SPACES OF UPPER SEMI-CONTINUOUS MULTI-VALUED FUNCTIONS ON SEPARABLE METRIC SPACES

By

Katsuro SAKAI and Shigenori UEHARA

Abstract. Let X = (X, d) be a metric space. By USCC(X, I), we denote the space of upper semi-continuous multi-valued functions $\varphi : X \to I = [0, 1]$ such that each $\varphi(x)$ is a closed interval. Each $\varphi \in \text{USCC}(X, I)$ can be identified with its graph, which is a closed subset of $X \times I$. The space USCC(X, I) admits the Hausdorff metric induced by the product metric on $X \times I$. In this paper, by proving the converse of Fedorchuk's result, we show that USCC(X, I) is homeomorphic to the Hilbert cube $Q = [-1, 1]^{\omega}$ if and only if X is infinite, locally connected and compact. In case X is a dense subset of a locally connected metric space Y such that $Y \setminus X$ is locally nonseparating in Y, USCC(X, I) can be regarded as a subspace of USCC(Y, I). It is also proved that the pair (USCC(Y, I), USCC(X, I)) is homeomorphic to (Q, s) if and only if $X \neq Y$, X is G_{δ} in Y, and Y is compact, where $s = (-1, 1)^{\omega} \subset Q$.

Introduction

Let X = (X, d) be a metric space. By $(2^X)_m$, we denote the hyperspace of non-empty bounded closed subsets of X with the Hausdorff metric d_H defined by d (cf. [Ku, p. 214]). Let 2^X be the totality of non-empty closed subsets of X. In case X is unbounded, $2^X \neq (2^X)_m$ and d_H is not a metric on the whole 2^X (e.g., $d_H(\{x\}, X\}) = \infty$ for any $x \in X$) but d_H induces a topology on 2^X . This topology depends on the metric d (cf. [SU₂, §1]).

¹⁹⁹¹ Mathematics Subject Classification. 54C60, 57N20, 58C06, 58D17.

Key words and phrases. The space of upper semi-continuous multi-valued functions, the hyperspace of non-empty closed sets, the Hausdorff metric, the Hilbert cube, the pseudo-interior, locally non-separating, Property S. Received November 24, 1998

Revised June 29, 1999

We endow the product space $X \times \mathbb{R}$ with the metric

$$\rho((x,t),(x',t')) = \max\{d(x,x'), |t-t'|\}.$$

Let $\varphi: X \to \mathbb{R}$ be a multi-valued function such that each $\varphi(x)$ is compact. Then, φ is upper semi-continuous (u.s.c.) if and only if the graph of φ is closed in $X \times \mathbb{R}$, whence we can regard $\varphi \in 2^{X \times \mathbb{R}}$. By USC_B(X), we denote the space of bounded u.s.c. multi-valued functions $\varphi: X \to \mathbb{R}$ such that each $\varphi(x)$ is nonempty and compact, where $\varphi: X \to \mathbb{R}$ is *bounded* means that the image $\varphi(X) = \bigcup_{x \in X} \varphi(x)$ is bounded. The space USC_B(X) is now regarded as a subspace of $2^{X \times \mathbb{R}}$. One should note that USC_B(X) $\neq (2^{X \times \mathbb{R}})_m$ in general, but $\rho_H(\varphi, \psi) < \infty$ can be defined for each $\varphi, \psi \in USC_B(X)$ because φ and ψ are bounded. Let USC(X, I) be the subspace of USC_B(X) consisting of all $\varphi \in USC_B(X)$ with the image $\varphi(X) \subset I$. By USCC_B(X), we denote the subspace of USC_B(X) consisting of all $\varphi \in USCC_B(X)$ such that each $\varphi(x)$ is connected (i.e., a closed interval). Let USC(X, I) = USCC_B(X) \cap USC(X, I).

In case X is compact, every u.s.c. multi-valued function $\varphi: X \to \mathbb{R}$ is bounded, so we denote $USC_B(X) = USC(X)$ and $USCC_B(X) = USCC(X)$. In this case, every admissible metric for X induces the same topology for $USC_B(X)$, that is, the topology for $USC_B(X)$ does not depend on the metric d. In case X is non-compact, it depends on the metric d (see the end of Introduction).

Fedorchuk [Fe_{1,2}] proved that if X is an infinite locally connected compact metric space then USCC(X, I) is homeomorphic to (\approx) the Hilbert cube $Q = [-1,1]^{\omega}$ and USCC(X) $\approx Q \setminus \{0\}$ ($\approx Q \times [0,1)$) (cf. [SU₁, Appendix]). In this paper, by showing the converse of this result, we have the following:

THEOREM 1. For a metric space X, the following are equivalent:

- (a) USCC(X, I) $\approx Q$;
- (b) USCC_B(X) $\approx Q \setminus \{0\} \ (\approx Q \times [0,1));$
- (c) X is infinite, locally connected and compact.

