin a
＼a

sin2|a|

sin 21 a |

2{a,x2)a . 2
――=~i-sin ＼a＼

＼a＼

Then a.2(a) belongs to Spin2{9) c Spiri2(10) a Spiri2(12).

Lemma 3 (Section 5 and [2]). (1) Let P＼{a) be the mapping fi(a) defined in [2]

Lemma 2.(2). Then fi＼(a)belongs to Spin＼{＼Q) c Spin＼(12).

(2) For a e (£,a # 0, let P2{a) '■3C "~*3C be the mapping defined by changing

all of the indices from k to k+l (index modulo 3) in the definition of ft(a) of [2]

Lemma 2.(2), that is,

<

<

where P2{tt)X =

i＼

a

≪=

*! =

6

£

3

^

2

2

£

l

ii

^3

X＼ COslfll + /

*2 ~ X2 + i

6
-―cos2|≪| + i―

2
cos2|a| + /

――sin a
＼a＼

(6 + £l)

2＼a＼

,x2) . . .
――sin 2 ＼a＼
＼a＼

%^sin2|a|

＼a＼

a
2(a,x2)a .

2| ,
-sm2|a| ―y~ sm ＼a＼

＼a＼

x'-,= x^ coslal + i―― sinlfl ,
＼a＼

X' Then ^j(a) belongs to SpiniiXQ) <= Spiri2(＼2).

Lemma 4 (Section6 and [2]).

Lemma 3.(1).Then yAa) belongs

(1) Let y＼(a) be the mapping y{a) defined in [2]

to SpinAte).
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(2) For a e (£,a ^ 0, let y2(a) : ^c ^ ^c be the mapping defined by changing

all of the indicesfrom k to k + 1 {index modulo 3) in the definitionof y(a) of [2]

Lemma 3.(1), that is,

≪;

ii =
6

£=&

2

£
6

x[ ― xi cos＼a ―

x'2= X2 +

2

＼a＼

(i2+l?
2＼a＼

x'-,= X?, cos＼a ―

n[

*2

n1*

y＼

y'i

y'i

%

2

rj

)a

＼a＼

r]2 + rj

y＼coslal +

2

cos2|a| +

sin|a|

y-i-

sin2|a| -

sin|a|

＼a＼

2(

W＼2

)a

cos2|a| ―
a＼

ax?, . .
-―-sm a＼
＼a＼

(6 + 0*

2＼a＼ ' '

y2 cos＼a＼ +

V
= -

<

≪' = -

£2

ni

2

2~

£

fl

x＼a

a＼

sin|a|

b + Z

2

ni + n
2

sin2|a|

sin2|a|

2(fl^)asin2|a

a＼

cos2|a| +

cos2|≪| ―

(≪, yi)

(g, x2)

a＼

sin2|a|

sin2|a

where y2(a)(X, Y,£,rj)= (X1, Y',£',]').Then y2(a) belongs to Spin2(l2).

(3) Let S＼(a) be the mapping S(a) defined in [2] Lemma 3.(2). Then S＼(a)

belongs to Spin＼(12).

(4) For a e (£,a ^ 0, let 62(0) : S$c ^ S$c be the mapping defined by changing

all of the indicesfrom k to k + 1 (index modulo 3) m the definitionof S(a) of [2]

Lemma 3.(2),that is,
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≪I =

S=2

<*3 -

fr + g

2

£3

&

2

x[ = x＼cos|a| + /

x>

x'

xj ― i

a

t

y

a

{*＼i-n

2＼a＼

3

)a

cos2|a| ―i

sin|a|

sin2|fl| ―

i i -y＼a ･ i iJC3cos a + 1-r-r sin a
＼a＼

n＼=n＼

72

n',

y＼

y'

i

y'y

<

where S2(a)(X,Y,Z
rj)

ni + n

2

Vi
2

y, cos＼a＼ + i

y2-i

n

fa yi)

＼a＼
sin2|a|

2(a,x2)a

cos2|a| ―i

axj,

＼a＼

(& - Z)a
2＼a＼

sin|a|

sin2|a| ―

I I
xla

･ I I
v, cos a + /――sin a

2

ni + n ni

2

2

2~

t

f]

―j-^-sin ＼a＼
＼a＼

(a,X2) . -, ,

2(a'^)asin2jfl|

＼a＼

cos2|a| + /

cos2|≪| + i

＼a＼

＼a＼
sin2|a|

{X',Y',£',n'). Then S2(a) belongs to Spin2(＼2).

