
TSUKUBA J. MATH.

Vol. 24 No. 1 (2000), 109-125

ON THE CHOW-FORMS OF ELLIPTIC NORMAL

CURVES OF DEGREE 4

By

TatsujiTanaka

Abstract. In this note, we shall aim, using explicit theta constants,

to describe the Chow-form of an ellipticnormal curve of degree 4

embedded in P2 by using theta functions, at any point of the upper

half plane. In this case, the embedded ellipticcurve is a complete

intersection which is defined by two quadratic forms. In order to

calculate its Chow-form, we use the elimination theory. Our main

result is Th. 1' (§2).In our case, Chow-forms are divisors of the

Grassmann variety of linesin P2. From the theorem, we see that the

Chow-forms of ellipticnormal curves of degree 4 lie on a linear

subspace M (cf. 2.3) of dimension 23. §2 is the main part of this

note.

In §3, using the theory of ellipticmodular forms of level 4, we

consider the geometric meaning of Th. 1'. Then our theorem shows

that the Chow point is given by modular forms of weight 2 (of

weight 1 in the traditionalsense) and of level 4. The compactification

of the moduli space of level 4 is isomorphic to a plane conic. Thus,

we see that the Chow points of the projective ellipticnormal curves

of degree 4 determined by the points of the upper half plane form a

rational curve of degree 4 in M which is essentiallythe image of the

2-uple embedding of the above plane conic (Th. 2,§3. cf. Comments

after the proof of Th. 2). Furthermore, we see that the corre-

spondence which assigns the Chow point to a point of the upper half

plane can be extended to the inequivalent cusps of the principal

congruence subgroup F(4) of level 4 (Cor. 1,§3). Finally, we give a

remark about the structure of the corresponding component of the

Chow variety parametrizing 1-cycles of degree 4 in P2 (Cor. 2,§3).
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§1. Situations

This § is the part of grounds on which this note is founded.

First, we prepare some notations. Z, Q, R and C are as usual the ring of

rational integers, the fieldof rational numbers, fieldof real numbers and the field

of complex numbers, respectively.

H is the upper half plane of C, i.e.,H = {r e C |Im(r) > 0}.

We put e{t)= Qxp(2nV--lt) in general. For k ―{k＼ k-i)with k＼ and &2 e R,

we define a holomorphic function 5^(t|z) on H x C by

Sk(r＼z) =

reZ L

(fci+ r)x{kx + r) + {hi +r)(z + k2) ((r,z)eHxC)

For any teH, we denote by AT,£"T a lattice subgroup Z + Zt of C, a

complex torus C/AT.

Let t be an arbitrary point of H. For simplicity, for i,j e Z, we put <%(t|z) =

$i/2j/2{*＼z)-When t is fixed, we denote by #y(0) the theta constants <9y(T|0). If

(/,j) # (1,1), for any re/f, ≪9y(t|0)#0. Moreover, we have Jacobi's identity

5oo(0)4 = 5oi(0)4 + 510(0)4.

We define a holomorphic embedding ^ : Ex ―> P3 by

VzgC; ^(z) = (aoo(T|2z),floi(T|2z),510(T|2z),5ii(T|2z)).

Since {5,y4 o(t|z)|O < / < 3} is linearly independent and determines the same

very ample line bundle as {5y(t|2z) |i,j = 0,1} (e.g. using (^5) in [5], p. 50), the

embedding (f>is the usual embedding of the torus Er ([6]) followed by a projective

transformation.

Let Xx be the image curve </>(ET)cP3, and let (*o,*i,*2,*3) be the homo-

geneous coordinates in P3 corresponding to the above map.

The curve XT is non-singular of degree 4 and defined by

{ Soo(0)2*o = -9oi(O)2x2 + Sio(O)2x22

$oo(O)2xj = &l0(0)2x2 - $oM2x22

(1)

This is proved using the addition theorem of theta functions([8]).

