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SPACES OF UPPER SEMI-CONTINUOUS MULTI-VALUED

FUNCTIONS ON SEPARABLE METRTC SPACES

By

Katsuro Sakai and Shieenori Uehara

Abstract Let X=(X,d) be a metric space. By USCC(X,I), we

denote the space of upper semi-continuous multi-valued functions

q>: X ->I= [0,1] such that each <p(x) is a closed interval. Each

<pe XJSCC(X, I) can be identified with its graph, which is a closed

subset of X x I. The space USCC(lr, I) admits the Hausdorff metric

induced by the product metric on X x I. In this paper, by proving

the converse of Fedorchuk's result, we show that USCC(lr,I) is

homeomorphic to the Hilbert cube Q= [-1, l]w if and only if X is

infinite,locally connected and compact. In case X is a dense subset

of a locally connected metric space Y such that Y＼X is locally non-

separating in Y, USCC(X,T) can be regarded as a subspace

of USCC(F,I). It is also proved that the pair (USCC(F,I),

USCC(X,I)) is homeomorphic to (Q,s) if and only if X # Y, X is

Gs in Y, and Y is compact, where s= (-1,1)R <= Q.

Introduction

Let X = (X,d) be a metric space. By {2x)m, we denote the hyperspace of

non-empty bounded closed subsets of X with the Hausdorff metric du defined by

d (cf.[Ku, p. 214]). Let 2X be the totalityof non-empty closed subsets of X. In

case X is unbounded, 2X =£{2x)m and dn is not a metric on the whole 2X (e.g.,

dn({x},X) = oo for any jcg!) but dH induces a topology on 2X. This topology

depends on the metric d (cf. [SU2, §1]).
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We endow the product space X x IR with the metric

/>((x,/),(*',t'))= msix{d{x: x'),＼t- t'＼).

Let (p: X ―≫IR be a multi-valued function such that each <p{x)is compact. Then,

<p is upper semi-continuous (u.s.c.)if and only if the graph of g> is closed in

IxR, whence we can regard <pe2XxR. By ＼JSCB{X), we denote the space of

bounded u.s.c. multi-valued functions (p: X ―>IR such that each <p(x) is non-

empty and compact, where <p: X ―>IR is bounded means that the image <p(X) =

UxeX<p(x) is bounded. The space USCg(X) is now regarded as a subspace

of 2*xR. One should note that VSCB(X)9t(2Xx^)m in general, but />H(^</0 <

oo can be defined for each cp,＼j/e XJSCB{X) because cp and ＼J/are bounded. Let

USC(X, I) be the subspace of USCB{X) consisting of all <pe USCB(JT) with the

image (p{X) a I. By USCC^X), we denote the subspace of USCg(X) consisting

of all(pe USCC5(X) such that each (p{x)is connected (i.e.,a closed interval).Let

uscc(x, i) = uscCfi(x) n usc(z, i).

In case X is compact, every u.s.c. multi-valued function cp: X ― IR is

bounded, so we denote USCB(X) = USC(X) and USCC5(X) = USCC(Z). In

thiscase, every admissible metric for X induces the same topology for JJSCB(X),

that is, the topology for USCfi(Z) does not depend on the metric d. In case X is

non-compact, it depends on the metric d (see the end of Introduction).

Fedorchuk [Fei^] proved that if X is an infinitelocally connected compact

metric space then USCC(lr,I) is homeomorphic to (≪) the Hilbert cube Q =

[-l,l]w and USCC(JT) a Q＼{0} (≪gx[0,l)) (cf. [SUi, Appendix]). In this

paper, by showing the converse of this result,we have the following:

Theorem 1. For a metric space X, the following are equivalent:

(a) USCCpf,I)≪g;

(b) USCQKX) ≫ <2＼{0} (≪ 2 x [0,1));

(c) X w infinite,locally connected and compact.

In case X is a dense subset of a metric space Y, we have the natural

isometric embedding eY : USCb(X) ―>･USCg(F) defined by ey(^) = clyX]R^.

