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0. Introduction

For quasilinear strictly hyperbolic operators the Cauchy problem is inves-

tigated in many papers and books (see, for instance, [1], [7], [11], [16], [21], [22]).

Although there are a lot of interesting open problems for the strictly hyperbolic

operators, nevertheless we reckon that it is important also to investigate quasi-

linear operators with characteristics of variable multiplicity.

For that type linear operators considered in Sobolev spaces very important

are Levi conditions. These conditions are found out for many classes of such

operators from the point of view of well-posedness in the Cauchy problem. At the

same time almost nothing is known for quasilinear case. Moreover, even the role

of hyperbolicity in the quasilinear Cauchy problem is not clear. We mean that

even an analog of the Lax-Mizohata theorem for the quasilinear operators is not

found out and is not proved still(see, Example 0.1 below).

Levi conditions are very closed to hyperbolicity. This is clear due to Garding

hyperbolicity condition (Hadamard hyperbolicity condition, see, also [9] for

Gevrey classes) for operators with constant coefficients, while for some classes of

operators with variable coefficients and multiple characteristics it is noted in [23].

In [18] there is given example which hints at importance of the Levi con-

ditions for the stable global solvability (see Definition 0.1, below) in the Cauchy

problem for the quasilinear equations. For the second-order equations there also

are given Levi conditions which are sufficient to the Cauchy problem to be stably

globally solvable in the Gevrey classes.

We consider an equation

(0.1) D?u + Yl */>(*> x, {cktft(t,Dh Dx)u})cM(t, Du Dx)u

j+＼u＼<mj<m

= F(t,x,{ck*(t,Dt,Dx)u})
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with smooth coefficients fl/,a(f,x,z) e C°°(Jx JTZ) and right-hand side Fe

C°°(/x J?Mz),where teJ := [0,T], x e Rn, and assume that all the functions are

periodic in x, therefore we will write also xe Tn. Here Tn is an w-dimensional

torus, though any compact could be treated with minor modifications, as well as

the case Tn = Rn. Operators c;a(r,Dr,Dx) in (0.1) are the following

(0.2) cM(t,Dt,Dx)u ■

r-j(t)Aj+W-m{t)DJtD≪u, when |a| # 0;

Dju, when lal = 0,

and Ck,p{t,Dt,Dx)u is defined by (0.2), too, where j + |a| <m, while k+ ＼f}＼<

m―＼. It is clear that lower order terms of the left-hand side of (0.1) can be

included in the right-hand side.

We describe the class of the operators of (0.1) by means of a real-valued

function X e C2([0, T＼) such that A(0) = X'(0) = 0, X'{t) > 0 when t # 0. In the

following X' means dX/dt. For X(t) we define A(t) = JJJX(r) dr and assume that

c＼X(t)/A(t)＼< ＼X'(t)/X(t)＼< co＼X(t)/A(t)＼,

(0.3)

|A(2)(r)| < co＼X{t)X(t)/A{t)＼ for all t e (0, T]

with a positive constants c, cq, where c > (m― ＼)/m.

The simplest examples of the functions, satisfying (0.3) are the following:

X{t) = t＼ X{t) = exp(-|?n, X(t) = exp(-exp- ･-exp ＼t＼~r),

""""rn"T"*S/"~""""
k

where /,k are integer numbers, k > 2 and / > m ―1, while r is a positive number

We assume that all the roots t＼(t,x,w,£),...,rm(t,x,w,£) of the equation

(0.4)

j+＼x＼=m,j<m

are real and distinctfor all te[0,T], xe Tn, £e Rn＼0 when w belongs to any

compact set.

Thus the equation (0.1) has characteristics X(t)zi(t,x,w,Q,...,

X(t)Tm(t,x,w,C) which coincide at t= 0 while for t # 0 they are distinct.That is

why equation (0.1) is said to be an equation with the characteristicsof variable

multiplicity.

For equation (0.1) consider the Cauchy problem

(0.5) Dltu(O,x)=gi(x), / = O,...,m-l

The main theorem of the present paper Is the following
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Theorem 0.1. Assume that for the operator (0.1) the above mentioned

conditions are satisfied.Then there are non-negative numbers y and M such that

for gi{x)eHy+M+m-l{Tn), I = 0,... ,m - 1, for T＼ sufficientlysmall, there is a

solution u(t,x),

(0.6) D＼u e C([0, T{};HM+m-l(Tn)), / = 0,...,m - 1,

to the Cauchy problem (0.1),(0.5).

For y and M sufficientlylarge a solution u{t,x) is unique

In [12] Is studied how much regularity of initial data (M in our notations) is

needed to ensure existence of a local solution to a semi-linear wave equation.

For linear weakly hyperbolic Cauchy problem there is very developed theory

which allows to prove that hyperbolicity and Levi condition are necessary for the

problem to be C00 well-posed (See, for example, [4]). That theory is based on the

closed graph theorem and on the constructions of the geometrical optics.

Unfortunately, for nonlinear equations to apply that approach is very difficult

(See, for details, [1]). But if we replace C00 well-posedness by the following stable

global solvability concept, then, for some examples, at least, we can prove

necessity of the Levi conditions as well as the Lax-Mizohata theorem.

Definition 0.1. Let Scoss, Sp and Sid be spaces for coefficientsajj0C,right-

hand side F and initialdata {g/} ~＼respectively.The Cauchy problem (0.1),(0.5)

is said to be stably globally solvable in the space Sso＼,in the neighbourhood of the

solution u(t,x) to that problem with given functions ajA, F, gi, if there are

neighbourhoods Qcoe≪<= ^coefr,R-f c Sf and Qid c Su, of a^ F and {gi} ~＼

respectively,and positive number T such that for every ajjOle QCoe≪,F £^f and

{q,＼T~ g Qw, a Cauchy problem

D?u + J2 aJ^^ x'{CkAti A, Dx)u})cM{t, Dt, Dx)u

i+＼x＼<m,i<m

= F(t,x,{cktfi(t,D,,Dx)u})

Dltu(O,x)=§i(x), / = O,...,/n-l.

has a unique solution u(t,x) defined for all te[O,T].