§2. Chow-forms

In this section,by using the classicaleliminationtheory, we compute the

Chow-form of the curve Xz which is definedby (1).Since the Chow-form Px(U)



On the Chow-forms of elliptic Ill

of a projective variety X of dimension r and of degree m in a projective space Pn

can be expressed as a homogeneous polynomial of degree m in the determinants

Uoio
■■ ･

Uoir

Urk
■■■

Urir

with sequences of indeterminates Ux = (Uao,..., Um) (0 < a < r) ([2] or [4] or

[7]),we shall express the Chow-form of XT as a homogeneous polynomial in the

determinants as above of the indeterminates, whose coefficientsare theta con-

stants.

2.1.In thisitem, forgetting(1), a littlegenerally, we consider the Chow-form

corresponding to our case.

Let ao,a＼,ci2be non-zero elements of Cx = C ―{0}. We consider two

quadratic forms f＼,f2:

/i := ciqXq―axxx ―a2x2i

fi := a＼x＼- a＼x＼+ a＼x＼.

Let F(/j), V(f2) be the quadrics in P3 defined by fx = 0,/2 = 0.

As to the irreducibilityof an algebraic subset F(/j)n V(f2) in I*3, we have

Proposition. Let £ be the pencil of quadrics defined by V(fY) and V(f2). If

4 4 4
a0 = ax + a2

(2)

then £is separable. Hence, the intersection V{fx) D V{f2) is an irreducible curve of

degree 4 in P3.

The firstpart is proved along the analogous way as [9], pp. 73~74, and

the irreducibilityof the intersection V(fl)C＼V(f2) is a direct conclusion of the

separability of Z ([9]).

Therefore, in that case, the Chow-form of the curve V(fx)V＼V{f2) is irre-

ducible.

Now, assuming that ao,a＼ and a2 satisfy(2), we compute the Chow-form of

the curve X= V{fx)(＼V(f2).

Let

≫(≫)= (≪<0),≪(10),40).40)). ≪<" = (≪S".≪<.I).'4V,")

be two sequences of independent variables.
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We consider the following system of equations:

<

f＼ := alxl - a＼A
~
a＼x＼ = °

/2 := a＼x＼ - a＼x＼ + a＼x＼ = 0

/3 = u^x0 H h
4O)^3

= 0

f4 = uyxo H h
4
x3 = 0.

(3)

Then a G.C.D. of the resutant system 8k of the system of equations (3) is a

power of the Chow-form Px of X ([10]).

In our case, by A. Hurwitz ([3]),the resutant system 01 consists of one

resultant which is a G.C.D. of Tragheitsformen of (3). But, as the following

procedure shows, if we use the Plucker coordinates of the independent variables,

then we can perform the elimination using only Sylvester'sdeterminant without

A. Hurwitz's theorem.

We put

pg = uf)^)-uf)u^ (0<i<j<3)

Pliicker's relation is

Put s = xj, t = X3.

From /3 = f4 = 0, we

PoiPll = Po2Pl3 - PoiPlb

get

{

(4)

(a)

Poixo = spn + tpn

PoiXi = -sp02 ~ tPm

We eliminate xo,x＼ from f＼,f2-

First we have

Poifi = (aoPn ~aiPo2 - a＼pl＼)sl+ 2(alPnPn ~a2lpo2Po3)st+ (flo/>?3- "lPos)*2

Pmfi = (a2＼Po＼~a＼pli)s2- 24Po2Po3st + 0o/>oi - "iPm)*2-

We define

Fx := {alplz - a＼pl2- a＼p＼x)s2+ 2(c%pnpn - alp02p03)st + {alp2u - a2pl3)t2,

put 7 7
= C05 + CiSt+ C2t ,

F2 {a}pi - alpl^s1 - 2alp02p03st + {alpl - ajp^)t2

p=dos2
+ dist + d2t2,
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Co

C＼

do

= 4p
2

12 - a＼pL - alpl

= ^IPnPn - a＼pQ2PQi)

= alPn ~a＼Po3

= a＼p＼＼~a＼pli

d＼= -2alp02pQ3

Now, we consider the system of equations:

Fx = c0s2 + c＼st+ c2t2 = 0

F2 = d0s2 + d＼st+ d2t2 = 0
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(b)

(5)

Then we have the equivalence: (3) has a non-trivial solution ≪=>(5) has a non-

trivial solution.