In case X is a dense subset of a metric space Y, we have the natural isometric embedding $e_Y : \text{USC}_B(X) \to \text{USC}_B(Y)$ defined by $e_Y(\varphi) = \text{cl}_{Y \times \mathbb{R}} \varphi$. Then $e_Y(\text{USC}(X, \mathbf{I})) \subset USC(Y, \mathbf{I})$. But, in general,

 $e_Y(\operatorname{USCC}_B(X)) \not\subset \operatorname{USCC}_B(Y)$ nor $e_Y(\operatorname{USCC}(X, \mathbf{I})) \not\subset \operatorname{USCC}(Y, \mathbf{I})$.

For example, let $Y = S^1$ be the unit circle of Euclidean plane \mathbb{R}^2 with the usual metric, $X = S^1 \setminus \{(1,0)\}$, and $f: X \to \mathbb{R}$ be the map defined by f(x, y) = y if $x \le 0$ and f(x, y) = y/|y| if x > 0. Then $e_Y(f)(1,0) = \{-1,1\}$ is not connected.

In case Y is locally connected, it will be shown that

 $e_Y(\operatorname{USCC}_B(X)) \subset \operatorname{USCC}_B(Y)$ and/or $e_Y(\operatorname{USCC}(X, \mathbf{I})) \subset \operatorname{USCC}(Y, \mathbf{I})$

if and only if the complement $Y \setminus X$ is *locally non-separating* in Y, that is, $U \cap X \neq \emptyset$ is connected for each non-empty connected open set U in Y (Proposition 2). Let $s = (-1, 1)^{\omega}$ be the pseudo-interior of Q, which is homeomorphic to the separable Hilbert space ℓ_2 . We generalize Theorem 1 to pairs as follows:

THEOREM 2. Let X be a dense subset of a locally connected metric space Y with the locally non-separating complement in Y. Then the following are equivalent:

- (a) $(\text{USCC}(Y, \mathbf{I}), e_Y(\text{USCC}(X, \mathbf{I}))) \approx (Q, s);$
- (b) $(\operatorname{USCC}_B(Y), e_Y(\operatorname{USCC}_B(X))) \approx (Q \times [0,1), s \times [0,1));$
- (c) $X \neq Y$, X is G_{δ} in Y and Y is compact.

In the above, it should be observed that if Y is locally connected and $Y \setminus X$ is locally non-separating in Y then X is dense in Y.

A metric space X = (X, d) (or a metric d) has Property S if X is covered by finitely many connected sets with arbitrarily small diameters. It should be remarked that a metric space with Property S is totally bounded, hence a complete metric space with Property S is compact. The subspace of 2^X consisting of compacta is denoted by $\exp(X)$. In case X is compact, $\exp(X) = 2^X$. In [Cu], Curtis proved that X admits a Peano compactification \tilde{X} such that $(\exp(\tilde{X}), \exp(X)) \approx (Q, s)$ if and only if X is connected, locally connected, completely metrizable, nowhere locally compact and admits a metric d with Property S. We have the following version of this Curtis' result:

THEOREM 3. A metrizable space X has a metrizable compactification \tilde{X} such that

 $(\text{USCC}(\tilde{X}, \mathbf{I}), e_{\tilde{X}}(\text{USCC}(X, \mathbf{I}))) \approx (Q, s)$

if and only if X is completely metrizable, non-compact and admits a metric with Property S.

One should note that some admissible metric d for X cannot be extended to \tilde{X} even if d has Property S. For example, let X = (0, 1) and $\tilde{X} = [0, 1]$. Then, $X \approx S^1 \setminus \{(1, 0)\}$. The metric on X inherited from S^1 has Property S but cannot be extended to \tilde{X} . The following is a direct consequence of Theorems 2 and 3: COROLLARY 1. Let X be completely metrizable, non-compact and admits a metric with Property S. Then X admits a metric which induces the topology on $\text{USCC}_B(X)$ such that $\text{USCC}(X, \mathbf{I}) \approx \text{USCC}_B(X) \approx \ell_2$.

In the above, the topology of USCC(X, I) is not defined by using a complete metric on X. In $[SU_2]$, it is proved that the spaces USCC_B(X) and USCC(X, I) are homeomorphic to a *non-separable* Hilbert space for a uniformly locally connected, non-compact and complete metric space X (even if X is separable). One should observe that USCC_B(\mathbb{R}) is non-separable but USCC_B((0, 1)) is separable, where \mathbb{R} and (0, 1) have the usual metrics.

Proofs of Theorems

We start with the following:

PROPOSITION 1. For a locally compact metric space X, USCC(X, I) is closed in $2^{X \times I}$ if and only if X is locally connected.

PROOF. The "if" part is Proposition 1.1 in $[SU_2]$, where the local compactness of X need not be assumed.