Then eF(USC(JT,I)) c OSC(F,I). But, in general,

er(USCCfi(X))^USCCs(F) nor ey(USCC(X,I))^USCC(F,I).

For example, let Y = S1 be the unit circleof Euclidean plane 1R2 with the usual

metric, X = S1＼{(l,0)}, and / : X -> R be the map denned by f(x,y) = y if

x < 0 and /(*, v) = v/lvl if x > 0. Then ey(/)(l,0) = {-1,1} is not connected.
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In case Y is locally connected, it will be shown that

er(USCCfi(X)) c USCCB{ Y) and/or ey(USCC(JT, I)) c USCC( F,I)

if and only if the complement Y＼X is locally non-separating in F, that is, U D

X ＼"0 is connected for each non-empty connected open set U in Y (Proposition

2). Let s = (―1,l)w be the pseudo-interior of £?>which is homeomorphic to the

separable Hilbert space £i.We generalize Theorem 1 to pairs as follows:

Theorem 2. Let X be a dense subset of a locally connected metric space Y

with the locally non-separating complement in Y. Then thefollowing are equivalent:

(a) (USCC(F,I),er(USCC(X,I))) ≫ (Q,s);

(b) (USCCB(Y),eY(USCCB(X))) ≫(Q x [0,l),s x [0,1));

(c) X # Y, X is G$ in Y and Y is compact.

In the above, it should be observed thatif Y is locally connected and Y＼X is

locally non-separating in Y then X is dense in Y.

A metric space X = (X, d) (or a metric d) has Property S if X is covered

by finitelymany connected sets with arbitrarilysmall diameters. It should be

remarked that a metric space with Property S is totally bounded, hence a

complete metric space with Property S is compact. The subspace of 2X consisting

of compacta is denoted by exp(X). In case X is compact, exp(X) = 2X. In [Cu],

Curtis proved that X admits a Peano compactification X such that (exp(X),

exp(X))
~{Q,$)

if and only if X is connected, locally connected, completely

metrizable, nowhere locally compact and admits a metric d with Property S. We

have the following version of this Curtis' result:

Theorem 3. A metrizable space X has a metrizable compactification X such

that

(USCC(1,I),^(USCC(X,I))) ≫ {Q,s)

if and only if X is completely metrizable, non-compact and admits a metric with

Property S.

One should note that some admissible metric d for X cannot be extended

to X even if d has Property S. For example, let X = (0,1) and X = [0,1].Then,

A'≪S1＼{(l,0)}. The metric on X inherited from S1 has Property S but cannot

be extended to X. The following is a direct consequence of Theorems 2 and 3:
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Corollary 1. Let X be completelymetrizable,non-compact and admits a

metric with Property S. Then X admits a metric which induces the topology on

USCQj(X) such that USCC(X,I) ≪ USCCB(X) ≪ t2. D

In the above, the topology of USCC(Z,I) is not definedby using a complete

metric on X. In [SU2],itis proved that the spaces USCQ}(X) and USCC(Z,I)

are homeomorphic to a non-separableHilbert space for a uniformly locally

connected, non-compact and complete metric space X (even if X is separable).

One should observe that USCC5(IR) is non-separable but USCCg((0,1)) is

separable,where 1R and (0,1) have the usual metrics.

Proofs of Theorems

We start with the following:

Proposition 1. For a locally compact metric space X, USCC(Ar, I) is closed

in 2Xxl if and only if X is locally connected.

Proof. The "if" part is Proposition 1.1 in [SU2], where the local com-

pactness of X need not be assumed.