Let R(F＼,F2) be the Sylvester's determinant of (5), i.e.,

R(FUF2) = (cod2 - c2d0)2 + {cod＼ - doci)(c2d＼ - d2c＼)

= cldl - cic2dod＼ + c§c2d＼+ c＼dQd2 - 2coc2dod2 - c0c＼d＼d2+ cld＼. (c)

Now, using (b), we compute each term in the right side of (c).

c＼dl = a＼p4{p43 - 1a＼a＼p＼＼PliPli+ <Aa＼p%iP%i
~
2ala＼pt＼PliP2＼i

+ 4ala＼a22plxpl2p2Mp2n - 2a2a2ajpi2pl2p2l2 + a^p^p^

- 2ala＼a22plxpl2pAn + aAa^2p4l3.

c^dodx = -4a6la2p2lp22p^+4a4l4pi2pi3

+ 4ala4alpllPo2pl3pupl3 - 4a2a＼a＼p＼2pl3pnpX3

+ 4ala＼a22plxpl2pl3p23 - 4ala＼a＼pl2pl3p＼3

- 44a2a2pllPo2pQ3pl2p3l3 + 4ai4pl2p03pnp3l3.

c0c2df = 4a＼a＼plxpl2pl3+4a＼a＼pl2pl3 - 4ala2a＼pl2pAQ3p22

- ^14poiPo2Po3P＼3 - ^la2a＼pl2pl3p＼3

+ 4aia＼pl2pl3p＼2p＼3.

(cl)

(c2)

(c3)
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c＼dQd2 = 4a2afpilPl2p23 - 4ala＼a22plxpl2pl3

- *a＼a＼pl＼PliPm + ^UiPoiPoi ~ ^MPoiPoiPosPnPn

+ %(4a＼alplxpl2pMPnpn + *<4al4PoiP<nPo3Pi2Pi3

- ^ala＼a＼pl2pl^pupu + 44a^p^p2np2l3 - 4*Jaf/>oi/>02/>12/>?3

- 4aia^4PoiPo3Pi2Ph + 4aoa2Po2Po3PnP＼3-

coc2dod2 = ala^ajp^p^ + <%a＼p%xp＼iP%^ - alaja^p^p^p^

- a^ajp^p^p^ - a^p^p^ - a＼a22plxpl2pAm

9 ft 9 7 4 4444 44499+ ar^OlWoS + a＼a2P02P03 ~ a0alP0＼P03P＼2

+
4a2la2P0＼P02P03Pn + a0ala2P0＼P03P＼2

~
a0a＼a2P02P03Pn

4226 2 444 2 2, 444 2 2- a^afa^p^pf3 - afflp^p^p^ + a^p^p^pf3

+ aAQa＼alpl{pAQ2p2u + a^a^p^p^ + a^alp^pl^p^

~ al4P0＼P02P03P2＼3 - a0a2la2P02P03P2l3 + aW＼PoiPnPli

-
4a2P0＼P22P22P＼3

~
a0ala2P0＼P03P22P23

+
4a2P22P03P＼2P23-

cocxd＼d2 = -4ala24pilPl2pl3 - 4a2a4ajp2lPi2pl3

+ 4a?fl2/>0l/>02/>03+ 4a＼a2 PO2PO3 + 44a2la2PoiP22P03Pl2

- 4a^aja^pl2pi3pj2 + 4a^^J1^O2jpO3/712/713

+ taiajalplip^pnpupu - 4al4p2lPo2pl3pnpl3

- 4a＼a＼a＼pl2p＼3pnpn - 44ajp2lp02p03p3l2pl3

+ 4a$a2*pQ2pLp3npu.

r2H2CO"2 = afaiPoi + 2aiaia2PoiPo2+ aoaiPoiPo2~lala＼pt＼Pl?>

- Aalalalp^pl^ - la^ajp^p^p^ + 4pqiPo3

+ 2a＼a＼plxpl2p+̂ a^p^p^ - 2a6Qa22plxp2l2- 2a^a2p^pl2p2l2

+ ^UiPmPliPn + ^UWipIxpIiP^pIi ~^ala＼pl＼PtzP＼2

(c4)

(c5)

(c6)
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- 2ala＼a＼pl2pAmp＼2 + a＼plxpAn - la^ajp^p^p^

A A A A+ aoa2poipl2.

