EXISTENCE OF WEAK SOLUTIONS FOR A PARABOLIC ELLIPTIC-HYPERBOLIC TRICOMI PROBLEM

By
John Michael Rassias

Abstract

It is well-known that the pioneer of mixed type boundary value problems is F. G. Tricomi (1923) with his Tricomi equation: $y u_{x x}+u_{y y}=0$. In this paper we consider the more general case of above equation so that $$
L u \equiv K_{1}(y) u_{x x}+\left(K_{2}(y) u_{y}\right)^{\prime}+r u=f
$$ is hyperbolic-elliptic and parabolic, and then prove the existence of weak solutions for the corresponding Tricomi problem by employing the well-known a-b-c energy integral method to establish an a-priori estimate. This result is interesting in fluid mechanics.

The Tricomi Problem

Consider the parabolic elliptic-hyperbolic equation

$$
\begin{equation*}
L u \equiv K_{1}(y) u_{x x}+\left(K_{2}(y) u_{y}\right)^{\prime}+r(x, y) u=f(x, y) \tag{*}
\end{equation*}
$$

([2], [6]), in a bounded simply-connected domain $D\left(\subset \mathfrak{R}^{2}\right)$ with a piecewisesmooth boundary $G=\partial D=g_{1} \cup g_{2} \cup g_{3}$, where $f=f(x, y)$ is continuous, $r=$ $r(x, y)(<0)$ and $K_{1}=K_{1}(y)$ are once-continuously differentiable for $x \in[-1,1]$ and $y \in[-m, M]$ with $-m=\inf \{y:(x, y) \in D\}$, and $M=\sup \{y:(x, y) \in D\}$, and $K_{1}(y)>0$ for $y>0,=0$ for $y=0$, and <0 for $y<0$. Also $K_{2}=K_{2}(y)$ is twice-continuously differentiable in $[-m, M], K_{2}(y)>0$ in D. Besides $\lim _{y \rightarrow 0} K(y)$ exists, if $K=K(y)=K_{1}(y) / K_{2}(y)>0$ whenever $y>0$, $=0$ whenever $y=0$, and <0 whenever $y<0$.

Finally g_{1} is "the elliptic arc (for $y>0$)" connecting points $A^{\prime}=(-1,0)$ and $A=(1,0), g_{2}$ is "the hyperbolic characteristic arc (for $y<0$)" connecting points $A=(1,0)$ and $P=\left(0, y_{p}\right): \int_{0}^{y_{p}} \sqrt{-K(t)} d t=-1$ (e.g. if $K_{1}=y$ and $K_{2}=1$, then $\left.y_{p}=-(3 / 2)^{2 / 3} \cong-1.31\right), \quad g_{2}(\equiv \mathrm{PA}): x=\int_{0}^{y} \sqrt{-K(t)} d t+1$, and g_{3} is "the hyperbolic characteristic arc (for $y<0$)" connecting points $A^{\prime}=(-1,0)$ and $P=$ $\left(0, y_{p}\right): g_{3}\left(\equiv A^{\prime} P\right): x=-\int_{0}^{y} \sqrt{-K(t)} d t-1$.

Denote "the elliptic subregion of D " by D_{e} (= the space bounded by g_{1} and $A^{\prime} A$), "the hyperbolic subregion of D " by $D_{h}\left(=\right.$ the space bounded by g_{2}, g_{3} and $A A^{\prime}$), and "the parabolic arc of D " by

$$
D_{p}\left(\equiv A^{\prime} A\right)=\{(x, y) \in D:-1<x<1, y=0\} .
$$

Note that the order of equation (*) does not degenerate on the line $y=0$. But $\left(^{*}\right)$ is parabolic for $y=0$ because $K_{1}(0)=0$ and $K_{2}(0)>0$ hold simultaneously.

Assume boundary condition

$$
\begin{equation*}
u=0 \quad \text { on } g_{1} \cup g_{2} \tag{**}
\end{equation*}
$$

The Tricomi problem, or Problem (T) consists in finding a function $u=$ $u(x, y)$ which satisfies equation $\left(^{*}\right)$ in D and boundary condition $\left({ }^{* *}\right)$ on $g_{1} \cup g_{2}$ ([4], [5], [7]).

Preliminaries. Denote $\alpha=\left(\alpha_{1}, \alpha_{2}\right): \alpha_{1}, \alpha_{2} \geq 0,|\alpha|=\alpha_{1}+\alpha_{2}$. Also if $p=$ $(x, y) \in \mathfrak{R}^{2}$, and $\tilde{p}=(\tilde{x}, \tilde{y}) \in \mathfrak{R}^{2}$, then denote $p^{\alpha}=x^{\alpha_{1}} y^{\alpha_{2}},\langle p, \tilde{p}\rangle=x \tilde{x}+y \tilde{y}$, $|p|=(\langle p, p\rangle)^{1 / 2}$.

Finally denote

$$
D_{1}=\frac{\partial}{\partial x}, \quad D_{2}=\frac{\partial}{\partial y}, \quad \text { and } \quad\left(D^{\alpha} u\right)(p)=\left(D_{1}^{\alpha_{1}} D_{2}^{\alpha_{2}} u\right)(p)
$$

for sufficiently smooth functions $u=u(p): p=(x, y) \in \mathfrak{R}^{2}$. Consider the adjoint equation

$$
\begin{equation*}
L^{+} w \equiv K_{1}(y) w_{x x}+\left(K_{2}(y) w_{y}\right)^{\prime}+r(x, y) w=f(x, y) \tag{*}
\end{equation*}
$$

([1]-[2], [6]), in D, where L^{+}is the formal adjoint operator of the formal operator L and is $L^{+}=L$. (Note that equations for characteristics of $\left(^{*}\right)$ and $\left[{ }^{*}\right]$ are identical). In fact,

$$
\left(K_{2}(y) w_{y}\right)^{\prime}=K_{2}(y) w_{y y}+K_{2}^{\prime}(y) w_{y}, \quad \text { and }
$$

thus

$$
\begin{aligned}
L^{+} w & =\left(K_{1}(y) w\right)_{x x}+\left(K_{2}(y) w\right)_{y y}-\left(K_{2}^{\prime}(y) w\right)_{y}+r(x, y) w \\
& =L w, \text { because }\left(K_{2}(y) w\right)_{y y}=\left(K_{2}(y) w_{y}\right)^{\prime}+\left(K_{2}^{\prime}(y) w\right)_{y} .
\end{aligned}
$$

Note in general that if

$$
\begin{aligned}
& L u \equiv \sum_{i, j=1}^{2} a_{i j}(p) D_{i} D_{j} u+\sum_{i=1}^{2} a_{i}(p) D_{i} u+a(p) u, \quad \text { then } \\
& L^{+} w \equiv \sum_{i, j=1}^{2} D_{i} D_{j}\left(a_{i j}(p) w\right)-\sum_{i=1}^{2} D_{i}\left(a_{i}(p) w\right)+a(p) w
\end{aligned}
$$

