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NONLINEAR WAVE EQUATION WITH POTENTIAL

By

Sandra Lucente

Abstract. We study the Caucfay problem for

utt-Au+ V(x)＼u＼p~lu= 0

with x Rn. The function V(x) is positive and regular. The exponent

p is subcriticalor critical.By the aid of Shatah-Struwe technique (cf.

[7]), we prove the existence of the global classical solution with

suitable hypotheses on V(x) : V(x) > 0, 3 < n < 7 or V(x) = ＼x＼2,

n = 3. To approach this second case we cannot follow directly the

argument used in [7]: we need and prove weighted nonlinear esti-

mates in Besov spaces.

1. Introduction

A large amount of work has been devoted to studying several questions

related to the solution to the nonlinear hyperbolic Cauchy problem

□u(t,x) = O(f, x,≪,ut) xeRn

u(0,x) = uo(x)

ut(0,x) = ui(x).

For example, considering the case O = O(m) = ±＼u＼p~lu,it is possible to analyze

the existence of the global solution or its eventual blow up in dependence on the

size of initialdata, the large time behavior of the solution, and so on. The theory

began in the sixties,but in spite of the great deal of papers concerning it, some

questions remain open. More precisely,fixing our attention to the nonlinear term

<$?(u)=―＼u＼p~xu,with p > (n + 2)/{n ―2) (supercritical exponent) no results

clarifyif there exists a global regular solution with arbitrary initial data.
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The positive answer to the previous question in sub-critical and critical case

relies on the possibility to find a-priori estimates for the solution of the wave

equation.

For example, in sub-critical case, the conservation law for the energy is

crucial. In the critical case this L2 ― L2 estimate is not sufficient; one has to

combine Lp - Lq estimate (cf. Proposition 3.6) with a multiplicative inequality for

the nonlinear term (cf. Proposition 3.3).

In this work we examine carefully a remark contained in Shatah-Struwe

paper [7]: in the critical case <X>(w)= ―＼u＼4'^n~2'uthe authors obtain the global

classical solution and they say that using the same technique this result can be

generalized to suitable <&(x,t,u). Their proof is based on the following tools:

(i) a decay lemma,

(ii) a Strichartz' inequality,

(iii) a nonlinear estimate in Besov spaces,

(iv) a contradiction argument: in a neighborhood of an eventual blow up

point the solution is bounded.

In their work all the estimates are set in bounded domain, hence it is

reasonable that if O(x, t,u) is a continuous function in t and x, having critical

behavior in u, then the global existence result stillholds. Here we try to classify

the functions <J>(x,t,u) which give the global existence result. As will become

apparent, the problem is not so simple to be solved, hence we deal only with the

equation

utt-Au=-V(x)＼u＼p-lu (1.1)

with positive V(x).

If V{x) > 0, locally it behaves like a positive constant; this gives directly an

extension of Shatah-Struwe result. Our approach will not distinguish the critical

case from the sub-critical one and the same technique applies equally in both

cases. In particular for V(x) constant, we see that the Shatah-Struwe method

works also in the sub-critical case. On the contrary, if V(x) vanishes, the zero of

the potential could compensate the blow up of the solution. On the other hand, if

V{x) = 0 at some point x, the equation at that point reduces to the linear

homogeneous wave equation; hence it is natural to think that the global existence

result is still valid.

Here we give the global existence result for the case V(x)＼u＼p~lu=

＼x― xq＼2u5, n ― 3. In order to do this we find a weighted version of the nonlinear

estimate in Besov spaces. The interest of this inequality relies on the fact that the

multiplicative rules are not well known in Besov spaces.
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The case V(x) # ＼x―xq＼2is not considered here since it is connected with

the essentialdifficultyto establish a decay lemma. Finally we remark that in [4]

other problems with vanishing potentials are studied under the strong hypothesis

of small initialenergy. Another simple case is the 3-dimensional subcriticalcase

in which Jorgens' argument yields global solution without any assumption on the

zeros of the potential (cf.[3]).

The plan of the work is the following. In Section 2 we collect known results

and notations and we prove the decay lemma. In Section 3 we establish the

weighted nonlinear inequality that enables us to consider the vanishing potential

case. Here we also recall some useful properties of Besov spaces. We shall use

slightly different spaces from those used in [7]: the homogeneous Slobodeckji

spaces. For this reason we often treat with Hardy's inequality.

In Section 4 we prove our main theorem: the existence of a unique global

solution for the Cauchy problem related to (1.1), either in the subcritical or

criticalcase for V(x) > 0 or in the critical 3-dimensional case for V(x) =

＼x-Xq＼2.

Acknowledgements: I'm greatlyindebted with Prof. Vladimir Georgiev for his

hospitality during my visit at Academy of Science in Sofia, where we studied

weighted spaces.I'd like also to thank Prof. Sergio Spagnolo who encouraged me

to solve this problem.

2. Notations and Preliminary Results

We deal with the Cauchy problem

nu = -V(x)O(u)

u(O,x) =/(*)

(2.1)

≪,(<>,*)=$(*) (2.2)

where F, O satisfy

(i) V g ^2(JT), F(x) > 0;

(ii)$ e %2(R), $<&{t)dt > 0, <D(0) = 0, O(≪) = Im^'m if |w| > C > 0;

(iii)3 <n<l, p <(n + 2)/{n - 2).

Since we want to prove the boundedness of u and <$>{u)= Iwl^"1^ for large ＼u＼,we

can assume without restrictionthat,instead of (2.1),u solves the simpler equation
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uu=-V{x)＼u＼p~lu. (2.3)

We recall that for this equation there is finitespeed of propagation equal to one

and formal conservation law for the energy

E[u}(t) =
l-
f K|2 + |v,≫|2dx+f i^l

JR" JR"P + l

＼u＼p+l dx (2.4)

that is E[u](t) = E[u]{0) for each te R. We shall put E[u}(0) =: Eo.

