EXISTENCE OF WEAK SOLUTIONS FOR A PARABOLIC ELLIPTIC-HYPERBOLIC TRICOMI PROBLEM

By

John Michael RASSIAS

Abstract. It is well-known that the pioneer of mixed type boundary value problems is F. G. Tricomi (1923) with his Tricomi equation: $yu_{xx} + u_{yy} = 0$. In this paper we consider the more general case of above equation so that

$$Lu \equiv K_1(y)u_{xx} + (K_2(y)u_y)' + ru = f$$

is hyperbolic-elliptic and parabolic, and then prove the existence of weak solutions for the corresponding Tricomi problem by employing the well-known a-b-c energy integral method to establish an a-priori estimate. This result is interesting in fluid mechanics.

The Tricomi Problem

Consider the parabolic elliptic-hyperbolic equation

$$Lu \equiv K_1(y)u_{xx} + (K_2(y)u_y)' + r(x, y)u = f(x, y), \qquad (*)$$

([2], [6]), in a bounded simply-connected domain $D(\subset \Re^2)$ with a piecewisesmooth boundary $G = \partial D = g_1 \cup g_2 \cup g_3$, where f = f(x, y) is continuous, r = r(x, y) (< 0) and $K_1 = K_1(y)$ are once-continuously differentiable for $x \in [-1, 1]$ and $y \in [-m, M]$ with $-m = \inf\{y : (x, y) \in D\}$, and $M = \sup\{y : (x, y) \in D\}$, and $K_1(y) > 0$ for y > 0, = 0 for y = 0, and < 0 for y < 0. Also $K_2 = K_2(y)$ is twice-continuously differentiable in [-m, M], $K_2(y) > 0$ in D. Besides $\lim_{y\to 0} K(y)$ exists, if $K = K(y) = K_1(y)/K_2(y) > 0$ whenever y > 0, = 0 whenever y = 0, and < 0 whenever y < 0.

Received July 25, 1997 Revised May 14, 1998

Finally g_1 is "the elliptic arc (for y > 0)" connecting points A' = (-1, 0) and A = (1, 0), g_2 is "the hyperbolic characteristic arc (for y < 0)" connecting points A = (1, 0) and $P = (0, y_p)$: $\int_0^{y_p} \sqrt{-K(t)} dt = -1$ (e.g. if $K_1 = y$ and $K_2 = 1$, then $y_p = -(3/2)^{2/3} \cong -1.31$), $g_2 (\equiv PA)$: $x = \int_0^y \sqrt{-K(t)} dt + 1$, and g_3 is "the hyperbolic characteristic arc (for y < 0)" connecting points A' = (-1, 0) and $P = (0, y_p)$: $g_3 (\equiv A'P)$: $x = -\int_0^y \sqrt{-K(t)} dt - 1$.

Denote "the elliptic subregion of D" by D_e (= the space bounded by g_1 and A'A), "the hyperbolic subregion of D" by D_h (= the space bounded by g_2 , g_3 and AA'), and "the parabolic arc of D" by

$$D_p (\equiv A'A) = \{ (x, y) \in D: -1 < x < 1, y = 0 \}.$$

Note that the order of equation (*) does not degenerate on the line y = 0. But (*) is parabolic for y = 0 because $K_1(0) = 0$ and $K_2(0) > 0$ hold simultaneously. Assume boundary condition

$$u = 0 \quad \text{on } g_1 \cup g_2. \tag{**}$$

The Tricomi problem, or Problem (T) consists in finding a function u = u(x, y) which satisfies equation (*) in D and boundary condition (**) on $g_1 \cup g_2$ ([4], [5], [7]).

PRELIMINARIES. Denote $\alpha = (\alpha_1, \alpha_2)$: $\alpha_1, \alpha_2 \ge 0, |\alpha| = \alpha_1 + \alpha_2$. Also if $p = (x, y) \in \Re^2$, and $\tilde{p} = (\tilde{x}, \tilde{y}) \in \Re^2$, then denote $p^{\alpha} = x^{\alpha_1} y^{\alpha_2}, \langle p, \tilde{p} \rangle = x \tilde{x} + y \tilde{y}, |p| = (\langle p, p \rangle)^{1/2}$.

Finally denote

$$D_1 = \frac{\partial}{\partial x}, \quad D_2 = \frac{\partial}{\partial y}, \quad \text{and} \quad (D^{\alpha}u)(p) = (D_1^{\alpha_1}D_2^{\alpha_2}u)(p)$$

for sufficiently smooth functions $u = u(p) : p = (x, y) \in \mathbb{R}^2$. Consider the adjoint equation

$$L^{+}w \equiv K_{1}(y)w_{xx} + (K_{2}(y)w_{y})' + r(x, y)w = f(x, y), \qquad [*]$$

([1]-[2], [6]), in D, where L^+ is the formal adjoint operator of the formal operator L and is $L^+ = L$. (Note that equations for characteristics of (*) and [*] are identical). In fact,

$$(K_2(y)w_y)' = K_2(y)w_{yy} + K_2'(y)w_y$$
, and

thus

$$L^{+}w = (K_{1}(y)w)_{xx} + (K_{2}(y)w)_{yy} - (K'_{2}(y)w)_{y} + r(x, y)w$$
$$= Lw, \text{ because } (K_{2}(y)w)_{yy} = (K_{2}(y)w_{y})' + (K'_{2}(y)w)_{y}$$