Assume adjoint boundary condition

$$
w=0 \quad \text { on } g_{1} \cup g_{3} .
$$

Denote

$$
C^{2}(\bar{D})=\{u(p) \mid p=(x, y) \in \bar{D}(=D \cup G): u=u(p)
$$

is twice-continuously differentiable in $\bar{D}\}$.
This space is complete normed space with norm

$$
\|u\|_{C^{2}(\bar{D})}=\max \left\{\left|D^{a} u(p) \||p \in \bar{D}:|a| \leq 2\} .\right.\right.
$$

Also denote

$$
L^{2}(D)=\left\{\left.u\left|\int_{D}\right| u(p)\right|^{2} d p<\infty\right\} .
$$

The norm of space $L^{2}(D)$ is

$$
\|u\|_{0}=\|u\|_{L^{2}(D)}=\left(\int_{D}|u(p)|^{2} d p\right)^{1 / 2}
$$

where $p=(x, y)$, and $d p=d x d y$.
Besides denote

$$
D(L)=\left\{u \in C^{2}(\bar{D}): u=0 \text { on } g_{1} \cup g_{2}\right\}
$$

which is the domain of the formal operator L, and

$$
D\left(L^{+}\right)=\left\{w \in C^{2}(\bar{D}): w=0 \text { on } g_{1} \cup g_{3}\right\}
$$

which is the domain of the adjoint operator L^{+}.
Finally denote

$$
W_{2}^{2}(D)=\left\{u\left|D^{a} u(\cdot) \in L^{2}(D),|a| \leq 2\right\}\right.
$$

which is the complete normed Sobolev space with norm

$$
\|u\|_{2}=\|u\|_{w_{2}^{2}(D)}=\left(\|u\|_{L^{2}(D)}^{2}+\sum_{|\alpha|=2}\left\|D^{\alpha} u\right\|_{L^{2}(D)}^{2}\right)^{1 / 2}
$$

or equivalently: $\|u\|_{2}=\left(\sum_{|\alpha| \leq 2}\left\|D^{\alpha} u\right\|_{L^{2}(D)}^{2}\right)^{1 / 2}$,

$$
W_{2}^{2}(D, b d)=\overline{D(L)_{\|\cdot\|_{2}}},
$$

which is the closure of domain $D(L)$ with norm $\|\cdot\|_{2}$, and

$$
W_{2}^{2}\left(D, b d^{+}\right)=\overline{D\left(L^{+}\right)_{\|\cdot\|_{2}}},
$$

which is the closure of domain $D\left(L^{+}\right)$with norm $\|\cdot\|_{2}$, or equivalently:

$$
W_{2}^{2}\left(D, b d^{+}\right)=\left\{w \in W_{2}^{2}(D):\langle L u, w\rangle_{0}=\left\langle u, L^{+} w\right\rangle_{0} \text { for all } u \in W_{2}^{2}(D, b d)\right\}
$$

on the corresponding norms.
Definition. A function $u=u(p) \in L^{2}(D)$ is a weak solution of Problem (T) if

$$
\langle f, w\rangle_{0}=\left\langle u, L^{+} w\right\rangle_{0} \quad\left([4]_{(2)},\right. \text { p. 86-106) }
$$

holds for all $w \in W_{2}^{2}\left(D, b d^{+}\right)\left([4]_{(2)}\right.$, p. 86-106).
Criterion ([1]). (i). A necessary and sufficient condition for the existence of a weak solution of Problem (T) is that the following a-priori estimate

$$
\begin{equation*}
\|w\|_{0} \leq C\left\|L^{+} w\right\|_{0} \tag{AP}
\end{equation*}
$$

holds for all $w \in W_{2}^{2}\left(D, b d^{+}\right)$, and for some $C=$ const. $>0\left([4]_{(2)}\right.$, p. 86-106).
(ii). A sufficient condition for the existence of a weak solution of Problem (T) is that the following a-priori estimate

$$
\begin{equation*}
\|w\|_{1} \leq C\left\|L^{+} w\right\|_{0} \tag{AP}
\end{equation*}
$$

holds for all $w \in W_{2}^{2}\left(D, b d^{+}\right)$, and for some $C=$ const. >0.
Also note that both the Hahn-Banach Theorem and the Riesz Representation Theorem would play ($[4]_{(2)}$, p. 92-95) an important role in this paper if above criterion were not employed. For the justification of the definition of weak solutions we apply Green's theorem ($[4]_{(2)}$, p. $95-98$) and classical techniques in order to show that $f=L u$ in D and $u=0$ on $g_{1} \cup g_{2}$.

A-Priori estimate ([AP])

We apply the $a-b-c$ classical energy integral method and use adjoint boundary condition [**]. Then claim that the a-priori estimate [AP] holds for all $w \in W_{2}^{2}\left(D, b d^{+}\right)$, and for some $C=$ const. >0.

In fact, we investigate

$$
\begin{equation*}
J^{+}=2\left\langle M^{+} w, L^{+} w\right\rangle_{0}=\iint_{D} 2 M^{+} w L^{+} w d x d y \tag{1}
\end{equation*}
$$

where

$$
M^{+} w=a^{+}(x, y) w+b^{+}(x, y) w_{x}+c^{+}(x, y) w_{y} \quad \text { in } D
$$

with choices:

$$
a^{+}=-\frac{1}{2}, \quad \text { and } b^{+}=x-c_{1} \quad \text { in } D, \quad \text { and } c^{+}= \begin{cases}y+c_{2} & \text { for } y \geq 0 \tag{2}\\ c_{2} & \text { for } y \leq 0\end{cases}
$$

where $c_{1}=1+c_{0}$, and c_{0}, c_{2} : are positive constants.