Using these properties one can prove the local existence result(cf. Theorem

4.3 in [6]):

Theorem 2.1. Let s > n/2; for any (f,g) e Hs(Rn) x Hs~l(Rn) there exists

T > 0 and a unique strong s-regular solution u(x, t): Rn x [0,T] ―>R for (2.1),

(2.2), that is uE^{[0,T},Hs{Rn)), u, e ^([0, T],Hs-l(Rn)) and utte<g([0,T],

Hs~2{Rn)). IffE^＼Rn)f)Hs(Rn), ge%2{Rn)nHs-l{Rn) the unique local solu-

tion of (2.1), (2.2) is a classicalsolution,i.e. ue^2(Rn x [0,7]).

Moreover, if (f,g) have compact support, then for each te[0,T], u(-,t) has

compact support.

Having in mind the finitespeed of propagation, we consider the backward

cone with vertex z0 = (x0,to)e Rn x R:

K(zq) ■={z = (x,t)＼t<tQ,＼x-x0＼<to-t}.

For any S < T < to we put

*J(z<>):= {(x,t)e K{zo)＼S<t<T), Ks(zo) := K*{z0),

M{z0) := [z = (x,t)＼t< to,＼x- xo＼= t0- t},

Mj(z0) := {(x,t) e M(zo)＼S<t<T}, Ms(z0) := Mg(z0),

D(t,zo):={xeRn＼(x,t)eK(zo)}.

Further we define the local energy

E(u,D(t,z0)) f - N2 +
2|V*K|

+ , M**1 dx (2.5)

and we state a crucialinformation for the proof of our theorem, that is the flux

conservation law: for any S < T < ?0
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E(u,D(S,zo))-E(u,D(T,zo))

A//(zo)

1

2

X

＼x u, - Vxu

2

+

This is obtained integrating on KI(zq) the identity

*G

We see that for any potential V(x)

^4i≪r'd≫
p+＼

= dw(utVxu).
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(2.6)

positive, the quantity E(u,D(S,zq)) is

decreasingin S and tends to zero whenever S ―>to,hence

lim

S^t0
JmJ(zq)

1

2

X

X

(H2) V{x) > 0, 3 < n < 7,

Then

where

xo＼
Ut ― VyW

n + 3

n-＼
< p<

0 = dt(tQ0 +
^

2

+
V(x)

＼u＼p+ldw = 0

utu

＼

(2.7)

(2.8)

(2.9)

p+l

We conclude this section with the firstcrucial ingredient of Shatah-Struwe

method: a Pohozaev type identity which gives the possibilityto control the higher

term of the local energy. This works under suitable assumptions on V(x) and p.

Lemma 2.1. Let u be a classical solution for (2.1), (2.2) on K(zq)＼{zo}

Suppose V,n,p satisfy one of the following conditions:

n + 2

n-2'

(H2) V(x) = ＼x-xo＼2with xoeRn, n = 3, p = 5

lim
f

V{x)＼u＼p+ldx= O

Proof. At the begin we consider z0 = (0,0) and omit it in the notations of

the domains. We multiply equation (2.3) by tut+ x ■Vw + ((≪―l)/2)u, obtaining

the identity

- div(tPo) + Ro
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I2
.

V{x)

^r+w,(fvw)

＼Vxu＼2

2

n+l＼

V(x)

p+＼
＼u＼p+l+Vui ut+--Vu + ―

rWfrr-'-^W ＼u＼p+l

Integrating (2.9) on Kl and letting T ―>0, we find:

JD(S)

First we observe that

lsQ0
+

i + ma:-s[
^

JD(S)P + 1

+ -f -
+2

2

n

utu＼ dx+ f

JKS

ut

RQdxdt

UtU + X ■Pq >

u

2

1

2
>

a

dco = I + II + III.

＼u＼p+l dx

_L[

＼/2JMS

(*-!)(*-3)

4

P+V

t

＼2/(p+l)

dco

＼tQo
+

Ms I

-1

2~~

n-＼

2

I + W>So{l)-
I

S^-

JD(S) P + 1

where o(l) tends to zero when S ―>0. In fact,in Lemma 1.2 of [7] it is shown

that

＼u＼p+l dx

X

Ixl

The second term is directlyestimated by ―So(l) by virtue of (2.7).To reduce the

third term to ＼M V(x)＼u＼p+ldco we apply Holder's inequality. If V(x) > 0 thisis

a straightforward computation. In the case V(x) = 0 we need some additional

assumptions. For example in the case V(x) = |x|a we have

f U2 /f
x 1-2/(^+1)/f

^dm<(＼ ＼x＼-ydco) ( |x|a|<+1dco

here y ―(2a + p + !)/(/>- 1); there is convergence of the firstfactor only if

nip-I)

2{p+l)

In particular for n = 3, p = 5 we require a < 3.
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In order to conclude the proof it suffices to know

IS < 0 s.t. VS < 0, ＼S＼< ＼S＼ II =
[

Rodxdt > 0.

Hence, for ISI < ISI these relations imply

(V(x)

D(S) P + 1

＼u＼p+ldx + So(l).
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(2.10)

Being S < 0, we have the desired conclusion.