The next example shows that in general without hyperbollcity not in the

neighbourhood of every solution the Cauchy problem is stably globally solvable.
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Example 0.1. Consider an equation

(0.7) utt + t2luxx + t2l(ux)2 + (ut)2 = 0

There is a smooth solution u = u(t, x) to the Cauchy problem with initial data

m(0,jc) = 1, ut{0,x) = 0, defined for all t > 0. That is a function u(t,x) = 1. This

solution is unique in C00 space.

Then, if m = m(x, t) is a solution to (0.7), then v(x,t) = &xpu(x,t) solves the

following linear equation

(0.8) vtt+ t2lvxx= 0.

Let us look for a real-valued solutions v^ of thisequation, of the form v^ (x, t) =

dn＼t) cos(≪x)+ bW(t) sin(≪x).Consequently, the function ww(?) = dn＼t) + ib^(t)

is a solution of the equation

(0.9) w(i"＼t)-t2ln2w{n)(t)=0.

Acid the initial conditions w>W(Q)=0, wSn)(Q)=/>W (/><")

equivalent to a^(0) = h^{0) = 0, ^(O) = p(≫＼b^iO)

{/?(")}will be chosen later.

Further, a function

W(t,n) = ^'+V(1;2 - y;-2cotl+ln)

is a solutionto (0.9)with initialdata

= 0,

is real) which are

where the sequence

c :=!/(/+!), y:=to,

(0.10) JF(O,/i)=O, W't(O,n) = l

Here F(a; y;z) is the solution of the Rummer's equation [2] and is represented in

the following form

F(a;y;z) =
r(y)

1

r(

X

The function F(a;y;z) is an

Thus we have

(0.11)

a)F(y - a) (1 - e2≫(y-≪))(i_ e2 )

f(l+,O+,l-,O-)
e*C~Hl-O7 K-

f(l+,O+,l-,O-)

Jc

entire analytic function with respect to z

wW(t) = pWtJ°tl+lnF{li2 - y;-2cot'+ln)

According to Sec. 6.13.1 [2] the function F{oi＼y;z)has the following asymptotic

behavior as Rez ―≫―oo:
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Hy-a)
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Let us suppose, that for some n which willbe chosen later, u(x,i) is a solution of

(0.7) with the data m(jc,0)= 1 and ut(x,0) = e~lpWcos(nx). Then v(x,t) =

Qxpu(x,t) is a solution of (0.8) with initial data v(x,0) = e and vt(x,0) =

pW cos(nx). On the other hand the function e + v("＼x,t)is a solution of (0.8)

with the same initial values. Uniqueness in the Cauchy problem (Holmgren's

theorem) for (0.8) implies, that v(x,t) = e + v^n＼x,t).

Furthermore, if pW = ―n~Sl, then for every s < s＼ the sequence

&uPk<s,xe[o,2n]＼D^e~lp^ cos(nx)| tends to 0 when n tends to infinity.At the same

time for any fixed t > 0 there is a point x such that v^(x,t) tends to ―oo as

n ―>oo. That brings blowup of the function u(x,t).

Thus, for every time interval [0,5] and for every ^neighbourhood of the

initialdata (1,0) in the space Cs there existinitialdata from this neighbourhood

such that the solution of (0.7) does not exist in C2([Q,<5]x J).

As it is shown in [18], one can not expect stabilityof global solution to

weakly hyperbolic equation in Gevrey classes,iflower order terms do not satisfy

some conditions, usually called Levi conditions.Below we use the example and

arguments of [18] to show that stable global solvabilitydoes not hold in general

in Sobolev spaces, too, if these conditions are not satisfied.For equation (0.1)

that conditions mean a special form (0.2) of the operators Cja(t,Dt,Dx).

Example 0.2. Let us consider the equation (b is real)

(0.13) uu - t*uxx - btkux - tV{ux)2 + (utf = 0.

If k <j- 1, j > 1, then the Levi condition (0.2) (see, also, [14], [15], [23], [18]) is

not satisfied. If u = u(x, t) is a solution, then y(x, t) = expu(x, t) is a solution of

the following linear equation

(0.14) vtt-t2hxx-htkvx = Q.

Again, as in the firstexample we seek for real-valued solutions v^ of this

equation of the form v^(x,t) = a^(t)cos(nx)+b^(t)sin(nx). Consequently,

function c^(t) = dn＼i) + &(")(/)is a solution of the equation

c^＼t) + t2jn2c^＼t)+ ibtknc^＼t) = 0.

Adding the initial conditions cW(0) = 0, cfw)(0)=/?W (pW is real) which are

equivalent to d"H0) = h^(0) = 0, 4n)(0) = p(n＼h[n)(0)= 0, where the sequence
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{/?(")} will be chosen later, then according to [19], for c^ the following rep-

resentation holds:

(0.15) c≪(0 = /><">
^flm(rK1exP[Cw≪e

+ m(-l)w^+1/(7+ l)](i +o(l))

where a = (j ―k - l)/(2/ - k), am{t) # 0 and the real part of at least one Cm is

positive.

To consider a global solution m(x,i) = 1 we repeat an argument which has

been used in Example 0.1. Furthermore, if pW = n~Sl,then for every s < s＼the

sequence p ^ su.pk^sxeP＼D^cos(nx)＼ tends to 0 when n tends to infinity.At the

same time n lp^ exp(Cw≪ff) tends to infinity when Re Cm > 0.

Thus, by (0.15) for every time interval [0,3] and for every s-neighbourhood of

the initialdata (1,0) in the space Cs there exist initial data from this neigh-

bourhood such that the solution of (0.13) does not exist in C2([Q,<5]x T).

We note that according to Theorem 0.1 the Cauchy problem for (0.13) with

k=j ―＼is locally solvable in Sobolev spaces. (See, also, [17], where a second-

order equation with linear principal part independent of x, is considered.)

Remark 0.1. We emphasize that to get a contradictionin the above both

examples we used blowup phenomenon appearingin nonlinearequations,instead

of the closed graph theorem and an a prioriestimate.

Local solvability,established in Theorem 0.1 leads to stable global solvability

at the neighbourhood of the sufficientlysmooth solutions to equation (0.1). This

is an essence of the following theorem.