4. S/72ft(9)-generatorsof the group F4

The simply connected compact Lie group F4 is given by

F4 = {a e Iso*(3) Ioc(X x Y) = aX x aY＼.

The group F4 has subgroups

Spink(9) {a e F4 | aEk = £*}(*= 1,2)
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where E＼ = (1,0,0; 0,0,0), E2 = (0,1,0; 0,0,0) e 3, which is isomorphic to the

usual spinor group Spin(9) ([2], [3]).

Theorem 5. Any element a e F4 can be represented as

a = oc＼cc2(x[,ai,a| e Spin＼(9), 0L2e Spin2{9).

Proof. For a given element ae F4, it suffices to show that there

exist ocie Spin＼{9) and a.2£ Spin2{9) such that o^aiaisi =£"i. Now, for a£"i―

{E,＼A2,&,x＼iX2,x?) = Xq, choose ae£ such that (a,x＼)=0, ＼a＼=n/4, and

define a.i(a) e Spin＼{9) of Lemma 2.(1). Then we get

al(a)X0 = (Z[,Z'2^'3-xl,xf2,x'3)=Xl. £[ = £u & = ^ e R,x'k e C.

If jc{ #0, define ai(7rxj/4|x{|) e Spinx{9). Then we get

ai(ttxJ/4|jc{|)JT, = (£j',̂', ^; 0, xj, xj) = X2, ^' = £[,̂ ≪, x'{ e C.

The condition X2 x I2 = 0 of the above form is equivalent to the following

equations:

(*)
C2C3 = U, C

"X" _
VWV//3^1 ― X2X2

x'{x'{ = 0, Qx'± = 0

Si C2 -

C3X3

x"x"X3X3

= 0.

By the firstequation £2£3'= 0 of (*),it is enough to consider the two cases:(I)
i'i

x2

= 0, (II) ^'#0 and ^'= 0.

(I) Because of (*) and £,'{― 0, we have

is of the form

Xi = (£' (U";O,x"O)

Choose

Lemma

Ifx|>_

x2 x2

6ed such that(M2)

2.(2).Then

= 0, 161

tf

X3X3 = R> hence x% = 0. Therefore

Z[,tfeR,x!e<l.

= n/4, and define oc2(b) e Spin2(9) of

*2(b)X2 = (d3),O,d3);O,xf,O) = X3, d3) -
ri3)

g ≪, 43) e (E

= 0, then by the conditionI3xI3=0we have that (rf3))2= (rf3))2=

= 0 so that Xi = 0, which is a contradiction. Hence x＼' ^ 0. Consider

a2(7rx^3)/4|43)|)e Spin2(9). Then

*2{nx?/A＼xf＼)X, = (44),044); 0,0,0) = X4, tfK&eR

From I4 x X4 = 0,

ti(X4)=tr(El) = l.

we have f<4}£(4)= 0. If <^4)= 0, then XA = Ex since ^ =

If ^j4)= 0, consider a2(7r/2)e Spin2{9). Then
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a2(n/2)X4 = a? 0,0; 0,0,0) = X5 (?
_*(4) eR.

Thus we obtain X5 ―E＼.

(II) Because of the condition ^{x'{ = 0 in (*), we have x'2'= 0. Therefore Xi

is of the form

X2 = (tf, £',0; 0,0,x'l), % e R, x% e <L

Then a.＼(n/2)X2is nothing but X2 in Case (I), so that Case (II) can be reduced

to Case (I).

We have just completed the proof of Theorem 5.

5. £/?{>?(10)-generatorsof the group Ee

The simply connected compact Lie group E(,is given by

E6 = {aeIsoc(3C)|aJf xaF-Tar(Ix 7),<aX,aF> = {X, Y}}

The group E$ has subgroups

Spink(＼0)= {aeE6＼ <xEk= Ek} (k =1,2),

which is isomorphic to the usual spinor group Spin(＼0)([2],[3]).