Consider the ordinary identities:

$$
\begin{gathered}
2 a K_{1} w w_{x x}=\left(2 a K_{1} w w_{x}\right)_{x}-2 a K_{1} w_{x}^{2}-\left(a_{x} K_{1} w_{x}^{2}\right)_{x}+a_{x x} K_{1} w^{2}, \\
2 a K_{2} w w_{y y}=\left(2 a K_{2} w w_{y}\right)_{y}-2 a K_{2} w_{y}^{2}-\left(\left(a K_{2}\right)_{y} w^{2}\right)_{y}+\left(a K_{2}\right)_{y y} w^{2}, \\
2 b K_{1} w_{x} w_{x x}=\left(b K_{1} w_{x}^{2}\right)_{x}-b_{x} K_{1} w_{x}^{2}, \\
2 b K_{2} w_{x} w_{y y}=\left(2 b K_{2} w_{x} w_{y}\right)_{y}-\left(b K_{2} w_{y}^{2}\right)_{x}+b_{x} K_{2} w_{y}^{2}-2\left(b K_{2}\right)_{y} w_{x} w_{y}, \\
2 c K_{1} w_{y} w_{x x}=\left(2 c K_{1} w_{x} w_{y}\right)_{x}-\left(c K_{1} w_{x}^{2}\right)_{y}+\left(c K_{1}\right)_{y} w_{x}^{2}-2 K_{1} c_{x} w_{x} w_{y}, \\
2 c K_{2} w_{y} w_{y y}=\left(c K_{2} w_{y}^{2}\right)_{y}-\left(c K_{2}\right)_{y} w_{y}^{2}, \\
2 a r w w=2 a r w^{2}, \quad 2 b r w w_{x}=\left(b r w^{2}\right)_{x}-(b r)_{x} w^{2}, \\
2 c r w w_{y}=\left(c r w^{2}\right)_{y}-(c r)_{y} w^{2}, \quad 2 a t w w_{y}=\left(a t w^{2}\right)_{y}-(a t)_{y} w^{2}, \\
2 b t w_{x} w_{y}=2 b t w_{x} w_{y}, \quad 2 c t w_{y} w_{y}=2 c t w_{y}^{2},
\end{gathered}
$$

where $t\left(\equiv\right.$ coefficient of w_{y} in $\left.L^{+} w\right)$, or

$$
\begin{equation*}
t=K_{2}^{\prime}(y) . \tag{3}
\end{equation*}
$$

Then employing above identities and Green's theorem, and setting $t=K_{2}^{\prime}(y)$ we obtain from (1) and [*] that

$$
\begin{align*}
J^{+} & =\iint_{D} 2\left(a^{+} w+b^{+} w_{x}+c^{+} w_{y}\right)\left[K_{1}(y) w_{x x}+K_{2}(y) w_{y y}+r w+t w_{y}\right] d x d y \\
& =I_{D}^{+}+I_{1 G}^{+}+I_{2 G}^{+}+I_{3 G}^{+} \tag{4}
\end{align*}
$$

where

$$
\begin{gathered}
I_{D}^{+}=\iint_{D}\left(A^{+} w_{x}^{2}+B^{+} w_{y}^{2}+C^{+} w^{2}+2 D^{+} w_{x} w_{y}\right) d x d y, \\
I_{1 G}^{+}=\oint_{G(=\partial D)}\left\{2 a^{+} w\left(K_{1} w_{x} v_{1}+K_{2} w_{y} v_{2}\right)\right\} d s, \\
I_{2 G}^{+}=\oint_{G(=\partial D)}\left\{-\left[K_{1} a_{x}^{+} v_{1}+\left(a^{+} K_{2}\right)_{y} v_{2}\right]+\left[\left(b^{+} v_{1}+c^{+} v_{2}\right) r\right]+\left[\left(a^{+} v_{2}\right) t\right]\right\} w^{2} d s,
\end{gathered}
$$

and

$$
I_{3 G}^{+}=\oint_{G}\left(\tilde{A}^{+} w_{x}^{2}+\tilde{B}^{+} w_{y}^{2}+2 \tilde{D}^{+} w_{x} w_{y}\right) d s
$$

with

$$
\begin{gather*}
A^{+}=-2 a^{+} K_{1}-b_{x}^{+} K_{1}+\left(c^{+} K_{1}\right)_{y}, \\
B^{+}=-2 a^{+} K_{2}+b_{x}^{+} K_{2}-\left(c^{+} K_{2}\right)_{y}+2 c^{+} t, \\
C^{+}=\left[2 a^{+} r+K_{1} a_{x x}^{+}+\left(a^{+} K_{2}\right)_{y y}\right]-\left[\left(b^{+} r\right)_{x}+\left(c^{+} r\right)_{y}\right]-\left[\left(a^{+} t\right)_{y}\right], \\
D^{+}=-\left[K_{1} c_{x}^{+}+\left(b^{+} K_{2}\right)_{y}-b^{+} t\right], \quad \text { and } \\
\tilde{A}^{+}=\left(b^{+} v_{1}-c^{+} v_{2}\right) K_{1}, \quad \tilde{B}^{+}=\left(-b^{+} v_{1}+c^{+} v_{2}\right) K_{2}, \\
\tilde{D}^{+}=b^{+} K_{2} v_{2}+c^{+} K_{1} v_{1}, \text { where } \\
v=\left(v_{1}, v_{2}\right)=\left(\frac{d y}{d s},-\frac{d x}{d s}\right), \quad(d s>0), \tag{5}
\end{gather*}
$$

is the outer unit normal vector on the boundary G of the mixed domain D.
Note that in $\boldsymbol{D}, \boldsymbol{y} \geq \mathbf{0}$ (if $a^{+}=-1 / 2, b^{+}=x-c_{1}, c^{+}=y+c_{2}$):

$$
\begin{gathered}
A^{+}=K_{1}-\left(K_{1}\right)+\left(\left(y+c_{2}\right) K_{1}\right)_{y}=K_{1}+\left(y+c_{2}\right) K_{1}^{\prime}, \\
B^{+}=K_{2}+\left(K_{2}\right)-\left(\left(y+c_{2}\right) K_{2}\right)_{y}+2\left(y+c_{2}\right) t=K_{2}+\left(y+c_{2}\right) K_{2}^{\prime}, \\
C^{+}=\left[-r-\frac{1}{2} K_{2}^{\prime \prime}\right]-\left[\left(\left(x-c_{1}\right) r\right)_{x}+\left(\left(y+c_{2}\right) r\right)_{y}\right]-\left[-\frac{1}{2} K_{2}^{\prime \prime}\right] \\
=-\left[3 r+\left(x-c_{1}\right) r_{x}+\left(y+c_{2}\right) r_{y}\right], \text { and } \\
D^{+}=-\left[\left(\left(x-c_{1}\right) K_{2}\right)_{y}-\left(x-c_{1}\right) t\right] \\
=-\left[\left(x-c_{1}\right) K_{2}^{\prime}-\left(x-c_{1}\right) K_{2}^{\prime}\right]=0,
\end{gathered}
$$

because from (3): $t=K_{2}^{\prime}(y)$.
Similarly in $\boldsymbol{D}, \boldsymbol{y} \leq \mathbf{0}$ (if $a^{+}=-1 / 2, b^{+}=x-c_{1}, c^{+}=c_{2}$):

$$
\begin{gathered}
A^{+}=K_{1}-\left(K_{1}\right)+\left(c_{2} K_{1}\right)_{y}=c_{2} K_{1}^{\prime}, \\
B^{+}=K_{2}+\left(K_{2}\right)-\left(c_{2} K_{2}\right)_{y}+2 c_{2} t=2 K_{2}+c_{2} K_{2}^{\prime}, \\
C^{+}=\left[-r-\frac{1}{2} K_{2}^{\prime \prime}\right]-\left[\left(\left(x-c_{1}\right) r\right)_{x}+\left(c_{2} r\right)_{y}\right]-\left[-\frac{1}{2} K_{2}^{\prime \prime}\right] \\
=-\left[2 r+\left(x-c_{1}\right) r_{x}+c_{2} r_{y}\right], \quad \text { and } \\
D^{+}=-\left[\left(\left(x-c_{1}\right) K_{2}\right)_{y}-\left(x-c_{1}\right) t\right]=0,
\end{gathered}
$$

because from (3): $t=K_{2}^{\prime}(y)$.

