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SPACES OF UPPER SEMI-CONTINUOUS MULTI-VALUED
FUNCTIONS ON SEPARABLE METRIC SPACES

By

Katsuro SAkAl and Shigenori UEHARA

Abstract. Let X = (X,d) be a metric space. By USCC(X,I), we
denote the space of upper semi-continuous multi-valued functions
p:X —1=[0,1] such that each ¢(x) is a closed interval. Each
¢ € USCC(X,X) can be identified with its graph, which is a closed
subset of X x I. The space USCC(X,I) admits the Hausdorfl metric
induced by the product metric on X x I. In this paper, by proving
the converse of Fedorchuk’s result, we show that USCC(X,I) is
homeomorphic to the Hilbert cube @ = [—1,1] if and only if X is
infinite, locally connected and compact. In case X is a dense subset
of a locally connected metric space Y such that Y\ X is locally non-
separating in Y, USCC(X,I) can be regarded as a subspace
of USCC(Y,I). It is also proved that the pair (USCC(Y,I),
USCC(X,I)) is homeomorphic to (Q,s) if and only if X # 7Y, X is
Gs; in Y, and Y is compact, where s = (—1,1)” = Q.

Introduction

Let X = (X,d) be a metric space. By (2%),,, we denote the hyperspace of
non-empty bounded closed subsets of X with the Hausdorff metric dy defined by
d (cf. [Ku, p. 214]). Let 2% be the totality of non-empty closed subsets of X. In
case X is unbounded, 2% # (2%), and dy is not a metric on the whole 2% (e.g.,
du({x}, X) = oo for any x € X) but dy induces a topology on 2% This topology
depends on the metric d (cf. [SU, §1]).
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We endow the product space X x R with the metric
p((x,1),(x", 1)) = max{d(x,x),|t — '|}.

Let ¢ : X — R be a multi-valued function such that each ¢(x) is compact. Then,
¢ is upper semi-continuous (u.s.c.) if and only if the graph of ¢ is closed in
X x R, whence we can regard ¢ € 2¥*R_ By USCp(X), we denote the space of
bounded u.s.c. multi-valued functions ¢ : X — IR such that each ¢(x) is non-
empty and compact, where ¢ : X — R is bounded means that the image ¢(X) =
J,cx?(x) is bounded. The space USCg(X) is now regarded as a subspace
of 2¥*R_One should note that USCp(X)¢# (2¥*R) in general, but py(p,¥) <
oo can be defined for each ¢,y € USCg(X) because ¢ and y are bounded. Let
USC(X,I) be the subspace of USCp(X) consisting of all ¢ e USCp(X) with the
image ¢(X) < I. By USCCp(X), we denote the subspace of USCp(X) consisting
of all p e USCCp(X) such that each ¢(x) is connected (i.e., a closed interval). Let
USCC(X,I) = USCCp(X)NUSC(X, ).

In case X is compact, every u.s.c. multi-valued function ¢: X — R is
bounded, so we denote USCp(X) = USC(X) and USCCg(X) = USCC(X). In
this case, every admissible metric for X induces the same topology for USCp(X),
that is, the topology for USCg(X) does not depend on the metric 4. In case X is
non-compact, it depends on the metric d (see the end of Introduction).

Fedorchuk [Fe; | proved that if X is an infinite locally connected compact
metric space then USCC(X,I) is homeomorphic to (=) the Hilbert cube Q =
[-1,1]” and USCC(X) =~ Q\{0} (= 0 x[0,1)) (cf. [SU;, Appendix]). In this
paper, by showing the converse of this result, we have the following:

THEOREM 1. For a metric space X, the following are equivalent:
(a) USCC(X,I) ~ Q;

(b) USCC3(X) ~ Q\{0} (= @ x [0,1));

(c) X is infinite, locally connected and compact.

In case X is a dense subset of a metric space Y, we have the natural
isometric embedding ey : USCp(X) — USCg(Y) defined by ey(p) = cly«r 9.
Then ey(USC(X,I)) = USC(Y,I). But, in general,

ey(USCCp(X)) 2 USCCp(Y) nor ey(USCC(X, 1)) USCC(Y,T).