Theorem 0.2. Assume thatfor the operator (0.1) above mentioned conditions

are satisfied.Then there are non-negative numbers y and M such that the Cauchy

problem (0.1), (0.5) is stably globally solvable at the neighbourhood of the every

solution ue f) "1 Cl([0,T＼;Hy+M+m-l(Tn)) in the spaces H?+M+m-l(Tn)

for gi(x), / = 0,... ,/w ―1, C00 for aj^ (with real roots of (0.4)) and F, while

Hm)1 Cl([0,T＼;HM+m-l{Tn)) for the solutions u(t,x).

The last theorem is a simple consequence of Theorem 0.1. Indeed, it is

enough only to take into account stricthyperbolicity of the operators of (0.1)

when t > 0.
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Remark 0.2. We do not know whether the Cauchy problem (0.1),

(0.5) is stably globally solvable at the neighbourhood of the solution

ue CYTf! Cl{[0,Ti}-HM+m-l(Tn)) which is not smooth enough, or not.

1. Linear equation with non-smooth coefficients

In order to treat the problem (0.1),(0.5) we will deal with pseudodifferential

operators with less than C°°symbols. We use the following symbol classes (see

[21]):

Definition 1.1. We say p{x,£) e ifM5^0 provided that

＼＼DzP(',)＼＼h"(t-)̂ C<Ow~|a|, for all |a| < M.

One can find main propertiesof such operatorsin Ch. IV [21].We write

some of them here for the sake of completeness.

Lemma 1.1. If p(x,£) e HMS°l0 and M > n/2, then p(x,Dx) : L2(Tn) ->

L2(Tn). More generally, p(x,Dx) : Hs(Tn) ^ Hs(Tn) for ＼s＼< fi,provided that

M>n/2 + pi.

Lemma 1.2. Given any M, mi, mi there is a fj,such that, if pj(x,D) e

OPHf^, then p{(x,D)pi{x,D) e OPHMS^+m＼ p＼{x,Df e OPHMS^0, and

[/>,(*,/>),/>,(*,/>)]e OPHMS^~X

Firstly we consider a linear case. For the linear system (or scalar equation)

one can not use results of [20] and [23] because the coefficientsare not C00. On

the other hand one can not apply immediately a result of [15], too, because

conditions of that paper differ from our ones (0.2). Nevertheless, we use

approaches of [15] and [21] to prove the result of this section.

We consider the equation

(1.1) D> +
j+＼<x＼<m,j<m

ajt<x(t,x)cjia(t,Dt,Dx)u =/(',*)

with coefficientsaM(t,x) e Cl([0,T＼;IP+M+s(Tn)), f e C{[0,T＼;IP+s(Tn)). The

operators Cja(t,Dt,Dx) in (1.1) are the following
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cM(t,Dt,Dx)u =
r-j{t)AJ+W-m(t)DJtDaxu, when |a| # 0;

DJtu, when loci=0,

where j+ loci<m. For equation (1.1)consider the Cauchy problem

(1.2) Dltu{O,x)=gi{x), / = O,...,m-l,

with gi(x) e H^l{Tn), I = 0,..., m - 1

Theorem 1.1. Assume that all the roots zi(t,x,£),... ,rm(t,x, £) of the

equation

(1.3) rm+ J^ ajAt>x)*J? = 0

j+＼u＼=m,j<m

are real and distinctfor all t e [0, T], x e T", £,e Rn＼0. Then there are non-negative

numbers y and M such that for gi{x) e H^s+m-l{Tn), / = 0,...,/w-1, fe

C([0, T]; H7+s(Tn)) for T＼ sufficiently small, there is a unique solution u(t,x),

D＼u e C([0, ri];Hs+m~l{Tn)), / = 0,... ,m - 1,

to the Cauchy problem (1.1), (1.2). This solution satisfies the estimate

(1.4)

m-1
£p>{≪(Ollj^'(r≫)^c,

/=0

for all te[O,T＼,

Proof. Let

Uint{t,x) =

/m-＼

wl Wgi(x)H^+^-'(n +

＼/=0

go(x) + tg＼(x) +

then a function v(t,x)

and

u{t,x)

j+＼a＼< m,j<m

― g2{x) + ■■■+

('

Jo
||/(T)||^(nJr

*m―1
(S=lji*-lW

Uint(t,x) solves

aJA(t,x)cj:Ol(t,Dt,Dx)v

Dltv(O,x) = 0, /

=fo(t,x)

0,...,m- 1,

)

with /o =/ ―L[uint],where L is an operator of the left-hand side of (1.1).
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Let i/°)be a solution of the following the Cauchy problem for an ordinary-

differentialequation

D>(°)+ Yl aM(t,x)cM(t,Dt,Dx)u^=fo(t,x)

＼x＼=0J<m

with parameter x e Tn and initialdata

D,V0)(Q,;c) = Q, l = 0,...,m-l.

On the other hand one can regard the last Cauchy problem as an equivalent

problem for a new unknown vector-valued function <%^ :=' (tfly,.. .,<%$) :―

t(u(°＼Dtu(0＼...,D~1u(R) and a linear symmetric hyperbolic system of first

order. For the solution of the Cauchy problem with vanishing initialdata, for the

linear symmetric hyperbolic system there is an energy estimate which leads to the

following one

If we denote

then

II*(0)(OII, * ca
i:

II/OW||^T

l≪l*o

L[u-uint-u^]=fl

and for every given s e R we have an estimate

||/iW||5< J2 WajAt,xhAt,Dt,Dx)uW(t,x)＼＼s

laMO

< csnt)
I

II/oWll+w^ ee(O,m-(m-l)/c)

provided that y is large enough.

Indeed, the function Xm~J(t)Aj+^~m{t) (with |a| ^ 0) can be majorized

by Xe{t){r-e(t)Al-m(t)). The non-negative function Am-e(t)Al-m{t) has a non-

negative derivative due to condition c > (m ―＼)/m in the inequality (0.3) when

we choose e < m ―(m ―l)/c. Hence, the function km~E(t)Al~m(t)is bounded.
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One can consider recursively defined

/>≪,<*)+ J2 ajA*, xhAt, A, Dx)uW =fk(t, x)

＼u.＼=0J<m

D;≪(fc)(0,x)= 0, /= O,...,m-l,

A+i:=- IZ a7-,a(?,x)9)(X(r,D?,i>x)≪(fc)(?,^),

|a|#Q

..(0)

/'l^/i+l

k ― 1,... ,K ― 1, where

＼＼fk+i{t)i<c^knt)
＼

＼＼m＼＼s+mdT

Jo

Hence, for every given N and s one has

(1.5) fKGlNC([0,T];Hs(Tn))

provided that K, and consequently y, are large enough.