To see the "only if" part, assume that X is not locally connected. Then some

xo e X has a compact neighborhood Bo such that any neighborhood of

xq contained in Bo is not connected. Let S = d(xo,X＼Bo) > 0. Then we have

disjoint non-empty closed sets A＼ and B＼ in X such that Bq = A＼UB＼,

d(xo,A＼) <2~lS and xoeB＼. In fact, since Bo is compact, the intersection of

clopen sets in Bo containing xo is the component of Bo, which is not a

neighborhood of xo. Then we have a clopen set B＼ in Bq and x＼e Bo＼B＼ with

d(xo,xi) <2~lS, whence A＼ = Bq＼B＼ and B＼ satisfy the condition. Using the

same argument inductively, we have disjointnon-empty closed sets An and Bn in

X, n N, such that Bn-＼ = An I)Bn,d(xo,An) < 2~nd and xo e Bn. For each

neN. let

<pn= (J At x {0} U Bn x {1} U (X＼intz 50)xIg USCC(X, I)

Note that <pn(intxBo) = {0,1}. Since 2B°xl = exp(£0 x I) is compact, ((pn＼Bo)neN

has a subsequence (<pn.＼Bo)ie]Nconverging to some cp'e2B°xI. Then (^n,.)/e]N con-

verges to cp= (p1U (Z＼intx^o) x I in 2XxI. Since (xo,O) £<pn for all ≪eN, we

have (xo,O)e(p. For each n e N, choose xn e An so that J(xw,xq) < 2~"^.
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Since p((xo, 1),(xn, 1)) < 2 nS and (xn,＼)e(pn, we have (xo,l)e^. However

(xo, 1/2) $<p because intxBq x (0,1) C＼<pn= 0 for any neR This means that

9?n{xo}xl (i.e., <p(xo))is not connected, hence (p$ USCC(X,I). This is a

contradiction. □

For a metric space X, there existsthe natural closed embedding ix: X ―>

USCC(X,I) defined as follows:

ix{x) = Ix{O}U{x}xIcIxI for each xel,

whence each ix(x) e USCC(X, I) is defined by

ix(x){y) =
{(0, if y i-x

if y = x

Observe that pH(ix(x),ix(x')) =d(x,x') if d(x,x') < 1, hence ix is locally iso-

metric. It is easy to see that ix{X) is closed in USCC(X,I).

Proof of Theorem 1. The implications (c) => (a) and (c) => (b) are

Fedorchuk's results [Fei^] (cf. [SUi, Appendix]).

(a) => (c): By using the embedding /> above, X can be embedded in

USCC(X, I) as a closed set,hence X is compact. By Proposition 1, X is locally

connected. If X is a singleton, the space USCCpf, I) is homeomorphic to the

hyperspace of subcontinua (i.e.,closed subintervals) of I, so USCC(A",I) w I2

(cf.[Du, §3]).Hence, if X is finitethen USCC(Ar,I) ≪ I2", where n is the number

of points of X. Therefore, X must be infinite.

(b) => (c): Since USCCB(X) is locally compact, (p0 = X x {0} e USCC^X)

has a compact neighborhood N in USCCg(X). Choose S > 0 so that every <pe

USCCB(X) with pH(<p,(p0)<S belongs to N. Then, USCC(X, [0,(5])c JV and

USCC(X,[0,<5]) is closed in USCC^(X). Hence, USCC(X,I) ≪ USCC(X, [0,^])

is compact. As seen in the above, it follows that X is compact and locally

connected. Since

USCC^(X) - USCC(X) w USCC(Z, (0,1)) c: USCC(Z,I),

USCC(Z,I) is infinite-dimensional, which implies that X is infinite. □

By Cb(X), we denote the Banach space of bounded continuous real-valued

functions of X with the sup-norm and let C(X,I) = {/ e CB{X) ＼f(X) c I}.

Although Cb(X) c= USCCg(X) as sets,the Banach space CB(X) is not a subspace

of USCCb(X) in case X is non-compact (cf.[FK, Remark 3.6] and Supplement).
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In [SU2, Corollary 1.5],it is also shown that if X is locally connected and has no

isolated points then the closures of C(X,I) and CB(X) in 2Xxl are USCC(X,I)

and USCCb(X), respectively.In case X is locally compact, the converse also

holds by Proposition 1.

Corollary 2. For a locally compact metric space X,

c＼2x*iC(X, I) = USCC(X, I) and/or d2x,R CB{X) = USCCB(Z)

if and only if X is locally connected and has no isolated point. □

Next, we show the following:

Proposition 2. Let X be a dense subset of a locally connected metric space

Y. Then, the following are equivalent:

(a) 6>r(USCC(X,I))cUSCC(r,I);

(b) ey(USCCfi(X))cUSCC5(F);

(c) Y＼X is locally non-separatina in Y.

