TSUKUBA J. MATH.
Vol. 23 No. 1 (1999), 37-54

EXISTENCE OF WEAK SOLUTIONS FOR A PARABOLIC
ELLIPTIC-HYPERBOLIC TRICOMI PROBLEM

By

John Michael RASSIAS

Abstract. It is well-known that the pioneer of mixed type boundary
value problems is F. G. Tricomi (1923) with his Tricomi equation:
Yuxx + 1y, = 0. In this paper we consider the more general case of
above equation so that

Lu= K[(y)uxx + (KZ(y)uy)’ tru=f

is hyperbolic-elliptic and parabolic, and then prove the existence of
weak solutions for the corresponding Tricomi problem by employing
the well-known a-b-c energy integral method to establish an a-priori
estimate. This result is interesting in fluid mechanics.

The Tricomi Problem

Consider the parabolic elliptic-hyperbolic equation

LuEKl(y)uxx+(K2(y)uy)l+r(xs y)u:f(xa y)7 (*)

([2], [6]), in a bounded simply-connected domain D(c 9{2) with a piecewise-
smooth boundary G = 0D =g, Ug,Ugs, where f = f(x,y) is continuous, r =
r(x,y) (<0) and K; = K;(y) are once-continuously differentiable for x e [~1,1]
and ye€ [-m, M] with —m=inf{y : (x,y) e D}, and M = sup{y : (x, y) € D},
and Kj(y) >0 for y >0, =0 for y=0, and <0 for y < 0. Also K> = K»(y) is
twice-continuously differentiable in [—m, M], K;(y) > 0 in D. Besides lim, o K(»)
exists, if K = K(y) = K1(y)/K2(y) > 0 whenever y > 0, = 0 whenever y = 0, and
< 0 whenever y < 0.
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Finally g; is “the elliptic arc (for y > 0)” connecting points 4’ = (—1,0) and
A=(1,0), go is “the hyperbolic characteristic arc (for y < 0)” connecting points
A4 =(1,0) and P = (0, y,): \/Tdt -1 (e.g. if K} = y and K; = 1, then
Vp = (3/2)2/3 - 1.31), gz(_ : x=[\/-K(@)dt+1, and g3 is “the
hyperbolic characteristic arc (for y < 0)” connecting points A'=(-1,0) and P =
0,5,): g3(=A'P): x=—[] /-K()dt — 1.

Denote “the elliptic subregion of D by D, (= the space bounded by g; and
A'A), “the hyperbolic subregion of D”” by D, (= the space bounded by g,, g; and
AA’), and ‘“‘the parabolic arc of D” by

Dy(=A'A)={(x,y)eD: —1<x<1,y=0}.

Note that the order of equation (*) does not degenerate on the line y = 0. But
(*) is parabolic for y = 0 because K;(0) = 0 and K,(0) > 0 hold simultaneously.
Assume boundary condition

u=0 on g1Ug. ()

The Tricomi problem, or Problem (7) consists in finding a function u =
u(x, y) which satisfies equation (*) in D and boundary condition (**) on g; Uga

([41, 51, (7).

PRELIMINARIES. Denote o = (a,00): o1, o =0, || =05 + 0. Also if p =
(x,y)eR?, and p=(%7)eR? then denote p*=x%y*, (p,p)=xX+ j,
Pl = (p.p))'"*.
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Finally denote
6 o 23} o
D, =3 and (D"u)(p) = (D{* Dy*u)(p)

for sufficiently smooth functions u = u(p) : p = (x, y) € R%. Consider the adjoint
equation

L'w = Ki(p)wsx + (K2 (9)wy)" + r(x, y)w = f(x, y), b

((11-[2], [6]), in D, where L* is the formal adjoint operator of the formal operator
L and is L* = L. (Note that equations for characteristics of (*) and [*] are
identical). In fact,

(Ka(y)wy)' = Ka(y)wyy + K3 (y)wy, and
thus
L™w = (Ki(3)w) + (K2(p)w),, — (K3(y)w), +7(x, y)w
= Lw, because (Kz(y)w),, = (Ka(y)wy)' + (K3 (y)w),.
Note in general that if