It remains to check (2.10).In particular we show that Ro is positive on K$

that is

)
V(x) >

x-VV(x)

p+l '
1*1 < |5| (2.11)

Suppose V(x) > 0 in D(S); being Ks compact, we find |VF(x)| < CsV(x) for

some Cs > 0 and for alljce^. Moreover Cs is a decreasingfunction of S in

(-oo,0). We fix T=-(p+l)((n-l)/2-(n+l)/(p+l)); T is negative in

force of the hypothesis(Hi). For any S > maxjT, T/CT}, x e Ks we have

x-VV(x)

p + l

x-WV(x)

p + l
<Ct

-SV(x)
p+＼

<
n- 1

2
V(x)

In the case V(x) = 0 at some point, in general, we cannot conclude that (2.11)

holds. In the case V(x) = |x|a we see that (2.11) reduces to

n- 1 n+ 1

2 p + ＼

a

p + ＼'

Being a > 2 and p <{n + 2)/(n ―2), this condition is verifiedif (H2) holds in

D(S). In the case zq = (xq,?o) ＼=(0,0) we have

lim

JD(S,zo)

Mm

V(x)＼u＼p~ludx

JD{S)

V(x + xo)＼u(x + xq,t + to)＼plu(x + xo,t + t0)dx.

Since v(x, t)= u(x + xo, t+ to) solves nv(x,t) = V(x +xo)＼v(x,t)＼p v(x,t), the

assertion follows from the previous computations under the assumption either

V(x) > 0 in D(S,z0) or V{x) = ＼x- xo＼2in D(S,z0). □

We emphasize that we have only used the estimate from below p >

(n + 3)/(≪―1). The previous lemma is stillvalid if p = (n + 3)/(w ― 1) and V(x)

is a positive constant, namely the classicalcase.
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From the previous proof it follows that in the case n = 3 p = 5, the as-

sumption (H2) can be weakened: the potentialcan vanish of order 2 in isolated

points,thismeans

(H2) V(xq) = 0 implies V(x) = ＼x―xq＼2in a neighborhood of xo;

The case V{x) > 0 is the simplest one because Lemma 2.1 implies the

following:

Corollary 2.1. Let u be a classicalsolutionfor (2.1),(2.2) on K(zq)＼{zo}.

Suppose (Hi) holds, then

lim | ＼u＼p+1dx = 0. (2.12)

S^'oJD(S,zo)

3. A Weighted Nonlinear Inequality

The aim of this section is to prove a generalization of a nonlinear inequality

due to Ginibre-Velo (cf.[2]).We prefer to recall the necessary tools for this proof,

in particular the realinterpolation theory. On the contrary, we don't describe here

the complex interpolation theory, though we shall use it.We shall often quote the

monographs [1] and [8] in which the reader can find a general framework for

these subjects.

About the notations, we omit to write Rn if it is a domain of a function

space, denoting by ||･ ＼＼pthe Lp(Rn)-norm. Finally by ~ we mean the equivalence

of two positive functions A,B: we write A ~ B if there exist C＼,Ci such that

C＼A(x) < B(x) < C2A(x) for all x in the intersection of the domains of A,B.

We start with the abstract definition of real interpolation for a couple of

Banach spaces:

Definition 3.1 ([8] 1.3). Let Aq, and A＼ be Banach spaces, both linearly and

continuously embedded in a linear Hausdorff space stf.

For each 0 < t < + oo, one defines the K-functional related to (^o^i)-

K(t,-,A0,Ai) ■.Aq+Ax ->J?,

^,/,^o,^i) = inf{||^Lo + #IU s.t.f = g + h,geA0,heAl}.

Fixing 0 < 0 < 1, 1 < q < oo, the intermediate space between Aq C＼A＼ and Aq + A＼

is

(Ao,Ai)e :=

{

/^O + ^||/II(V,,) :=

(+00

0

r*tf(f,/,4>,i4i)*y<+oo}
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One of the advantages of the real interpolation theory is the fact that the linear

bounded operators are exact interpolation functors in the sense of the following

proposition:

Proposition 3.1 ([8] 1.3.3(a)). Let {Aq,A＼), (Bq,B＼) be couples of Banach

spaces under the same hypotheses of the previous definition.Let O<0<1, 1<#<

+ 00. //

T : AQ -> Bo, T:AX^BX

is a linear bounded operator, then

T:(A^Ax)^q^{B^Bx)^q

is a linear bounded operator.

Now we givesome examples of realinterpolationspaces;we need them in what

follows.

Example 3.1 ([8] 1.18.5). Let co: R" ―>R be a positive continuous function;

Q <= J?" a measurable set. For each 1 < p < +co, Lp(Q.,co) is the weighted 1/

space which consists of the measurable functions /: Q. ―>R such that

cQl/pfeLp(Q). This means

11/11

' -f ＼f＼pco(x)dx<+ao.

For these spaces the following interpolation property holds ([8] 1.18.5):if 0 < 6 <

1, a>o,coi: Rn ―>R are continuous positive functions, then

where

[I≪(Q,o)f))I''(fl)<i = Lp(Q,af)

1 e

1-0
I

P Pq P＼

and co(x)
1-0

£OqG>j

In particular, there exists Q > 0 such that

for all u such that the right side is finite.

Example 3.2 (fll 5.6.2). Let A be a Banach space. One denotes by Is

(3.1)

(3.2)

(A) the
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q

(3.4)
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space of the sequences {a/-}^_00 c A having norm

WaM(A) -

00
£

7=-oo

2^WI2

bounded. Let {Aq,A＼) be a couple of Banach spacesin the sense of Definition

3.1.The realinterpolationgives

(QUo)Jsq＼(A^q = lsq{{AQ,Ax)e^ (3.3)

where 1 < qo, q＼< oo, and

s= (1 -Q)so + 6$i,

if s

1

q

i-e e
+ ―

go q＼

Example 3.3 ([8]2.4.2(13)―(16)). Let s > 0, 1 < p,q < oo. The Besov spaces

is defined in the following way:

is not integer

Bsp,q= (Wpk,Wp＼q with s = Ok+(l-O)h, h,keN-

if s is integer,by reiteration

*≪ = (B?,9>>B?,≪)o,q with s = Oso + {l-O)Sl

{us if s is not integer

if s is integer

£ -1/ if,>
n n

P r

e_

4o
+

e

p<r,q <r,

1-

In the same way, consideringthe homogeneous Sobolev space Wfj, afterfac-

torizationout of polynomials, one obtains homogeneous Besov spaces.