Thus, instead of (1.1),(1.2) one can look for the solution w(t,x) of the

Cauchy problem

(1.6) D> + J2 aM{t,x)cM(t,Dt,Dx)w=fK{t,x),

7+|a|<m,j<m

(1.7) Dltw(0,x)=0, / = O,...,m-l,

with property (1.5).Above describedreduction was used in [14],[15].

Further for the solution w of (1.6)we consider a vector-valuedfunction

(1.8) % :=' {%＼.. .,<%m), %k := r-k{i)<DxT~kI>t~Xvt, k = 1,...,w,

where <DX> is a pseudo-differential operator with the symbol <£>･ F°r the

Cja(t,Dt,Dx)w of (1.6) we have

(1.9) cM(t,Dt,Dx)w =

where |a|+j < m. Thus

(1.10) DMm +

- -)

kl~m<D

m―l―＼a＼

<Dx}'-mD≪%1, if |a|#0, /=y + l;

＼l-mqA :r II _ a ?
_ ･ , i

x/ ≪ , 11 uc ― u, i ―j t i,

we obtain

E

j+＼oc＼<m,j<m

ajM,x)AJ+W-m(t)D≪(Dxy-mA(tKDxy^+l=f,



(1.11)
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#(0,x) = 0.

On the other hand according to (1.8)we have

(1.12) Dt＼{t,x) = k{t)<pxy*l+＼t,x)- i(m -l)^M

59

<%l(t,x), /=l,...,m-l

Due to the reduction in the beginning of the section and in view of the initial

value, it follows

(1.13) ＼(t,x) = KDxyXm-＼t)
f

Jo

Xl'm+l {t)＼+l (t, x) dz, I = 1,..., m - 1

Hence, in (1.10) for the terms with m― j ―1 ―|a > 1 one can conclude

(i.i4) (Dxyj+l-mDux%j+1(t,x) = im-w-j-＼Dxy^Dax

xrH(<)
Jo Jo

dto ･ ■･

(Tm_|0f|_/_2

0

We will use for brevity the following writing

(i.i5) (Dxy+l-mDax%j+＼t,x) = im-w-j-l(DxyWD≪xr-j-＼t)

x jm-＼a＼-j-＼^-＼a.＼qjm-＼a＼

(m ―j ―1 ―|a| > 1) where / denotes integration with respect to time.

The equations (1.10), (1.12) and initialcondition (1.11) can be rewritten as

the following, equivalent to (1.1), (1.2), Cauchy problem

(1.16)

(1.17)

where

~dt
= K(t, x, Dx)% + Ko{t, x, Dx)% + KintjPd(t,x, Dx, A, A, /, X)% + &{t, x)

<%(0,x) = 0,

(1.18) K(t,x,O^^Cl([0,T};HMSl)J Ko{t,x,£)e jC([O, T];HMS°),

(1.19) ^eXNC{[O,T] :Hs(Tn)),

while KintiPd(t,x,Dx,K,X,I,X)is the operator-valuedmatrix with the following

elements:
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(1.20) (Kint,pd(t
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,x, At, A, A,/,;.))*/

0 when k # m or / ― 1,

E
M=,-/

E7to im^H-laUU x)(Dxy＼≪＼D≪xAJ-l{t)X-J{t)Il-J-lXl-m

when / = 2,..., m

Equation (1.16) contains Fuchsian type operators if k(t) ― tl,but in general,

it is more singular.

For the symbol K(t, x,£)there is a symmetrizer R(t, x, Q in the sense of Sec.

5, ch. IV [21], that is if K e HMS＼fi, then there is R e HMS°lfi with (d/dt)R e

HMS$0, such that

(1.21) (R(t,x,Dx)<%,R)>c0＼＼n2L2,

(1.22) RK + K*ReHMS°ltQ

for M sufficientlylarge.

To complete the proof of Theorem 1.1it remains to prove the following

Theorem 1.2. Consider the Cauchy problem (1.16), (1.17). For every given

H there are M and NeN such that if (1.18), (1.19) are satisfied and Re

Cl([0,T];HMS°lfi) satisfies(1.21), (1.22), then the Cauchy problem (1.16), (1.17)

has a unique solution R e XNC([0, T];Hs{Tn)) nXlN-lCl{[0, T);Hs-l(Tn)), for

given 3F e JlnC([Q, T];Hs(Tn)), and ＼s＼< fi. Such solution satisfiesthe estimates,

for ＼s＼< ii,

(1.23) ＼mt)＼＼H.zcAN(t)
I

A-N(z)＼＼^(r)＼＼Hsdr, te[O,T＼

Proof. Consider a sequence {tftk} defined as follows:

(1.24) -± = K(t, x, Dx)%k + K0(t, x, Dx)*k-i

+ Kint,pd(t,x, Dx, A, A,/,l)^t_i + &(t, x),

(1.25) *it(O,jc)= O, fork=＼,2,...,

while ^ro:=O. The function %i e C([0,T];Hs{Tn))nCl([0,T];Hs~l{Tn)) exists

due to Proposition 5.4 [21] provided that M is large enough. Moreover, according

to (5.4) [21] one has



fT/-/-2
dr2---＼ dv-j-i

Jo

ev-j-2

dx2 ･■･ drH_i
Jo

^N(?H)＼＼^(*H)＼＼HsdT,-j

(1.26) ＼＼<Ri{t)＼＼Hs<C

Quasilinear hyperbolic operators

[
＼＼^{r)＼＼Hsdx<CXN{t){

Jo
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rN(T)＼＼^(r)＼＼HsdT, re [0,71

Then the function <%2e C([0,T＼;Hs(Tn))nCl([0,T＼;Hs-l(Tn)) exists, too, and

＼＼R2(t)＼＼Hs < C

< c

f

Jo
＼＼K0(t,x,Dx)<%l+KinttPd(t,x,Dx,A,).,I,X)Wl+&(T)＼＼H,dT

f||Ab(f,*,Ac)*l||tf≫</T

Jo

+ C
f

＼＼Kint)Pd{t,x, Dx, A, 1,1, X)%x ＼＼HSdz+C

h

Jo A(t)