Note in general that if

$$Lu \equiv \sum_{i,j=1}^{2} a_{ij}(p) D_i D_j u + \sum_{i=1}^{2} a_i(p) D_i u + a(p) u, \text{ then}$$
$$L^+ w \equiv \sum_{i,j=1}^{2} D_i D_j (a_{ij}(p) w) - \sum_{i=1}^{2} D_i (a_i(p) w) + a(p) w.$$

Assume adjoint boundary condition

$$w = 0 \quad \text{on } g_1 \cup g_3.$$
 [**]

Denote

$$C^{2}(\overline{D}) = \{u(p) \mid p = (x, y) \in \overline{D}(=D \cup G): u = u(p)$$

is twice-continuously differentiable in $\overline{D}\}.$

This space is complete normed space with norm

$$||u||_{C^2(\bar{D})} = \max\{|D^a u(p)| \mid p \in \bar{D}: |a| \le 2\}.$$

Also denote

$$L^{2}(D) = \left\{ u \left| \int_{D} |u(p)|^{2} dp < \infty \right\}.$$

The norm of space $L^2(D)$ is

$$||u||_0 = ||u||_{L^2(D)} = \left(\int_D |u(p)|^2 dp\right)^{1/2},$$

where p = (x, y), and dp = dxdy.

Besides denote

$$D(L) = \{ u \in C^2(\overline{D}) : u = 0 \text{ on } g_1 \cup g_2 \},\$$

which is the domain of the formal operator L, and

$$D(L^+) = \{ w \in C^2(\overline{D}) : w = 0 \text{ on } g_1 \cup g_3 \},\$$

which is the domain of the adjoint operator L^+ .

Finally denote

$$W_2^2(D) = \{ u \mid D^a u(\cdot) \in L^2(D), \ |a| \le 2 \}$$

which is the complete normed Sobolev space with norm

$$\|u\|_{2} = \|u\|_{w_{2}^{2}(D)} = \left(\|u\|_{L^{2}(D)}^{2} + \sum_{|\alpha|=2} \|D^{\alpha}u\|_{L^{2}(D)}^{2}\right)^{1/2},$$

or equivalently: $||u||_2 = (\sum_{|\alpha| \le 2} ||D^{\alpha}u||^2_{L^2(D)})^{1/2}$,

$$W_2^2(D,bd) = \overline{D(L)_{\|\cdot\|_2}},$$

which is the closure of domain D(L) with norm $\|\cdot\|_2$, and

$$W_2^2(D, bd^+) = \overline{D(L^+)_{\|\cdot\|_2}},$$

which is the closure of domain $D(L^+)$ with norm $\|\cdot\|_2$, or equivalently:

$$W_2^2(D,bd^+) = \{ w \in W_2^2(D) \colon \langle Lu, w \rangle_0 = \langle u, L^+w \rangle_0 \text{ for all } u \in W_2^2(D,bd) \}$$

on the corresponding norms.

DEFINITION. A function $u = u(p) \in L^2(D)$ is a weak solution of Problem (T) if

$$\langle f, w \rangle_0 = \langle u, L^+ w \rangle_0$$
 ([4]₍₂₎, p. 86–106)

holds for all $w \in W_2^2(D, bd^+)$ ([4]₍₂₎, p. 86–106).

CRITERION ([1]). (i). A necessary and sufficient condition for the existence of a weak solution of Problem (T) is that the following a-priori estimate

$$\|w\|_{0} \le C \|L^{+}w\|_{0}, \tag{AP}$$

holds for all $w \in W_2^2(D, bd^+)$, and for some C = const. > 0 ([4]₍₂₎, p. 86–106).

(ii). A sufficient condition for the existence of a weak solution of Problem (T) is that the following a-priori estimate

$$\|w\|_{1} \le C \|L^{+}w\|_{0}, \qquad [AP]$$

holds for all $w \in W_2^2(D, bd^+)$, and for some C = const. > 0.

Also note that both the Hahn-Banach Theorem and the Riesz Representation Theorem would play ([4]₍₂₎, p. 92–95) an important role in this paper if above criterion were not employed. For the justification of the definition of weak solutions we apply Green's theorem ([4]₍₂₎, p. 95–98) and classical techniques in order to show that f = Lu in D and u = 0 on $g_1 \cup g_2$.

A-Priori estimate ([*AP*])

We apply the a-b-c classical energy integral method and use adjoint boundary condition [**]. Then **claim** that the *a*-priori estimate [AP] holds for all $w \in W_2^2(D, bd^+)$, and for some C = const. > 0.

In fact, we investigate

$$J^{+} = 2\langle M^{+}w, L^{+}w \rangle_{0} = \iint_{D} 2M^{+}wL^{+}w\,dxdy \tag{1}$$

where

$$M^+w = a^+(x, y)w + b^+(x, y)w_x + c^+(x, y)w_y$$
 in D,

with choices:

$$a^{+} = -\frac{1}{2}$$
, and $b^{+} = x - c_{1}$ in D , and $c^{+} = \begin{cases} y + c_{2} & \text{for } y \ge 0 \\ c_{2} & \text{for } y \le 0 \end{cases}$ (2)

where $c_1 = 1 + c_0$, and c_0 , c_2 : are positive constants.