In what follows we shalluse also homogeneous Slobodeckji spaces:

We recall that these spaces are different from the Sobolev spaces of fractional

order: suppose s is not integer, then W^ = Hsp if and only if p = 2.

Other relations between these spaces are given in terms of embedding

theorems (cf. [1]):

Bp,,^Bp^ iftf^i- (3-5)

Using semigroup theory one finds severalequivalentnorms for the spaces
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defined by real interpolation. For example the translation on R" yields the next

result:

Proposition 3.2 ([8] 2.5.1). Let 0 < s < 1, 1<^,^<+oo. An equivalent

norm for Bs is

11/11*. =

Ginibre and Velo

spaces:

(I

use this norm to derive an

l/<7

(3.6)

estimate for ＼u＼xin Besov

Proposition 3.3. Let 0 < s < 1, X> ＼and 1 < px,p2, P,q < +oo and X > 1,

with l/p = l/p＼ + ^-1Pi- There exists C > 0 ^wc/? that

＼＼H%
q<C＼＼u＼＼^J＼＼u＼l-x＼＼LP2

(3.7)

/or a// u such that the norms on the right side are finite.

We write in Slobodeckij spaces this result:

Lemma 3.1. Under the same hypotheses of the previous proposition,there

existsC > 0, depending only on n,p,pu such that

|||≪|A||≫"< ―ll≪ll≫^lllMlA
Mlz.^2 0<e<l

Proof. Using Ginibre-Velo result it

embedding

(3.8)

is clear that it suffices to prove the

K+e^bsp^ kp and ll^k, -

11/11*. s

(

J＼h＼<l

This gives the desired embedding.

＼h＼-n+er

)

WfWwf
e

and afterwe take p = px. Since 1 < q < p there existsr > 1 such that ＼/q=

l/p+l/r. Using (3.6) and Holder's inequality(with respect to the measure

dh/＼h＼n)we find

1/r

＼＼f＼＼wr
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In order to obtain the weighted variant of this inequality, we deal with

Lp(|x|a) denoting with by ||･ ＼＼p
a
its norm. In the same way the weighted Sobolev

space W^dxl*) is the completion of <^° with respect to

Hwlli^.^llviilU^IIW^v^.

By real interpolation we define

W;{＼x＼≪)= (Lp(＼x＼<),W}(＼x＼*))StP0<s<＼.

From the general property of interpolation ([8] 1.6.2),one deduces that <^°is a

dense subset in W^(|x|a).

Now we want to represent the norms of these spaces like a sum of sequences

in the classicalspaces; thiscan be done by means of Paley-Littewood partition of

unity in Rn.

Proposition 3.4 ([1] 6.1.17). There exists a sequence of functions {<Pj}ieZ

which satisfies

(i) <PjE^, 0<<pj<l;

(ii) slippy c {zeRn＼ca-j < ＼z＼< c22-jy,

(iii)J2iezVj( )
~

1 /or £^0 ^^ ･SM'W contains at most two not vanishing

terms:

(iv) 3C > 0 such that|V≫,-|< 7^7 for each i e Z.

By the aid of thisdecomposition we find an equivalentnorm for Z/(|jda)

Lemma 3.2. Let {(Pj}ieZ be a sequence satisfying Proposition 3.4. If ue

Lp(＼xa) then

ll<a
jeZ

(3.9)

Proof. Combining the properties (i) and (iii)for (pj,we get 1/2^ ! <

J2vf ^ 1- On tne other hand, on the support of <p-we have |x|a ~ 2~;a,hence

/eZ jeZjR" jR"

This completes the proof. □

A similar result for H7/,1(|x|a)is obtained using of the following Hardy's

inequality (cf. [51).
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Proposition 3.5. For each a > 0, 1 < p < n,

iii*ryiL<iiMav/L v/6^(i?≪).

93

(3.10)

Lemma 3.3. Let 1 < p < n; {(Pj]iez satisfying Proposition 3.4. For any

ue Wp(＼x＼a) one has

(3.11)

Proof. It sufficesto prove the inequality for ^f functions. Having in mind

the definitionof W^(|x|a), from Lemma 3.2 we have

jeZ

Since ^,-Vm = V((PjU) ―(V(pj)u, to obtain

it suffices to find

2-/aii(v^>ii;<c^2-^nv(^)ii;

The properties (iii)and (iv) of ＼ap} allows us to compute

ii(vp;)<=*eii(v^>,-+/<^cE
/=-l

Using Hardy's inequality, it follows that

/=-l

1

―＼<PJ+lu

p

p

V2-;i(v^>ii; < cV2-^ T ＼Wvj+i≫)＼＼pp- £2-'ivMi£
yez /eZ /=-l

Now we prove the inverseinequality.We see that

ZeZ ' /eZ

JeZ

yez

f
＼x＼0l＼V(Pj＼p＼u＼pdx +

[
＼x＼*tf＼Vu＼p dx

J supp <Pj J supp cpj
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In force of the properties (ii)and (iv) of Paley-Littlewood resolution of unity, we

find

jeZ p Ur" ＼x＼ jr" J

Using Hardy's inequalitywe conclude

£2-*|ky,||;,<C L |x|a|Vw|;'djc =
cN*>r)

Now we are in positionto set the followingisomorphism:

□

Lp(＼xn ^ f(Lp), w}(＼x＼")̂ i;'t≫{w}).