＼＼<%i＼＼H,dT + C

+ c ＼＼Kint,pd{t,x,Dx,K,X
Jo

i;

w^rn^dx

X)%i＼＼Hsdx

i:
＼＼^(t)＼＼Hsdx

To estimate lastintegral of the right-hand side we remind assumption (0.3) where

c> (m ―l)/m, m>2. For every k > 2 and every / > 0 it follows an inequality

(1.27)

r

Jo
/(t)A'(t) dx < CkJXk-＼t)Al+l(t), CKl =

mk + r^+l_k
< 1

so that Ck)i-≫■0 when k -> oo. In particular Ck,i<2/(k + 2l+l). Using (1.27)

we estimate

f

Jo

＼＼KintiPd{t, x, Dx, A, A, /, X)%i ＼＼Hsdr

< c

m 1-2
EE

1=2 7=0

I
Kj-＼x)Xm-j{x)

Jo Jo

xA/-(T/_y_,)||*/1(T/_y_1)||^

m 1-2

1=2 y=0

I
A>-'(T)r->(r)

X A ＼Tl-,-＼)
0

Jo Jo
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-a

Jo

*rN(T)＼＼*(T)＼＼H.dT
£]T a>-'(t)a->(t)

Jo Jo

<CCNXN{t)＼ k-N{x)＼＼^{T)＼＼Hsdx
Jo

where Cn < 1 and is decreasingfunctionof N and m

N.

Thus

(1.28) ll*2(0lltf≫*C (l+f + CC,

Moreover, %2 e ANC([0, T];Hs(Tn)) and

If we assume that

(1.29) nk{t)＼＼Hs<Ak{t)xN{t)

while C is independent of

V(f)jV"(T)||#-(T)||^T

{d/dt)%2 e A'A^CQO, T＼-,Hs-＼Tn)).

1
r"(T)||jr(T)||^≪/T

with a monotone continuous function Ak{t), then by analogy with deriving (1.28),

we obtain

(1.30)

Ak+i(t)<
(

||^WII;p<Co^M

+ ccN Ak(t) + C

forallfe[0,r],

CCp

N

where k = ＼,...,A＼= C. According to conditionof the theorem one can choose

N large enough. Then for N sufficientlylarge the sequence {^4^} is bounded.

Hence,

('

Jo

X-N(x)＼＼3F(x)＼＼HsdT

with some constant C&.

Moreover, due to our choice of N the sequence {^k}^ is fundamental in the

space C([0,T＼;Hs(Tn))r＼Cl([0,T＼;Hs-l{Tn)). Indeed, from the linear equations

for %ic+＼and %k we obtain for difference tflk+＼―^W-



ajJt,x)cjJt,Dt,Dx)u

(1.31)

(1.32)

(1.34)

Quasilinear hyperbolic operators

II**+i(O-**(OIIj*

<c
f
||Ab(T,X,D*)(tf*-**-l)||/l,≪/T

Jo

<

<

+ C
f

＼＼Kint)Pd{T,x,Dx,A, A,/, A)(^ - Wk-i)＼＼H>di

Jo

(

(

+ CCN＼xN{t)
jY"(T)||(tf*

- ^k-i){r)＼＼Hsdx<

+ ccN
＼kN{t)^rN{T)＼＼3?{T)＼＼Hsdr,

*=1,2,...,

#(0,x) = 0

lemma

+ CCN

(see below Lemma 1.3)

is proved.

It follows

D?u +

A"M
(V"(t)||^(t)||^t

.In
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□

It remains only to prove

this end assume that Dltu e

J2 aM(t,x)cM{t,Dt,Dx)u = 0

j+＼ct＼<m,j<m

DVO,x) =
0. /

ajyOl(t,x)DJtu = -

0, ...,m- 1

7+|a|<w,|a|#0

CCp

N

N

where ((CCq/N) + CCN) < 1. The estimatesfor the derivativesD,(%+i - %k)

follows from (1.24),(1.25).

To prove uniqueness suppose that tflsolves

K(t, x, Dx)% + K0(t, x, Dx)% + Kint:Pd(t,x, Dx, A, 2.,/, X)%,

(1.33)

Then, according to Nersesian's

won*. ±(^

for any k, provided that conditions of that lemma are satisfied.It remains to take

into account our choice N large enough and that T is small enough. The theorem

Completion of the proof of Theorem 1.1.

uniquenessin the Cauchy problem (1.1),(1.2).To

C{[0,Tl];Hs+m-l(Tn)),/ = Q,...,m-l, and that

D>?u +

|a|=O,y'<w
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That means

m-＼
E

/=o
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＼＼Dltu(t)＼＼HS< Q

f

Jo

<Q

< Q

;+|a|<m,|a|^O

0/=0

< CsXe{t)

I'

Jo

E

7+|a|<w,|≪|^0

≪/,≪(T>x)cjia(T, Dt, Dx)u(r, x)

lit)
＼m-j-＼a＼

Hs

dx

||fl,-a(T,x)D/D>(t, x)＼＼Hsdx

dx

A(t)

＼Dltu(r,x)＼＼HS+mX(z)

(

A(t)

m-1

J2＼＼Dltu(r,x)＼＼HS+mdr

1=0

due to condition (0.3) and to Lemma 1.1,provided that DltD^u e Hs, / + |a| < m,

and that y is large enough. Here s can be chosen negative as well.If we continue

thisprocedure then for ＼s＼large enough, we get the right asymptotic behaviour at

t = 0 which brings uniqueness, due to Theorem 1.2. The theorem is proved. □

Remark 1.1. The constant Cs of the estimate (1.4) depends on finitelymany

seminorms of K, R and (d/dt)R, in HMS＼fi and HMS°l0, and of RK + K*R in

HMS＼
0,

on T and on fi and on n. Further, M depends on /iand on n, but not on

the order m of the system.