Consider the ordinary identities:

$$2aK_{1}ww_{xx} = (2aK_{1}ww_{x})_{x} - 2aK_{1}w_{x}^{2} - (a_{x}K_{1}w_{x}^{2})_{x} + a_{xx}K_{1}w^{2},$$

$$2aK_{2}ww_{yy} = (2aK_{2}ww_{y})_{y} - 2aK_{2}w_{y}^{2} - ((aK_{2})_{y}w^{2})_{y} + (aK_{2})_{yy}w^{2},$$

$$2bK_{1}w_{x}w_{xx} = (bK_{1}w_{x}^{2})_{x} - b_{x}K_{1}w_{x}^{2},$$

$$2bK_{2}w_{x}w_{yy} = (2bK_{2}w_{x}w_{y})_{y} - (bK_{2}w_{y}^{2})_{x} + b_{x}K_{2}w_{y}^{2} - 2(bK_{2})_{y}w_{x}w_{y},$$

$$2cK_{1}w_{y}w_{xx} = (2cK_{1}w_{x}w_{y})_{x} - (cK_{1}w_{x}^{2})_{y} + (cK_{1})_{y}w_{x}^{2} - 2K_{1}c_{x}w_{x}w_{y},$$

$$2cK_{2}w_{y}w_{yy} = (cK_{2}w_{y}^{2})_{y} - (cK_{2})_{y}w_{y}^{2},$$

$$2arww = 2arw^{2}, \quad 2brww_{x} = (brw^{2})_{x} - (br)_{x}w^{2},$$

$$2crww_{y} = (crw^{2})_{y} - (cr)_{y}w^{2}, \quad 2atww_{y} = (atw^{2})_{y} - (at)_{y}w^{2},$$

$$2btw_{x}w_{y} = 2btw_{x}w_{y}, \quad 2ctw_{y}w_{y} = 2ctw_{y}^{2},$$

where $t \ (\equiv \text{ coefficient of } w_y \text{ in } L^+w)$, or

$$t = K_2'(y). \tag{3}$$

Then employing above identities and Green's theorem, and setting $t = K'_2(y)$ we obtain from (1) and [*] that

$$J^{+} = \iint_{D} 2(a^{+}w + b^{+}w_{x} + c^{+}w_{y})[K_{1}(y)w_{xx} + K_{2}(y)w_{yy} + rw + tw_{y}] dxdy$$
$$= I_{D}^{+} + I_{1G}^{+} + I_{2G}^{+} + I_{3G}^{+},$$
(4)

where

$$I_D^+ = \iint_D (A^+ w_x^2 + B^+ w_y^2 + C^+ w^2 + 2D^+ w_x w_y) \, dx \, dy,$$

$$I_{1G}^+ = \oint_{G(=\partial D)} \{2a^+ w (K_1 w_x v_1 + K_2 w_y v_2)\} \, ds,$$

$$I_{2G}^+ = \oint_{G(=\partial D)} \{-[K_1 a_x^+ v_1 + (a^+ K_2)_y v_2] + [(b^+ v_1 + c^+ v_2)r] + [(a^+ v_2)t]\} w^2 \, ds,$$

and

$$I_{3G}^{+} = \oint_{G} (\tilde{A}^{+} w_{x}^{2} + \tilde{B}^{+} w_{y}^{2} + 2\tilde{D}^{+} w_{x} w_{y}) \, ds,$$

with

$$A^{+} = -2a^{+}K_{1} - b_{x}^{+}K_{1} + (c^{+}K_{1})_{y},$$

$$B^{+} = -2a^{+}K_{2} + b_{x}^{+}K_{2} - (c^{+}K_{2})_{y} + 2c^{+}t,$$

$$C^{+} = [2a^{+}r + K_{1}a_{xx}^{+} + (a^{+}K_{2})_{yy}] - [(b^{+}r)_{x} + (c^{+}r)_{y}] - [(a^{+}t)_{y}],$$

$$D^{+} = -[K_{1}c_{x}^{+} + (b^{+}K_{2})_{y} - b^{+}t], \text{ and}$$

$$\tilde{A}^{+} = (b^{+}v_{1} - c^{+}v_{2})K_{1}, \quad \tilde{B}^{+} = (-b^{+}v_{1} + c^{+}v_{2})K_{2},$$

$$\tilde{D}^{+} = b^{+}K_{2}v_{2} + c^{+}K_{1}v_{1}, \text{ where}$$

$$v = (v_{1}, v_{2}) = \left(\frac{dy}{ds}, -\frac{dx}{ds}\right), \quad (ds > 0),$$
(5)

is the outer unit normal vector on the boundary G of the mixed domain D.

Note that in $D, y \ge 0$ (if $a^+ = -1/2, b^+ = x - c_1, c^+ = y + c_2$):

$$A^{+} = K_{1} - (K_{1}) + ((y + c_{2})K_{1})_{y} = K_{1} + (y + c_{2})K_{1}',$$

$$B^{+} = K_{2} + (K_{2}) - ((y + c_{2})K_{2})_{y} + 2(y + c_{2})t = K_{2} + (y + c_{2})K_{2}',$$

$$C^{+} = \left[-r - \frac{1}{2}K_{2}''\right] - \left[((x - c_{1})r)_{x} + ((y + c_{2})r)_{y}\right] - \left[-\frac{1}{2}K_{2}''\right]$$

$$= -\left[3r + (x - c_{1})r_{x} + (y + c_{2})r_{y}\right], \text{ and}$$

$$D^{+} = -\left[((x - c_{1})K_{2})_{y} - (x - c_{1})t\right]$$

$$= -\left[(x - c_{1})K_{2}' - (x - c_{1})K_{2}'\right] = 0,$$

because from (3): $t = K'_2(y)$. Similarly in $D, y \le 0$ (if $a^+ = -1/2, b^+ = x - c_1, c^+ = c_2$):

$$A^{+} = K_{1} - (K_{1}) + (c_{2}K_{1})_{y} = c_{2}K_{1}',$$

$$B^{+} = K_{2} + (K_{2}) - (c_{2}K_{2})_{y} + 2c_{2}t = 2K_{2} + c_{2}K_{2}',$$

$$C^{+} = \left[-r - \frac{1}{2}K_{2}''\right] - \left[((x - c_{1})r)_{x} + (c_{2}r)_{y}\right] - \left[-\frac{1}{2}K_{2}''\right]$$

$$= -\left[2r + (x - c_{1})r_{x} + c_{2}r_{y}\right], \text{ and }$$

$$D^{+} = -\left[((x - c_{1})K_{2})_{y} - (x - c_{1})t\right] = 0,$$

because from (3): $t = K'_2(y)$.