Using the property (3.3)in Example 2, we deduce the next result:

Lemma 3.4. Let 1 < p <n, a>0, 0<s<l and {(Pj)ieZsatisfyingPro-

position3.4.For any ue fl^(|x|a)one has

HIWj-E^llvll'-y (3.12)

In thislemma an explicitrelation between W^(|x|a) and W* appears; another

important relation between these two spaces is given in the next lemma:

Lemma 3.5. Let I < p < n, 0 < s < 1, a > 0. The following inequality holds:

＼＼＼x＼au＼＼^<C＼＼u＼＼^xn. (3.13)

Proof. From definition of weighted if space we know that Hl^l""!^ =

Ilwllz/(|*H- Rn tne otner nand if we^00, using Hardy's inequality we get

|||x|aW||K = a||＼x＼*-lu＼＼p+ ||＼x＼≪Vu＼＼p< C＼＼＼x＼≪Vu＼＼p= ＼＼u＼＼^I(|xr).

We see that the operator Ta:u*-^ ＼x＼*u is bounded from V^x^) to Lp and

from ^(Ixl0^) to Wp＼ Proposition 3.1 yields (3.13). A density argument gives

the conclusion □

The same technique enable us to investigate on the behavior of cut functions

in these spaces.
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Lemma 3.6. Let 0 < s < 1, 1 < p <n. If y e ^q, / e Bspq then

＼Wfhk

<

< c＼＼f＼＼t.t.

Finally we can prove the weighted version of (3.8) with a vanishing weight.

Theorem 3.1. Let 0 < s < 1, 1 < p < n, 1 < pup2 < +oo, ^ > 1 and a > 0.

If l/p = l//?j + l//?2 the following inequality holds:

＼＼＼x＼a＼u＼x~lu＼＼Ws<-＼＼u＼＼Ws+£＼＼＼x＼a＼u＼x-l＼＼Ln0<£< 1 (3.14)

for all u such that the norms on the right side are finite.

Proof. From Lemma 3.5 we have

＼＼＼x＼M"＼＼w; < C＼＼＼u＼X＼＼^{]xn. (3.15)

On the other hand, fixed a Paley-Littlewood decomposition {<Pj}, Lemma 3.4

implies

lll≫lV,.(W,)= £2~*W≪lX.

jeZ p

Since ^|/f = <p.
e*=-i vj+kf

V

the previous lemma yields

w/ni^<c

From Lemma 3.1 it follows

Since

we obtain

1

£

k=-＼

Vj+kf

fi

w;

iw/i%; *| E iiwiik-iiiwr1!^

1 ＼W(Pj+kJ＼ ＼＼lp2 ― ＼＼＼X＼ Wj+kJ＼ llZ/2

jeZ n

(3.16)
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Using again Lemma 3.4 with a = 0 from (3.15) and (3.16), we get the conclusion.

□

It is clear that this technique leads to other weighted estimates; for example if

we choose {(pj) such that C＼2~j < ＼x―xo＼ < C2l~j for all x in the support of <pj,

we check

＼＼＼X― Xq ＼u＼ ML, <

p

c
IMI ≪/m|||x-x0|a|M|/l 1＼＼LP2 0<e<l (3.17)

We conclude this section setting the local variant of Besov spaces, in which

we formulate the Strichartz'estimates for the linear wave equation.

For any Q open set in R", Bsp (Q) is the completion of <^° with respect to

ll"llfl;

i,(n)=inf{||yIU;.,(ji-)

^ v＼a= u^ e Bspiq(Rn)}.

These spaces on domains satisfythe same interpolation rules as the ones defined

on R". In what follows we deal with 0 < s < 1 and Q = D(t,zo) for fixed t e R,

z0 e Rn x R. By interpolation rule we see that for any Oe^,0<O<l,$=l

on B＼(0) the function

u(x, t) =

satisfies

u(x, t)

■
k-'ol2( x-xo)

|x-xo|2
+ x0, A .(

X Xo
)

＼＼*(')＼＼B'

Pt9(R*)

^ cM＼%,m,*o))

xeD(t,z0)

otherwise

In these local spaces, Strichartz' result takes the following formulation:

Proposition 3.6. Let

f,geC?(Rn), heLr(Rn+l)

(3.18)

(3.19)

(1/f, ＼/r) = ((≪ - l)/(2(/i + 1)), (ii+ 3)/(2(#i + 1))),

Lef co be a solution for

nco(x, t) = h{x,t) xeRn, n>3

co(x,0)=/(x)

a)t(x,O)=g(x)
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The following estimate holds:

llw(-M)llz/(/r+1) ^ c(IHIz/(/r+1) + UWh^r") + ＼＼9＼＼h-'i＼r"))

If zq = (xq, to) and s < z < to, the previous inequality gives:

IMI^m.^Mmo))) < C[EH(co,D(s,z0))l/2+ ＼＼h＼＼L,Mt#

where

EH((o,D(s,zo))=
If

2 JD(s,zo)

:(*>(t,z0))

＼cot(x,s)＼2 + ＼Vxco(x,s)＼2 dx

To simplify the notations we put ||･ llL,.(M)^>/2(Z)(r;Zo)))=: ||･ ||V,,,T

4. Global Existence Theorem

Now we are in positionto prove our main theorem:

97

(3.20)

(3.21)

Theorem 4.1. Assume that V(x),n,p satisfythe hypothesis(Hi) or (H2)

givenin Lemma 2.1. Consider O(w) = ＼u＼p~lufor large u a ^2(R) function.

Let fe%3(Rn)P{Hs(Rn), g e (£2{Rn)̂ Hs~＼Rn), s>n/2. The Cauchy

Problem

uu(x,t) = -V{x)Q>{u) (4.1)

u(0,x)=f(x)

ut(0,x)= g{x)

admits a unique global solutionu e ^(R" x R).

Moreover, if V,R,f,g are ^°°functions,then ueV^iR" x R).

We argue by contradiction. Let us suppose that the local solution u(t,x)

blows up in T = to.Our aim is to establish that for each xo e R", u(x, t) belongs

to L (Ks(zo)) with S near to. Since n < 7 itis sufficientto prove u e ^(^(zo))

and then to use the embedding W24 <―L00.

The firststep is to prove the boundedness of u in L[OC{R, W-' ), that is to

have informations on "half derivative".