2 2
Lu = Z a;j(p)D;Dju + Z ai(p)Diu+ a(p)u, then
ij=1

i=1

2
L*w= Y DiDj(ay(p)w) — Y _ Dilai(p)w) + a(p)w.

ij=I i—1
Assume adjoint boundary condition
w=0 on g Ugs. [#%]
Denote
C*(D) = {u(p)| p = (x,) e D(= DUG): u=u(p)

is twice-continuously differentiable in D}.
This space is complete normed space with norm

llull c2( 5, = max{|D°u(p)| | p € D: |a| <2}.
(D)



40 John Michael RASSIAS

Also denote

L*(D) = {u

[, 1o ap < oo}.

The norm of space L*(D) is

, O\
il = s = (| o) p)
where p = (x,y), and dp = dxdy.
Besides denote
D(L) = {ue C*D): u=0 on g;Uga},
which is the domain of the formal operator L, and
D(L*) = {we C*(D): w=0 on g; Ugs},

which is the domain of the adjoint operator L*.
Finally denote

W2(D) = {u| D*u()) € L*(D), |a| < 2}

which is the complete normed Sobolev space with norm
1/2
2 2
Nully = Nl wz o) = (Hullu(m +|§‘: IID“ullew)) :
o}=2

or equivalently: |lull, = (Z ||D“u||iz(D))l/2,

| <2

W3 (D,bd) = D(L),,
which is the closure of domain D(L) with norm | -||,, and
WX(D,bd*) = D(L7), .
which is the closure of domain D(L') with norm | - ||,, or equivalently:
WX(D,bd*) = {we WZ(D): {Lu,w)yy = {u,L*w), for all ue W32(D,bd)}

on the corresponding norms.

DEFINITION. A function u = u(p) € L*(D) is a weak solution of Problem
(T) if
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fiwdo = u, L™w)y  ([4]),p. 86-106)
holds for all we W}(D,bd") ([4]), p- 86-106).

CrITERION ([1]). (i). A necessary and sufficient condition for the existence of
a weak solution of Problem (7) is that the following a-priori estimate

Iwllo < ClILL wllo, (4P)

holds for all we W}(D,bd"), and for some C = const. > 0 (4]2), p. 86-106).
(ii). A sufficient condition for the existence of a weak solution of Problem (T')
is that the following a-priori estimate

Iwll, < CIL wllo, [4P]

holds for all we W}(D,bd"), and for some C = const. > 0.

Also nete that both the Hahn-Banach Theorem and the Riesz Representation
Theorem would play ([4]), p. 92-95) an important role in this paper if above
criterion were not employed. For the justification of the definition of weak solutions
we apply Green’s theorem ([4]), p. 95-98) and classical techniques in order to
show that f =Ly in D and =0 on g; Ug,.

A-Priori estimate ([4P))

We apply the a — b — ¢ classical energy integral method and use adjoint
boundary condition [**]. Then claim that the g-priori estimate [4P] holds for all
w e W2(D,bd"), and for some C = const. > 0.

In fact, we investigate

Jt=2{M*w,LTw)y = JJ 2MtwLw dxdy 1)
D
where
M*w=a"(x, y)w+b*(x, y)wx + ¢ (x, y)w, in D,
with choices:

y+c fory=0

1 .
a+:_§’ and b* =x—¢; in D, and c+:{c2 for y < 0’

where ¢ =14 ¢y, and ¢y, ¢: are positive constants.



42 John Michael RAsSIAS

Consider the ordinary identities:
2aKiwwyy = (2aKiwwy), — 2aK; wf; — (axK| wﬁ)x + anKiw?,

2aKrwwyy, = (2aKowwy), — 2aK2wf - ((aKz)ywz)y + (aKz)ywa,

2bK1 WxWyx = (bK] W)zc)x - bel Wi,
2bKowywy, = (2bK2wxwy)y — (szw)z,)x + bezwﬁ - 2(bK2)ywxwy,
2cKiwywyx = (2cKiwew,), — (cKy wi)y + (cKy )ywi — 2K cxwiwy,

2cKowywy, = (cszf)y - (cKz)waZ,,

2arww = 2arw?, 2brww, = (brw?)_ — (br) w?,

2

2crwwy, = (crwz)y = (er),w*, 2atww, = (atw?), — (at)ywz,

y
2btwywy = 2btwywy,  2ctw,wy = 2ctw§,

where ¢ (= coefficient of w, in L*w), or

1=K;(»).