Therefore

$$
\begin{equation*}
I_{D}^{+}=I_{1 D}^{+}+I_{2 D}^{+}+I_{0}^{+}, \tag{6}
\end{equation*}
$$

where $Q=A^{+} w_{x}^{2}+B^{+} w_{y}^{2}+2 D^{+} w_{x} w_{y}=Q\left(u_{x}, u_{y}\right)$,

$$
\begin{gather*}
I_{1 D}^{+}=\iint_{D, y \geq 0} Q\left(w_{x}, w_{y}\right) d x d y, \text { or } \\
I_{1 D}^{+}=\iint_{D, y \geq 0}\left[\left(K_{1}+\left(y+c_{2}\right) K_{1}^{\prime}\right) w_{x}^{2}+\left(K_{2}+\left(y+c_{2}\right) K_{2}^{\prime}\right) w_{y}^{2}\right] d x d y \tag{6}\\
I_{2 D}^{+}=\iint_{D, y \leq 0} Q\left(w_{x}, w_{y}\right) d x d y, \text { or } \\
I_{2 D}^{+}=\iint_{D, y \leq 0}\left[\left(c_{2} K_{1}^{\prime}\right) w_{x}^{2}+\left(2 K_{2}+c_{2} K_{2}^{\prime}\right) w_{y}^{2}\right] d x d y \tag{6}
\end{gather*}
$$

and

$$
\begin{gather*}
I_{0}^{+}=\iint_{D} C^{+} w^{2} d x d y, \quad \text { or } \\
I_{0}^{+}=\left\{\begin{array}{l}
-\iint_{D, y \geq 0}\left[3 r+\left(x-c_{1}\right) r_{x}+\left(y+c_{2}\right) r_{y}\right] w^{2} d x d y \\
-\iint_{D, y \leq 0}\left[2 r+\left(x-c_{1}\right) r_{x}+c_{2} r_{y}\right] w^{2} d x d y
\end{array}\right. \tag{6}
\end{gather*}
$$

On G: claim that

$$
\begin{equation*}
I_{1 G}^{+}>0 . \tag{7}
\end{equation*}
$$

In fact,

$$
\begin{equation*}
I_{1\left(g_{1} \cup g_{3}\right)}^{+}=-\int_{g_{1} \cup g_{3}}\left\{w\left(K_{1} w_{x} v_{1}+K_{2} w_{y} v_{2}\right)\right\} d s=0 \tag{7}
\end{equation*}
$$

because $w=0$ on $g_{1} \cup g_{3}$ from [${ }^{* *}$].
Also that

$$
\begin{equation*}
I_{1 g_{2}}^{+}=-\int_{g_{2}}\left\{w\left(K_{1} w_{x} v_{1}+K_{2} w_{y} v_{2}\right)\right\} d s>0 \tag{7}
\end{equation*}
$$

In fact, on g_{2} :

$$
d x=\sqrt{-K} d y, \quad \text { or } \quad v_{2}=-\sqrt{-K} v_{1},
$$

because $d x=-v_{2} d s$ and $d y=v_{1} d s$ from (5).

Also

$$
\begin{aligned}
d w & =w_{x} d x+w_{y} d y=\left(-w_{x} v_{2}+w_{y} v_{1}\right) d s \\
& =\left(w_{x} \sqrt{-K}+w_{y}\right) v_{1} d s\left(\text { with } K=K_{1} / K_{2}\right) \\
& =\frac{\sqrt{-K_{1}} w_{x}+\sqrt{K_{2}} w_{y}}{\sqrt{K_{2}}} v_{1} d s \\
& =\frac{K_{1} w_{x}-\sqrt{-K_{1} K_{2}} w_{y}}{-\sqrt{-K_{1} K_{2}}} v_{1} d s \\
& \left.=\frac{K_{1} w_{x} v_{1}+K_{2} w_{y} v_{2}}{-\sqrt{-K_{1} K_{2}}} d s \text { (because: } K_{2} v_{2}=-\sqrt{-K_{1} K_{2}} v_{1}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
\left.\left(K_{1} w_{x} v_{1}+K_{2} w_{y} v_{2}\right) d s\right|_{g_{2}}=-\sqrt{-K_{1} K_{2}} d w . \tag{7}
\end{equation*}
$$

Therefore from (7) $)_{3}$ and by integration by parts we get that

$$
I_{1 g_{2}}^{+}=\frac{1}{2} \int_{g_{2}} \sqrt{-K_{1} K_{2}} d\left(w^{2}\right)=-\frac{1}{2} \int_{g_{2}}\left(\sqrt{-K_{1} K_{2}}\right)^{\prime} w^{2} d y
$$

because $w=0$ at the end-points of g_{2} (as $w=0$ on g_{1} and $w=0$ on g_{3}).
But

$$
d y=v_{1} d s>0 \quad \text { on } g_{2} .
$$

Thus

$$
\begin{equation*}
I_{1 g_{2}}^{+}=\frac{1}{4} \int_{g_{2}} \frac{\left(K_{1} K_{2}\right)^{\prime}}{\sqrt{-K_{1} K_{2}}} w^{2} d y>0 \tag{7}
\end{equation*}
$$

from condition $\left[R_{1 b}\right]$, completing the proof of $(7)_{2}$ and thus of (7) (from (7) $)_{1}$).
Claim now that

$$
\begin{equation*}
I_{2 G}^{+}>0 \tag{8}
\end{equation*}
$$

In fact,

$$
\begin{gather*}
I_{2\left(g_{1} \cup g_{3}\right)}^{+}=\int_{g_{1} \cup g_{3}}\left\{\left[\frac{1}{2} K_{2}^{\prime} v_{2}\right]+\left[\left(b^{+} v_{1}+c^{+} v_{2}\right) r\right]+\left[-\frac{1}{2} K_{2}^{\prime} v_{2}\right]\right\} w^{2} d s, \quad \text { or } \\
I_{2\left(g_{1} \cup g_{3}\right)}^{+}=\int_{g_{1} \cup g_{3}}\left\{\left[\left(b^{+} v_{1}+c^{+} v_{2}\right) r\right] w^{2}\right\} d s=0, \tag{8}
\end{gather*}
$$

because $w=0$ on $g_{1} \cup g_{3}$ from [**] and $t=K_{2}^{\prime}$ from (3).