Proposition 4.1. Let u be a classicalsolution to (4.1),(4.2) in K{zq)＼{zq);

then u is bounded in LF([O,to]; Wl-/2(D(t,z0))) and

＼＼u＼＼,0,<C(z0,E0). (4.3)
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Proof. We consider the differentcases(Hi) and (H2).

(Hi) V(x) > 0, 3 < n < 7, (n + 3)/(≫-l)<p<(n + 2)/(/i- 2).

From localizedStrichartz'estimate(3.21),for each s,teR, s<r<to, we

have

IK,,t < C(EH(u,D(s,z0)))1/2+ CIlKWIul""1!/!! ^ (4.4)

Since Eh{u,D(s,zq)) is a decreasing function in s, the firstterm is controlled

by eJ . We want to control the last term with e||w||p-
s z

for some /?> 1 and

£>0.

Let ＼ e #" be a cut function 0 < *F < 1 and *F = 1 on D(t,z0); let u be the

function defined in (3.18). Combining Lemma 3.6 and Proposition 3.3, for each

te [s,t] we get

＼＼V(x)＼urlu＼＼^{D{tzo)) < ＼＼*＼(x)V(x)＼urlu＼＼^{sn) < C＼＼＼urlu＼＼^{Rn)

^ CH"llfi!/r2(/f")lll"|/'~Wlpx{R") ^ CHWHs;/r2(Z)(/,zo))lllW|;'" ＼＼LPi(D(t,z0))

with

1

P＼

After integration in t we find:

_ 1 1 _

r f n

2

+ 1
(4.5)

＼＼V(x)＼u＼p
lu＼＼Lr{Miw{DittZo)))< C(^t)||u||-,>t||M||^_1)(^(zo)).

We observe that C(s, x) = (z - s)^ with fi < 1; it follows that there exists a

constant C(to) > C(r,s).

Now we want to estimate the factor iMI^l-iwr^
＼y

If tnere exists0 < a < 1

such that

1

Pl{p-l)
=a(j~h) + (!-≪)

1

(4.6)

/>+!'

then using interpolation rule and the embedding (3.4) we obtain

IMU-u * c||≪||("1/._1/2lir,||≪||j;;;< ＼＼u＼＼fy＼＼u＼＼l;*.

The last inequality gives



Nonlinear wave equation with potential

＼＼u＼＼p~l < c(＼X ＼＼u＼＼m{p~l)
llWll^i^')(^(zo)) - ^＼)s

mBl/2.(D(t,
zo))

< C sup ||

S<t<T

I, ll(i-≪)jP,(p-Dd

y//?i

ll(l-≪)(p-l)
u＼＼LP+HD(t,zo))

(i; ＼i//m
ii ,j≪^io-i) dt＼

If up＼{p - 1) < r, then by Holder's inequality we get

(1 ll≫ll^-1)dA
V/>

< c(s,r)＼＼u＼＼^-l)

again we can take C(j,t) < C(t0). Hence we find

Now Corollary2.1implies

Ph＼＼<R＼%!l))<e iff-*o V£>0

For s closeto ?n,we conclude

Null <r rir1^ . P||M||i+≪(p-i)
＼＼u＼＼f,s,T^ CLo +£IImIIm,t
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(4.7)

Considering y = I + a(p ―1) and X(s, x) = ＼＼u＼＼Ps
T,

we have a continuous

function such that

X(s,s) = 0

t h-≫A"(s,t) is increasing for all sei?

eJJfCs,t) - X(s, t) + C£"01/2> 0 Ve > 0.

We choose e < K~y{CEll2)x~y where i^y = min^olx^1 + x~l+ 1}; this implies

that X(s,t) is bounded, i.e.||m||^stis bounded. Having in mind that the local

solution is regular in Kq(zo), when x ― to we have the conclusion.

It remains to prove that the exponent a in the previous computation exists,

that is the following system of inequalities has a solution:

<

0<a< 1

1 _ G

<*Pi(p- 1) <r

y+<'->^

Having in mind the definition of p and r, the last inequality can be written as
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(4.9)
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a <
4

(n-l)(p-l)
(4.8)

the other hand, the condition p > (n + 3)/(n-I) implies

(n― l)(p ― 1)) < 1; then the previous system is equivalent to

<

0< 0L<
4

(n-l)(p-l)

1

From the last equation we get

≪(/>)

It remains to verify

In

e
-i)

p

+ (!-≪)

- 1 p(2n +l-n2

0 < a(p) <

p<

4

(n-l)(p-l)

n2 ― 2n ― 1

A simple computation shows thatin the case n > 3

n + 2

w-2

n2 + An + 1

n2 - In - 1'

p+l

p(n-l)-(n + 3)

) + n2 + An + 1"

Using again the assumption p > (n + 3)/(w ―1) we get oc(p)> 0 if and only if

p(2n + 1 - n2) + n2 + An + 1 > 0.

Since n > 3 the quantity (2≪+ 1 ―n2) is negative, so that we require

n2 + 4≪+ 1

Being p subcriticalor criticalthisimplies (4.9). The same argument reduces the

condition (4.8) to the discussion of the inequality

(n + 2)[n(n - I)2 - 2(2≪+ 1 - n2)] < (n - 2)[n{n + 3){n - 1) + 2{n2 + 4n + 1)]

and thisis fulfilled.

Now we consider the case

(H2) V(x) = ＼x- xo＼2with x0 e Rn, n = 3, p = 5.

We fix our attention to the point zq = (x0, to)in which the potential vanishes,

since otherwise there exists s e R such that V(x) > 0 in D(t,zo) for all te [s,to[
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and the assertion follows from the case (Hi). Here we use a different estimate for

the last term in (4.4), in fact we have to apply Lemma 2.1 instead of its Corollary

2.1.