To see the "only if" part, assume that X is not locally connected. Then some $x_0 \in X$ has a compact neighborhood B_0 such that any neighborhood of x_0 contained in B_0 is not connected. Let $\delta = d(x_0, X \setminus B_0) > 0$. Then we have disjoint non-empty closed sets A_1 and B_1 in X such that $B_0 = A_1 \cup B_1$, $d(x_0, A_1) < 2^{-1}\delta$ and $x_0 \in B_1$. In fact, since B_0 is compact, the intersection of clopen sets in B_0 containing x_0 is the component of B_0 , which is not a neighborhood of x_0 . Then we have a clopen set B_1 in B_0 and $x_1 \in B_0 \setminus B_1$ with $d(x_0, x_1) < 2^{-1}\delta$, whence $A_1 = B_0 \setminus B_1$ and B_1 satisfy the condition. Using the same argument inductively, we have disjoint non-empty closed sets A_n and B_n in X, $n \in \mathbb{N}$, such that $B_{n-1} = A_n \cup B_n$, $d(x_0, A_n) < 2^{-n}\delta$ and $x_0 \in B_n$. For each $n \in \mathbb{N}$, let

$$\varphi_n = \bigcup_{i=1}^n A_i \times \{0\} \cup B_n \times \{1\} \cup (X \setminus \operatorname{int}_X B_0) \times \mathbf{I} \in \operatorname{USCC}(X, \mathbf{I})$$

Note that $\varphi_n(\operatorname{int}_X B_0) = \{0, 1\}$. Since $2^{B_0 \times I} = \exp(B_0 \times I)$ is compact, $(\varphi_n | B_0)_{n \in \mathbb{N}}$ has a subsequence $(\varphi_{n_i} | B_0)_{i \in \mathbb{N}}$ converging to some $\varphi' \in 2^{B_0 \times I}$. Then $(\varphi_{n_i})_{i \in \mathbb{N}}$ converges to $\varphi = \varphi' \cup (X \setminus \operatorname{int}_X B_0) \times I$ in $2^{X \times I}$. Since $(x_0, 0) \in \varphi_n$ for all $n \in \mathbb{N}$, we have $(x_0, 0) \in \varphi$. For each $n \in \mathbb{N}$, choose $x_n \in A_n$ so that $d(x_n, x_0) < 2^{-n}\delta$. Since $\rho((x_0, 1), (x_n, 1)) < 2^{-n}\delta$ and $(x_n, 1) \in \varphi_n$, we have $(x_0, 1) \in \varphi$. However $(x_0, 1/2) \notin \varphi$ because $\operatorname{int}_X B_0 \times (0, 1) \cap \varphi_n = \emptyset$ for any $n \in \mathbb{N}$. This means that $\varphi \cap \{x_0\} \times \mathbf{I}$ (i.e., $\varphi(x_0)$) is not connected, hence $\varphi \notin \operatorname{USCC}(X, \mathbf{I})$. This is a contradiction.

For a metric space X, there exists the natural closed embedding $i_X: X \rightarrow USCC(X, I)$ defined as follows:

$$i_X(x) = X \times \{0\} \cup \{x\} \times \mathbb{I} \subset X \times \mathbb{I}$$
 for each $x \in X$,

whence each $i_X(x) \in \text{USCC}(X, \mathbf{I})$ is defined by

$$i_X(x)(y) = \begin{cases} \{0\} & \text{if } y \neq x, \\ \mathbf{I} & \text{if } y = x. \end{cases}$$

Observe that $\rho_{\rm H}(i_X(x), i_X(x')) = d(x, x')$ if d(x, x') < 1, hence i_X is locally isometric. It is easy to see that $i_X(X)$ is closed in USCC(X, I).

PROOF OF THEOREM 1. The implications $(c) \Rightarrow (a)$ and $(c) \Rightarrow (b)$ are Fedorchuk's results [Fe_{1.2}] (cf. [SU₁, Appendix]).

(a) \Rightarrow (c): By using the embedding i_X above, X can be embedded in USCC(X, I) as a closed set, hence X is compact. By Proposition 1, X is locally connected. If X is a singleton, the space USCC(X, I) is homeomorphic to the hyperspace of subcontinua (i.e., closed subintervals) of I, so USCC(X, I) \approx I² (cf. [Du, §3]). Hence, if X is finite then USCC(X, I) \approx I²ⁿ, where n is the number of points of X. Therefore, X must be infinite.

(b) \Rightarrow (c): Since USCC_B(X) is locally compact, $\varphi_0 = X \times \{0\} \in \text{USCC}_B(X)$ has a compact neighborhood N in USCC_B(X). Choose $\delta > 0$ so that every $\varphi \in \text{USCC}_B(X)$ with $\rho_H(\varphi,\varphi_0) < \delta$ belongs to N. Then, USCC(X, $[0,\delta]$) $\subset N$ and USCC(X, $[0,\delta]$) is closed in USCC_B(X). Hence, USCC(X, $I) \approx \text{USCC}(X, [0,\delta])$ is compact. As seen in the above, it follows that X is compact and locally connected. Since

$$USCC_B(X) = USCC(X) \approx USCC(X, (0, 1)) \subset USCC(X, I),$$

USCC(X, I) is infinite-dimensional, which implies that X is infinite.

