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0. Introduction

Let (M,g) be a 2-dimensional non-orientable closed Riemannian manifold.

We study the spectrum of the Laplacian for functions on (M,g). We express it by

Spec(M, g) = {0 = Xq < k＼< X2 < h < ･･･}■

Let (M,g) be the orientable Riemannian double cover of (M,g). Our interest

is what properties are preserved between (M,g) and (M,g). The positive first

eigenvalue X＼(M,g) has many geometric informations. We have interestsin the

influences for the positive firsteigenvalue by taking the Riemannian double cover.

Generally we have 2i(M,g) > k＼{M,g). So we study the difference between

X＼(M,g) and X＼{M,g). Especially we find the cases that X＼{M,g) = X＼(M,g)

holds good.

It is well-known (cf.[9]) that 2-dimensional closed manifolds are classifiedas

follows.

The ClassificationTheorem of Closed Surfaces. A closed surface is homeo-

morphic to one of the following spaces.

S2, T2, #"T2 (n > 2) : orientable

RP2, #nRP2 {n>2): non-orientable

where #nM means the connected sum of n-copies of a manifold M. Moreover the

double cover of #nRP2 (n>2) is homeomorphic to #n~lT2.

In thispaper we show the followingresults.

Theorem A. If M is homeomorphic to RP2, then
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for every metric g on M

Katsuhiro Yoshiji

Xl(M,g)>Xl(M,g)

Theorem B. If M is homeomorphic to #nRP2 {n > 2), thereexistsa metric

g on M such that

Xl{M,g)=kx{M,g).

The author would like to thank J. Takahashi and the refereefor useful

comments.

1. Preliminaries

Let us consider the Riemannian double covering (M,g) of (M, g). We define

the isometry J :(M,g) ―>{M,g) as follows. For each point p of (M,g), let two

points pi, p2 of {M,g) be the fiber of a point /≫in (M,g). Then we define / by

exchanging two points p{, p2. Let E{k), E+(X) and E~(X) be the spaces of C°°

functions on M such that

E(X) = the eigenspace associated with the eigenvalue A,

E+{X) = {feE{X)＼foJ = f},

E-a) = {feEtt)＼foJ=-f}.

Proposition (P. Buser [3], p. 306). E(X) is decomposed orthogonally as

E+{X)@E-{X).

Since all eigenfunctions on (M,g) are lifted to ones on (M, g) canonically,

the eigenvalues on (M, g) are in Spec(M, #). The eigenfunctions on (M,g) which

come from ones on (M,g) are invariant by /. Conversely every feE+(X) is

reduced to the eigenfunction on (M,g). The eigenvalues on (M,g) coincide with

the ones on (M,g) satisfying E+(X) ＼={0}.

The eigenfunctions on (M,g) which do not come from ones on (M,g) have

non-zero components of E~{X) under the above decomposition. Thus we con-

centrate our attension on the non-zero smallest X such as E~(X) # {0}. We

denote it by v. Our purpose is to compare X＼(M,g) with v.

2. Proof of Theorem A

In this section the main tool is the nodal domain theorem (cf.[6] and [7])
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Proposition (S. Y. Cheng [6],p. 186). Let g be any Riemannian metric on

S2. Then the nodal line of a firsteigenfunction is a smooth simple closed curve.

We assume that (M,g) is homeomorphic to RP2. Then its Riemannian

double cover (M,g) is homeomorphic to S2. If the firsteigenfunction (p on (M,g)

liftsto the firsteigenfunction ip on (M,g), the nodal set of ^ is a simple closed

curve and the number of the nodal domains is two. We denote one of them by D.

Since n＼(M) ^ {e}, the nodal set 3D is contractible.Then D is homeomorphic to

an open 2-disk. Its boundary dD is regularly embedded. Then its closure D is

homeomorphic to a closed 2-disk. Without loss of generality we take D the

positivenodal domain. Since (pis invariant by the isometry /, we have J(D) = D.

We apply the Brouwer's fixed poin theorem (cf.[8] p. 19) to / : D ―>D. Then

/ has a fixed point. But by the definition of /, it does not have any fixed points.

It is a contradiction.

3. Proof of Theorem B

The firsteigenvalue X＼is characterized by the Rayleigh quotient, that is,

Lf dv

where / runs over all non-vanishing functions orthogonal to constant functions in

L＼M,g).