Also that

$$
I_{2 g_{2}}^{+}=\int_{g_{2}}\left\{\left[\frac{1}{2} K_{2}^{\prime} v_{2}\right]+\left[\left(\left(x-c_{1}\right) v_{1}+c_{2} v_{2}\right) r\right]+\left[-\frac{1}{2} K_{2}^{\prime} v_{2}\right]\right\} w^{2} d s
$$

or

$$
\begin{equation*}
I_{2 g_{2}}^{+}=\int_{g_{2}}\left\{\left[\left(x-c_{1}\right) v_{1}+c_{2} v_{2}\right] r\right\} w^{2} d s>0 \tag{8}
\end{equation*}
$$

from condition $\left[R_{1 a}\right]$ and the fact that $\left(x-c_{1}\right) v_{1}+c_{2} v_{2}<0$ on g_{2} (as on $g_{2}: v_{1}>$ $0, v_{2}<0$ and $\left.x-c_{1}=\int_{0}^{y} \sqrt{-K(t)} d t-c_{0}<0\right)$ completing the proof of (8), where

$$
I_{2 G}^{+}=I_{2\left(g_{1} \cup g_{3}\right)}^{+}+I_{2 g_{2}}^{+}=I_{2 g_{2}}^{+}(>0)
$$

Claim then that

$$
\begin{equation*}
I_{3 G}^{+}=\oint_{G} \tilde{Q}^{+}\left(w_{x}, w_{y}\right) d s>0 \tag{9}
\end{equation*}
$$

where

$$
\tilde{Q}^{+}\left(w_{x}, w_{y}\right)=\tilde{A}^{+} w_{x}^{2}+\tilde{B}^{+} w_{y}^{2}+2 \tilde{D}^{+} w_{x} w_{y}
$$

is quadratic form with respect to w_{x}, and w_{y} on G.
In fact, note that on g_{1} (if $a^{+}=-1 / 2, b^{+}=x-c_{1}, c^{+}=y+c_{2}$):

$$
\begin{gathered}
\tilde{A}^{+}=\left[\left(x-c_{1}\right) v_{1}-\left(y+c_{2}\right) v_{2}\right] K_{1}, \quad \tilde{B}^{+}=\left[-\left(x-c_{1}\right) v_{1}+\left(y+c_{2}\right) v_{2}\right] K_{2} \\
\tilde{D}^{+}=\left(x-c_{1}\right) K_{2} v_{2}+\left(y+c_{2}\right) K_{1} v_{1} .
\end{gathered}
$$

From adjoint boundary condition [**] we get

$$
\begin{gather*}
0=\left.d w\right|_{g_{1}}=w_{x} d x+w_{y} d y, \quad \text { or } \\
w_{x}=N^{+} v_{1}, w_{y}=N^{+} v_{2}, \tag{9a}
\end{gather*}
$$

where $N^{+}=$normalizing factor. Therefore

$$
\begin{equation*}
I_{3 g_{1}}^{+}=\int_{g_{1}} \tilde{Q}^{+}\left(w_{x}, w_{y}\right) d s=\int_{g_{1}}\left(N^{+}\right)^{2}\left[\left(x-c_{1}\right) v_{1}+\left(y+c_{2}\right) v_{2}\right] H d s \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
H=K_{1} v_{1}^{2}+K_{2} v_{2}^{2}\left(>0 \text { on } g_{1}\right) \tag{10a}
\end{equation*}
$$

It is clear from (10)-(10a) and condition $\left[R_{2}\right]$ that

$$
\begin{equation*}
I_{3 g_{1}}^{+}=\int_{g_{1}}\left(N^{+}\right)^{2}\left[\left(x-c_{1}\right) d y-\left(y+c_{2}\right) d x\right] H \geq 0 \tag{10b}
\end{equation*}
$$

Similarly on $g_{3}\left(\right.$ if $\left.a^{+}=-1 / 2, b^{+}=x-c_{1}, c^{+}=c_{2}\right)$:

$$
\begin{gather*}
I_{3 g_{3}}^{+}=\int_{g_{3}} \tilde{Q}^{+}\left(w_{x}, w_{y}\right) d s=\int_{g_{3}}\left(N^{+}\right)^{2}\left[\left(x-c_{1}\right) v_{1}+c_{2} v_{2}\right] H d s, \quad \text { or } \\
I_{3 g_{3}}^{+}=\int_{g_{3}}\left(N^{+}\right)^{2}\left[\left(x-c_{1}\right) d y-c_{2} d x\right] H=0 \tag{11}
\end{gather*}
$$

because

$$
\begin{equation*}
H=0 \quad \text { on } g_{3} \tag{11a}
\end{equation*}
$$

as g_{3} is characteristic.
Finally claim that on g_{2} (if $a^{+}=-1 / 2, b^{+}=x-c_{1}, c^{+}=c_{2}$):

$$
\begin{equation*}
I_{3 g_{2}}^{+}=\int_{g_{2}} \tilde{Q}^{+}\left(w_{x}, w_{y}\right) d s>0 \tag{12}
\end{equation*}
$$

In fact, $\tilde{Q}^{+}=\tilde{Q}^{+}\left(w_{x}, w_{y}\right)$ is non-negative definite on g_{2}. It is clear that

$$
\tilde{A}^{+}=\left[\left(x-c_{1}\right) v_{1}-c_{2} v_{2}\right] K_{1}>0 \quad \text { on } g_{2},
$$

because of

$$
\begin{gathered}
\left.\left(x-c_{1}\right)\right|_{g_{2}}=\int_{0}^{y} \sqrt{-K(t)} d t-c_{0}<0 \quad \text { on } g_{2}, \\
v_{1}=\left.\frac{d y}{d s}\right|_{g_{2}}>0, \quad v_{2}=-\left.\frac{d x}{d s}\right|_{g_{2}}<0,\left.\quad K_{1}\right|_{g_{2}}<0,
\end{gathered}
$$

$v_{2}=-\sqrt{-K} v_{1}$ on g_{2}, and of condition $\left[R_{6}\right]$. In fact,

$$
\begin{aligned}
{\left.\left[\left(x-c_{1}\right) v_{1}-c_{2} v_{2}\right]\right|_{g_{2}} } & =\left[\left(\int_{0}^{y} \sqrt{-K(t)} d t-c_{0}\right)+\sqrt{-K} c_{2}\right] v_{1} \\
& =\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) v_{1}>0 \quad \text { on } g_{2}
\end{aligned}
$$

from condition $\left[R_{6}\right]$. Therefore

$$
\begin{equation*}
\tilde{A}^{+}=\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) v_{1} K_{1}>0 \quad \text { on } g_{2} . \tag{12a}
\end{equation*}
$$