By $C_B(X)$, we denote the Banach space of bounded continuous real-valued functions of X with the sup-norm and let $C(X, I) = \{f \in C_B(X) | f(X) \subset I\}$. Although $C_B(X) \subset \text{USCC}_B(X)$ as sets, the Banach space $C_B(X)$ is not a subspace of $\text{USCC}_B(X)$ in case X is non-compact (cf. [FK, Remark 3.6] and Supplement).

In [SU₂, Corollary 1.5], it is also shown that if X is locally connected and has no isolated points then the closures of C(X, I) and $C_B(X)$ in $2^{X \times I}$ are USCC(X, I) and USCC_B(X), respectively. In case X is locally compact, the converse also holds by Proposition 1.

COROLLARY 2. For a locally compact metric space X,

 $\operatorname{cl}_{2^{X \times I}} C(X, \mathbf{I}) = \operatorname{USCC}(X, \mathbf{I})$ and/or $\operatorname{cl}_{2^{X \times \mathbb{R}}} C_B(X) = \operatorname{USCC}_B(X)$

if and only if X is locally connected and has no isolated point.

Next, we show the following:

PROPOSITION 2. Let X be a dense subset of a locally connected metric space Y. Then, the following are equivalent:

- (a) $e_Y(\operatorname{USCC}(X, \mathbf{I})) \subset \operatorname{USCC}(Y, \mathbf{I});$
- (b) $e_Y(\operatorname{USCC}_B(X)) \subset \operatorname{USCC}_B(Y);$
- (c) $Y \setminus X$ is locally non-separating in Y.

PROOF. (c) \Rightarrow (b): Suppose $e_Y(\text{USCC}_B(X)) \not\subset \text{USCC}_B(Y)$, that is, there exists $\varphi \in \text{USCC}_B(X)$ such that $e_Y(\varphi) \notin \text{USCC}_B(Y)$. Then $e_Y(\varphi)(y)$ is not connected for some $y \in Y \setminus X$, whence we have $t_1 < t < t_2$ such that $t_1, t_2 \in e_Y(\varphi)(y)$ but $t \notin e_Y(\varphi)$. Since $e_Y(\varphi)$ is closed in $Y \times \mathbf{I}$ and Y is locally connected, we have a connected open neighborhood U in y in Y and $\delta > 0$ such that

$$U \times (t - \delta, t + \delta) \cap e_Y(\varphi) = \emptyset,$$

whence $t \notin \varphi(x)$ for all $x \in U \cap X$, $t_1 < t - \delta$ and $t_2 > t + \delta$. By the definition of $e_Y(\varphi)$, we have $x_i \in U \cap X$ and $s_i \in \varphi(x_i)$, i = 1, 2, such that $|s_i - t_i| < \delta$, whence $t \notin \varphi(x_i)$ and $s_1 < t < s_2$. Since $\varphi(x_i)$ is connected, $\varphi(x_1) \subset (-\infty, t)$ and $\varphi(x_2) \subset (t, \infty)$. Since φ is u.s.c.,

$$U_1 = \{x \in U \mid \varphi(x) \subset (-\infty, t)\} \text{ and } U_2 = \{x \in U \mid \varphi(x) \subset (t, \infty)\}$$

are open in U. It follows that $U = U_1 \cup U_2$, $U_1 \cap U_2 = \emptyset$ and $x_i \in U_i \cap X$, i = 1, 2. Hence, $U \cap X$ is not connected, which means that $Y \setminus X$ is not locally non-separating in Y.

(b) \Rightarrow (a): This is observed as follows:

$$e_Y(\operatorname{USCC}(X, \mathbf{I})) = e_Y(\operatorname{USCC}_B(X)) \cap \operatorname{USC}(Y, \mathbf{I})$$
$$\subset \operatorname{USCC}_B(Y) \cap \operatorname{USC}(Y, \mathbf{I}) = \operatorname{USCC}(Y, \mathbf{I}).$$

(a) \Rightarrow (c): First, note that X is dense in Y. Otherwise, $e_Y(\varphi)(y) = \emptyset$ for each $\varphi \in \text{USCC}(X, I)$ and $y \in Y \setminus \text{cl } X$. Now, suppose that $Y \setminus X$ is not locally nonseparating in Y, that is, there exists a connected open set U in Y such that $U \cap X$ is not connected. (Note that $U \cap X \neq \emptyset$ because X is dense in Y.) Let $U \cap X =$ $U_1 \cup U_2$, where U_1 and U_2 are disjoint non-empty open sets in X. Note that $\text{cl}_X U_1 \cup \text{cl}_X U_2 \supset U$. Let

$$\varphi = (X \setminus U) \times \mathbf{I} \cup U_1 \times \{0\} \cup U_2 \times \{1\} \in \mathrm{USCC}(X, \mathbf{I}).$$

Since U is connected, we have $y \in U \cap \operatorname{cl}_Y U_1 \cap \operatorname{cl}_Y U_2 \subset U \setminus X$ because X is dense in Y. It follows that $e_Y(\varphi)(y) = \{0, 1\}$. Thus $e_Y(\varphi) \notin \operatorname{USCC}(Y, \mathbf{I})$, which contradicts to $e_Y(\operatorname{USCC}(X, \mathbf{I})) \subset \operatorname{USCC}(Y, \mathbf{I})$. Therefore, $Y \setminus X$ is locally nonseparating in Y.