For example, let ¥ = S! be the unit circle of Euclidean plane R? with the usual
metric, X = S"\{(1,0)}, and f:X — R be the map defined by flx,y)=y if
x <0and f(x,y) = y/|y| if x> 0. Then ey(f)(1,0) = {—1,1} is not connected.
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In case Y is locally connected, it will be shown that
ey(USCCp(X)) c USCCp(Y) and/or ey(USCC(X,I)) = USCC(Y,I)

if and only if the complement Y\X is locally non-separating in Y, that is, UN
X # (& is connected for each non-empty connected open set U in Y (Proposition
2). Let s =(—1,1)” be the pseudo-interior of Q, which is homeomorphic to the
separable Hilbert space /,. We generalize Theorem 1 to pairs as follows:

THEOREM 2. Let X be a dense subset of a locally connected metric space Y
with the locally non-separating complement in Y. Then the following are equivalent:

(a) (USCC(Y,I),ey(USCC(X,I))) ~ (Q,s);

(b) (USCCp(Y),ey(USCCp(X))) ~ (2 x [0,1),5 x [0,1));

() X#Y, Xis Gy in Y and Y is compact.

In the above, it should be observed that if Y is locally connected and Y\X is
locally non-separating in Y then X is dense in Y.

A metric space X = (X,d) (or a metric d) has Property S if X is covered
by finitely many connected sets with arbitrarily small diameters. It should be
remarked that a metric space with Property S is totally bounded, hence a
complete metric space with Property S is compact. The subspace of 2% consisting
of compacta is denoted by exp(X). In case X is compact, exp(X) = 2%, In [Cu],
Curtis proved that X admits a Peano compactification X such that (exp(X),
exp(X)) = (Q,s) if and only if X is connected, locally connected, completely
metrizable, nowhere locally compact and admits a metric d with Property S. We
have the following version of this Curtis’ result:

THEOREM 3. A metrizable space X has a metrizable compactification X such
that

(USCC(X,1),e3(USCC(X,1))) = (Q,5)

if and only if X is completely metrizable, non-compact and admits a metric with
Property S.

One should note that some admissible metric d for X cannot be extended
to X even if d has Property S. For example, let X = (0,1) and X = [0, 1]. Then,
X ~S"\{(1,0)}. The metric on X inherited from S' has Property S but cannot
be extended to X. The following is a direct consequence of Theorems 2 and 3:
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COROLLARY 1. Let X be completely metrizable, non-compact and admits a
metric with Property S. Then X admits a metric which induces the topology on
USCCp(X) such that USCC(X,I) = USCCp(X) =~ /. O

In the above, the topology of USCC(X,I) is not defined by using a complete
metric on X. In [SUy], it is proved that the spaces USCCg(X) and USCC(X,I)
are homeomorphic to a non-separable Hilbert space for a uniformly locally
connected, non-compact and complete metric space X (even if X is separable).
One should observe that USCCp(R) is non-separable but USCCg((0,1)) is
separable, where IR and (0,1) have the usual metrics.

Proofs of Theorems

We start with the following:

PROPOSITION 1. For a locally compact metric space X, USCC(X,1) is closed
in 2V if and only if X is locally connected.

Proor. The “if” part is Proposition 1.1 in [SU;|, where the local com-
pactness of X need not be assumed.

To see the “only if” part, assume that X is not locally connected. Then some
xo€ X has a compact neighborhood By such that any neighborhood of
xo contained in By is not connected. Let 6 = d(xo, X\By) > 0. Then we have
disjoint non-empty closed sets A4; and By in X such that By = 4,UB,
d(xp, A1) <27'6 and xo € B;. In fact, since By is compact, the intersection of
clopen sets in By containing xo is the component of By, which is not a
neighborhood of x. Then we have a clopen set By in By and x; € Bo\B; with
d(xp,x1) < 27'5, whence A; = By\B; and B; satisfy the condition. Using the
same argument inductively, we have disjoint non-empty closed sets 4, and B, in
X, neN, such that B, | = A,UB,,d(xy,4,) <27"0 and xoe B,. For each
neN, let

¢, = | 4; x {0}U B, x {1} U (X\inty By) x L e USCC(X,1).