Lemma 6. (1) For any element

* = (fi,&,6;*i,0,0), 4eC,x,G£c

°f 3C> there exists some element <x＼e Spin＼(10) such that

aiJT=(e;,^,^;O,O,O), (|=(i,(;eC.

(2) For any element

X=(^,0,0;0,x2,x3), ^C,^e£c

°/ 3C> ^ere exwta some element ot＼g Spin＼(9) such that

a1Z=(^1,0,0;0,^,xJ), ^ = f, e C, xj £c, xj e C.

Proof. (1) For x＼= p + iq (/>,# e (£), choose aeS, a # 0, such that

(a,p) ― (a,q) = 0, and define cci(na/4＼a＼)e Spin＼(9) of Lemma 2.(1). Then

onina/M)* = (^,^^3^1,0,0) = JT,, £[ = ^ g = ^e C, x[ e (£c.

Next, for x[ = p'+ iq' (p',q' e<£), choose fte (£, ft# 0, such that {b,p') =
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(b,q') = 0, and define fi{{iib/4＼b＼)e Spinx{＼0) of Lemma 3.(1).Then

Px{nb/A＼b＼)Xx= (^',0,0; xj',0,0) = X2, £'{= {,eC, x'{e Gc.

Next, for x'{ = p" + iq" (p",q" e<£),if ^" # 0, define <xi(nq"/4＼q"＼)e Spini(9)

Then

al(nq"/4＼q"＼)X2= (tf＼t?＼zf);pWA0) = X3i ^S,,^-^ 6 C,/><3>e <£

Finally,if p& # 0, define ^(np^/4＼p^＼) e Spini(10).Then we get

Mnp^/4＼p^＼)X3 = (^,44＼^;0,0,0), ^4) = fr,^ e C

as desired.

(2) At first,we show that for any element

Z=(Ci,0,Q;0,z2,z3), Cie*, zk e (£,

there exists oq e Spin＼(9) such that

aiZ=(C;,0,0;0,zJ,0), C'etf^eC.

In fact,if Z2Z3 # 0, choose f > 0 such that cot(?|z2Z3|)= -|z2|/|z3|,and define

cL＼(fz~2ZT,)e Spin＼(9). Then we get (z3-part of ai(fZ2Z3)Z) = 0. If z2 = 0, then

ai{n/2)Z is of the form as desired. Now for a given element X =

(^!,0,0;0,X2,^3) e 3C, express it as X = F + z'Z,F,Ze3 and apply the result

above to Z, then we get the required form ol＼X= ot＼Y+ ioi＼Z.

Theorem 7. Any element a.e E& can be represented as

a ― OLiOL2tt{, ai,a{ e Spini(＼0),ct2 e Spin2(lO).

Proof. For a given element ae4 set aisi = (^1,^2^3;*i)*2,^3) = Xo e

3C. By Lemma 6.(1), we can take ot＼e Spin＼(10) such that

because the subspaces {(^!,^2,^3;xi,0,0) e 3C} and {(0,0,0;0,x2,x3) e 3C} are

invariant under the action of the elements of Spin＼(10), respectively. From the

condition X＼ x X＼ ― 0, we have ^^3 = 0. As a result, the argument is divided

into the following three cases:

(I) Case £2 = 0, £3 # 0. From Ji x Ii = 0, we have £3X3 = 0, hence x'3= 0.

Therefore X＼ is of the form
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Thus, for X＼e3C, we can take 0.2 Spini{＼0) such that

oc2X1 = (^,0,^;0,0,0) = Z2,

in the same way as in Lemma 6.(1).Then, from X2 x Xi = 0, we have £('£3'= 0.

Combined with <l2,l2> = 1, we have also that

X2 = (C 0,0;0,0,0), ≪)^=1 or JT2 = (0,0,^; 0,0,0), ≪K? = 1-

Thus we obtain that there exist some elements S2{t)e Spiri2(lO) and a.2{n/2)e

Spiri2(9) such that

£2(0^2 = E＼ Or S2(t)0i2(7l/2)X2= 111,

where Ei(t)e Spini{＼G)is defined by

Z2,e-%;e-i≪2xl,X2,eit/2x3) tcR

(cf.[2] Lemma 10.(1)).