Remark 1.2. One can prove Theorem 1.1 with

cM(t,Dt,Dx)u = r-j(t)A^~m(t) ＼＼nk{t)＼m-j-^DiDlu,

for coefficientsQjj0Lwith m―j―＼a＼>2 instead of given in the beginning of this

section. At that case N will depend on these coefficients,too.

For the sake of completeness we give here

Lemma 1.3 (Nersesiae) [14]. Let us given the differentialinequality

(1.35) y'(t)< K(t)y(t) +/(?) for all te (0, T],

T > 0, where the functions K = K{t) and f =/(?) belong to C(0, T＼. Under the

assumptions



(1.36)

(1.37)

f

Jo
K{x)dx

limf

Quasilinear hyperbolic operators

= 00, K(r) dx < oo for every s e (0, T)

Je

f(s) exp
(i;

K{x)dx＼

every solution y e C([0, 71) PICl((0, 71)

(1.38)

ds exists for every t e (0, 71

of (1.35) which posses the property

X*)≪pQ K(r)dt

satisfies an inequality

(1.39) y(t)<

)

= o(l) as e ―> 0

f
el's

K{T) dTf(s) ds for
all te(0,T]

Jo
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2. Reduction to nonlinear term with right asymptotic at zero

In this section we carry out for nonlinear equation (0.1) the analogy of the

procedure of the firstpart of the proof of Theorem 1.1. Let

uint(t,x) = go(x) + tgi(x) +
^02(*)

+ -" +

then a function v(t,x) = u(t,x) -uint(t,x) solves

(2.1) DrPv + E

/+|a|<w,/<w

fin― 1

gm-i(x)

ajA(t,x,{ck,p{t,Dt,Dx){v + uint(t,x))})cjM,Dt, Dx)v

= G(t,x,{ckjfi(t,Dt,Dx)(v + uint(t,x))}).

Here the following notaion

(2.2) Git,x, {ck,B(t,Dt,Dx)(v + uint(t,x))}):= Fit,x, {cu(t,Dt,Dx)(v + uint(t,x))})

Y^ aM(t,x,{ckJ(t,Dt,Dx){v + uint(t,x))})cJA{t,Dt,Dx)uint{t,x)

j+＼u.＼<m,j<m

is used. Moreover,

(2.3) Dltv{O,x) 0, / = 0,...,m-l
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Consider the solutionu^°＼t,x)to the Cauchy problem

(2.4)

D>{0) + E

j+＼a.＼<m,j<m

a,-a(t,x, {ckdt, A, Dx)(ekJu{0) + uint(t,x))})cjta(t, Dt, Dx)eMu{Q)

(2.5)

G(t,x,{cktf,(t,Dt,Dx)(ekJu{0)+uint(t,x))}),

DrVo)(O,x) = Q, /= O,...,m-l

where e/iy= 1 when |y| = 0, while £/>y= 0 when ＼y＼̂ 0, / = k, j, y = a,/?. For

every given s the solution u^ exists uniquely in (~)_0 Ck([0, To];Hs~k(Tn)),

Tq > 0, provided that the constant y of Theorem 0.1 is large enough.

Further, consider the solution u^(t,x) to the Cauchy problem

(2.6) D>(1) + J2 */,≪('≫*>{ck,p{t,Dt,Dx){ekjuw + u{0＼t,x) + uint(t,x))})

j+＼a.＼<mj<m

x CjM,Dt,Dx)(e;Jl) + u<R(t,x))

(2.7)

= G(t,x, {ckifi(t,Dt,Dx)(ekjuM + uR{t,x) + uint(t,x))})

- G(t,x,{ckj{t,Dt,Dx){ekjui(}){t,x)+uint{t,x))})

+ J2 ajA^xdckAt^D^Dx)(ek,fiU('0)(t,x) + uint{t,x))})

j+＼a＼<m,j<m

xcM(t,Dt,Dx)ejiOlu{Q){t,x),

Diw(1)(O,x)=Q, / = O,...,/w-l.

The solution i/1) exists uniquely in f) _0 Ck([0,Ti]]Hs-k{Tn))t TX > 0, provided

that y is large enough.

Then we continue step by step and at last step we consider the solution

u^(t,x) to the Cauchy problem

(2.8)

D>{n) + J2

j+＼a＼<mj<m

aM

UxA
ckJ(t,A, Ac) ( £k,puW + ^ "w(f, x) + ≪^(r,x)

j ij

xcM(t,Dt,Dx)
V 4=0 /



)})

= gUx,1

-GUx

(2.9)

+

Quasilinear hyperbolic operators

cKP{t,Dt,Dx)

･ ck≪(t,Dt,D

J2 aJ>≪

j+＼oc＼<m,j<m

xcM(t,Dt,Dx)

U,x

{

＼ A:=0

■'

(

t,x)+Uint(t,x)

n-2

k=0

ck M, A, Dx)

n-2

k=0

)})

■"<

)})

n-2

k=0

DiuM(O,x)=O, / = O,...,/w-l

uint(t,x)
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)

The solution u^ exists uniquely in f) _QCk{[0, Tn]-Hs-k(Tn)), Tn > 0, provided

that y is large enough.

At last consider the solution w(t,x) to the Cauchy problem

(2.10)

D> +
j+＼a＼<m,j<m

(t,x

xcjJt,Dt,Dx)w

= GP'X'I

■

cktfl(t,Dt,Dx)

gUx, I Ck,p{t

E

j+＼tx＼<m,j<m

ah*

ck*(t,Dt,Dx)

(

|w +
n

£

k=Q

uVc＼t,x) + uint(t,x)

n

k=0

,DuDx)l

H

)})

71-1

£MWW (t,X) + ^2 U{k)(t,x)+ Uint{t

k=0

ckj{t,Dt,Dx)

k=0

+ E

j+＼<x＼<m,j<m

fly>
(',*,<

xcM(t,Dt,Dx)
(

eJ,≪-U{

ckR(t,Dt,Dx)

･"
)})

n
w + ^uiJc){t,x) + uint{t,x

k,/?≪(n)(

≪-l

k=0

})

n-＼

t,x)+^u{-kXt,x) + uint(t,x)

k=0

t,x)
j,
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(2.11)
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DlMO,x) = 0, /

Thus we have proved the following

Lemma 2.1. Assume that

(2.4) to (2.9). Ifw(t,x) solves

(2.12) u(t,x)

the functions

(2.10), (2.11)

= w(t,x) +

solves (0.1), (0.5) and vice versa.

n

£

A:=0

0, ...,m- 1

u(k＼t,x), k ― 0,..., n are given by

then

u{k＼t,x)+uint(t,x)

The following lemma shows a benefit of the representation (2.12).