By substituting (cl),..., (c7) into the right side of (c), we have

R(F＼,F2) = c＼dl - c＼c2dod＼+ c0c2df + c＼d§d2- 2cQc2dod2 - c0c＼d＼d2+ c＼d＼

= {afpiiPm ~ 2a＼a2PoiPo2Po3 + a4＼4Po2Po3 - 2alaiPiiPo3Pn
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(c7)

+ 4flXfl2/>0l/>02/>03/>13 - 2a0a＼a2P02P03Pn + "UUlxPu

- 2ala＼a＼plxpl2p＼3 + aAQaA2pl2pAX3}

- {-^＼a＼pl＼Pl2Pm + 4aiaiPo2Po3

- ^ala＼a＼p＼xp^2pl3pX3p23 + 4a2a2x4pQXpl2p23pX3p23

+ %alaAalplxpl2pl3p2n - ^a^p^pl^

- 4ala＼a22plxpQ2{po2pn - p0lp23)Pn + 4aia2Po2(Po2Pn ~ Po＼P2i)Pn}

+ {^afpl^ph + 4a44p^3

- 4ala24pl2pl3(-2p0lp02pl3p23 + Porfx)

~ 4<44P01 PO2PO3PU ~ %a0aia2P02P03P23

+ 4aia2P02(P02Pl3 - 2P0lP02Pl3P23 + PoiP^Pu)

+ {4ala＼p*lPl2pl3 - **ala＼a＼plxpl2pl3

- ^a＼4P0lP02P03 + 4a＼a2P02P03 ~ %aia＼Po＼P<)2(PO2Pl3 ~ Po＼P23)P＼3

+ 8flJflfflf/?J1/>J2(/?o2/'l3- P0＼P23)P＼3

+ %ala＼alplxpQ2pl3(pQ2pX3 - PoiP23)Pi3

- iala＼aA2pl2pl3{pQ2pl3 - Ah/^is + 4aoa2PoiP＼2P2＼3

~ 44a2P0＼P02P2l2P2l3 ~ 44a2a2P0l(P02P23-2P0＼P02P＼3P23+PmPl3)Pl3

+ 44a2P02(P02Pl3 - 2P0＼P02Pl3P23 + PoiP^Pu)

- 2{ala＼a＼plxpl3 + a＼a＼p＼xpl2pl3 - ala＼a＼plxpl2p＼3

942242 4444
62224

- <4ala2Pi＼PV2Pbl ~ a＼a2PQ＼P03 ~ a＼a2P0lP02P03
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762 24 4444+ ala2p0lp02p03 + aia2Po2Po3

-
4a4lP0＼(P02P＼3

~
2P0＼P0lPl3P23 + Pl＼Pli)

+
4a2la2P0＼P02(P02P2＼3 - 2P0lP02Pl3P23 +

Pl＼Pll)

+ 4ala2P2＼P23(P02P23 ~ 2P0lP02P＼3P23 + pI^)

- ajaja^p^pl^p^p^ - 2pmp02pl3p23 + p＼xp＼^

42262 4442 2 44422- affia2p0lpi3 - ao≪iA)iA)2/>i3 + aoa2PoiPo2Pn

+ aAQa＼alplxpl2p2u + a^a^p^p^ + al^ajp^p^p^p^

~ a24P0lP02P03P23 - aWla2P02P03P23 +
^iPoiPnPn

~
4a2P2＼P02Pl2P23 - aia2la2P2l(P02P23

~
2Po＼PO2Pl3P23 + Pl＼P＼b)P＼3

+ a0a2P22(P02Pl3 ~ 2P0＼P02Pl3P23 + PoiP^Pu}

- {-4ala2a2P0lP02P03 - 4a0ala2P2＼P02P03

+ ^a＼alp2^pl2pA^ + 4a44pi2p403

+ 4aia2a2P2＼P22(P02P23 - 2P0lP02Pl3P23 + PoiPx)

- *ala2aA2pl2p2m{pl2p2u - 2p0lp02pl3p23 + p2xpj3)