Therefore

$$I_D^+ = I_{1D}^+ + I_{2D}^+ + I_0^+, (6)$$

where $Q = A^+ w_x^2 + B^+ w_y^2 + 2D^+ w_x w_y = Q(u_x, u_y),$

$$I_{1D}^{+} = \iint_{D, y \ge 0} Q(w_x, w_y) \, dx dy, \text{ or}$$

$$I_{1D}^{+} = \iint_{D, y \ge 0} [(K_1 + (y + c_2)K_1')w_x^2 + (K_2 + (y + c_2)K_2')w_y^2] \, dx dy, \qquad (6)_1$$

$$I_{2D}^{+} = \iint_{D, y \le 0} Q(w_x, w_y) \, dx dy, \text{ or}$$

$$I_{2D}^{+} = \iint_{D, y \le 0} [(c_2K_1')w_x^2 + (2K_2 + c_2K_2')w_y^2] \, dx dy, \qquad (6)_2$$

and

$$I_{0}^{+} = \iint_{D} C^{+} w^{2} \, dx dy, \quad \text{or}$$

$$I_{0}^{+} = \begin{cases} -\iint_{D, y \ge 0} [3r + (x - c_{1})r_{x} + (y + c_{2})r_{y}]w^{2} \, dx dy \\ -\iint_{D, y \le 0} [2r + (x - c_{1})r_{x} + c_{2}r_{y}]w^{2} \, dx dy. \end{cases}$$
(6)₃

On G: claim that

$$I_{1G}^+ > 0.$$
 (7)

In fact,

$$I_{1(g_1\cup g_3)}^+ = -\int_{g_1\cup g_3} \{w(K_1w_xv_1 + K_2w_yv_2)\}\,ds = 0,\tag{7}$$

because w = 0 on $g_1 \cup g_3$ from [**].

Also that

$$I_{1g_2}^+ = -\int_{g_2} \{ w(K_1 w_x v_1 + K_2 w_y v_2) \} \, ds > 0. \tag{7}_2$$

In fact, on g_2 :

$$dx = \sqrt{-K} dy$$
, or $v_2 = -\sqrt{-K} v_1$,

because $dx = -v_2 ds$ and $dy = v_1 ds$ from (5).

Also

$$dw = w_x \, dx + w_y \, dy = (-w_x v_2 + w_y v_1) \, ds$$

= $(w_x \sqrt{-K} + w_y) v_1 \, ds$ (with $K = K_1/K_2$)
= $\frac{\sqrt{-K_1} w_x + \sqrt{K_2} w_y}{\sqrt{K_2}} v_1 \, ds$
= $\frac{K_1 w_x - \sqrt{-K_1 K_2} w_y}{-\sqrt{-K_1 K_2}} v_1 \, ds$
= $\frac{K_1 w_x v_1 + K_2 w_y v_2}{-\sqrt{-K_1 K_2}} \, ds$ (because: $K_2 v_2 = -\sqrt{-K_1 K_2} v_1$)

or

$$(K_1 w_x v_1 + K_2 w_y v_2) ds|_{g_2} = -\sqrt{-K_1 K_2} dw.$$
⁽⁷⁾

Therefore from $(7)_3$ and by integration by parts we get that

$$I_{1g_2}^+ = \frac{1}{2} \int_{g_2} \sqrt{-K_1 K_2} \, d(w^2) = -\frac{1}{2} \int_{g_2} (\sqrt{-K_1 K_2})' w^2 \, dy,$$

because w = 0 at the end-points of g_2 (as w = 0 on g_1 and w = 0 on g_3). But

$$dy = v_1 \, ds > 0 \quad \text{on } g_2.$$

Thus

$$I_{1g_2}^+ = \frac{1}{4} \int_{g_2} \frac{(K_1 K_2)'}{\sqrt{-K_1 K_2}} w^2 \, dy > 0 \tag{7}_4$$

from condition $[R_{1b}]$, completing the proof of $(7)_2$ and thus of (7) (from $(7)_1$). Claim now that

$$I_{2G}^+ > 0.$$
 (8)

In fact,

$$I_{2(g_1 \cup g_3)}^+ = \int_{g_1 \cup g_3} \left\{ \left[\frac{1}{2} K_2' v_2 \right] + \left[(b^+ v_1 + c^+ v_2) r \right] + \left[-\frac{1}{2} K_2' v_2 \right] \right\} w^2 \, ds, \quad \text{or}$$

$$I_{2(g_1 \cup g_3)}^+ = \int_{g_1 \cup g_3} \left\{ \left[(b^+ v_1 + c^+ v_2) r \right] w^2 \right\} \, ds = 0, \tag{8}$$

because w = 0 on $g_1 \cup g_3$ from [**] and $t = K'_2$ from (3).