Our method to prove Proposition B is an analogue of Cheeger's construction

in [5] of the deformation of Riemannian metrics gE on S2 such that A＼(S2,ge)

converges to 0 as s ―>･0.

Let us recall the construction.

Step 1. Connect two canonical spheres, (S2,g)#($2,g), by the tube whose

radius is s and length is /. We express it by (S,gE).

Step 2. We consider the test functions fe which is equal to c on the right-

hand bulb, -con the left-hand bulb and change linearly from c to ―c across

tube. We choose c so jsf2 dv = 1.

Step 3. By the Rayleigh quotient, Ai(S,gE) converges to 0 as £―>0.

Now we proceed this method to # nRP2 for n>2. We consider # "RP2 as

(#n-1RP2)#RP2. We take a suitable metric on #nRP2 in such a way that

Vol(# "-1RP2) _

Vol{RP2)
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t_ t i j _j
cross caps

(M,ge) =(#n-iRPz)#RPZ (M.
'

≪

)

We connect #n lRP2 and RP2 by the tube whose radius is e and length is /.

We denote it by (M,gE). We consider the test functions f£which are equal to 1

on #n~lRP2 and ―{n ― 1) on RP2, and decrease from 1 to ―(n ―1) across the

tube. We may take fE such that they are orthogonal to constant functions in

L2(M,gE) and |V/e| < d where d is a constant depending only on / and n. It

follows from the Rayleigh quotient that

lim*i(M,0e) = O.

Let (M,ge) be the double cover of (M,gs). Then A＼(M,gE) belongs to in

Spec(M,ge). We denote it by 1(e) in brief.In Sect.l, we treat E~(X). We denote

by v(e) the non-zero firstis~(A)-type eigenvalue on (M,ge). We only have to

compare X(s) with v(fi).

Proposition (C. Anne and B. Colbois [2]). Let {M＼,g＼)and (A/2,02) be two

connected orientable Riemannian manifolds of the same dimension. We connected

them by two tubes whose radii are both s and lengths l＼and I2, respectively. We

denote it by (M, gE) with a littlesmoothing at the connected parts. We express

Spec(M, ge) as

Spec(M,ge) - {A0(e) < M(e) < A2(e) <･■･}.

Let

{fi0 < Mi ^ lh ^ V3 ^ ･･･}

be the union of Spec(M＼,g＼), Spec(M2,gi), SpecD([0,/j],can) and SpecZ)([0,fa],

can) (the D of the Spec^ means the Dirichlet condition) counting with multiplicity.

Then for any n we have

lim kn{e) = Mn-

Especially Xo(e) =0, fi0= ju^― 0 and fi2> 0.
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Remark. In [2] they treat /?-forms on (M,g). It is necessary for them to

assume that dimM>3. But for functions the arguments there hold good in

dimM = 2. As for it see also [11.

We apply the above proposition to (M,gE). Since linv^o X(s) = 0, v(e)

converges to some positive value which is bigger than or equal to fi2-The positive

value depends on the equipped metrics on #n~lRP2, RP2 and the lengths of the

tubes l＼,h- By the continuity of the eigenvalue in the parameter e, there exists

£o> 0 such that

X(e) < v(e)

for 0 < e < £o-

Hence for all the metrics ge on M such that 0 < s < eo, we have

h(M,ge) = X(e) = Xl(M,gK).

4. Example

Here we give an example which clarifies Theorem B. Let K(a,b) be the flat

Klein bottle as the quotient space of (R2, can) identifying by (x, y) i―>(x, y + b)

and (x,y) h->(x + a/2,―y). The double cover of K(a,b) is the flat torus T{a,b)

as the quotient space of (R2, can) identifying by (x, y) i―>(x + a, y) and (x, y) h->

(x,y + b).

The spectra of K(a,b) and T(a,b) are given in [4] as follows:

Spec(K(a,b))

Spec(r(a,6))

Then we have

Un2

Un2

(m2

w
+

+ ^) :m,≪ez}

M(K(a,b)) ■

M(T(a,b)) =

V

a1

＼4

for-<b,

for b<
a

2

for a < b,

for b < a
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By comparing k＼{K(a,b))with k＼(T(a,b)),we have

ll(K(a,b))=ll(T(a,b))

for a <b.
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