i=1
Note that ¢, (inty By) = {0,1}. Since 28! = exp(By x 1) is compact, (¢,|Bo),en
has a subsequence (g, |By);. converging to some ¢’ € 251, Then (g,,); . con-

verges to ¢ = ¢’ U (X\inty By) x I in 2%¥*I Since (xo,0) € ¢, for all ne N, we
have (xp,0) €. For each neN, choose x,€ A4, so that d(x,, xo) <27"d.
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Since p((xo,1), (xp,1)) <276 and (x.,1) €, we have (xo,1)€¢p. However
(x0,1/2) ¢ ¢ because inty By x (0,1)Ng, = & for any ne N. This means that
pN{xp} x1 (i.e, ¢(xp)) is not connected, hence ¢¢ USCC(X,I). This is a
contradiction. O

For a metric space X, there exists the natural closed embedding ix: X —
USCC(X,1) defined as follows:

ix(x) = X x {0}U{x} xXT< X xI for each xe X,

whence each ix(x) e USCC(X,X) is defined by

o ={ 7 7T

Observe that py(ix(x),ix(x’)) = d(x,x’) if d(x,x’) <1, hence ix is locally iso-
metric. It is easy to see that iy(X) is closed in USCC(X,I).

ProOF OF THEOREM 1. The implications (¢)=>(a) and (c)= (b) are
Fedorchuk’s results [Fe; 5] (cf. [SU;, Appendix]).

(a) = (c): By using the embedding iy above, X can be embedded in
USCC(X,I) as a closed set, hence X is compact. By Proposition 1, X is locally
connected. If X is a singleton, the space USCC(X,I) is homeomorphic to the
hyperspace of subcontinua (i.e., closed subintervals) of I, so USCC(X,I) ~ 1’
(cf. [Du, §3]). Hence, if X is finite then USCC(X 1) = I?" where n is the number
of points of X. Therefore, X must be infinite.

(b) = (c): Since USCCp(X) is locally compact, g, = X x {0} € USCCp(X)
has a compact neighborhood N in USCCpg(X). Choose 6 > 0 so that every ¢ €
USCCp(X) with py(p,9,) <J belongs to N. Then, USCC(X,[0,4]) = N and
USCC(X,[0,d]) is closed in USCCpg(X). Hence, USCC(X,I) = USCC(X, [0,4])
is compact. As seen in the above, it follows that X is compact and locally
connected. Since

USCC(X) = USCC(X) ~ USCC(X, (0,1)) =« USCC(X, 1),
USCC(X,]) is infinite-dimensional, which implies that X is infinite. O
By Cp(X), we denote the Banach space of bounded continuous real-valued
functions of X with the sup-norm and let C(X,I)={fe Cp(X)|f(X)cI}.

Although Cg(X) < USCCp(X) as sets, the Banach space Cp(X) is not a subspace
of USCCp(X) in case X is non-compact (cf. [FK, Remark 3.6] and Supplement).
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In [SU,, Corollary 1.5], it is also shown that if X is locally connected and has no
isolated points then the closures of C(X,I) and Cg(X) in 24! are USCC(X,I)
and USCCp(X), respectively. In case X is locally compact, the converse also
holds by Proposition 1.

COROLLARY 2. For a locally compact metric space X,
clxaC(X,X) = USCC(X,I) and/or clxxxCg(X) = USCCp(X)

if and only if X is locally connected and has no isolated point. OdJ
Next, we show the following:

PROPOSITION 2. Let X be a dense subset of a locally connected metric space
Y. Then, the following are equivalent:

(a) ey(USCC(X,I)) =« USCC(Y,I);

(b) ey (USCCp(X)) = USCCp(Y);

() Y\X is locally non-separating in Y.

ProOOF. (c) = (b): Suppose ey(USCCg(X)) £ USCCp(Y), that is, there exists
9 € USCCp(X) such that ey(p) ¢ USCCp(Y). Then ey(p)(y) is not connected
for some y e Y\X, whence we have ¢; < ¢ < 1, such that #;,1, € ey(p)(y) but ¢ ¢
ey(p). Since ey(yp) is closed in ¥ x I and Y is locally connected, we have a
connected open neighborhood U in y in Y and J > 0 such that-

Ux(t—9d,t+9)Ney(p) = I,

whence ¢ ¢ p(x) for all xe UNX, 1 <t—J and 1, > t+ . By the definition of
ey(p), we have x; € UNX and s; € p(x;), i=1,2, such that |s; — ;| <J, whence
t¢o(x;) and 51 <t < 5. Since ¢(x;) is connected, ¢(x;) = (—o0,¢) and ¢(x;)
(t,00). Since ¢ is us.c.,

Uy={xeUlp(x) c(—w0,0)} and U, ={xeU|gp(x)c<(t, o)}

are open in U. It follows that U=U,Ul,, UNU,=¢ and x;e UNJX,
i=1,2. Hence, UNX is not connected, which means that Y\X is not locally
non-separating in Y.