Proof, (c) => (b): Suppose eY{USCCB(X)) £USCC5(F), that is, there exists

(pe＼JSCCB(X) such that eY(cp) $ USCCB(F). Then eY{(p){y) is not connected

for some y e Y＼X, whence we have t＼< t < h such that t＼,ti^ eY((p)(y) but t£

ey {(/>)･Since ey(<p) is closed in F x I and F is locally connected, we have a

connected open neighborhood U in y in Y and S > 0 such that

whence ? <£̂>(x) for all x e U (II, fi < r - S and ^ > ? + <>･By the definition of

eY(<p), we have x,-e UC＼X and 5,-e (p(xj), i= 1,2, such that ＼st- r,-|< <5,whence

t£(p{xi) and si < t < $2. Since (p{xt) is connected, ^(xj) a (―oo, ?) and ^(^2) <=

(t, 00). Since 9? is u.s.c,

t/i = {xe C/1 9≫(x)<= (-oo,?)} and f/2 = {xe t/| 9>(x) c (r, 00)}

are open in U. It follows that U=UiUU2, U＼V＼U2 = 0 and jc/e^riX,

/ = 1,2. Hence, £/D X is not connected, which means that Y＼X is not locally

non-separating in Y.

(b) => (a): This is observed as follows:

eY{VSCC(X, I)) = £>r(USCCB(X)) (1 USC( F, I)

<= USCQs( F) n USC( F, I) = USCC(F, I).
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(a) =>■(c): First, note that X is dense in Y. Otherwise, eY{(p){y) = 0 for

each (pe USCC(X, I) and y e Y＼c＼X.Now, suppose that Y＼X is not locally non-

separating in Y, that is, there existsa connected open set U in Y such that Uf)X

is not connected. (Note that UC＼X # 0 because X is dense in Y.) Let UDX =

U1UU2, where f/j and t/2 are disjoint non-empty open sets in X. Note that

dxUiUclxU2 => U- Let

<p= (X＼U) xIUl/j x {0}U£/2 x {1} USCC(Z,I).

Since 17 is connected, we have y e UDcIyUi riclyf/2 <= t/＼X because Z is

dense in 7. It follows that eY(<p)(y) = {0,1}. Thus eY(<p) ^USCC(F,I), which

contradicts to eF(USCC(X,I)) c USCC(F,I). Therefore, F＼X is locally non-

separating in 7. □

Proposition 3. Let X be a dense subset of a locally connected compact

metric space Y with the locally non-separating complement Y＼X in Y. Then,

er(USCC≪m) is Gs in USCC(F) if and only if X is Gs in Y.

Proof. The "only if" part follows from

iY(X) = iY(Y)f)eY(USCCB(X)),

where iY : Y ^ USCC(7,I) a USCCB(Y) is the natural closed embedding.

To see the "if" part, let X = f]neKUn, where each Un is open in Y. For each

m, n e N, let

GW)W = {^GUSCCfi(F)|/7H(^,^Mt/w))<l/m}.

Since ey(USCCfi(if)) =
nmweN^w>"> ^

suffices to show that each Gm>n is open

in USCCS(F), or each Fm'n = USCCB(Y)＼Gm,n is closed in USCCfi(7).

Assume that a sequence <pte Fm^ ie N, converges to <pe USCC^fF). Since

9> is bounded, cpcz Y x [―a, a] for some a > 0. Then, we may assume that

9?j-a Y x [―0, a] for all i e IN. Since each cptis compact, we can choose (jc,-,?,-)e #>,･

so that

/7((^,?/),er(^|t/≪)) =/>H(Pi>MPi|tf≪)) ^ !M

Since F x [―a, a] is compact, we may assume that (*;,*,-)converges to (jco,?o) e

7 x [-a,a], whence (xo,?o) g 9?.We show that p((xo,to),eY(<p＼Un)) > l/m, which

means that (p e Fm^n. Then, Fm,n would be closed in USCC(F, [―a, a]).