Also

$$
\begin{gather*}
\tilde{B}^{+}=\left[-\left(x-c_{1}\right) v_{1}+c_{2} v_{2}\right] K_{2}, \quad \text { or } \\
\tilde{B}^{+}=-\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) v_{1} K_{2}>0 \quad \text { on } g_{2} \tag{12b}
\end{gather*}
$$

because of condition $\left[R_{6}\right],\left.v_{1}\right|_{g_{2}}>0,\left.K_{2}\right|_{g_{2}}>0$, and of above facts. Note that

$$
\begin{equation*}
\tilde{A}^{+}=(-K) \tilde{B}^{+} \quad \text { on } g_{2} \tag{12a}
\end{equation*}
$$

Besides

$$
\begin{gather*}
\tilde{D}^{+}=\left(x-c_{1}\right) K_{2} v_{2}+c_{2} K_{1} v_{1}, \quad \text { or } \\
\tilde{D}^{+}=\left[-\left(\int_{0}^{y} \sqrt{-K(t)} d t-c_{0}\right) K_{2} \sqrt{-K}+c_{2} K_{1}\right] v_{1}, \quad \text { or } \\
\tilde{D}^{+}=-\sqrt{-K_{1} K_{2}}\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) v_{1} \quad \text { on } g_{2}, \tag{12c}
\end{gather*}
$$

because

$$
-K_{1} / K_{2} \sqrt{-K}=\sqrt{-K} \quad \text { and } \quad K_{2} \sqrt{-K}=\sqrt{-K_{1} K_{2}}
$$

Note that

$$
\begin{equation*}
\tilde{D}^{+}=\sqrt{-K} \tilde{B}^{+} \quad \text { on } g_{2} \tag{12c}
\end{equation*}
$$

because $\sqrt{-K_{1} K_{2}}=\sqrt{-K} K_{2}$.
Finally from [12a] and [12c], we get

$$
\begin{equation*}
\tilde{A}^{+} \tilde{B}^{+}-\left(\tilde{D}^{+}\right)^{2}=0 \quad \text { on } g_{2} \tag{12d}
\end{equation*}
$$

Therefore the quadratic form \tilde{Q}^{+}is

$$
\begin{gather*}
\tilde{Q}^{+}=\tilde{Q}^{+}\left(w_{x}, w_{y}\right)=\left(\sqrt{-K} w_{x}+w_{y}\right)^{2}\left(\tilde{B}^{+}\right)>0 \text { on } g_{2}, \text { or } \\
\tilde{Q}^{+} d s=-\left(\sqrt{-K} w_{x}+w_{y}\right)^{2}\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) K_{2} d y, \text { or } \\
I_{3 g_{2}}^{+}=-\int_{g_{2}}\left(\sqrt{-K} w_{x}+w_{y}\right)^{2}\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) K_{2} d y>0, \tag{12}
\end{gather*}
$$

because of condition $\left[R_{6}\right],\left.d y\left(=v_{1} d s\right)\right|_{g_{2}}>0$, and $K_{2}>0$ on g_{2}, completing the proof of (12).

Therefore

$$
\begin{equation*}
I_{G}^{+}=I_{1 G}^{+}+I_{2 G}^{+}+I_{3 G}^{+}, \quad \text { or } \tag{13}
\end{equation*}
$$

$$
\begin{align*}
I_{G}^{+}= & \frac{1}{4} \int_{g_{2}} \frac{\left(K_{1} K_{2}\right)^{\prime}}{\sqrt{-K_{1} K_{2}}} w^{2} d y \\
& +\int_{g_{2}}\left\{\left[\left(x-c_{1}\right) v_{1}+c_{2} v_{2}\right] r\right\} w^{2} d s \\
& +\int_{g_{1}}\left(N^{+}\right)^{2}\left[\left(x-c_{1}\right) d y-\left(y+c_{2}\right) d x\right] H \\
& -\int_{g_{2}}\left(\sqrt{-K} w_{x}+w_{y}\right)^{2}\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) K_{2} d y \tag{14}
\end{align*}
$$

But on $g_{2}(: \quad d x=\sqrt{-K} d y)$

$$
\begin{align*}
{\left[\left(x-c_{1}\right) v_{1}+c_{2} v_{2}\right] d s } & =\left(x-c_{1}\right) d y-c_{2} d x=\left[\left(x-c_{1}\right)-c_{2} \sqrt{-K}\right] d y \\
& =\left(\int_{0}^{y} \sqrt{-K(t)} d t-c_{2} \sqrt{-K}-c_{0}\right) d y(<0) \tag{14a}
\end{align*}
$$

Thus

$$
\begin{align*}
I_{G}^{+}= & \int_{g_{1}}\left(N^{+}\right)^{2}\left[\left(x-c_{1}\right) d y-\left(y+c_{2}\right) d x\right] H \\
& +\int_{g_{2}}\left\{w^{2}\left[\frac{1}{4} \frac{\left(K_{1} K_{2}\right)^{\prime}}{\sqrt{-K_{1} K_{2}}}+r\left(\int_{0}^{y} \sqrt{-K(t)} d t-c_{2} \sqrt{-K}-c_{0}\right)\right]\right. \\
& \left.-\left[\left(\sqrt{-K} w_{x}+w_{y}\right)^{2}\left(\int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K}-c_{0}\right) K_{2}\right]\right\} d y>0 \tag{15}
\end{align*}
$$

where $H=K_{1} v_{1}^{2}+K_{2} v_{2}^{2}\left(>0\right.$ on $\left.g_{1}\right)$, and $N^{+}=$normalizing factor: $w_{x}=N^{+} v_{1}$, $w_{y}=N^{-} v_{2}\left(\right.$ on $\left.g_{1}\right)$.