PROPOSITION 3. Let X be a dense subset of a locally connected compact metric space Y with the locally non-separating complement $Y \setminus X$ in Y. Then, $e_Y(\text{USCC}_B(X))$ is G_{δ} in USCC(Y) if and only if X is G_{δ} in Y.

PROOF. The "only if" part follows from

$$i_Y(X) = i_Y(Y) \cap e_Y(\mathrm{USCC}_B(X)),$$

where $i_Y: Y \to \text{USCC}(Y, \mathbf{I}) \subset \text{USCC}_B(Y)$ is the natural closed embedding.

To see the "if" part, let $X = \bigcap_{n \in \mathbb{N}} U_n$, where each U_n is open in Y. For each $m, n \in \mathbb{N}$, let

$$G_{m,n} = \{ \varphi \in \operatorname{USCC}_B(Y) \, | \, \rho_{\operatorname{H}}(\varphi, e_Y(\varphi | U_n)) < 1/m \}.$$

Since $e_Y(\text{USCC}_B(X)) = \bigcap_{m,n \in \mathbb{N}} G_{m,n}$, it suffices to show that each $G_{m,n}$ is open in $\text{USCC}_B(Y)$, or each $F_{m,n} = \text{USCC}_B(Y) \setminus G_{m,n}$ is closed in $\text{USCC}_B(Y)$.

Assume that a sequence $\varphi_i \in F_{m,n}$, $i \in \mathbb{N}$, converges to $\varphi \in \text{USCC}_B(Y)$. Since φ is bounded, $\varphi \subset Y \times [-a, a]$ for some a > 0. Then, we may assume that $\varphi_i \subset Y \times [-a, a]$ for all $i \in \mathbb{N}$. Since each φ_i is compact, we can choose $(x_i, t_i) \in \varphi_i$ so that

$$\rho((x_i, t_i), e_Y(\varphi_i | U_n)) = \rho_H(\varphi_i, e_Y(\varphi_i | U_n)) \ge 1/m.$$

Since $Y \times [-a, a]$ is compact, we may assume that (x_i, t_i) converges to $(x_0, t_0) \in Y \times [-a, a]$, whence $(x_0, t_0) \in \varphi$. We show that $\rho((x_0, t_0), e_Y(\varphi | U_n)) \ge 1/m$, which means that $\varphi \in F_{m,n}$. Then, $F_{m,n}$ would be closed in USCC(Y, [-a, a]).

Now, assume that $\rho((x_0, t_0), e_Y(\varphi | U_n)) < 1/m$. Then, we have $(y_0, s_0) \in \varphi | U_n$ such that $\rho((x_0, t_0), (y_0, s_0)) < 1/m$. Let

$$\delta = \min\{d(y_0, Y \setminus U_n), \frac{1}{2}(1/m - \rho((x_0, t_0), (y_0, s_0)))\} > 0.$$

Choose *i* so large that $\rho_{\rm H}(\varphi_i, \varphi) < \delta$ and $\rho((x_i, t_i), (x_0, t_0)) < \delta$. Then, we have $(y_i, s_i) \in \varphi_i$ such that $\rho((y_0, s_0), (y_i, s_i)) < \delta$. Since $d(y_0, y_i) < d(y_0, Y \setminus U_n)$, it follows that $y_i \in U_n$, hence $(y_i, s_i) \in \varphi_i | U_n$. Therefore,

$$\rho((x_i, t_i), (y_i, s_i)) \ge \rho((x_i, t_i), e_Y(\varphi_i \mid U_n) \ge 1/m.$$

On the other hand,

$$\rho((x_i, t_i), (y_i, s_i)) \le \rho((x_i, t_i), (x_0, t_0)) + \rho((x_0, t_0), (y_0, s_0)) + \rho((y_0, s_0), (y_i, s_i))$$

$$< 2\delta + \rho((x_0, t_0), (y_0, s_0)) < 1/m,$$

which is a contradiction. The proof is completed.

Now, we prove Theorems 2 and 3.