Now, assume that p{{xo,to),eY{(p＼Un)) < l/m. Then, we have (jo^o) ^ <p＼Un

such that /?((xo,/o),(^o>Jo)) < Vm- Let

(5 = min{J(j;0, F＼£/≪)i(l/m-/?((xo,ro),(7o^o)))} > 0.
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Choose i so large that Pn((Pi,(p) <S and p((Xi,ti),(xo,to)) <S. Then, we have

(tt,s,-)e ^ such that p((y0,s0), {yh$i)) < S. Since d(yQ, yt) < d(y0, Y＼Un), it

follows that yt e Un, hence (y^Si) e <p{＼Un. Therefore,

p({xi,ti),(yi,Si)) >p((xi,ti),eY{<Pj＼ Un) > ＼/m.

On the other hand,

P((xi, t{),{yhSi)) < p((xh tt),(*o, to))+p({xo, t0),{yo,so))-＼-p((yQ,so), (y{,Si))

<2S + p((xo, to),(y0, s0)) < l/m,

which is a contradiction. The proof is completed. Q

Now, we prove Theorems 2 and 3.

Proof of Theorem 2. (a) => (b): As saw in the proof of [Fe2, Proposition

2.4],D = USCC(F,I)＼USCC(F, (0,1)) is a contractible Z-set in USCC(F,I) and

then

USCC(F, (0,1)) k USCC(F,I)＼D ≪gx[0,1).

It follows from [Ch, Theorem 6.6] that

(USCC(F, (0,l)),eY(USCC(X,l))＼D) ≪ (Q x [0,l),s x [0,1)),

where it should be noted that ey(USCC(X,I))＼D # e7(USCC(Jr, (0,1)) but

er(USCC(X,I))＼D={er(^)|^GUSCC(Z,(a,Z>)) for some 0<a<6<l}.

By Theorem 1, F is compact, whence USCCS(F) = USCC(F) and there exists a

homeomorphism h : USCC(F) -≫･USCC(F, (0,1)) such that

h{eY(VSCCB(X))) = {eY{(p) ＼(p e USCC(Z, {a,b)) for some 0 < a < b< 1}.

Consequently, we have

(VSCCB(Y),eY(USCCB(X))) ≪ (USCC(y,(0,l)),gy(USCC(Jr,I))＼D)

≪(ex[o,i),*x[o,i)).

(b) =3>(c): By Theorem 1, the condition (b) implies that X ^ Y and Y is

compact and locally connected. Moreover, Y＼X is locally non-separating in Y

by Proposition 2, and X is G§ in F by Proposition 3.

(c) => (a): We firstconsider the case that Y is connected, hence itis a Peano

continuum. In this case, USCC(F.I) is the closure of C(F,I) in exp(F x I) =
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2YxI [Fe2, Theorem 1.10]. Since (USCC( F, I), C(F, I)) ≪ (g,j) [SUi, Corollary

1'],the complement USCC(Y,I)＼C{Y,1) is a Zff-setin USCC(F,I). By Prop-

osition 3, eY(USCCB(X)) is Gs in USCC5(F), whence

er(USCC(lr, I)) = er(USCCfi(X)) (1USCC( F, I)

is also G§ in USCC(F, I). Then, the complement

M = USCC(F,I)Vr(USCC(Z,I))

is Fa in USCC(F,I) and McUSCC(7,I)＼C(F,I), hence M is a Zff-setin

USCC(F,I). Let (A,B) be a pair of compacta in USCC(F,I) such that B <= M

and s > 0. By all the same way as the proof of Main Theorem of [SUi], but using

a point xo e Y＼X, we can define an embedding h : A ―>M such that h＼B = id and

h is e-close to id. Applying the characterization of B(Q) = Q＼s [An] (cf. [Ch,

Lemma 8.1]),we have (USCC(F,I),M) ≪ (g,5(6)), hence

(USCC(F,I),er(USCC(Z,I))) ≪(2,^).