(b) = (a): This is observed as follows:

ey(USCC(X, 1)) = ey (USCCp(X)) NUSC(Y, 1)
< USCCp(Y)NUSC(Y, 1) = USCC(Y,1).



Spaces of upper semi-continuous multi-valued functions 75

(a) = (c): First, note that X is dense in Y. Otherwise, ey(¢p)(y) = & for
each p € USCC(X,I) and y € Y\cl X. Now, suppose that Y\ X is not locally non-
separating in Y, that is, there exists a connected open set U in Y such that UNX
is not connected. (Note that UNX # (J because X is dense in ¥.) Let UNX =
U UU,, where U, and U, are disjoint non-empty open sets in X. Note that
cyUyUclyU, o U. Let

o= (X\U) xIU U x {0}U U, x {1} e USCC(X, ).

Since U is connected, we have ye UNclyUNclyU, c U\X because X is
dense in Y. It follows that ey(p)(y) = {0,1}. Thus ey(¢p) ¢ USCC(Y,I), which
contradicts to ey(USCC(X,I)) « USCC(Y,X). Therefore, Y\X is locally non-
separating in Y. U

PrROPOSITION 3. Let X be a dense subset of a locally connected compact
metric space Y with the locally non-separating complement Y\X in Y. Then,
ey(USCCpg(X)) is Gs in USCC(Y) if and only if X is G5 in Y.

Proor. The “only if” part follows from
ly(X) = iy( Y) n ey(USCCB(X)),

where iy : ¥ — USCC(Y,I) « USCCp(Y) is the natural closed embedding.
To see the “if”” part, let X = ﬂneNU,,, where each U, is open in Y. For each
m,n e NN, let

Gm,n = {9 € USCCy(Y) | pui (9, ex (9| Un)) < 1/m}.

Since ey (USCCp(X)) = ﬂm,neNG’":"’ it suffices to show that each G, , is open
in USCCp(Y), or each F,,, = USCCg(Y)\Gp, , is closed in USCCp(Y).

Assume that a sequence ¢; € F,, ,, i€ N, converges to ¢ € USCCp(Y). Since
¢ is bounded, ¢ = Y x [—a,a] for some a >0. Then, we may assume that
9; = Y x [—a,q] for all i e N. Since each ¢, is compact, we can choose (x;, ;) € @;
so that

P((xi 1), ex (9] Un)) = pra (i ex (9] Un)) = 1/m.

Since Y X [~a,a] is compact, we may assume that (x;,) converges to (xo, %) €
Y x [~a,a], whence (xo, #) € 9. We show that p((xo, %), ey (¢|U,)) = 1/m, which
means that ¢ € Fy, ,. Then, F, , would be closed in USCC(Y,[—a,a]).

Now, assume that p((xo, %), ey (¢|U,)) < 1/m. Then, we have (y,,5) € ¢|U,
such that p((xo, %), (¥g,%)) < 1/m. Let

0= min{d(yo, Y\\Un);%(l/m _p((x07 t()), (y07S0)))} > 0.
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Choose i so large that py(g;,0) <8 and p((xi, 1), (x0, %)) <. Then, we have

(yi,5:) € p; such that p((yg,s0): (¥;,s:)) <d. Since d(yy, ;) < d(yo, Y\Uy), it
follows that y; € U,, hence (;,s;) € ¢;| Uy,. Therefore,

p((xiv ti)’ (_Vi,si)) = p((-xi, trf)a eY(¢i | Un) = l/m
On the other hand,
p((xi7 ti)? (yivsi)) < p((va t,’), (X(), tU)) +p((X0, tO), ()}0750)) +P((y0,50), (yiasi))
< 25+p((x07 to)v (y()st)) < l/m,

which is a contradiction. The proof is completed. O
Now, we prove Theorems 2 and 3.