(3)

Then employing above identities and Green’s theorem, and setting t = K, ()

we obtain from (1) and [*] that

Jt = J[D2(0+W + b wy+ C+Wy)[K1 (P)wsx + KZ(y)wyy +rw+ twy] dxdy

=1Iy + I + Lig + I,

where

I} = ” (4w} + B*w. + CTw? + 2D w,w)) dxdy,
D

Il = ii; {2a"w(Kiwxvi + Kawyvy) } ds,
G(=aD)

I = }G(_w){—maﬁvl F (@ Kol + (w1 + )] + (@)l ds,

and

L= § (A*wl + B'w} +2D"w,w,) ds,
G

4)
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with
A" = —2a* K, - b} K, + (K1),
Bt = —2a+K2 + b;er - (C+K2)y + 2C+t,
C"=a'r+ Kiaj, + (a*Kz),,] = [(671), + (7)) = [(@*1),)],
DY = —[Kic] + (b*Ky), —b74], and
AT = bty — cTw)K, Bt =(=b*v + )k,
ﬁ+ = b+K2v2 + C+K1V1, where

VZ(Vl,Vz)——— (%,—%), (dS>0), (5)

is the outer unit normal vector on the boundary G of the mixed domain D.
Note that in D,y >0 (if a* =—-1/2, b =x—c|, ¢t = y+ )

A" =K~ (K) +((y + )K), = Ki + (y + )K],

Bt =K+ (K) — ((y + CZ)Kz)y +2(y+ )t =K+ (y + 2)K;,

€= |=r= 38| = s = k(0 + ) - |31
=—[Br+(x—-c)rs+(y+c2)ry], and
DT =—[((x — c1)K2), — (x — c1)1]
= —[(x —e)K; — (x — e1)K3] =0,
because from (3): ¢t = K;(y).
Similarly in D,y <0 (if at = -1/2, b =x— ¢, ¢" =¢,):
A" =K — (K1) + (K1), = e2K],
B" =K+ (Kp) — (2K3), + 202t = 2K, + 2K,
O = |-r= 3] - (= em + (e - -5

=—[2r+ (x—c))ry +cor)), and
D" = —[((x — c1)Kz), — (x ~ e1)f] = 0,

because from (3): t = K;(y).
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Therefore
If =L+ Ly + 1,

where Q = ATw} + Btwl + 2D w,w, = Qux, 1),

Il-}:D = JJ Q(Wx, Wy) dXdya or
D,y>0
=] [+ (o Kl + (Kot (3 + )R] sy
D,y>0
L= ” Q(wx, wy) dxdy, or
D,y<0

Bo= [ kit + 2K+ cakgnd] ducy,
D,y<0
and

I =” Ctw?dxdy, or
D

~” Br+ (x—c)re+(y+ cz)ry]w2 dxdy
D,y>0
If =
——JJ [2r + (x — c1)rx + cary|w? dxdy.
D,y<0
On G: claim that
Ij; > 0.

In fact,

I;E!JIU%) =~ LIUgJ{W(Kl wyvi + Kowyva)} ds = 0,

because w =0 on g; Ug; from [**].
Also that

Iy, = _J {w(Kiwxv) + Kawyvs)} ds > 0.
92
In fact, on g,:

dx=+v—-Kdy, or vy=—-vV—-Ky,

because dx = —v,ds and dy = v; ds from (5).
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Also
dw = wy dx + wydy = (—wxv2 + wyvy) ds

= (wevV—-K+ wy)v1 ds (with K = K;/K3)

V=Kiwy + vVKow,
= v ds
VK
_ Kl Wy — \/—-KleWy v ds
- /KK
Kywevi + Kowyvo
= ds (because: Kov, = —/—K 1K)
ay-ev-es ( v )
or
(Kiwxvi + Kawyvs) a’slg2 —/ =K K; dw. (7)4

Therefore from (7); and by integration by parts we get that
lgz J v —KiK; d(w 2J;, (\/ _KIKQ)’WZ dy,
2

because w =0 at the end-points of g, (as w=0 on g; and w=0 on g¢3).
But

dy=v;ds>0 on g,.