Also that

$$I_{2g_2}^+ = \int_{g_2} \left\{ \left[\frac{1}{2} K_2' v_2 \right] + \left[((x - c_1) v_1 + c_2 v_2) r \right] + \left[-\frac{1}{2} K_2' v_2 \right] \right\} w^2 \, ds,$$

or

$$I_{2g_2}^+ = \int_{g_2} \{ [(x-c_1)v_1 + c_2v_2]r \} w^2 \, ds > 0, \tag{8}_2$$

from condition $[R_{1a}]$ and the fact that $(x - c_1)v_1 + c_2v_2 < 0$ on g_2 (as on $g_2 : v_1 > 0$, $v_2 < 0$ and $x - c_1 = \int_0^y \sqrt{-K(t)} dt - c_0 < 0$) completing the proof of (8), where

$$I_{2G}^{+} = I_{2(g_1 \cup g_3)}^{+} + I_{2g_2}^{+} = I_{2g_2}^{+} (>0)$$

Claim then that

$$I_{3G}^{+} = \oint_{G} \tilde{Q}^{+}(w_{x}, w_{y}) \, ds > 0, \tag{9}$$

where

$$\tilde{Q}^+(w_x, w_y) = \tilde{A}^+ w_x^2 + \tilde{B}^+ w_y^2 + 2\tilde{D}^+ w_x w_y$$

is quadratic form with respect to w_x , and w_y on G.

In fact, note that on g_1 (if $a^+ = -1/2$, $b^+ = x - c_1$, $c^+ = y + c_2$):

$$\tilde{A}^{+} = [(x-c_1)v_1 - (y+c_2)v_2]K_1, \quad \tilde{B}^{+} = [-(x-c_1)v_1 + (y+c_2)v_2]K_2,$$
$$\tilde{D}^{+} = (x-c_1)K_2v_2 + (y+c_2)K_1v_1.$$

From adjoint boundary condition [**] we get

$$0 = dw|_{g_1} = w_x \, dx + w_y \, dy, \quad \text{or}$$

$$w_x = N^+ v_1, \, w_y = N^+ v_2, \qquad (9a)$$

where $N^+ =$ normalizing factor. Therefore

$$I_{3g_1}^+ = \int_{g_1} \tilde{Q}^+(w_x, w_y) \, ds = \int_{g_1} (N^+)^2 [(x - c_1)v_1 + (y + c_2)v_2] H \, ds, \tag{10}$$

where

$$H = K_1 v_1^2 + K_2 v_2^2 \ (>0 \ \text{on} \ g_1). \tag{10a}$$

It is clear from (10)-(10a) and condition $[R_2]$ that

$$I_{3g_1}^+ = \int_{g_1} (N^+)^2 [(x - c_1) \, dy - (y + c_2) \, dx] H \ge 0.$$
 (10b)

Similarly on g_3 (if $a^+ = -1/2$, $b^+ = x - c_1$, $c^+ = c_2$):

$$I_{3g_3}^+ = \int_{g_3} \tilde{Q}^+(w_x, w_y) \, ds = \int_{g_3} (N^+)^2 [(x - c_1)v_1 + c_2 v_2] H \, ds, \quad \text{or}$$

$$I_{3g_3}^+ = \int_{g_3} (N^+)^2 [(x - c_1) \, dy - c_2 \, dx] H = 0, \quad (11)$$

because

$$H = 0 \quad \text{on } g_3, \tag{11a}$$

as g_3 is characteristic.

Finally claim that on g_2 (if $a^+ = -1/2$, $b^+ = x - c_1$, $c^+ = c_2$):

$$I_{3g_2}^+ = \int_{g_2} \tilde{Q}^+(w_x, w_y) \, ds > 0. \tag{12}$$

In fact, $\tilde{Q}^+ = \tilde{Q}^+(w_x, w_y)$ is non-negative definite on g_2 . It is clear that

$$\tilde{A}^+ = [(x-c_1)v_1 - c_2v_2]K_1 > 0$$
 on g_2 ,

because of

$$(x-c_1)|_{g_2} = \int_0^y \sqrt{-K(t)} \, dt - c_0 < 0 \quad \text{on } g_2,$$
$$v_1 = \frac{dy}{ds}\Big|_{g_2} > 0, \quad v_2 = -\frac{dx}{ds}\Big|_{g_2} < 0, \quad K_1|_{g_2} < 0,$$

 $v_2 = -\sqrt{-K}v_1$ on g_2 , and of condition $[R_6]$. In fact,

$$[(x-c_1)v_1 - c_2v_2]|_{g_2} = \left[\left(\int_0^y \sqrt{-K(t)} \, dt - c_0 \right) + \sqrt{-K}c_2 \right] v_1$$
$$= \left(\int_0^y \sqrt{-K(t)} \, dt + c_2\sqrt{-K} - c_0 \right) v_1 > 0 \quad \text{on } g_2$$

from condition $[R_6]$. Therefore

$$\tilde{A}^{+} = \left(\int_{0}^{y} \sqrt{-K(t)} \, dt + c_2 \sqrt{-K} - c_0\right) v_1 K_1 > 0 \quad \text{on } g_2.$$
(12a)

Also

$$\tilde{B}^{+} = [-(x-c_1)v_1 + c_2v_2]K_2, \quad \text{or}$$
$$\tilde{B}^{+} = -\left(\int_0^y \sqrt{-K(t)} \, dt + c_2\sqrt{-K} - c_0\right)v_1K_2 > 0 \quad \text{on} \ g_2 \tag{12b}$$

because of condition $[R_6]$, $v_1|_{g_2} > 0$, $K_2|_{g_2} > 0$, and of above facts. Note that

$$\tilde{A}^+ = (-K)\tilde{B}^+ \quad \text{on } g_2.$$
[12a]