+ 4a^a2Pq{p02{p02Pi3 - PoiP23)P＼3

+ 4a4,a2a2p2.lpli2(p02pl3 - pOiP23)pn

~ 4a0a2P0lP02P03(P02P＼3 ~ Po＼P23)P＼3

- 4a2a24pl2p23(p02pl3 - p0lp23)pu

- 4≪ofl2PoiP02(P02P13 - Po＼P23)PnPn

+ 44a2P02(p302P3l3 - ^PQ＼P2Q2P2＼3P23+ ^P2＼P02Pl3Ph ~ PoiP&Pu}

+ {44P0l + 2aWl4P0＼P22 + 4a4lP0＼P02 - 244P0lP03

- *4a＼4pl＼Pl2Pl3 - 2444P0lP02P23 + 4P0lP03

+ 244PmPo2Po3 + 44P02P03 ~ 244pI＼P＼2 ~ 24a＼Pl＼Pl2Pn

+ 444P0＼(P02P23 - 2P0lP02P＼3P23 + ^01^23)
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+ laiajalpliP^ip^p^ - 2p0lp02pnp23 + plxp223)

~24a2Po＼Po3(Po2P2＼3- IPoiPoiPnPx + PoiPh)

- 2alajajp^2p^(pl2p2l3 - 2p0XpQ2pX3p23 + plxp＼3)+ aoPo＼Pi2

~2ala＼plx{pl2p＼3- 2p0lp02pl3p23 + plxp＼3)p＼2

+ ao4(Po2P4l3 ~ 4P0＼P302P＼3P23+ ^PllPvPuPh

~*PllP02Pl3P323 + PllPli)}- (d)

If we use (2) and (a), the right side of (d) is simplified,and we get

R(FUF2) = ao/>oi[floA>3~2aoa＼Po3P2n + a＼Pn + 2aWi P02P03

- ^i＼Po2Pi3 + 4a＼PoiPo2PnP23 + 2ala＼p＼2p＼3- 2a＼a＼p＼3p＼3

- 2ala＼plxpl3 + 2a＼plxp＼3- 2ala＼pllp2＼+ 2a＼a＼p＼lp＼h

- 2a＼pl2p＼3- 2a＼a＼p＼2p2＼+ a＼p＼x+ 2a＼a＼plxpl2+ a＼p＼2

- 2ala＼plxp1X2- 2ala＼pl2p＼2- 4aA2pmpQ2px3p23 + ^PoiPn

+ <Ap＼i~lala2PnP23 + aiPi＼＼-

This is a resultant of (5). The Chow-form Px appears in R{F＼,F2) as a

divisor and it is an irreducible homogeneous polynomial of degree 4 in the

Pliicker coordinates. Now, we take a set of indeterminates Uj and denote by

capitals Py the expressions which result if in the Pliicker coordinates ptj the up

are replaced by U. . Thus we get

Theorem 1. Let Px{U) be the Chow-form of the curve X. Then Px{U) is

given by

PX(U) = a4P43 - 2a2a2P23P2X3 + ≪i<3 + 2tf02^02^03 - 4*^13

+ 4flfPOi^02^13^23 + 2ala＼P2nP2u - 2a2a22P223P2u- 2a2a2P2xP2^

+ 2a＼P2xP2, - 2a20a2P22P223+ 2a2a2P2xP2u - 2a42P22P23

- 2a2a2P22P223 + a42P40l+ 2a2a2P2xP22 + a4P42 - 2a2a2P20lP22

- 2a2a＼P22P22 ~4a42P(nP02PnP23 + ^42P2XP223 + a4P42

-2a2a2P2P2+a4P4
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2.2. We go back to the situations as in §1. We fix an arbitrary point t of H,

and so we write simply X instead of Xt.

In the equations (1) in §1, we put

≪o= .9oo(O), fll=aoi(O), a2 = Sio(O).

Then

x=v{fx)nv<j2)

under the notations in 2.1. Moreover, Jacobi's identity is

4 = ^ + 4.