(II) Case £2# 0, ^3 = 0. From Xx x X＼ = 0, we have <^x2 = 0, hence x^ =

0. Therefore Zi is of the form

Xi = (f;,&0;0,0,*0, tf=£i

Thus, by considering u.＼(n/2)X＼,where cc＼(n/2)e Spin＼(9),this can be reduced to

Case (I).

(Ill) Case £'2= £3= 0. By Lemma 6.(2),we can take aj e Spin＼(9)such that

a [Xx = (≪*[',0,0;0,4,xj) = Z2, ^ = £, x^ 6 Cc, xJeC

Then, from Xi x X2 = 0 we have x'Jx" = 0, hence x% = 0. Thus, for X2 =

(^[',0,0;0,^2,0) g3c, we can take a2 e Spin2(l0) such that

a2lW<M3),043);0,0,0) = X3,

because of the result for Spiri2(lO) similar to Lemma 6.(1) for Spin＼(10).Hence

this can be reduced to Case (I), because X3 is nothing but X2 in Case (I).

We have just completed the proof of Theorem 7.

6. iS/7m(12)-generators of the group E-j

The simply connected compact Lie group E-j is given by

£7 = {ae Isoc(^PC) I ot(Px Q)a~l = aP x afi, <ai3,a2> = <P, S>}-

The group E1 has subgroups



Spinor-generators of F4, E$, Ej 715

Spink(l2) = {a e Ej ItxKk= Kka, afik= fika} (k = 1,2)

where Kk and ^fc are defined by

Kk(X, Y,£,ri)= (-{Ek,X)Ek+4Ekx(EkxX),{Ek, Y)Ek-4Ekx(EkxY),-{,r,),

^k(X,Y^,n) = (2EkxY+rjEk,2EkxX+^Ek,(Ek,Y),(Ek,X)),

respectively,e.g.,when fc= 1, for P= ((^1,^2,^3;*i>*2,x3), {n^rj^n^ yu y2, yi),

£,;/)£<PC,

/ijP = ((^,^3, ^2; -yx, 0,0),(^, ^3,^2;~x＼,0,0),17^ ^).

Then Spink{＼2) is isomorphic to the usual spinor group Spin{＼2) ([2],[4]).

Lemma 8. For aw e/eme≪f P = ((^1,^2,^3;x＼,*2,xt), (ril,ri2,ri3＼yuy2,y3),

£,rj) ^c satisfying P x P = 0, zY /zo/ifcr/?efollowing

(1) f^ + ^2 + ^3^3 + 2(xh 7j) + 2(X2, 72) + 2(X3, J3) - 3^ - 0,

(2) £2^3-?/i>7-*i^T = 0, (3) ^3^1 - rj2n- X2X2"= 0,

(4) £i£2-^3^7 -^3^3 = 0, (5) ^xi +^j! -xpJ^O,

(6) c^2X2+ ny2 - xpT = 0, (7) £3x3+ ny3 - xT*2 = 0,

(8) ri2t?3-£＼£~-yiJ＼=Ri (9) ^3^1 - ^ - y2Ti = 0,

(10) ^ - &f - J^ = 0, (11) 7l>;l+^1-^2^ = 0,

(12) n2y2 + £x2 - ~yjy~x= 0, (13) ^3^3 + £x3 - JYF2"= °>

(14) ^3X1 + ^^1 + W^ = 0, (15) 7/3*2+ £iJF2+X3T7 = O,

(16) ^2^3+^1^3+71^2=°. (I7) '7l^3+<^2>;3+^r72=0-

Proof. These are immediate from the straightforward computation of

p x P ― 0. (Note that those are not all of the relations followed by P x P = 0.)

Lemma 9. (1) For any element Pe<$c, there exists some element oq e

S^z≪i(12) smc/j that

oc＼P= ((fi,0,0; 0,x2,x3), fan to.^3;°>J2> J3)>& ^)-

/≫ particular, if an element P - ((0,(f2,^3;xi,0,0), (^^O^jO^^)^,^) e ^pc

satisfiesthe conditions P x P ― 0 and (P,P} ― I, then there exists some element
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ct＼e Spin＼ (12) such that

aiP= 1, where I = (0,0,0,1) e <pc.