In the general case, we write F = (J;M=1F,, where each F/ is a component of

F, which is closed and open in F because of locally connectedness of F. Since

Y＼X is locally non-separating in F, each X, = XC＼ Yt is a component of X. Then

(USCC(F,I),ey(USCC(Z,I))) ≫ (f];l1USCC(Fi-,I),f]i'L1^,(USCC(Xi-,I)))

In case F,-is a singleton, X{ = F,- and USCC(F,-,I) is homeomorphic to the

hyperspace of subcontinua of I, hence USCC(F,,I) ≪ I2 (cf.[Du, §3]).Hence the

general case can be obtained the connected case. □

Proof of Theorem 3. First, assume that X is completely metrizable and

has an admissible metric with Property S. Then, X has only finitelymany

components, which are closed and open in X. Replacing the metric, we may

assume that the distance between any two components of X is positive.Thus, as

in the proof of Theorem 2, it sufficesto treat the case X is connected. In this

case, X has a Peano compactification X with a locally non-separating remainder

X＼X by [Cu, Proposition 2.4].By complete metrizability,X is G$ in X. Then, the

"if" part follows from Theorem 2.

Conversely, assume that X has a compactification X such that

(USCC(1,I),^(USCC(Z,I))) ≪(Q,s).

By Theorem 2, X ^ X, X is Gs in X, X is locally connected and the remainder

X＼X is locally non-separating in X. Then X is completely metrizable and, as is
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easilyobserved, each component of X is a Peano compactificationof a com-

ponent of X with locally non-separatingremainder. By [Cu, Proposition 2.4],

X admits an admissiblemetric d with Property S. Thus we have the "only if"

part. □

Supplement

As mentioned before Corollary2, the Banach space Cb(X) is not a subspace

of USCCb(X) in case X is non-compact (cf.[FK, Remark 3.6]).Here we show

the following:

Proposition 4. In the following cases, the topology for C(X, I) induced by

the sup-norm is differentfrom the one induced by the Hausdorff metric pH:

(1) X has a non-complete component;

(2) X has a non-totally bounded component;

(3) X has infinitelymany components X{, i e N, such that inf,-e]NdiamX; > 0

and infi^jdist(XhXj) > 0.

Proof. (1) Let Xq be a non-complete component of X. Then Xq has a non-

convergent Cauchy sequence (x,-)(-e]N.For each n e N, we have m> n such that

d(xj,Xj) < (l/3)d(xn,xm) for all /,j > m. In fact, *, is not an accumulation point

of {xi)ieM, whence there is come 8 > 0 such that d(xn, xt) > 3 for almost all /e N.

Since (x,)/e]Nis a Cauchy sequence, we can choose m> n such that d(xn,xm) >

S and d(xj,Xj) < (l/3)<5 if i,j>m, whence d(xj,Xj) < (l/3)d(xn,xm) for all i,

j>m. Therefore, by taking a subsequence, we can assume that d(xi:Xj) <

(l/3)d(xn,xn+＼) for every neN and i,j>n. For each n e N, let sn =

(l/3)i/(xn,xw+i). Then, the collection {S(ifl,£fl)|neN} is discretein X and

(*) (J B{xhSi) c B(xn+l,2en) cz X＼ (J B(xj,ej).

i>n j<n

Moreover, since Xq is connected,it follows that

(Hi) [0,£,]cz[0,2ei]c {d{xn,y)＼ye Xo} for every ≪eN

We define a map / e C(X, I) as follows:

/(*) = : e( ld(x, Xj) if x e B(xj, £;), i e N,

otherwise.

One should note that any map geC(X,I) with swpxeX＼f(x) ―g(x)＼=

y < 1/2 is not uniformly continuous. In fact, by (fji),we have yi e Xq, ieN,
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such that d(xj,yt) = st, whence lim,-_>00<5?(xi,yt) = 0 but

＼g(Xi)- g{yt)＼> ＼f(x,)- f(yt)＼- ＼f(x{)- g(x,)＼- ＼f(yt)- g(yi)＼

>l-y-y=l-2y>0.