Thus
1 (KK ,
I :—J =2 w2dy >0 7
e =4, VKK (s

from condition [Rjs], completing the proof of (7), and thus of (7) (from (7),).
Claim now that

Ij; > 0. 8)

In fact,

1 1
Bigvg) = LI%{ [§K£V2] + (@1 + )] + {—EKz’vz} }w2 ds, or

Bigug) = Llugs{[(bﬂ’l +ctvp)rw?} ds = 0, ),

because w =0 on g;Ugs from [**] and ¢ = K from (3).
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Also that

1 1
Ly, = j { [§K2’V2] +[((x = cr)vi + cav2)r] + [— EKz'vz] }w2 ds,
g2
or

Iy, = J {[(x = e1)v1 + cava]r}w?ds > 0, (8),
92
from condition [R),] and the fact that (x — ¢;)vi + c2v2 <0 on g, (ason g : v; >
0, v2 < 0and x — ¢; = [ \/—K(1)dt — ¢y < 0) completing the proof of (8), where
12+G = 12+(le93) + 12+!12 = 12+gz(> 0).

Claim then that

I, = # O (W, wy)ds > 0, 9)
G
where
Ot (wx,wy) = A*w} + B*w. + 2D wyw,

is quadratic form with respect to w,, and w, on G.
In fact, note that on g; (if a* =—1/2, b =x—cj, c" = y+c):

A* =[(x—c)n — (y+e)valKi, BY=[-(x=c)n+ (y+ c)nlks,
Dt = (x— 1)Ky + (y + e2)Kyv1.
From adjoint boundary condition [**] we get
0 = dwl|, =wxdx+wydy, or
wy = Ny, wy = Ny, (9a)

where N* = normalizing factor. Therefore

Ly, = L O (wy, wy) ds = L (N (x—c)vi + (y+e)wnlHds,  (10)

where
H = Kv} + Kv (>0 on gy). (10a)

It is clear from (10)—(10a) and condition [R,] that

L, = L (NY)[(x = c1)dy — (y + c2) dx]H 2 0. (10b)
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Similarly on g3 (if a* = —1/2, bt =x~¢1, ¢ = &):

I = J O (wy, wy)ds = J (N+)2[(x —c)vi +cew|Hds, or
g3 g3

393 —
Ly, :J (N*)?[(x — e1) dy — c2dx]H =0, (11)
g3
because
H=0 on g, (11a)
as g5 is characteristic.
Finally claim that on g, (if a™ = -1/2, bt =x— ¢, ¢t = 2):
I, = J O (W, wy) ds > 0. (12)
92

In fact, 07 = Q% (wx,w,) is non-negative definite on g,. It is clear that

A~+ = [(x — cl)vl — Csz]Kl >0 on g2,

because of
¥y
(x=c)l,, = J V—K(t)dt —cy <0 on gy,
0
d d.
vI:—y >0, vzz——x <0, K, <0,
ds ds 92
92 92
v, = —v—Kv; on g3, and of condition [R¢]. In fact,

[(x = er)vi — cavay, = [(J: V—K(1)dt — co) + \/;—IECZ] 1431

y
= (J \/—K(t)dH—cz\/—K—co>vx >0 on ¢
0
from condition [Rs]. Therefore
_ y
AT = (J LV —K(t) dt+ c;vV—-K — C’()) viKi >0 on g5 (12a)
0

Also

Bt = [—(x—c1)vi + can]Ky, or

. y
Bt = _(J /ZK(t)dt + c;vV—K — c0> vK; >0 on g, (12b)
0
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because of comdition [R¢], vi|,, > 0, K3|, >0, and of above facts. Note that
At = (-K)B™ on g [12a]
Besides