(2) For any element Pe^c, there exists some element a2e5/?m2(12) such

that

a2p = ((0, f2,0; xi, 0, x3), (nx, n2,rj3; yx, 0, y3),£, n).

In particular, if an element P = ((£i,0,£3;Q,x2,0), (0,rj2,0;0,0,0),0,if) e *PC

satisfies the conditions P x P = 0 a≪J <(jP,P) = 1, f/ien //zere exists some element

0.2 g Spin2(l2) such that

oc2P=l.

Proof. (1) The first half is the very [2] Proposition 4.(2). We shall now

prove the latter half. For an element i>=((0,^2,^3;xi,0,0), (nh0,0;0,0,0),0,^) e

^c, act oc＼e Spin＼(＼2) that is given in the first half which is composed of the

elements of Spin＼(＼2) defined in Lemmas 2, 3 and 4, on P. Then we get

aiP=((0,0,0;0,0,0),(7;,0,0;0,0,0),0,^)=^i.

because the subspaces <^Pc>i, <^PC>( and <^3C>|' of ^c are invariant under the

action of the elements of Spin＼ (12) defined in Lemmas 2, 3 and 4, respectively,

where

OPC>! ={((£!,0,0;0,0,0), (0,^2,73! Ji,0,0U,0) e ^c},

<^c>; = {((0^2^3;x1,0,0),(71,0,0;0,0,0),0,7)e^c},

<^C>;/ = {((0,0,0;0,x2,X3),(0,0,0;0,^2,73),0,0)6^c}.

From P x P = 0, we have n[n' = 0 by Lemma 8.(2). As a result, the argument is

devided into the following three cases:

(I) Case r＼＼=0,*y' #0. Px is of the form P{ = ((0,0,0; 0,0,0), (0,0,0; 0,0,0),

0,7/'). Now, for 0e C satifying (t0)0 = 1, define the mapping ex(0) : ^Pc -+ ^c

as follows.

ei(0)((£u£2,£3;xi,X2,x3),(nx,ri2,ri3;yl,y2,y3),£,r!)

= ((8-2Zl,Z2,Z3;xu6-lx2,0-lx3),(d2nl,n2,ri3;yl,dy2,8y3),62Z,e-2n).

Then e＼(9) e Spin＼(12). Therefore, noting that (rn')n' = <Pi,Pi> = 1, choose

^eC such that 02 = ^ and set d(0). Then we get d(0)Pi = 1.
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(II) Case r][ # 0, rj'= 0. By considering yl(n/2)P＼, where y＼{n/2) e

Spin＼{＼2) of Lemma 4.(1), this can be reduced to Case (I).

(III) Case rj[ = rj'= 0. This does not occur, because (Pi,P＼)> = 1.

(2) It is similarly verified by using Spin2{＼2) instead of Spini(12) in the proof

of (1).

Theorem 10. Any element a e Ej can be represented as

a = v.＼CLi<x＼a?1a.'{, ai,a| a [' e Spini(12), oc2,a'2 e Spin2(12).

Proof. For a given element a e Ej, it suffices to show that there exist

oq,aj e Spin＼(12) and 0C2e Spin2(＼2) such that ajo^aiod = 1. In fact, since an

element cceE-] belongs to E&( <= E-j) if and only if a fixes an element 1, i.e.,

al = 1 ([4]), it follows oc[ot2CC＼Gce E^, which implies that cce E-j can be represented

as a required form by Theorem 7. Now, set

ccl= (( i, 2,&,xi,X2,xi),(r!uri2,m;yuy2,y'i),,Ti)= Poe^c

Then, by Lemma 9.(1),we can take ol＼e SpinAH) such that

ai-Pn = ((£(,0,0;0,x' x'),{r,'r,'ti'^,y' y'Wrf) = Px

From Pi x Pi = 0, we have rj[rj'= 0 by Lemma 8.(2).As a result, the argument

is devided into the following three cases:

(I) Case r/[=0, ij'^O. By Lemma 8.(6) and (7), we get j^ = ^ = 0

Furthermore we get £'= 0 by Lemma 8.(1).Therefore P＼ is of the form

P＼ = ((£;,0,0;0,x' x'),(0,?;' i73;O,O,O),O,i7')

Then, by Lemma 8.(8), we have rj^ = 0. Hence there are three cases to be

considered.