Combining the embedding (3.5) and the weighted estimate (3.17), we find

|||x-xo|V||^

4(Z)(riZo))

< ＼＼＼x-xo＼2u5＼＼^i2{Ri)

C C

< ―||≪ll̂ 1/2+^3)11 I* -*0| U ||L2(j3) < ― ||"||^l/2+e(/,(,iZo))||w||I,8(Jf3)|JC_JCo|4).

The interpolation rule (3.2) for weighted if spaces gives

II~ll ^ ll-ll1^ II~llI/2
WU＼＼l＼R＼＼x-x^) ^

＼＼U＼＼l^)＼＼U＼＼l＼R＼＼x-^)-

Using the embedding (3.4), we conclude

lll*-*o| ≪5H^/24(Z)(,iZ0)) ^ ― il^ll
^4'/2^(/)(r^0))

li1-^ ―
-^ol M|lz.6(D(rlZ0))-

After integration in t we get

1i(＼ A. 9 1 f＼ 9
|||X-X| W|lz.8(^/(z)) ^ ＼＼UWn({s,T};Wl!2+cD(t,z))SUP

II＼X
~ X＼ UWL6(D(t,i))

＼＼x-x＼ u lli,4/3([J)T];ijV2j< Ce Hwll^^^.^i^+e^^^sup^lHx-^l u＼＼Le^ti)).

We are in position to apply Lemma 2.1, and for s close to to we find

sup |||x-xo|1/3w||L6(jD(/iZo)) ^ c&1-

s<t< x

Denoting

X＼s, r,e) = ||w||L4(^T].^i/2+£Z)(^f)),

we have a continuous function such that

X(s, s,e)=0 for all e > 0

X(s,z,s) is increasing in e and z

eX3{s, t, e) - X(s, z, 0) + CElJ2 > 0.

Using the fact that X{s, z, s) ―> X(s, z, 0) when e ―≫0, we see that there exists a

suitable £o > 0 such that for all £< £o the last condition gives
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l + CEl'2

＼+X{s,r,O)
+ e(l+X(s,T,0))2

Taking e < 3 3(CE0'2 + 1) 2 we get X(s,r,O) is bounded, that is our conclusion.

□

As a consequence of the embedding Wy 2(Z)(f,z0)) <-^>Lr(D(t,zo)), using (4.3) we

get

ueLf(Ko(z0)). (4.10)

Coming back to the proof, from (4.3) we also deduce that

IMU(-≫(*/(zo)) ^ Co{＼) if #i ^lds (4.11)

＼＼＼x-xo＼l/6u＼＼Ls{Kr{zo))< Co{＼) if H2 holds, (4.12)

where o(l) tends to zero when t ―> fo.

The next step is to establish the r-summability for Du. In what follows we

put D = dt or D = dXi for / = 1,..., n.

Proposition 4.2. Let u be a classical solution for (4.1), (4.2) on -£(zo)＼{zo}.

One has Du e U{K0{z0)).

Proof. By differentiating (4.1) it follows

DDu = -DV(x)＼u＼p~lu - pV{x)＼u＼p~[Du.

Having in mind the finite speed of propagation, for any s < x < to, Strichartz'

estimate (3.20), gives

＼＼Du＼y{KI{zo))< C(E(Du,D(s,zo)))l/2

+ ＼＼DV(x)＼urlu＼＼Lr{KIizo))+ C＼＼V(x)＼urlDu＼＼Lr{K;{zo)).

Suppose (Hi) holds.

From (4.5), using the relations (4.10) and (4.11), we have:

＼＼DV(x)＼urlu＼＼Lr{KI{zo))< II^^IIloo^^))!^!!^^^)^!!^,)^^)) ^ o>(i),

< Co(l)＼＼Du＼＼Lr{Ko{zo)).
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Summing theseinequalities,we find:
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(4.13)

Being the local solution regular in Kq(zq), for t ―> to we get the conclusion.

The situation is slightly different in the case in which (H2) holds.

Since we deal with bounded domain, if p < q then

Illx-Xor^llz/^^)) ^ lll*-*orNL%D(;,zo))-

The same inequality holds when we consider K^{zq) instead of D(t,z0). This fact

enables us to estimate ||DF(x)|w| u＼＼Lr(K*(z0))― ＼＼＼x~ xo＼u Wlv3{k*{z0))- Since

9/2 < 6 we have

sup

s<t<x JD(t,z0)

|x-xo|2M9/2dx = o(l)

Using thiscondition and the interpolationrule

L7(|x-xo|4/3) = (L12,L9/2(|x-xo|2))4/7i7

we obtain

D(t,z0)

|x-x0|4/Vdxd? = o(l)||M||^iT

From (4.3) we have that this quantity is bounded. Being 20/3 < 7 we conclude

|||x-xo|m5||L4/3(^(zo))=o(1).

In order to control ||K(x)|w|/'~1Z>M||ir^T(Zo^ we can use (4.12):

lll*-*o|VZ)M||L4/3(Jr/(zo)) ^
c＼＼＼x

~
M1/6u＼＼l*(k;(z0))＼＼Du＼＼l<(Ko(z0))

<0(l)||DW||L4(*o(zo)).

These relations and Strichartz' estimate imply (4.13), hence the conclusion. □

then

Corollary 4.1. Let u be a classicalsolutionfor (4.1),(4.2) in K(zo)＼{zo};

KmE(u,D(s,z0)) =0 (4.14)

Proof. Being E(u,D(s,zo)) decreasing in s, we have lims->toE(u, D(s, z0)) =

/.In force of (2.8), to obtain / = 0 it suffices that J^
zq)

＼Du＼2dx -> 0. Combining
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Holder's inequalityand the previous propositionwe have:

IWlWo)) ^ [measn+l(K:(z0))}2^^＼＼Du＼＼lP(KHzQ))< C(t0 -s)2

This completes the proof. □

In order to conclude the proof of the main Theorem we need D2u e

U(Kq(zo)). We use the same trick: by differentiating two times (4.1) we get:

nD2u = -D2V{x)＼u＼p~lu-2pDV(x)＼u＼p~lDu +

-pV(x)＼u＼p~lD2u - p(p - ＼)V{x)<D"{u){Du)2.