Dt = (x — C])K2V2 + cKyvy, or

bt = [_ (L VK@ dt - co)m?m c;Kl] n, o

Dt = —\/-KK, (J: V-K()dt+c;vV-K — Co) Vi on g, (12¢)

because
—Ki/K;V=K =V=K and K,V-K =+/-K K.
Note that
D" =+v—-KB* on g, [12¢]

because /—K1K; = v—KK;.
Finally from [12a] and [12c], we get

A*Bt —(D*)*=0 on g,. [12d]
Therefore the quadratic form Q% is

Q+ = Q+(Wxawy) = (\/ij + wy)z(B+) >0 on gy, or

Q% ds = —(V—Kwy + wy)2 (r VK@) dt + c;vV-K — co) Kydy, or
0

0

L, =- L (V—Kw; + wy)z(r /—K(t)dt + caV/—K ~ c())Kp_ dy>0, [12]

because of condition [Rs], dy(=v;ds)|,, >0, and K; > 0 on g,, completing the
proof of (12).

Therefore

Igz

It =L+ o+ I, or (13)
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1{ (KiKy)'
1+=—J KK g
¢ T4), VKK “

+ 1 {[(x=c)v + czvz]r}w2 ds
v

+| (W (x=e)dy— (y+ ) dx]H
vl

—| (V=Kwy+ wy)2 (J: VK@) dt+ c;vV-K — co) K, dy. (14)

v92

But on g,(: dx =+v—Kdy)
[(x = c1)vi + cava]ds = (x — ¢1) dy — crdx = [(x — ¢1) — oV —K] dy
- (J: V=K@ di — eV ~K - c0> dy (<0).  (l4a)
Thus

1§ = | (- ) dy (4 )l
g1

0

o)

- [(\/ij + wy)z(J: V—K(t) dt + c;V-K — c())Kz} } dy>0, (15

where H = Kiv} + K;v2 (> 0 ong), and Nt = normalizing factor: wy = N*vy,
w, = N"v; (on gp).

Note from (15) that the two conditions ([R;4]-[R1»]) could be replaced by the
following condition [R:] on g,:

[R]] : (K]Kz), + 4]"\/—K1K2 (J: \/—K(t) dt — Cz\/j — C()) > 0. (16)
Similarly

IB— = Ig,yzo + Ig,ygov or (17)
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B Ore -t e amnw?
D,y>0
+ (K1 + (y+ ) K)w? + (Kp + (¥ + cz)Kz’)wf;} dxdy
+ JJ {=Q2r+ (x—c)rx + czry)w2
D,y<0

+ (c2K))W; + (2K + ©2K3)wy } dxdy. (18)

It is clear now from (4), (15), and (18) that

Jt=I+ 15 > I, (19)
pa® +/1le >2|ab|, u>0. (20)

But from (1) we get
2MYwLtw =2atwL*w + 2b"wL*w + 2¢twy, L w. (21)

Therefore from (1), (20) and (21) we find

r
JT < || 2|MTwL"w|dxdy
D

IA

D{2|a+w| |L*w| 4 2|6 wy| [LYw| + 2|cTwy| LT w|} dxdy

IA

'D{ [,11 (@ w)? + /-ll-l(vw)z] + [uz(zﬁwx)z 4 ﬂiz (L+w)2]

+ [,u3(c+wy)2 +III-(L+W)2] } dxdy, or
3

Jt< ” T (w, wx, w,) dxdy + (i+i+—l—) “ (L*w)ldxdy,  (22)
D M Ky M3 D ;

where g; = const. > 0(i = 1,2,3), and
T+ = T (w,wae,wy) = (@)W + ()2 (w2)® + 3(c)* (wy) .