PROOF OF THEOREM 2. (a) \Rightarrow (b): As saw in the proof of [Fe₂, Proposition 2.4], $D = \text{USCC}(Y, \mathbf{I}) \setminus \text{USCC}(Y, (0, 1))$ is a contractible Z-set in USCC(Y, I) and then

$$\operatorname{USCC}(Y,(0,1)) \approx \operatorname{USCC}(Y,\mathbf{I}) \setminus D \approx Q \times [0,1).$$

It follows from [Ch, Theorem 6.6] that

$$(\operatorname{USCC}(Y,(0,1)), e_Y(\operatorname{USCC}(X,\mathbf{I})) \setminus D) \approx (Q \times [0,1), s \times [0,1)),$$

where it should be noted that $e_Y(\text{USCC}(X, \mathbf{I})) \setminus D \neq e_Y(\text{USCC}(X, (0, 1)))$ but

 $e_Y(\operatorname{USCC}(X, \mathbf{I})) \setminus D = \{e_Y(\varphi) \mid \varphi \in \operatorname{USCC}(X, (a, b)) \text{ for some } 0 < a < b < 1\}.$

By Theorem 1, Y is compact, whence $USCC_B(Y) = USCC(Y)$ and there exists a homeomorphism $h: USCC(Y) \rightarrow USCC(Y, (0, 1))$ such that

$$h(e_Y(\operatorname{USCC}_B(X))) = \{e_Y(\varphi) \mid \varphi \in \operatorname{USCC}(X, (a, b)) \text{ for some } 0 < a < b < 1\}.$$

Consequently, we have

$$(\operatorname{USCC}_B(Y), e_Y(\operatorname{USCC}_B(X))) \approx (\operatorname{USCC}(Y, (0, 1)), e_Y(\operatorname{USCC}(X, \mathbf{I})) \setminus D)$$
$$\approx (Q \times [0, 1), s \times [0, 1)).$$

(b) \Rightarrow (c): By Theorem 1, the condition (b) implies that $X \neq Y$ and Y is compact and locally connected. Moreover, $Y \setminus X$ is locally non-separating in Y by Proposition 2, and X is G_{δ} in Y by Proposition 3.

(c) \Rightarrow (a): We first consider the case that Y is connected, hence it is a Peano continuum. In this case, USCC(Y,I) is the closure of C(Y,I) in $\exp(Y \times I) =$

 $2^{Y \times I}$ [Fe₂, Theorem 1.10]. Since (USCC(Y, I), C(Y, I)) $\approx (Q, s)$ [SU₁, Corollary 1'], the complement $USCC(Y, I) \setminus C(Y, I)$ is a Z_{σ} -set in USCC(Y, I). By Proposition 3, $e_Y(USCC_B(X))$ is G_{δ} in USCC_B(Y), whence

$$e_Y(\operatorname{USCC}(X, \mathbb{I})) = e_Y(\operatorname{USCC}_B(X)) \cap \operatorname{USCC}(Y, \mathbb{I})$$

is also G_{δ} in USCC(Y, I). Then, the complement

$$M = \mathrm{USCC}(Y, \mathbf{I}) \setminus e_Y(\mathrm{USCC}(X, \mathbf{I}))$$

is F_{σ} in USCC(Y, I) and $M \subset$ USCC(Y, I)\C(Y, I), hence M is a Z_{σ} -set in USCC(Y, I). Let (A, B) be a pair of compacta in USCC(Y, I) such that $B \subset M$ and $\varepsilon > 0$. By all the same way as the proof of Main Theorem of $[SU_1]$, but using a point $x_0 \in Y \setminus X$, we can define an embedding $h : A \to M$ such that h|B = id and h is ε -close to id. Applying the characterization of $B(Q) = Q \setminus S$ [An] (cf. [Ch, Lemma 8.1]), we have $(\text{USCC}(Y, I), M) \approx (Q, B(Q))$, hence

$$(\text{USCC}(Y, \mathbf{I}), e_Y(\text{USCC}(X, \mathbf{I}))) \approx (Q, s).$$

In the general case, we write $Y = \bigcup_{i=1}^{n} Y_i$, where each Y_i is a component of Y, which is closed and open in Y because of locally connectedness of Y. Since $Y \setminus X$ is locally non-separating in Y, each $X_i = X \cap Y_i$ is a component of X. Then

$$(\operatorname{USCC}(Y,\mathbf{I}), e_Y(\operatorname{USCC}(X,\mathbf{I}))) \approx \left(\prod_{i=1}^n \operatorname{USCC}(Y_i,\mathbf{I}), \prod_{i=1}^n e_{Y_i}(\operatorname{USCC}(X_i,\mathbf{I}))\right).$$

In case Y_i is a singleton, $X_i = Y_i$ and USCC(Y_i , I) is homeomorphic to the hyperspace of subcontinua of I, hence USCC(Y_i , I) $\approx I^2$ (cf. [Du, §3]). Hence the general case can be obtained the connected case.

PROOF OF THEOREM 3. First, assume that X is completely metrizable and has an admissible metric with Property S. Then, X has only finitely many components, which are closed and open in X. Replacing the metric, we may assume that the distance between any two components of X is positive. Thus, as in the proof of Theorem 2, it suffices to treat the case X is connected. In this case, X has a Peano compactification \tilde{X} with a locally non-separating remainder $\tilde{X} \setminus X$ by [Cu, Proposition 2.4]. By complete metrizability, X is G_{δ} in \tilde{X} . Then, the "if" part follows from Theorem 2.