However, for each e > 0, there exists a uniformly continuous map h e C(X, I)

with pn(f,h) < e. In fact, choose ≪eN so that 2en < e, and define a map h e

C{XJ) as follows:

1 -2 lenld(x,xn+＼) if x e B(xn+U2sn)

otherwise.

It follows from (fli)that f(c＼B(xi,ei))=h(c＼B(xn+i,2en))=lfor every i > n.

Then, by (*),it can be easilyseen that pH(f,h) < 2sn < e.

(2) Let Xq be a non-totallybounded component of X. Then, we have S > 0

and xte Xo, i e N, such that d(xj,Xj)> 5 if i ^ j. Observe that

(h)

For each /e N

as follows:

[0,(5]c {d{xh y)＼ye Xo} for every i e N.

let <S,= mini/"1,1/3*5} > 0. Now, we define a map / e C(X,I)

/(*) = {; S( ld(x, x{) if x e B(xj,Si), i e N

otherwise.

By the same reason as the case (1),any map g e C(X, I) with supxeX＼f(x)―

g(x)＼< 1/2 is not uniformly continuous. However, for each s > 0, choose neN

so that n~l< s, and define a uniformly continuous map h e C(X,I) defined by

h(x)

f
1 - minje,^} ld(x, xA if x e B(xt, min{£,^}), / > n,

/(*) otherwise.

From (Jta),it follows that

f(c＼B(xi,di))= h(c＼B(xn+＼,min{e,5}))= I for every / > n,

Then, we have pH(f,h) < s.

(3) For each /eN, take xt e Xt. Choose 23 > 0 so that 3 < infje!NdiamX/

and 3 < inf,#7-dist(X/,A}). Since supxeX.d(x,xt) > 3, it follows that

(h) [0,(5]c {d(xi, y) I y e X,-} for every z e N.

Then, by replacing Xo by X,'sin the proof of the case (2), we have the proof of

this case. □



80
Katsuro Sakai and Shigenori Uehara

Acknowledgments

The authors would like to thank the refereefor his helpfulcomments.

References

[An] R. D. Anderson, A characterization of apparent boundaries of the Hilbert cube, Notices Amer.

Math. Soc. 16 (1969), 429, Abstract |j697-G17.

[Ch] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer.

Math. Soc. 154 (1971), 399-426.

[Cu] D. W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Math. 40 (1980), 139―

152.

[Du] R. Duda, On the hyperspaces of subcontinua of a finitegraph, I, Fund. Math. 62 (1968), 265-

285.

[Fei] V. V. Fedorchuk, On certain topological properties of completions of function spaces with

respect to Hausdorff uniformity, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. (1991), 77-

80 (Russian); English Transl., Moscow Univ. Math. Bull. 46 (1991), 56-58.

[Fe2] V. V. Fedorchuk, Completions of spaces of functions on compact spaces with respect to the

Hausdorff uniformity, Trudy Seminara imeni I.G. Petrovskogo 18 (1995), 213-235

(Russian); English transl.,J. of Math. Sci. 80 (1996), 2118-2129.

[FK] V. V. Fedorchuk, and H.-P. A. Kiinzi, Uniformly open mapping and uniform embeddings of

function spaces, Topology Appl. 61 (1995), 61-84.

[Ku] K. Kuratowski, Topology, I, English edition, Polish Sci. Publ., Warsaw, 1966.

[SUi] K. Sakai and S. Uehara, A Hilbert cube compactification of the Banach space of continuous

functions, Topology Appl. 92 (1999), 107-118.

[SU2] K. Sakai and S. Uehara, Spaces of upper semi-continuous multi-valued functions on complete

metric spaces, Fund. Math. 160 (1999), 199-218.

Katsuro Sakai: Institute of Mathematics,

University of Tsukuba, Tsukuba, 305-8571

Japan

E-mail address: sakaiktr@sakura.cc.tsukuba.ac.jp

Shigenori Uehara: Takamatsu National

College of Technology, Takamatsu, 761-8058

Japan

E-mail address: uehara@takamatsu-nct.ac.jp