Therefore, from Th. 1, we get

Theorem 1'. Let Px{U) be the Chow-form of the projective ellipticnormal

curve X = (/>(ET).Then Px{U) is given by

Px{U) = Soo(0)4Pj3 - 230o(0)2,9oi(0)2PoVn + ≪oi(O)4Pf3

+ 2i≫oo(O)25Ol(0)2P202P203- 4% (0)4J&P?3 + 4^01(O)4PoiP<ttPl3P23

+ 2$oo(O)23Oi(O)2P22P23 - 2t9oi(O)251o(O)2P23P23

- 29oo(O)2Sio(O)2P20lP203+ 2So,(O)4/m/>23

- 25oo(O)25lo(O)2P23P23 + 25oi(O)2I9lo(O)2P21P23 - 2510(0)V022P23

- 25oi(O)251o(O)2i>22i>23+ Sw(0)4P40l + 25oi(O)25lo(O)2P21P22

+ 5oi(O)4Po42- 2,9oo(O)26≫io(O)2Po2i^22- 25oo(O)25Oi(O)2P22P22

- 4,91o(0)4PoiPo2i>i3i>23+ 45io(O)4P21P23 + 5Oo(O)4P42

- 2l9oo(O)25lo(O)2i>22P23+ 5io(O)4P43.

Let G be the Grassmann variety of lines in P2. By T4, we mean the ho-

mogeneous part of degree 4 of the homogeneous coordinate ring T of G. The

vector space T^ has a base consisting of the standard monomials of degree 4, and

it is of dimension 105 ([2], p. 387).

The above expression of Px(U) is unique, in the sense that the monomials

appearing in the expression are standard.

2.3. We denote by c{X) the Chow point of X{= (j)(Ex)).By the beginning of

this§,c(X) is a point of the projective space P(T4). Let M be the linear subspace
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of P(T4) spanned by the monomials appearing in the expression of PX(U),

i.e.,

M := {≪, ^13. ^13≫
^03≫ P202P213,P0lP02PnP23,P2nP2m ^23^3. ^03.

p2 p2 p2 p2 p2 p2 p2 p2 p2 p2 p4 p2 p2 p4 p2 p2 p2 p2
MH^' M)3r23' MHM3> ^02^13' ^02^23' ^01' ^01^02' ^02' ^01^12' ^02^12'

^0lA2^13^23,-^01^23'^12'^12^23'^23}}-

Then the theorem shows that:

(1) M contains not only c(X), but also c((/>(ET)) for Vt £ H,

(2) identifying M with jP23, a system of homogeneous coordinates of c{X) is

given by

c(X) = (90o(0)＼-2S00(0)%m＼^i(0)＼2&oo(0)23om＼-4S0m＼^oi(0)＼

25oo(0)25oi(0)2,-25oi(0)2510(0)2,-25oo(0)251o(0)2,2%(0)4,

-2<9oo(O)251o(O)2,2%(O)251o(O)2,-219lo(O)4,-2%(O)251o(O)2,

51o(O)4,2,9oi(O)251o(O)2,%(O)4,-25oo(O)251o(O)2,-25oo(O)2%(O)2,

-4510(0)4,45io(0)4,aoo(0)4,-2aoo(0)25io(0)2,5,0(0)4). (6)

In the following, we fix the identification M = F23.

§3. Application to the Moduli Theory

In thissection where the author owes to [8] to a great extent, we consider the

totality of the Chow point c(6(Er)) (reH).

3.1. We start with recalling some facts from the theory of ellipticmodular

functions.

The homogeneous modular group SL(2,Z) acts on H by

(a b＼ at + b

cr + d'

For any positive integer N, the principal congruence subgroup T(N) of level

N of SL(2, Z) is, by definition

T(N) = Ker(SL(2,Z) -^^ SL(2,Z/NZ)).

By a modular form of weight k (k a positiveinteger) and level N, we mean a

holomorphic function fix) on H such that
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er(AO; f(yr) = (cT + d)kf(r)

and that /(t) is bounded at QU {00} (for further details,[8])

We are concerned with T(4).

The inequivalent cusps of F(4) are 00,0,1/2,1,2 and 3.

We denote the extended upper half plane by H, i.e.,

H :=/fU0U{oo}.