Here <D"(w) ~ ＼u＼p~2if n < 5, while <&"(u) is bounded if n = 6,7. Localized

Strichartz' estimates give

ll^llz/^zo)) ^ C(E(Du,D(s,zo)))l/2

+ C＼＼D2V{x)＼u＼p-xu＼＼Lr{K;{zo)) (4.15)

+ C＼＼DV(x)＼u＼p-lDu＼＼Lr{K;{zo))

+ C＼＼V(x)＼u＼p-]D2u＼＼Lr{KHzo)) (4.16)

+ C＼＼V(x)^(u)(Du)2＼＼Lr{KI{2o)). (4.17)

Suppose (Hi) holds.

We can estimate (4.15), (4.16) obtaining

＼＼D2V＼u＼p＼＼Lr{KI{zo))+ ＼＼DV＼u＼p-xDu＼＼Lr{mzo))+ H^r1^!!^^)

^
cIImIIl^-.)(^(Z0))(II≪II^(^(z0)) + ll^ll^^(zo))) + II^IIlwzo)))

<Co(l)(2 + ||D2W||L^/(zo)));

in the last inequality we used (4.10), (4.11) and the previous proposition.

We divide the estimate for (4.17) in two cases: n < 5 and n = 6,7.

If n < 5, by the aid of Holder's inequality and Sobolev embedding,

W}{Kxs{z)) ^ La(KTs(z)) with a = 2(n + ＼)/{n - 3), we find:

Using Corollary 2.1 and the previous proposition, we conclude that

＼＼D2u＼＼u{k^))^ C + Co(l)＼＼D2u＼＼L-r{K{zo)).
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If n = 6,7, we use the interpolation rule L2r = (La,Lr)(n_5y4, a = 2(w+l)/

(n-3) and the embedding W}(K]{z0)) <-> La(^;(z0)) holds; we have

||F(x)<D"(,)(i)W)2||Lr(^(zo))< C||(D,)2||Lr(^(zo))< C||i)M||^(2zo))||i)2M||^(2zo)).

It follows:

II^IL^zo)) <C+Co(l)＼＼D2u＼＼L-r{KI{zo)) + CUD^II^))-

Since (n ― 5)/2 < 1, in both cases we conclude

D2ueLf(K0(z0)). (4.18)

Suppose (H2) holds.

The estimate for (4.15) is based on the interpolation rule W^2 =

{Lp,Wlp)l/2p and on embedding ^41/2(^/(z0)) ― L20/3(^;(z0)):

＼＼uWlW(k;{z0)) = II"IIl≫/3(js:;(Zo))^ Wu＼＼wt/2(K;(zo))
-

Wuh*(K;(zo))WuWiv^K^zo)y

From Proposition 4.2 and from (4.10) we get

II"5|Il4/3(a-;(Zo))- C('°)-

Now we control the terms in (4.16):

||＼x - xo|w4Dw||L4/3(^/(zo)) + ＼＼＼x-xo|2m4D2m||L4/3(^(zo))

< C(?o)|||x-Xo|w4||L2(^(zo))(||i)M||L4(^(zo)) + ||D2W||L4(^(ZO)))

< C(?o)|||x-xo|1/6W||L8(^(zo))(||i)≪||L4(^(zo)) + ||D2W||L4(j,/(zo))).

Using (4.12) we find:

||＼x - xo|m4Dw||L4/3(^(zo)) + ＼＼＼x-xo＼2u4D2u＼＼L4{ki{zo))

< o(l)(＼＼Du＼＼L4{KI{zo))+ ||D2"||L4(*/(2o))).

Finally we deal with (4.17):

||x-xo| u {Du) IIl4/3(a:;(Zo))̂ Ilk ―^ol ≪ IIl2(a:/(zo))II^wIIl4(a:/(zo))II^) u＼＼l4{kj{z0))-
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From Lemma 2.1 we obtain

|||x-Xo|V(i)M)2||L4/3(^(zo)) <o(l)||DM||L4(^(zo))||i)2M||L4(^{zo)).

The sum of these estimates leads again to (4.18).

As a consequence of the hypotheses on <D(m) and on p, we have

ue W?{Ko(zo)) => ＼u＼p-lue Wi{K0(z0));

moreover being the domains bounded, we obtain the crucial information:

V(x)＼u＼p-lueW2(Ko{zo)). (4.19)

By energy estimate and Gronwall's lemma, the previous relation in turn implies

Dau g L°°([0,to],L2(D(t,zo)) with |a| < 4. More precisely we need this infor-

mation for the cases n = 6,1; instead if n = 4,5 we have to consider only |a| < 3

and if n = 3 it suffices |a| =2.

The conclusion is now exactly like in [7], [9]; we repeat it to have a self-

contained proof. If the local solution blows up at time to > 0, then there exists

xo e Rn and (xn, tn) ―>･(xo, to) such that ＼imn＼u(xn,tn)＼= +oo. We fix s > 0 and

from Corollary 4.1 we know that E(u,D(s,zo)) < s if S < s < to. Since the local

solution is ( 1, we can extend this inequality: there exists S > 0 such that

1,,,-J W+i |V^|2 + V(x)＼u＼p+l dx < e.
1

This means E(u,D(s,z)) < s where z = (xo,to+S); in particular in the truncate

section Kq°(z),(4.3) stillholds. The above argument shows that ue FF*(ATofo(z))

and then u e L"°{K[?{z)).

Since Kq(zq) <=Kl°(z) it is impossible that the solution blows up in zq.
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