Lemma 2.2. For every given N numbers n and y can be chosen such thatif

gi(x) e Hy+m~l{Tn), I = 0,..., m - 1, then

/B:=GUx,j ckAt,Dt,Dx)

GUxA CkAt

j+＼<x＼<m,j<m

≪/,≪

DuDx)i

H

the right-hand side of (2.10)

u{k)(t,x) + uint(t,x)

le=O

ckM,Dt,Dx)

n

xcJta(t,Dt,Dx) £V*>(*,x)

k=0

+ E

j+＼tn＼<m,j<m

aJ,<*

x cM(t,D,,Dx)

(

'･"

{

ckM,Dt,Dx)

)})

k)(t,x) + uint(t,x)

＼k=0

/ n-＼

＼ k=0

8MU^{t,X) +
£

k=0

at w ―0 has thefollowing behaviour

(2.13) fn = 0aN(t))

uW(t,x)

,x) + uint(t1x)

)

as t -> 0

)})

)})
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Moreover if w with

Dltw e C([0, T];HM-'(Tn)) nL°°([O,T}; HM+m~l{ J")), / = 0,... ,m - 1

solves (2.10), (2.11) with above mentioned gi(x), then

(2.14)

m-＼

k=0

as t -> 0
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Proof. In contrast to the beginning of the proof of Theorem 1.1, we have in

(2.4), (2.6), (2.8) instead of linear ordinary differential equations, nonlinear ones.

Therefore we rewrite, for example (2.6), (2.7) as a Cauchy problem for a

quasilinear symmetric hyperbolic system of the first order

(2.15) ― = *(*,*, *), tf(0,*) = 0,

for % := '(<#!,. ..,%,) := l{u^l＼dtdl＼ ..., d^u^). This system can be handled

similarly to (5.1.1) of Section 5.1 [22]. The only difference is that in our case the

function g(t,x,tft) is not C°°smooth in its argument x. Nevertheless, the last

circumstance does not bring any new difficulties. As a matter of fact to get

a solution % e C^QO, Ti];Hs(Tn)), s>l+n/2, it is enough to assume that

d%g{t,x,%) belongs to C{[Q,Ti] x Rm;Hs(Tn)) for all i<l and all j (See

Prop. 5.1.D [22]). But we need some additional estimates. Therefore we write

g(t,x,W) = go(t,x) + G(t,x,<%)<%.

Then, by means of Freidrichs mollifier Je, e e (0,1], consider a solution %E to the

Cauchy problem

-£ = JBg0{t, x) + JeG(t, x, /,*≪)/≪*, ^e(0, x) = 0.

According to discussion in Section 5.1 [22] (with Aj(t,x,u) = 0 in (5.1.1) [22]) the

solution %£ exists for t in the interval independent of e e (0,1], and has a limit as

£―>0 solving (2.15). Then, by means of Moser estimates and Sobolev imbedding

theorem, by means of Bihari's [3] and Gronwall's inequality (see pp. 110-113

[22]) we obtain that with some positive B the following inequality

II*.(OII,£C,
i;

＼＼go(x,x)＼＼.dT

holds for all te[0,B), e e (0,11. It follows an estimate
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(2.16)

for the solution %.

WOIL<c
f

.
＼＼go(z,x)＼＼sdr, te[O,B),

Thus, to estimate Y!k=i ll-0N^HOIIj＼*-i+'(r")we consider the following two

integrals:

(2.17)

(2.18)

f

.

i:

One can write

(2.19)

＼＼G(t,x,{cki/,(t,Dt,Dx)(uW(t,x)+uint(t,x))})

- G(t,x,{ckM,Dt,Dx)(ekJuW(t1x)+uint(t,x))})＼＼sdT

J2 ajA(t,x,{ck!fi(t,Dt,Dx)(uW(t,x) + uint{t,x))})

j+＼x＼<m,j<m

xcM{t,Dt,Dx)(uW(t,x))

+ J2 aM(t,x,{ck^(t,Dt,Dx)(sk^u{o)(t,x) + uint(t,x))})

j+＼a<m,j<m

xcjA(t,Dt,Dx)eMu^{t,x) dx

s

G(t,x,{ck>fi(t,Dt, D*)(m(0)(t,x) + uint{t,x))})

- G(t,x, {ckM,Dt,Dx)(ekRU{0){t,x) + uint{t,x))})

J2 G{kJ)(t, *, {cM(f, Du Dx){0iP＼t, x)

k,p,＼p＼**

+ uint{t,x))})dGcKP{t,Dt,Dx)iPXt,x)

Now one has only to take into account the existence of multipliers

Xm~k(t)Ak+^~m(t) and repeat the arguments of the beginning of the proof of

Theorem 1.1

('

Jo
＼＼G(z,x,{clc^(r1DT,Dx)(u^(r1x) + uint(t,x))})

- G(t,x,{cm(t,Dt,Dx)(£Mm(0)(t,x) + uint(z,x))})＼＼sdr



Jo Ji

+ uint

Quasilinear hyperbolic operators

]T IIG{KP)(', x, {cKP{t, Du Dx)(ftiW(t, x)

3M,|J≫I#O

(t,x))})d0ck:P(t,Dt,Dx)u^(t,x)＼＼sdr

＼＼GW＼t,x,{ckAt,DuDx){eu^{t,x)

+ uint(t,x))})deD^D^(r,x)＼＼sr-k(t)Ak+^-m(z)dz

< C'sXE{t)
f

Y, ＼＼G{k^(t,x,{cu(t,Dt,Dx)(0u^(t,x)

71

+ uint(t,x))})deD*D^°＼T1x)＼＼s.

The integral(2.18) can be estimatedin the same way. Moreover, the all

other functionsu^ can be consideredin the same manner. Thus, the asymptotic

behaviour (2.13) can be achieved step by step.