Conversely, assume that X has a compactification \tilde{X} such that

$$(\operatorname{USCC}(\hat{X}, \mathbf{I}), e_{\tilde{X}}(\operatorname{USCC}(X, \mathbf{I}))) \approx (Q, s).$$

By Theorem 2, $X \neq \tilde{X}$, X is G_{δ} in \tilde{X} , \tilde{X} is locally connected and the remainder $\tilde{X} \setminus X$ is locally non-separating in \tilde{X} . Then X is completely metrizable and, as is

easily observed, each component of \tilde{X} is a Peano compactification of a component of X with locally non-separating remainder. By [Cu, Proposition 2.4], X admits an admissible metric d with Property S. Thus we have the "only if" part.

Supplement

As mentioned before Corollary 2, the Banach space $C_B(X)$ is not a subspace of USCC_B(X) in case X is non-compact (cf. [FK, Remark 3.6]). Here we show the following:

PROPOSITION 4. In the following cases, the topology for $C(X, \mathbf{I})$ induced by the sup-norm is different from the one induced by the Hausdorff metric ρ_{H} :

- (1) X has a non-complete component;
- (2) X has a non-totally bounded component;
- (3) X has infinitely many components X_i , $i \in \mathbb{N}$, such that $\inf_{i \in \mathbb{N}} \operatorname{diam} X_i > 0$ and $\inf_{i \neq j} \operatorname{dist}(X_i, X_j) > 0$.

PROOF. (1) Let X_0 be a non-complete component of X. Then X_0 has a nonconvergent Cauchy sequence $(x_i)_{i \in \mathbb{N}}$. For each $n \in \mathbb{N}$, we have m > n such that $d(x_i, x_j) < (1/3)d(x_n, x_m)$ for all $i, j \ge m$. In fact, x_n is not an accumulation point of $(x_i)_{i \in \mathbb{N}}$, whence there is come $\delta > 0$ such that $d(x_n, x_i) > \delta$ for almost all $i \in \mathbb{N}$. Since $(x_i)_{i \in \mathbb{N}}$ is a Cauchy sequence, we can choose m > n such that $d(x_n, x_m) > \delta$ and $d(x_i, x_j) < (1/3)\delta$ if $i, j \ge m$, whence $d(x_i, x_j) < (1/3)d(x_n, x_m)$ for all i, $j \ge m$. Therefore, by taking a subsequence, we can assume that $d(x_i, x_j) < (1/3)d(x_n, x_{n+1})$ for every $n \in \mathbb{N}$ and i, j > n. For each $n \in \mathbb{N}$, let $\varepsilon_n = (1/3)d(x_n, x_{n+1})$. Then, the collection $\{B(x_n, \varepsilon_n) | n \in \mathbb{N}\}$ is discrete in X and

(*)
$$\bigcup_{i>n} B(x_i,\varepsilon_i) \subset B(x_{n+1},2\varepsilon_n) \subset X \setminus \bigcup_{j\leq n} B(x_j,\varepsilon_j).$$

Moreover, since X_0 is connected, it follows that

$$(\sharp_1) \qquad [0,\varepsilon_n] \subset [0,2\varepsilon_1] \subset \{d(x_n,y) \mid y \in X_0\} \text{ for every } n \in \mathbb{N}.$$

We define a map $f \in C(X, \mathbb{I})$ as follows:

$$f(x) = \begin{cases} 1 - \varepsilon_i^{-1} d(x, x_i) & \text{if } x \in B(x_i, \varepsilon_i), \ i \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

One should note that any map $g \in C(X, \mathbb{I})$ with $\sup_{x \in X} |f(x) - g(x)| = \gamma < 1/2$ is not uniformly continuous. In fact, by (\sharp_1) , we have $y_i \in X_0$, $i \in \mathbb{N}$,

such that $d(x_i, y_i) = \varepsilon_i$, whence $\lim_{i\to\infty} d(x_i, y_i) = 0$ but

$$|g(x_i) - g(y_i)| \ge |f(x_i) - f(y_i)| - |f(x_i) - g(x_i)| - |f(y_i) - g(y_i)|$$
$$\ge 1 - \gamma - \gamma = 1 - 2\gamma > 0.$$

However, for each $\varepsilon > 0$, there exists a uniformly continuous map $h \in C(X, \mathbb{I})$ with $\rho_{\mathrm{H}}(f, h) < \varepsilon$. In fact, choose $n \in \mathbb{N}$ so that $2\varepsilon_n < \varepsilon$, and define a map $h \in C(X, \mathbb{I})$ as follows:

$$h(x) = \begin{cases} 1 - 2^{-1}\varepsilon_n^{-1}d(x, x_{n+1}) & \text{if } x \in B(x_{n+1}, 2\varepsilon_n), \\ f(x) & \text{otherwise.} \end{cases}$$

It follows from (\sharp_1) that $f(\operatorname{cl} B(x_i,\varepsilon_i)) = h(\operatorname{cl} B(x_{n+1},2\varepsilon_n)) = I$ for every i > n. Then, by (*), it can be easily seen that $\rho_H(f,h) < 2\varepsilon_n < \varepsilon$.