PrOOF OF THEOREM 2. (a) = (b): As saw in the proof of [Fe,, Proposition
2.4], D = USCC(Y,1)\USCC(Y,(0,1)) is a contractible Z-set in USCC(Y,I) and
then

USCC(Y,(0,1)) ~ USCC(Y,I\D ~ Q x [0,1).
It follows from [Ch, Theorem 6.6] that
(USCC(Y,(0,1)),ey(USCC(X,N))\D) =~ (@ x [0,1),s x [0,1)),
where it should be noted that ey(USCC(X,X))\D # ey(USCC(X, (0,1)) but
ey (USCC(X,1)\D = {ey(p) |p € USCC(X, (a,b)) for some 0 <a <b<1}.

By Theorem 1, Y is compact, whence USCCp(Y) = USCC(Y) and there exists a
homeomorphism 4 : USCC(Y) — USCC(Y,(0,1)) such that

h(ey(USCCp(X))) = {ey(¢) | ¢ € USCC(X, (a,b)) for some 0 <a<b<1}.
Consequently, we have
(USCCp(Y), ey (USCCp(X))) = (USCC(Y,(0,1)),ey (USCC(X,1))\D)
~ (@ x[0,1),s x [0,1)).

(b) = (c): By Theorem 1, the condition (b) implies that X # Y and Y is
compact and locally connected. Moreover, Y\X is locally non-separating in Y
by Proposition 2, and X is G5 in Y by Proposition 3.

(c) = (a): We first consider the case that Y is connected, hence it is a Peano
continuum. In this case, USCC(Y,I) is the closure of C(Y,I) in exp(Y xI) =
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271 [Fe,, Theorem 1.10]. Since (USCC(Y,I), C(Y,1)) ~ (Q,s) [SU;, Corollary
1’], the complement USCC(Y,D\C(Y,I) is a Z,-set in USCC(Y,I). By Prop-
osition 3, ey(USCCp(X)) is G5 in USCCg(Y), whence

ey{(USCC(X,I)) = ey (USCCp(X)) NUSCC(Y,I)
is also G5 in USCC(Y,I). Then, the complement
M =USCC(Y,I)\ey(USCC(X,I))

is F, in USCC(Y,I) and M < USCC(Y,D\C(Y,I), hence M is a Z,-set in
USCC(Y,I). Let (4, B) be a pair of compacta in USCC(Y,I) such that Bc M
and ¢ > 0. By all the same way as the proof of Main Theorem of [SU,|, but using
a point xp € Y\ X, we can define an embedding 4 : 4 — M such that #|B = id and
h is eclose to id. Applying the characterization of B(Q) = Q\s [An] (cf. [Ch,
Lemma 8.1]), we have (USCC(Y,I), M) =~ (Q, B(Q)), hence

(USCC(Y,I), ey (USCC(X, 1)) ~ (O, 5).

In the general case, we write ¥ = Ul.":l Y;, where each Y; is a component of
Y, which is closed and open in Y because of locally connectedness of Y. Since
Y\X is locally non-separating in Y, each X; = XN Y; is a component of X. Then

(USCC(Y,1),ey(USCC(X,X))) ~ (Hl_"=1 usce(r, 0, [ eyi(USCC(X,-,I))).

In case Y; is a singleton, X; = Y; and USCC(Y;,I) is homeomorphic to the
hyperspace of subcontinua of I, hence USCC(Y;,I) ~ I (cf. [Du, §3]). Hence the
general case can be obtained the connected case. 0

Proor oF THEOREM 3. First, assume that X is completely metrizable and
has an admissible metric with Property S. Then, X has only finitely many
components, which are closed and open in X. Replacing the metric, we may
assume that the distance between any two components of X is positive. Thus, as
in the proof of Theorem 2, it suffices to treat the case X is connected. In this
case, X has a Peano compactification X with a locally non-separating remainder
X\X by [Cu, Proposition 2.4]. By complete metrizability, X is Gs in X. Then, the
“if” part follows from Theorem 2.

Conversely, assume that X has a compactification X such that

(USCC(X,1),e3(USCC(X,X))) ~ (Q,s).