(LA) Case r＼'2= 0, r＼＼# 0. By Lemma 8.(15), we get x'2 = 0, that is, Pi is of

the form

i>i = ((£iAO;O,o,x^),(o,o,^;o,o,o),oy)-

Then, applying Lemma 9.(2) to oi＼{n/2)P＼, where &＼{n/2) e Spin＼{9), we can

obtain that there exists some element a.2e Spiri2(l2) such that cc20C＼(n/2)P＼― 1.

(I.B) Case rj'2# 0, ^ = 0. By Lemma 8.(16), we get x'2= 0, that is, Pi is of

the form

Pi = ((fj, 0,0; 0,^,0), (0,^,0; 0,0,0), O,^)-

Thus we can easily obtain the required result by Lemma 9.(2).
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(I.C) Case rj'2= r}'3=0. Pi is of the form

P! = ((^,0,0;0,^,^), (0,0,0;0,0,0),0,J7')-

Here we distinguishthe following cases:

(I.C.I) When x2 # 0, x'3#0. By Lemma 6.(2),we can take aj e Spinx{9)

such that

*[PI = m

x"E&c,x"e .

Then, by Lemma 8.(4) we have x'^x' =̂ 0, hence x" = 0. Thus we easily obtain

the required result by Lemma 9.(2).

(I.C.2) When x'2= 0, x'2# 0. Considering ax(n/2)P＼, where a＼{n/2)e

Spin＼(9),we can easily obtain the required result by Lemma 9.(2).

(I.C.3) When x'2# 0, x'z= 0. We can easily obtain the required result by

Lemma 9.(2).

(I.C.4) When x'2= x'3―0. We can easily obtain the required result by

Lemma 9.(2).

(II) Case tj{^0, rj'= O. By considering 5＼{n/2)P＼, where 8＼(n/2) e

Spin＼{＼2) of Lemma 4.(3), this can be reduced to Case (I).

(III) Case tj[=ri' = 0. P＼ is of the form

Pl = ((^0A0,xf2,x'2):(0^'2,rj'3-Ay'2,yf3)^＼0).

Now, as is similar to Lemma 9.(1), we obtain that, for any element P e^c, there

exists some element ol＼e Spin＼{＼2) such that

(X＼P = ((£i,f2, £3;0, *2, x3), (rj1,0,0; 0, y2, y3), £,rj).

Note that the invariant subspaces <^Pc>i, <^PC>J and <^PC>!' of ^Pc under the

action of the elements of Spin＼{＼2) defined in Lemmas 2, 3 and 4. Then, applying

the result above to the present Case (III), we can take aj e Spin＼(＼2) such that

a;i>1 = ((^,0,0;0,x2/,x?),(0,0,0;0,72',^/)^",0)=i>2.

Therefore we have £,'{£"= 0 by Lemma 8.(8). Hence there are three cases to be

considered.

(III.A) Case £'{= 0, £" ± 0. By Lemma 8.(12) and (13), we get x'{ = x'3r= 0.

Then P2 is of the form

P2 = ((0,0,0; 0,0,0), (0,0,0;0, y'2＼y'3'),C,0).

Thus, by considering yl(n/2)P2, where y＼(n/2) e Spin＼(＼2) of Lemma 4.(1), this

can be reduced to Case (I.C).
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(III.B) Case £" # 0, f " = 0. By Lemma 8.(15) and (16), we get y'{ = y'{ = 0.

Therefore thisis reduced to Case (I.C).

(III.C) Case £" = C = 0. P2 is of the form

P2 = ((0,0,0;0,^,^),(0,0,0;0,^/,^/)J0,0).

Here we distinguish the following cases:

(III.C.1) When x'^^O. By Lemma 9.(2), there exists some element a2

Spin2( 12) such that

≪2P2 = m£＼0;x?＼0,xf)),(rif)
<3>

w(3
2 'V3

>;v<3＼0,v<3)),<J<3W3>)=i>3

Here, by Lemma 8.(3),we have rj2V3^ ―0. Hence there are threecases to be

considered.