Denote

Ci=/—+—+— (>0). (23)
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Thus from (19) and (22)-(23) we get
I} <Jt < “ T (w, wx, wy) dxdy + CHL w2, or
D

I} — T+ (w, wy, wy) dxdy < C}|Lw|2.
D b y i 0

Therefore from (2), (18) and (24) we find
I] { -+ -+ G4 + w2
D,y>0
+ [(Ki + (v + e)K]) = po(x = 1)’ w}

+ (K2 + (v + 2)K;) — (v + Cz)Z}W§} dxdy

+”D,yso{ - [(2r+ (x —e1)rx + cary) +%ﬂl]w2

+ [(e2K}) — 1y (x — 01)2]“’;2;
+[(2K: + 02K;) - ﬂ3(02)2]wf} dxdy

2 2
< CY|IL* wllg-

But

uwu%=(” | )(w2+w§+wf)dxdy.
D,y>0 D,y<0

Thus from (25)-(26) and conditions ([R3]-[R4]-[Rs]) we get
CIlwlly < CEIL wlig, o

Iwlli < CHIL g,

51

(24)

with C = C;/C; = const. > 0, completing the proof of the a-priori estimate [AP].

Note that

C; = /min(d11,021,031) + min(d12,02,93) (> 0),

(27)
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where
dj =const. >0 (i=1,2,3;j=1,2) in conditions ([R3]~[R4]-[Rs]).

Therefore by above Criterion ([1]) the following Existence Theorem holds.

Existence Theorem
Consider Problem (7)) with parabolic elliptic-hyperbolic equation:
Lu = Ki(y)uxs + (K2(0)y) +r(x, y)u = f(x, ),

and boundary condition: ¥ =0 on g;Ug,. Also consider the simply-connected

domain D(<=%R?) bounded by a piecewise-smooth boundary G = éD = g; Ug, U

gs:curve g; (for y > 0) connecting A’ = (—1,0) and 4 = (1,0), and charac-

teristics g, g3 (for y <0) such that gy: x= JJ /—K(t)dt+1, g3: x=— [

V-K(#)dt — 1, and K = Ki /K, : lim,_ K(p) exists, K;(y) > 0 whenever y > 0,

=0 whenever y =0, and < 0 whenever y < 0, as well as K>(y) >0 in D.
Assume conditions:

[Rig): <0 on g,
[Ris]: (K1K2)' >0 on g,
[Ric]: K/ >0(i=1,2) in D,
[R2]: (x—c1)dy — (y + ¢c2)dx > 0: “star-likedness” on g,

[ ] 4(3r+(x—cl)rx+(y+cz)ry)+,u1 < -4, <0 fory=>0
3. 4(2r+(x—cl)rx+czry)+,ulﬁ — 461, <0 for y <0,

(Ra): Ki+(y+e)K| —py(x—c1)* 26 >0 fory=0
. CzK{ — t(x — 61)2 =>0n >0 fory <0,

(R: | Kot 0+ ks —3(y+¢2)? 203 >0 fory=0
| 2Ky + K — p3(c2)* 2 031> 0 for y <0,

where J; are positive constants (i = 1,2,3;/=1,2), and

[Re]: J; V—K(t)dt + c2/—K(y) —¢co <0 on gy,

where K;(i =1,2), r, and f are sufficiently smooth, and ¢; =1 + ¢y, and ¢y, 3,
and y; (i=1,2,3) are positive constants.
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Then there exists a weak solution of Problem (7) in D.

SPECIAL CASE: In D take

Ki=y and K; =y—ky,(>0), where k= constant >2 and

Yp
¥, = constant (< 0): J
0

=-1(y, <t<0), or equivalently

%)K 0) for k> 2.

Then conditions [R;3], [Rs], [Rs] and [R¢] hold on y = 0 and in general in D.

Note that substituting ,/—t/(t —ky,) = ¢, one gets that
Jy ——L _ar=kytant [-—L 1 [y —ky,)
0 - kyp ? ) kyp P

Yy = 1/(vk— 1 — ktan™!

where

2¢* -1 9
de(p:tan Q—W‘*‘C

Norte that conditions ([Ry4]-[R1s]) could be substituted by condition [R;] (16).

Oren: If r =0, then (25) does mot yield existence of weak solution.
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