Besides

$$\tilde{D}^{+} = (x - c_1)K_2v_2 + c_2K_1v_1, \quad \text{or}$$

$$\tilde{D}^{+} = \left[-\left(\int_0^y \sqrt{-K(t)} \, dt - c_0 \right) K_2 \sqrt{-K} + c_2K_1 \right] v_1, \quad \text{or}$$

$$\tilde{D}^{+} = -\sqrt{-K_1K_2} \left(\int_0^y \sqrt{-K(t)} \, dt + c_2\sqrt{-K} - c_0 \right) v_1 \quad \text{on} \ g_2, \qquad (12c)$$

because

$$-K_1/K_2\sqrt{-K} = \sqrt{-K}$$
 and $K_2\sqrt{-K} = \sqrt{-K_1K_2}$

Note that

$$\tilde{D}^+ = \sqrt{-K}\tilde{B}^+ \quad \text{on } g_2, \qquad [12c]$$

because $\sqrt{-K_1K_2} = \sqrt{-K}K_2$.

Finally from [12a] and [12c], we get

$$\tilde{A}^+ \tilde{B}^+ - (\tilde{D}^+)^2 = 0$$
 on g_2 . [12d]

Therefore the quadratic form \tilde{Q}^+ is

$$\tilde{Q}^{+} = \tilde{Q}^{+}(w_{x}, w_{y}) = (\sqrt{-K}w_{x} + w_{y})^{2}(\tilde{B}^{+}) > 0 \quad \text{on } g_{2}, \quad \text{or}$$

$$\tilde{Q}^{+} ds = -(\sqrt{-K}w_{x} + w_{y})^{2} \left(\int_{0}^{y} \sqrt{-K(t)} dt + c_{2}\sqrt{-K} - c_{0}\right) K_{2} dy, \quad \text{or}$$

$$I_{3g_{2}}^{+} = -\int_{g_{2}} (\sqrt{-K}w_{x} + w_{y})^{2} \left(\int_{0}^{y} \sqrt{-K(t)} dt + c_{2}\sqrt{-K} - c_{0}\right) K_{2} dy > 0, \quad [12]$$

because of condition $[R_6]$, $dy(=v_1 ds)|_{g_2} > 0$, and $K_2 > 0$ on g_2 , completing the proof of (12).

Therefore

$$I_G^+ = I_{1G}^+ + I_{2G}^+ + I_{3G}^+, \quad \text{or}$$
⁽¹³⁾

Existence of Weak solutions for a Parabolic

$$I_{G}^{+} = \frac{1}{4} \int_{g_{2}} \frac{(K_{1}K_{2})'}{\sqrt{-K_{1}K_{2}}} w^{2} dy$$

+ $\int_{g_{2}} \{ [(x - c_{1})v_{1} + c_{2}v_{2}]r \} w^{2} ds$
+ $\int_{g_{1}} (N^{+})^{2} [(x - c_{1}) dy - (y + c_{2}) dx] H$
- $\int_{g_{2}} (\sqrt{-K}w_{x} + w_{y})^{2} \left(\int_{0}^{y} \sqrt{-K(t)} dt + c_{2}\sqrt{-K} - c_{0} \right) K_{2} dy.$ (14)

But on g_2 (: $dx = \sqrt{-K} dy$)

$$[(x-c_1)v_1 + c_2v_2] ds = (x-c_1) dy - c_2 dx = [(x-c_1) - c_2\sqrt{-K}] dy$$
$$= \left(\int_0^y \sqrt{-K(t)} dt - c_2\sqrt{-K} - c_0\right) dy \ (<0).$$
(14a)

Thus

$$I_{G}^{+} = \int_{g_{1}} (N^{+})^{2} [(x - c_{1}) dy - (y + c_{2}) dx] H$$

+
$$\int_{g_{2}} \left\{ w^{2} \left[\frac{1}{4} \frac{(K_{1}K_{2})'}{\sqrt{-K_{1}K_{2}}} + r \left(\int_{0}^{y} \sqrt{-K(t)} dt - c_{2}\sqrt{-K} - c_{0} \right) \right] - \left[(\sqrt{-K}w_{x} + w_{y})^{2} \left(\int_{0}^{y} \sqrt{-K(t)} dt + c_{2}\sqrt{-K} - c_{0} \right) K_{2} \right] \right\} dy > 0, \quad (15)$$

where $H = K_1 v_1^2 + K_2 v_2^2$ (> 0 on g_1), and N^+ = normalizing factor: $w_x = N^+ v_1$, $w_y = N^- v_2$ (on g_1).

Note from (15) that the two conditions $([R_{1a}]-[R_{1b}])$ could be replaced by the following condition $[R_1]$ on g_2 :

$$[R_1]: (K_1K_2)' + 4r\sqrt{-K_1K_2} \left(\int_0^y \sqrt{-K(t)} \, dt - c_2\sqrt{-K} - c_0 \right) > 0.$$
 (16)