Note from (15) that the two conditions $\left(\left[R_{1 a}\right]-\left[R_{1 b}\right]\right)$ could be replaced by the following condition $\left[\boldsymbol{R}_{\mathbf{1}}\right]$ on $\boldsymbol{g}_{\mathbf{2}}$:

$$
\begin{equation*}
\left[R_{1}\right]:\left(K_{1} K_{2}\right)^{\prime}+4 r \sqrt{-K_{1} K_{2}}\left(\int_{0}^{y} \sqrt{-K(t)} d t-c_{2} \sqrt{-K}-c_{0}\right)>0 . \tag{16}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
I_{D}^{+}=I_{D, y \geq 0}^{+}+I_{D, y \leq 0}^{+}, \quad \text { or } \tag{17}
\end{equation*}
$$

$$
\begin{align*}
I_{D}^{+}= & \iint_{D, y \geq 0}\left\{-\left(3 r+\left(x-c_{1}\right) r_{x}+\left(y+c_{2}\right) r_{y}\right) w^{2}\right. \\
& \left.+\left(K_{1}+\left(y+c_{2}\right) K_{1}^{\prime}\right) w_{x}^{2}+\left(K_{2}+\left(y+c_{2}\right) K_{2}^{\prime}\right) w_{y}^{2}\right\} d x d y \\
& +\iint_{D, y \leq 0}\left\{-\left(2 r+\left(x-c_{1}\right) r_{x}+c_{2} r_{y}\right) w^{2}\right. \\
& \left.+\left(c_{2} K_{1}^{\prime}\right) w_{x}^{2}+\left(2 K_{2}+c_{2} K_{2}^{\prime}\right) w_{y}^{2}\right\} d x d y \tag{18}
\end{align*}
$$

It is clear now from (4), (15), and (18) that

$$
\begin{gather*}
J^{+}=I_{D}^{+}+I_{G}^{+}>I_{D}^{+} \tag{19}\\
\mu a^{2}+\frac{1}{\mu} b^{2} \geq 2|a b|, \quad \mu>0 \tag{20}
\end{gather*}
$$

But from (1) we get

$$
\begin{equation*}
2 M^{+} w L^{+} w=2 a^{+} w L^{+} w+2 b^{+} w_{x} L^{+} w+2 c^{+} w_{y} L^{+} w . \tag{21}
\end{equation*}
$$

Therefore from (1), (20) and (21) we find

$$
\begin{align*}
J^{+} \leq & \iint_{D} 2\left|M^{+} w L^{+} w\right| d x d y \\
\leq & \iint_{D}\left\{2\left|a^{+} w\right|\left|L^{+} w\right|+2\left|b^{+} w_{x}\right|\left|L^{+} w\right|+2\left|c^{+} w_{y}\right|\left|L^{+} w\right|\right\} d x d y \\
\leq & \iint_{D}\left\{\left[\mu_{1}\left(a^{+} w\right)^{2}+\frac{1}{\mu_{1}}\left(L^{+} w\right)^{2}\right]+\left[\mu_{2}\left(b^{+} w_{x}\right)^{2}+\frac{1}{\mu_{2}}\left(L^{+} w\right)^{2}\right]\right. \\
& \left.+\left[\mu_{3}\left(c^{+} w_{y}\right)^{2}+\frac{1}{\mu_{3}}\left(L^{+} w\right)^{2}\right]\right\} d x d y, \quad \text { or } \\
J^{+} \leq & \iint_{D} T^{+}\left(w, w_{x}, w_{y}\right) d x d y+\left(\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}\right) \iint_{D}\left(L^{+} w\right)^{2} d x d y \tag{22}
\end{align*}
$$

where $\mu_{i}=$ const. $>0(i=1,2,3)$, and

$$
T^{+}=T^{+}\left(w, w_{x}, w_{y}\right)=\mu_{1}\left(a^{+}\right)^{2} w^{2}+\mu_{2}\left(b^{+}\right)^{2}\left(w_{x}\right)^{2}+\mu_{3}\left(c^{+}\right)^{2}\left(w_{y}\right)^{2} .
$$

Denote

$$
\begin{equation*}
C_{1}=\sqrt{\frac{1}{\mu_{1}}+\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}}} \quad(>0) \tag{23}
\end{equation*}
$$

Thus from (19) and (22)-(23) we get

$$
\begin{gather*}
I_{D}^{+}<J^{+} \leq \iint_{D} T^{+}\left(w, w_{x}, w_{y}\right) d x d y+C_{1}^{2}\left\|L^{+} w\right\|_{0}^{2}, \quad \text { or } \\
I_{D}^{+}-\iint_{D} T^{+}\left(w, w_{x}, w_{y}\right) d x d y<C_{1}^{2}\left\|L^{+} w\right\|_{0}^{2} \tag{24}
\end{gather*}
$$

Therefore from (2), (18) and (24) we find

$$
\begin{align*}
& \iint_{D, y \geq 0} \quad\left\{-\left[\left(3 r+\left(x-c_{1}\right) r_{x}+\left(y+c_{2}\right) r_{y}\right)+\frac{1}{4} \mu_{1}\right] w^{2}\right. \\
& \quad+\left[\left(K_{1}+\left(y+c_{2}\right) K_{1}^{\prime}\right)-\mu_{2}\left(x-c_{1}\right)^{2}\right] w_{x}^{2} \\
& \left.\quad+\left[\left(K_{2}+\left(y+c_{2}\right) K_{2}^{\prime}\right)-\mu_{3}\left(y+c_{2}\right)^{2}\right] w_{y}^{2}\right\} d x d y \\
& \quad+\iint_{D, y \leq 0}\left\{-\left[\left(2 r+\left(x-c_{1}\right) r_{x}+c_{2} r_{y}\right)+\frac{1}{4} \mu_{1}\right] w^{2}\right. \\
& \quad+\left[\left(c_{2} K_{1}^{\prime}\right)-\mu_{2}\left(x-c_{1}\right)^{2}\right] w_{x}^{2} \\
& \left.\quad+\left[\left(2 K_{2}+c_{2} K_{2}^{\prime}\right)-\mu_{3}\left(c_{2}\right)^{2}\right] w_{y}^{2}\right\} d x d y \\
& \quad<C_{1}^{2}\left\|L^{+} w\right\|_{0}^{2} . \tag{25}
\end{align*}
$$

But

$$
\begin{equation*}
\|w\|_{1}^{2}=\left(\iint_{D, y \geq 0}+\iint_{D, y \leq 0}\right)\left(w^{2}+w_{x}^{2}+w_{y}^{2}\right) d x d y \tag{26}
\end{equation*}
$$

Thus from (25)-(26) and conditions $\left(\left[R_{3}\right]-\left[R_{4}\right]-\left[R_{5}\right]\right)$ we get

$$
\begin{gathered}
C_{2}^{2}\|w\|_{1}^{2}<C_{1}^{2}\left\|L^{+} w\right\|_{0}^{2}, \quad \text { or } \\
\|w\|_{1}^{2}<C^{2}\left\|L^{+} w\right\|_{0}^{2}
\end{gathered}
$$

with $C=C_{1} / C_{2}=$ const. >0, completing the proof of the a-priori estimate $[A P]$.
Note that

$$
\begin{equation*}
C_{2}=\sqrt{\min \left(\delta_{11}, \delta_{21}, \delta_{31}\right)+\min \left(\delta_{12}, \delta_{22}, \delta_{32}\right)}(>0) \tag{27}
\end{equation*}
$$

where

$$
\delta_{i j}=\text { const. }>0(i=1,2,3 ; j=1,2) \text { in conditions }\left(\left[R_{3}\right]-\left[R_{4}\right]-\left[R_{5}\right]\right)
$$

Therefore by above Criterion ([1]) the following Existence Theorem holds.