By Theorem 2, X # X, X is Gs in X, X is locally connected and the remainder
X\X is locally non-separating in X. Then X is completely metrizable and, as is
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casily observed, each component of X is a Peano compactification of a com-
ponent of X with locally non-separating remainder. By [Cu, Proposition 2.4],
X admits an admissible metric d with Property S. Thus we have the “only if”

part. N}

Supplement

As mentioned before Corollary 2, the Banach space Cp(X) is not a subspace
of USCCp(X) in case X is non-compact (cf. [FK, Remark 3.6]). Here we show
the following:

PROPOSITION 4. In the following cases, the topology for C(X,Y) induced by
the sup-norm is different from the one induced by the Hausdorff metric py:
(1) X has a non-complete component;
(2) X has a non-totally bounded component;
(3) X has infinitely many components X;, i€ N, such that inf;.n diam X; > 0
and inf#j diSt(AXi, X}) > 0.

Proor. (1) Let X, be a non-complete component of X. Then X, has a non-
convergent Cauchy sequence (x;); . For each n e N, we have m > n such that
d(xi,x;) < (1/3)d(Xn, %) for all i, j > m. In fact, x, is not an accumulation point
of (x;);cn> Whence there is come J > 0 such that d(x,, x;) > ¢ for almost all 7 € N.
Since (x;);. is a Cauchy sequence, we can choose m > n such that d(x,, xn,) >
0 and d(x;,x;) < (1/3)0 if i,j > m, whence d(x;,x;) < (1/3)d(xn,xn) for all i
j = m. Therefore, by taking a subsequence, we can assume that d(x;,x;) <
(1/3)d(xn, Xns1) for every neN and i,j>n. For each nelN, let ¢ =
(1/3)d(xn, Xn+1). Then, the collection {B(x,,é&,)|n €N} is discrete in X and
(*) () B(xi,&) < B(xns1,260) = X\ {J B(x;,8)-

i>n Jj<n
Moreover, since X is connected, it follows that
() [0,6,] < [0,2¢1] = {d(xn,y) |y Xo} for every neN.
We define a map f e C(X,I) as follows:
flx) = { 1—¢gld(x,x;) ifxe Bf(x,;a,), ieN,
0 otherwise.

One should note that any map ge C(X,I) with sup,.x|f(x)—g(x)| =
y < 1/2 is not uniformly continuous. In fact, by (#;), we have y,e Xy, ieNN,
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such that d(x;, y;) = &, whence lim;,d(x;, y;) =0 but

lg(xi) = g(w)l = 1S (xi) = f (W) = 1 (i) — g(xa)| = 1f () = 9(0)
>l—-y—y=1-2y>0.
However, for each & > 0, there exists a uniformly continuous map h e C(X,I)

with py(f,h) < e In fact, choose n e IN so that 2¢, < ¢, and define a map he
C(X,I) as follows:

h(x) = { 1 =27t td(x, xp41)  if x € B(Xps1,26n),
B Sf(x) otherwise.

It follows from (ff;) that f(clB(x;,¢&)) = h(cl B(xnt1,2¢,)) =1 for every i > n.
Then, by (x), it can be easily seen that py(f,h) < 2, <e.

(2) Let Xy be a non-totally bounded component of X. Then, we have 6 > 0
and x; € Xo, i€ N, such that d(x;,x;) >J if i # j. Observe that

(#2) [0,0] = {d(xi,y) |y € Xo} for every ieN.

For each ie N, let §; = min{i~!,1/36} > 0. Now, we define a map f e C(X,I)
as follows:
F(x) = { 1-67"d(x,x;) if xe B(x;,%), i€N,
0 otherwise.

By the same reason as the case (1), any map ge C(X,I) with sup,.y|f(x)—
g(x)| < 1/2 is not uniformly continuous. However, for each & > 0, choose n e N
so that n~! < ¢, and define a uniformly continuous map he C(X,I) defined by

1 — min{e, 6} 'd(x,x;) if x € B(x;,min{e,d}), i >n,
h(x) = :
f(x) otherwise.

From (f), it follows that
f(cl B(x;,0;)) = h(cl B(xpy1, min{eg,0})) =1 for every i > n,

Then, we have py(f,h) <e.
(3) For each ie N, take x; € X;. Choose 20 > 0 so that J < inf;cndiam X;
and ¢ < inf;,;dist(X;, X;). Since sup,.y d(x,x;) > 9, it follows that

(#2) [0,6] = {d(xi,y)| y € Xi} for every ieN.

Then, by replacing Xy by X;’s in the proof of the case (2), we have the proof of
this case. O
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