Similarly

$$I_D^+ = I_{D,y \ge 0}^+ + I_{D,y \le 0}^+, \quad \text{or}$$
(17)

$$I_{D}^{+} = \iint_{D, y \ge 0} \{ -(3r + (x - c_{1})r_{x} + (y + c_{2})r_{y})w^{2} + (K_{1} + (y + c_{2})K_{1}')w_{x}^{2} + (K_{2} + (y + c_{2})K_{2}')w_{y}^{2} \} dxdy + \iint_{D, y \le 0} \{ -(2r + (x - c_{1})r_{x} + c_{2}r_{y})w^{2} + (c_{2}K_{1}')w_{x}^{2} + (2K_{2} + c_{2}K_{2}')w_{y}^{2} \} dxdy.$$

$$(18)$$

It is clear now from (4), (15), and (18) that

$$J^{+} = I_{D}^{+} + I_{G}^{+} > I_{D}^{+}, (19)$$

$$\mu a^2 + \frac{1}{\mu} b^2 \ge 2|ab|, \quad \mu > 0.$$
⁽²⁰⁾

But from (1) we get

$$2M^{+}wL^{+}w = 2a^{+}wL^{+}w + 2b^{+}w_{x}L^{+}w + 2c^{+}w_{y}L^{+}w.$$
 (21)

Therefore from (1), (20) and (21) we find

$$J^{+} \leq \iint_{D} 2|M^{+}wL^{+}w| \, dxdy$$

$$\leq \iint_{D} \{2|a^{+}w| \, |L^{+}w| + 2|b^{+}w_{x}| \, |L^{+}w| + 2|c^{+}w_{y}| \, |L^{+}w|\} \, dxdy$$

$$\leq \iint_{D} \left\{ \left[\mu_{1}(a^{+}w)^{2} + \frac{1}{\mu_{1}}(L^{+}w)^{2} \right] + \left[\mu_{2}(b^{+}w_{x})^{2} + \frac{1}{\mu_{2}}(L^{+}w)^{2} \right] + \left[\mu_{3}(c^{+}w_{y})^{2} + \frac{1}{\mu_{3}}(L^{+}w)^{2} \right] \right\} \, dxdy, \quad \text{or}$$

$$J^{+} \leq \iint_{D} T^{+}(w, w_{x}, w_{y}) \, dxdy + \left(\frac{1}{\mu_{1}} + \frac{1}{\mu_{2}} + \frac{1}{\mu_{3}} \right) \iint_{D} (L^{+}w)^{2} \, dxdy, \quad (22)$$

where $\mu_i = \text{const.} > 0(i = 1, 2, 3)$, and

$$T^{+} = T^{+}(w, w_{x}, w_{y}) = \mu_{1}(a^{+})^{2}w^{2} + \mu_{2}(b^{+})^{2}(w_{x})^{2} + \mu_{3}(c^{+})^{2}(w_{y})^{2}.$$

Denote

$$C_1 = \sqrt{\frac{1}{\mu_1} + \frac{1}{\mu_2} + \frac{1}{\mu_3}} \quad (>0).$$
(23)

Thus from (19) and (22)–(23) we get

$$I_D^+ < J^+ \le \iint_D T^+(w, w_x, w_y) \, dx dy + C_1^2 \|L^+ w\|_0^2, \quad \text{or}$$
$$I_D^+ - \iint_D T^+(w, w_x, w_y) \, dx dy < C_1^2 \|L^+ w\|_0^2. \tag{24}$$

Therefore from (2), (18) and (24) we find

$$\begin{split} \iint_{D,y\geq 0} \left\{ -\left[(3r + (x - c_1)r_x + (y + c_2)r_y) + \frac{1}{4}\mu_1 \right] w^2 \\ + \left[(K_1 + (y + c_2)K_1') - \mu_2(x - c_1)^2 \right] w_x^2 \\ + \left[(K_2 + (y + c_2)K_2') - \mu_3(y + c_2)^2 \right] w_y^2 \right\} dxdy \\ + \iint_{D,y\leq 0} \left\{ -\left[(2r + (x - c_1)r_x + c_2r_y) + \frac{1}{4}\mu_1 \right] w^2 \\ + \left[(c_2K_1') - \mu_2(x - c_1)^2 \right] w_x^2 \\ + \left[(2K_2 + c_2K_2') - \mu_3(c_2)^2 \right] w_y^2 \right\} dxdy \\ < C_1^2 \| L^+ w \|_0^2. \end{split}$$
(25)

But

$$\|w\|_{1}^{2} = \left(\iint_{D, y \ge 0} + \iint_{D, y \le 0}\right) (w^{2} + w_{x}^{2} + w_{y}^{2}) \, dx \, dy.$$
⁽²⁶⁾

Thus from (25)–(26) and conditions $([R_3]-[R_4]-[R_5])$ we get

$$C_2^2 \|w\|_1^2 < C_1^2 \|L^+ w\|_0^2$$
, or
 $\|w\|_1^2 < C^2 \|L^+ w\|_0^2$,

with $C = C_1/C_2 = \text{const.} > 0$, completing the proof of the **a-priori estimate** [AP]. Note that

$$C_2 = \sqrt{\min(\delta_{11}, \delta_{21}, \delta_{31}) + \min(\delta_{12}, \delta_{22}, \delta_{32})} \ (>0), \tag{27}$$

where

 $\delta_{ij} = \text{const.} > 0 \ (i = 1, 2, 3; j = 1, 2) \text{ in conditions } ([R_3] - [R_4] - [R_5]).$

Therefore by above Criterion ([1]) the following Existence Theorem holds.

Existence Theorem

Consider Problem (T) with parabolic elliptic-hyperbolic equation:

$$Lu \equiv K_1(y)u_{xx} + (K_2(y)u_y)' + r(x, y)u = f(x, y),$$

and boundary condition: u = 0 on $g_1 \cup g_2$. Also consider the simply-connected domain $D(\subset \Re^2)$ bounded by a piecewise-smooth boundary $G = \partial D = g_1 \cup g_2 \cup g_3$: curve g_1 (for y > 0) connecting A' = (-1,0) and A = (1,0), and characteristics g_2 , g_3 (for y < 0) such that g_2 : $x = \int_0^y \sqrt{-K(t)}dt + 1$, g_3 : $x = -\int_0^y \sqrt{-K(t)}dt - 1$, and $K = K_1/K_2$: $\lim_{y\to 0} K(y)$ exists, $K_1(y) > 0$ whenever y > 0, = 0 whenever y = 0, and < 0 whenever y < 0, as well as $K_2(y) > 0$ in D.