(2) Let X_0 be a non-totally bounded component of X. Then, we have $\delta > 0$ and $x_i \in X_0$, $i \in \mathbb{N}$, such that $d(x_i, x_j) > \delta$ if $i \neq j$. Observe that

$$(\sharp_2) \qquad [0,\delta] \subset \{d(x_i, y) \mid y \in X_0\} \quad \text{for every } i \in \mathbb{N}.$$

For each $i \in \mathbb{N}$, let $\delta_i = \min\{i^{-1}, 1/3\delta\} > 0$. Now, we define a map $f \in C(X, \mathbb{I})$ as follows:

$$f(x) = \begin{cases} 1 - \delta_i^{-1} d(x, x_i) & \text{if } x \in B(x_i, \delta_i), \ i \in \mathbb{N}, \\ 0 & \text{otherwise.} \end{cases}$$

By the same reason as the case (1), any map $g \in C(X, \mathbb{I})$ with $\sup_{x \in X} |f(x) - g(x)| < 1/2$ is not uniformly continuous. However, for each $\varepsilon > 0$, choose $n \in \mathbb{N}$ so that $n^{-1} < \varepsilon$, and define a uniformly continuous map $h \in C(X, \mathbb{I})$ defined by

$$h(x) = \begin{cases} 1 - \min\{\varepsilon, \delta\}^{-1} d(x, x_i) & \text{if } x \in B(x_i, \min\{\varepsilon, \delta\}), \ i \ge n, \\ f(x) & \text{otherwise.} \end{cases}$$

From (\sharp_2) , it follows that

$$f(\operatorname{cl} B(x_i, \delta_i)) = h(\operatorname{cl} B(x_{n+1}, \min\{\varepsilon, \delta\})) = \mathbb{I}$$
 for every $i \ge n$,

Then, we have $\rho_{\rm H}(f,h) < \varepsilon$.

(3) For each $i \in \mathbb{N}$, take $x_i \in X_i$. Choose $2\delta > 0$ so that $\delta < \inf_{i \in \mathbb{N}} \operatorname{diam} X_i$ and $\delta < \inf_{i \neq j} \operatorname{dist}(X_i, X_j)$. Since $\sup_{x \in X_i} d(x, x_i) > \delta$, it follows that

$$(\sharp_3) \qquad [0,\delta] \subset \{d(x_i, y) \mid y \in X_i\} \text{ for every } i \in \mathbb{N}.$$

Then, by replacing X_0 by X_i 's in the proof of the case (2), we have the proof of this case.

Acknowledgments

The authors would like to thank the referee for his helpful comments.

References

- [An] R. D. Anderson, A characterization of apparent boundaries of the Hilbert cube, Notices Amer. Math. Soc. 16 (1969), 429, Abstract #697–G17.
- [Ch] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399–426.
- [Cu] D. W. Curtis, Hyperspaces of noncompact metric spaces, Compositio Math. 40 (1980), 139– 152.
- [Du] R. Duda, On the hyperspaces of subcontinua of a finite graph, I, Fund. Math. 62 (1968), 265–285.
- [Fe1] V. V. Fedorchuk, On certain topological properties of completions of function spaces with respect to Hausdorff uniformity, Vestnik Moskov. Univ. Ser. I, Mat. Mekh. (1991), 77– 80 (Russian); English Transl., Moscow Univ. Math. Bull. 46 (1991), 56–58.
- [Fe₂] V. V. Fedorchuk, Completions of spaces of functions on compact spaces with respect to the Hausdorff uniformity, Trudy Seminara imeni I.G. Petrovskogo 18 (1995), 213–235 (Russian); English transl., J. of Math. Sci. 80 (1996), 2118–2129.
- [FK] V. V. Fedorchuk, and H.-P. A. Künzi, Uniformly open mapping and uniform embeddings of function spaces, Topology Appl. 61 (1995), 61-84.
- [Ku] K. Kuratowski, Topology, I, English edition, Polish Sci. Publ., Warsaw, 1966.
- [SU₁] K. Sakai and S. Uehara, A Hilbert cube compactification of the Banach space of continuous functions, Topology Appl. 92 (1999), 107–118.
- [SU₂] K. Sakai and S. Uehara, Spaces of upper semi-continuous multi-valued functions on complete metric spaces, Fund. Math. 160 (1999), 199–218.

Katsuro SAKAI: Institute of Mathematics,

University of Tsukuba, Tsukuba, 305-8571 Japan

E-mail address: sakaiktr@sakura.cc.tsukuba.ac.jp

Shigenori UEHARA: Takamatsu National College of Technology, Takamatsu, 761-8058 Japan

E-mail address: uehara@takamatsu-nct.ac.jp