The compactificationH/T{A) of H/T(4)

hJtU) = H/TiA) = H/T(4) U

IS

{

set-theoretically

oo,0

1

2
1,2,3}

The followings are known ([8]):

(i). &ij(r＼0)2are modular forms on the upper half plane H of weight 1 of

level 4,

(ii).The map 6' : H -> P2 defined by

T h->0'(t) = (^oo(t|O)2,<9Oi(t|0)2,510(t|0)2)

induces a holomorphic embedding # : H/T(4) ―>P2.

Let (_y0,̂ 1,^2) be the homogeneous coordinates in P2 corresponding to the

above map, and let Co be a plane conic defined by

yl -y＼- y＼= o.

We define an open set Cq of Co by

Q:=C0-{(l,0,±l),(l,±l,0),(0,l,±i)}.

Then, lm(6) = C^.

(iii).The holomorphic map 9 is extended to the compactification H/T(4) so

that the following diagram is commutative:

H/T{4) ^ Co

U U ･

H/T(4) ^ C^

We also denote by 0 the extended holomorphic map.

Let p be any one of the inequivalent cusps 00,0,1/2,1,2 and 3. Then 9{p) is

given by the following table:
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p oo 0 1 2 3

(1,1,0) (1,0,1) (1,-1,0) (0,1,/) (1,0,-1) (0,1,-n
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3.1.1. For every reH, we denote by c(t) the Chow-point c{(j>(ET))of the

projective ellipticnormal curve </>{Ez).By 2.3, c(z) e M = P23 and c(t)is obtained

from replacing 5y(0) by 5y(r|0) in (6). Therefore, a system of homogeneous

coordinates of c{x) is given by modular forms of weight 2 and of level 4.

We are interested in the subset {c(t)|t e H} of M. Let C be the closure of the

set {c(t)＼t H} in the Zariski topology.

We define a holomorphic map c : H ―>･C by t i―>c(t).

Theorem 2. C is a non-singular rational curve of degree 4 in M having the

following properties:

(1) {c(t) I t H} a C is a Zariski open subset.

(2) 3 an isomorphism: Co ―> C such that the diagram:

H ―U
I

is commutative

H/T(4)
0

c

Co

Proof. Let Co be the plane conic defined in (ii) of 3.1. By C, we mean the

image of the 2-uple embedding, which is denoted by p, of Q. C" is a non-singular

rational curve of degree 4 in P5 (which lies on a hyperplane of P5).

Then, Vt e H;

/>(0'(t)) = (500(t|0)4, 5Oo(t|O)2,9oi(t|0)2, 5Oo(t|O)251o(t|O)2, So,(t|0)4,

5oi(t|O)25,o(t|O)2,51o(t|O)4).

While, by (6),

In' : M ―> P4 a composition of a linear projection and a (trivial) projective

transformation such that Vt e H;

n'(c(T)) = (,9oo(t|O)4,,9oo(t|O)2,9oi(t|0)2, 5Oo(t|O)251o(t|O)2, ,9o,(r|0)4,

5oi(t|O)251o(t|O)2^1o(t|O)4)

= P(0'{t)).

n' is not unique, and so we fix such an n'.
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Conversely, p(8'(x)) determines c(x). Hence, %' induces a bijection

{c(r) ＼xeH}^ {p(0'(r)) ＼xeH} = p(Cfi.

Since p{C'o) is a Zariski open set of C, C becomes an algebraic curve which

is isomorphic to Co, using the bijection. Q.E.D.

This theorem shows that for any x e H, the Chow point c(x) of the

projective ellipticnormal curve <f>(ET)is essentiallygiven by the image of the 2-

uple embedding of the point (-9oo(t|O)2,,9oi(t|O)2,,9io(t|O)2).

In our case, the appearance of the 2-uple embedding is primarily based on

the fact that ellipticnormal curves of degree 4 in P3 are complete intersections by

quadratic forms.

It seems to the author that: when we consider ellipticnormal curves of degree

r > 4 embedded in Pr~l by using theta functions, the level of the corresponding

principal congruence subgroup willbe biggeer than 4. Therefore if r is sufficiently

large, the genus of the corresponding curve C is bigger than 0. Moreover the

genus of C will be bigger as long as r is larger.