Assume conditions:

$$[R_{1a}]: \ r < 0 \quad \text{on } g_2,$$

$$[R_{1b}]: \ (K_1K_2)' > 0 \quad \text{on } g_2,$$

$$[R_{1c}]: \ K'_i > 0 \ (i = 1, 2) \quad \text{in } D,$$

$$[R_2]: \ (x - c_1)dy - (y + c_2)dx \ge 0: \text{ "star-likedness" on } g_1,$$

$$[R_3]: \ \begin{cases} 4(3r + (x - c_1)r_x + (y + c_2)r_y) + \mu_1 \le -4\delta_{11} < 0 \quad \text{for } y \ge 0 \\ 4(2r + (x - c_1)r_x + c_2r_y) + \mu_1 \le -4\delta_{12} < 0 \quad \text{for } y \le 0, \end{cases}$$

$$[R_4]: \ \begin{cases} K_1 + (y + c_2)K'_1 - \mu_2(x - c_1)^2 \ge \delta_{21} > 0 \quad \text{for } y \ge 0 \\ c_2K'_1 - \mu_2(x - c_1)^2 \ge \delta_{22} > 0 \quad \text{for } y \le 0, \end{cases}$$

$$[R_5]: \ \begin{cases} K_2 + (y + c_2)K'_2 - \mu_3(y + c_2)^2 \ge \delta_{31} > 0 \quad \text{for } y \ge 0 \\ 2K_2 + c_2K'_2 - \mu_3(c_2)^2 \ge \delta_{32} > 0 \quad \text{for } y \le 0, \end{cases}$$

where δ_{ij} are positive constants (i = 1, 2, 3; j = 1, 2), and

$$[R_6]: \int_0^y \sqrt{-K(t)} \, dt + c_2 \sqrt{-K(y)} - c_0 < 0 \quad \text{on } g_2,$$

where $K_i(i = 1, 2)$, r, and f are sufficiently smooth, and $c_1 = 1 + c_0$, and c_0 , c_2 , and μ_i (i = 1, 2, 3) are positive constants.

Existence of Weak solutions for a Parabolic

Then there exists a weak solution of Problem (T) in D.

SPECIAL CASE: In D take

 $K_1 = y$ and $K_2 = y - ky_p(>0)$, where k = constant > 2 and

$$y_p = \text{constant} \ (<0): \ \int_0^{y_p} \sqrt{-\frac{t}{t-ky_p}} dt = -1(y_p < t < 0), \text{ or equivalently}$$

$$y_p = 1 / \left(\sqrt{k-1} - k \tan^{-1} \frac{1}{\sqrt{k-1}} \right) (<0) \text{ for } k > 2.$$

Then conditions $[R_{1b}]$, $[R_4]$, $[R_5]$ and $[R_6]$ hold on y = 0 and in general in D. Note that substituting $\sqrt{-t/(t-ky_p)} = \varphi$, one gets that

$$\int_{0}^{y} \sqrt{-\frac{t}{t-ky_{p}}} dt = ky_{p} \tan^{-1} \sqrt{-\frac{y}{y-ky_{p}}} + \sqrt{-y(y-ky_{p})},$$

where

$$\int \frac{2\varphi^2}{(1+\varphi^2)^2} \, d\varphi = \tan^{-1}\varphi - \frac{\varphi}{1+\varphi^2} + c.$$

Note that conditions $([R_{1a}]-[R_{1b}])$ could be substituted by condition $[R_1]$ (16).

OPEN: If r = 0, then (25) does not yield existence of weak solution.

References

- Berezanski, Ju. M.: Expansions in Eigenfunctions of Self-adjoint operators, A.M.S. Translations of Math. Monographs, Vol. 17, 79-80, 1968.
- [2] Bitsadze, A. V.: Some Classes of Partial Differential Equations, (in Russian), Moscow, 1981.
- [3] Chaplygin, S. A.: On Gas Jets, Scientific Annals of the Imperial Univ. of Moscow, No. 21, 1904; Transl. by Brown Univ., R.I., 1944.
- [4] Rassias, J. M.: (1) Mixed Type Equations, Teubner—Texte zur Mathematik, Leipzig, 90, 1986;
 (2) Lecture Notes on Mixed Type Partial Differential Equations, World Sci., Singapore, 1990.
- [5] Rassias, J. M.: Geometry, Analysis and Mechanics, World Sci., Singapore, 189-195, 1994.
- [6] Semerdjieva, R. I.: Uniqueness of Regular Solutions for a Class of Non-linear Degenerating Hyperbolic Equations, Mathematica Balkanica, New series, vol. 7, Fasc. 3-4, p. 277-283, 1993.
- [7] Tricomi, F. G.: Sulle Equazioni Lineari alle Parziali di 2° Ordine di Tipo Misto, Atti Accad. Naz. dei Lincei, 14, p. 133-247, 1923.

A.M.S. (1996) Subject Classification No.: 35M05

National and Capodistrian University of Athens Pedagogical Department E.E. 4, Agamemnonos Str., Aghia Paraskevi Attikis, 153 42, Greece.