(III.C.1.1) Case /^ = 0, ^ # 0. By Lemma 8.(5) and (7), we get

yf] = yf] = 0. Furthermore, we get £(3)= 0 by Lemma 8.(1).Then P3 is of the

form

Here, by Lemma 8.(9),we have t]^ rj＼= 0. Hence there are three cases to be

considered.

(III.C.1.1.1) Case^3) =0, i3) # 0. By Lemma 8.(14),we get x?] = 0. Then

considering 0C2{7i/2)P3, where 0Li{n/2)e Spifi2{9), we can easily obtain the

required result by Lemma 9.(1).

(III.C.1.1.2) Case rjf] # 0, ^3) = 0. By Lemma 8.(17), we get xf] = 0. Then

we can easily obtain the required result by Lemma 9.(1).

(III.C.1.1.3) Case rP = nf = 0- Pi is'of the form

iJ3 = ((O,43),O;x(13),O,xf)),(O,O,O;O,O,O),O,^)

Here we distinguish the following cases

(III.C.1.1.3.(i))When xf] # 0, xf} # 0. As is similar to Lemma 6.(2), we

obtain that there exists some element ot'2e Spin.2(9) such that

a'P3 = ((0,£ f,0;x(14),0,44)),(0,0,0;0,0,0),0,^) = A
44)66,x<4)eGc.

Then, by Lemma 8.(2), we have x＼'x[ ― 0, hence x＼' = 0. Thus, considering

GC2(n/2)P4, where a2(n/2) e Spiti2(9),we can easily obtain the required result by

Lemma 9.(1).

(III.C.1.1.3.(ii))When xf] = 0, xf] # 0. Considering

cc2{n/2)e Spiri2(9),we can easily obtain the required result

cL2{n/2)Pj,, where

by Lemma 9.(1).
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(III.C.1.1.3.(iii))When xj3)/ 0, xf} = 0. We easily obtain the required result

by Lemma 9.(1).

(III.C.1.1.3.(iv))When xf] = xf) =0. We easily obtain the required result

by Lemma 9.(1).

(III.C.1.2) Case
i3)

# 0, ^(3) = 0. By considering y2(n/2)P3, where

y2(n/2) e Spini(＼2) of Lemma 4.(2), this can be reduced to Case (III.C.1.1).

(III.C.I.3) Case rj2 ―^ ― 0. This does not occur. In fact, note that

the subspace <^c>2 of ^Pc is invariant under the action of the elements of

Spin2{＼2) denned in Lemmas 2, 3 and 4, where <^PC>2 = {((fi,0,£2,;0, jc2,0),

(0,^2,0;0,0,0),0,^)g^Pc}. Then, for P3 = a2i>2, that is,

((0^0;^0,*f>),(,f＼0,,f>;^>,0,^U<3>,0)

= a2((0,0,0;0,^,j:J),(0,0,0;0,^/,^/),0,0)1

where v.2e Spiniiyi), the condition rj2' ―rj^ = 0 contradicts x'2'# 0.

(III.C.2) When x'2'= 0, x'{ # 0. By considering ax(n/2)P2, where cti(n/2)

Spini(9), this can be reduced to Case (III.C.I).

(III.C.3) When x'{= x'J = 0, y'{ # 0. By considering yx{n/2)P2, where

yl(n/2) e Spin＼(12), this can be reduced to Case (III.C.I).

(III.C.4) When x^'= x^' = y'{ = 0, ^ # 0. By considering ai{n/2)P2, where

<x＼(it/2)Spin＼{9),this can be reduced to Case (III.C.3).

(III.C.5) When x'{= jcJ = y'{ = y'{ = 0. It is obvious that this does not

occur.

We have just completed the proof of Theorem 10.

Conjecture. We know that the simply connected compact exceptional Lie

group E% has subgroups 55^(16) = {E%Yk (where o> = expnKk), k = 1,2,3 (which

is isomorphic to Spin(l6)/Z2 not 50(16)). Now the authors do not know if

5*i(16) and 5^2(16) generate the group E$?.
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