Existence Theorem

Consider Problem (T) with parabolic elliptic-hyperbolic equation:

$$
L u \equiv K_{1}(y) u_{x x}+\left(K_{2}(y) u_{y}\right)^{\prime}+r(x, y) u=f(x, y)
$$

and boundary condition: $u=0$ on $g_{1} \cup g_{2}$. Also consider the simply-connected domain $D\left(\subset \mathfrak{R}^{2}\right)$ bounded by a piecewise-smooth boundary $G=\partial D=g_{1} \cup g_{2} \cup$ g_{3} : curve g_{1} (for $y>0$) connecting $A^{\prime}=(-1,0)$ and $A=(1,0)$, and characteristics $g_{2}, g_{3}($ for $y<0)$ such that $g_{2}: x=\int_{0}^{y} \sqrt{-K(t)} d t+1, g_{3}: x=-\int_{0}^{y}$ $\sqrt{-K(t)} d t-1$, and $K=K_{1} / K_{2}: \lim _{y \rightarrow 0} K(y)$ exists, $K_{1}(y)>0$ whenever $y>0$, $=0$ whenever $y=0$, and <0 whenever $y<0$, as well as $K_{2}(y)>0$ in D.

Assume conditions:

$$
\begin{gathered}
{\left[R_{1 a}\right]: r<0 \text { on } g_{2},} \\
{\left[R_{1 b}\right]:\left(K_{1} K_{2}\right)^{\prime}>0 \text { on } g_{2},} \\
{\left[R_{1 c}\right]: K_{i}^{\prime}>0(i=1,2) \quad \text { in } D,}
\end{gathered} \begin{gathered}
{\left[R_{3}\right]: \begin{cases}4\left(3 r+\left(x-c_{1}\right) r_{x}+\left(y+c_{2}\right) r_{y}\right)+\mu_{1} \leq-4 \delta_{11}<0 & \text { for } y \geq 0 \\
4\left(2 r+\left(x-c_{1}\right) r_{x}+c_{2} r_{y}\right)+\mu_{1} \leq-4 \delta_{12}<0 & \text { for } y \leq 0,\end{cases} } \\
{\left[R_{4}\right]: \begin{cases}K_{1}+\left(y+c_{2}\right) K_{1}^{\prime}-\mu_{2}\left(x-c_{1}\right)^{2} \geq \delta_{21}>0 & \text { for } y \geq 0 \\
c_{2} K_{1}^{\prime}-\mu_{2}\left(x-c_{1}\right)^{2} \geq \delta_{22}>0 & \text { for } y \leq 0,\end{cases} } \\
{\left[R_{5}\right]: \begin{cases}K_{2}+\left(y+c_{2}\right) K_{2}^{\prime}-\mu_{3}\left(y+c_{2}\right)^{2} \geq \delta_{31}>0 & \text { for } y \geq 0 \\
2 K_{2}+c_{2} K_{2}^{\prime}-\mu_{3}\left(c_{2}\right)^{2} \geq \delta_{32}>0 & \text { for } y \leq 0,\end{cases} }
\end{gathered}
$$

where $\delta_{i j}$ are positive constants $(i=1,2,3 ; j=1,2)$, and

$$
\left[R_{6}\right]: \int_{0}^{y} \sqrt{-K(t)} d t+c_{2} \sqrt{-K(y)}-c_{0}<0 \quad \text { on } g_{2}
$$

where $K_{i}(i=1,2), r$, and f are sufficiently smooth, and $c_{1}=1+c_{0}$, and c_{0}, c_{2}, and $\mu_{i}(i=1,2,3)$ are positive constants.

Then there exists a weak solution of Problem (T) in D.

Special case: In D take

$$
\begin{gathered}
K_{1}=y \text { and } K_{2}=y-k y_{p}(>0), \quad \text { where } k=\text { constant }>2 \text { and } \\
y_{p}=\text { constant }(<0): \int_{0}^{y_{p}} \sqrt{-\frac{t}{t-k y_{p}}} d t=-1\left(y_{p}<t<0\right), \quad \text { or equivalently } \\
y_{p}=1 /\left(\sqrt{k-1}-k \tan ^{-1} \frac{1}{\sqrt{k-1}}\right)(<0) \text { for } k>2
\end{gathered}
$$

Then conditions $\left[R_{1 b}\right],\left[R_{4}\right],\left[R_{5}\right]$ and $\left[R_{6}\right]$ hold on $y=0$ and in general in D.
Note that substituting $\sqrt{-t /\left(t-k y_{p}\right)}=\varphi$, one gets that

$$
\int_{0}^{y} \sqrt{-\frac{t}{t-k y_{p}}} d t=k y_{p} \tan ^{-1} \sqrt{-\frac{y}{y-k y_{p}}}+\sqrt{-y\left(y-k y_{p}\right)}
$$

where

$$
\int \frac{2 \varphi^{2}}{\left(1+\varphi^{2}\right)^{2}} d \varphi=\tan ^{-1} \varphi-\frac{\varphi}{1+\varphi^{2}}+c
$$

Note that conditions $\left(\left[R_{1 a}\right]-\left[R_{1 b}\right]\right)$ could be substituted by condition $\left[R_{1}\right]$ (16).

Open: If $r=0$, then (25) does not yield existence of weak solution.

References

[1] Berezanski, Ju. M.: Expansions in Eigenfunctions of Self-adjoint operators, A.M.S. Translations of Math. Monographs, Vol. 17, 79-80, 1968.
[2] Bitsadze, A. V.: Some Classes of Partial Differential Equations, (in Russian), Moscow, 1981.
[3] Chaplygin, S. A.: On Gas Jets, Scientific Annals of the Imperial Univ. of Moscow, No. 21, 1904; Transl. by Brown Univ., R.I., 1944.
[4] Rassias, J. M.: (1) Mixed Type Equations, Teubner-Texte zur Mathematik, Leipzig, 90, 1986;
(2) Lecture Notes on Mixed Type Partial Differential Equations, World Sci., Singapore, 1990.
[5] Rassias, J. M.: Geometry, Analysis and Mechanics, World Sci., Singapore, 189-195, 1994.
[6] Semerdjieva, R. I.: Uniqueness of Regular Solutions for a Class of Non-linear Degenerating Hyperbolic Equations, Mathematica Balkanica, New series, vol. 7, Fasc. 3-4, p. 277283, 1993.
[7] Tricomi, F. G.: Sulle Equazioni Lineari alle Parziali di 2° Ordine di Tipo Misto, Atti Accad. Naz. dei Lincei, 14, p. 133-247, 1923.
A.M.S. (1996) Subject Classification No.: 35M05

National and Capodistrian University of Athens Pedagogical Department E.E.
4, Agamemnonos Str., Aghia Paraskevi Attikis, 153 42, Greece.