3.1.2. Next we consider the compactification of H/T{A).

By the abuse of notations, we denote by p the isomorphism Q ―> C in the

Th. 2.

When p is any one of the inequivalent cusps, let Xp be the specializationof

the projective curve Xx (x e H) over the specializationp of x. The equations for

Xp are given by the following table ([8],p. 57):

p 00
0 1/2 1 2 3

equations
X2 - X2

x2 - -x2Ai Ao

x2 - x2

x2 - x2

r2 - -r2

x2 - x2X2 ― X3 i ― *"^1

x2 - -x2

x2 - -x2xl ― X3
x＼ = ix＼

Thus, for any p,Xp is a 1-cycleof degree 4, consistingof 4 lines.

Since Chow-forms are compatible with specializations,the six Chow-forms

Px≫, Px0, Pxl/2,Pxx, Px2 and Px, are obtained by specializations.

Let c{p) be the Chow-point c{Xp) of the cycle Xp. Then, (c(p),9(p))is a

specializationof (c(t),0(t)).Therefore c(p) lieson the curve C.

Let T(4)(p) be the orbitof p under F(4). Then

gu {00} = r(4)(oo) u r(4)(o) u r(4) G) ur(4)(i)ur(4)(2)ur(4)(3)
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Now, we define a map

c: J7-> C
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by

=
fc(T), if teff

CKV- ＼c(j>), ifzeT(4)(py

We note that for any p' e T(4)(p), the limiting cycle Xp> of Xr, as t -^ p', is

uniquely determined and then Xp> ― Xp.

Summarizing we have

Corollary 1. The diagram:

is commutative.

H
1

H/T(4)

c

c
I
'

Co

Now, we recallthe topology on H. A fundamental system of neighbourhoods

33(x) of x (x H) is defined by

≫(*)

I the usual one,

the set of all {p, the interior of a circlein

H tangent to the real axis at p},

the set of all {oo, x ＼x e H, Im(r) > c} (c> 0)

if xeH

if oo # x = p $ H

if x = oo

The topologicalspace H/T(4) = H/T(4) is defined to be the quotientspace

of H. Hence, c becomes a continuous map.

3.2. Finally, we consider the Chow variety < of the 1-cycles of degree 4 in

P3. <£is an algebraic set in the 104-dimensional projective space P(T4). Let 2

be the component of <& whose general point corresponds to an irreducible curve

which is a complete intersections of two quadrics. S is of dimension 16 ([!]).

Z is stable under the canonical action of PGL(4).

Proof. Let eel be any point and let X be the 1-cycleof degree 4 in P3

corresponding to c.
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If X is an irreducible curve, then My e PGL(4), Xy is also irreducible.

Hence, cy = c(Xy) e X.

Next, we assume that X is not irreducible. Then there is an irreducible curve

Xq s.t.Co = c(Xq) e £ and that c is a specialization of Co-

Then cy is also a specialization of cyQ.

Since Cq e X, we have c7 e X. Q.E.D.

As to the structure of X, we have the following:

Corollary 2. Let C be the rationalcurve as in Th. 2. Then thereis a

natural dominating morphism:

SL(4,QxC^T.

induced by the canonicalaction.

Proof. By Th. 2, C(cAf) lies on 2. Let a : SL(4, C) x 2 - 2 be the

canonical action.

Let / : SL(4, C) x C ―≫･2 be the morphism induced by er,(y,c) i-> cy.

Let p : Co ―> C be the isomorphism.

Cq = Co ―{6 cusps} is the open set of Co. p{Cq) is an open set of C.

We denote by /' the restrictionof/to SL(4, C) x p(Cq).

Now, for any r e H, the projective curve Xx = ^(£"T)is a non-singular curve

embedded by a complete linear system of degree 4. Hence XT is Chow-stable (Th.

4.15 in [7]).In other words, the orbit of the Chow point c{Xx) by SL(4, C) is

closed and the stabilizeris finite.

.-.dimlm/' = dimSL(4, C) + dimp(C'Q) = 16 = dim2.

Hence, / dominates 2. Q.E.D.
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