To prove (2.14) one can write once more (2.10),(2.11)in the form

diV
― = G(t,x, W) + G0(t,x,X{t)Dx<W)k{i)DxW, *r(0,x) = 0,

then according to estimate(2.16),

IW)IL<C
f

Jo
||Gb(r,x,k{x)Dxnr)k{x)Dxiir{x,x)＼＼sdx, t e [0,B)

It remains to apply it step by step.The lemma is proved. □

Remark 2.1. Above described reduction is responsible for the loss of

regularity,counted by y, in Theorem 0.1,and connected with multiplicityof

characteristics.

Remark 2.2. For the following is important, that the crucial constant in the

differentialinequality will be obtained below, is changing on small quantity in

every step of above described reduction.

3. Reduction to the "irst-order" system

According to the results of the previous section to solve the problem (0.1),

(0.5) is equivalent to solve the problem (2.10), (2.11) for a function w. Further,
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for the solution w of (2.10) we consider a vector-valued function

(3.1) % := ＼m＼ ...,Wm), %k := Xn-k(tKDxyn-kD*-lw, k = 1,...,m,

where the symbol of the operator <DX> is <£>･For Ck,p(t,Dt,Dx)w of (2.10) we

have

(3.2) ckjfi(t,Dt,Dx)w =

{
1(L)
AW

m-l-＼fi＼

(Dxyl-mDpx%＼ if |^|#0, l = k+l;

Xl-m(Dxyl-m%1, if ＼0＼= 0, l = k+l,

where ＼fi＼+1 < m. We will use a notation

(3.3)

Thus we obtain

(3.4) Dt%m +

ate

j+＼a＼<m,j<m

H

ckAt,DuDx)w=QB{t,Dx)＼

Gfi(t,Dx)%1 + ckJ(t,Dt,Dx)Hr uW(t,x)+uint(t,x))
1
j

x AJ+w-m(t)D≪(Dxy-mx{tKDxy%j+l

= GUx ■

-G
lt,x,

Cifi(t>t>x)*1 + cktfi(t,DuDx)

{

ckj(t,DuDx)

j+＼a＼<m,j<m

aM lt,x,<C

＼J2u(k)(t,x) + uin((t,x)

＼k=0

)})

U

tfiuW(t,x)
+ ]T u(k)^x) + *U*>*))

} )

)p(t,Dx)*Ul + cM(f, Dt, Dx)
IJ2

uik)^ x) + "*≪('>XH()

xcjJt,D t,Dx)JTuW{t,x)

A:=0



(3.5)

+

Quasilinear hyperbolic operators

j+＼a＼<mj<m

aJ,≪
u

ck*(t,DhDx)

x CjJt,Dt,

eMi|W(r,jc) +

Dx)

#(O,jc)

n-＼

£

/fc=O

W(f,x) + X><*>(/,x)

Jt=O

0, / 0,...,m- 1

uW{t,x) + uint{t,x)

■

73

)})

In what follows we use (1.12) to (1.15) and for the sake of brevity the

following writing

Thus

(Dxyl-mD0%l(t,x) = r-H^^yrnDfim-H^-m^n-m

Cip(t,Dx)%< = Cip(t,M,Dx)W,

where the operator-valuedmatrix is defined by

(3.6)

CiB(t,Int,Dx)%= AW

m-l-＼p＼
<Dxy-WDPxIm-l-WrM<%m-W, if ＼fi＼# 0;

tf-mjm-l-lym if|/?|=O.

Lemma 3.1. Let ＼B＼# 0 and assume that I

(3.7) ＼＼Cw{t,Dx)＼{t)＼＼HS<CN^2

'1

(0

km-＼t)

I≪"H^(OII^

('

Jo

Proof. It is simple consequence of (1.13).

On the

(3.8) G

< CkN(t). Then

Xl-m+＼x)＼＼^m-^{x)＼＼HsdT

other hand one can easilyobtain the following

[*,*,
t,Dx)%1 + ckAt,DuDx)

-GUx,| ckR(t,Dt,Dx)

(

E≪(4)(

fc=O

t,x) + uint(t,x)

n-＼

lc=O

□

(,*>
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">
)})

uint{tx) +!*<*>(*

＼k=0

Dx)+ ckn(t,Dt,Clfi(t,Dx)%<= GUxA

-GUxAc^(t,Dt,Dx)l^k＼t,x) + uint(t,x))＼]

-
UintUuW(t,x) +

n-＼
£

fc=O

≪w (*,*) +Dx)CkAt,Dt,+ GU*,j

Umt(t,x) j >)uW(t,x) +
n-＼
E

k=Q

x) +8k,pU^(t

(

Dx)CkAt,Dt,-g(*,*,<

CiP{t,Dx)＼Hk,p)

Cw{t,Dx)＼,)})*)+ Uint{t
u{k＼t,x)

＼A:=0

DUDX)CkA*,+

tckJ(t,Dt1Dx)uW(t,x)
u*))Dx)uW(t,A,(ckAt,+

x))＼)dtUmt(tx) +≪<*>(*

(n-＼

＼k=0
+ ckdt

Analogously

fly,≪K*,jc//K^Ac)^ + CMfoA,Ac)(^

(3.9)

E

j+＼a＼<m,j<m

u^k＼t,x)
n

E

k=0

Dt,Dx)X CjA*i

eMi#(ll)(f,x)

(

Dx)CkAt,Dt,O/.J f,*J

j+＼a＼<m,j<m

Umt(t,x) )>juM(t,x) +
≪-l
£

k=0

+

x) +<">(*
DUDX)X Ci*{t



j+＼a＼<m,j<m

ate
I t,x

Quasilinear hyperbolic operators

QM,DX)<%1

+ ck:P(t,A, Ac)
(J2

u(k)^ x) + Uint^ *)) f)

n

xcM(t,DhDx)^2

k=G

u{k)(t,x)

j+＼a＼<m,j<m

xcM{t,Dt,Dx

+

j+＼a.＼<m,j<m

h,x,

n

)E

k=0

cktP{t,Dt,Dx)

uW{t,x)

ah*
I*'x A

( n

k=0

)})

cktfi(t,D,,Dx)

n-＼

k=0

E

j+＼a＼<m,j<m

aJA
u

V A:=0

X)

+

ck≪(t,Dt,Dx)

(
ektPuW(t,x)

n

^2u{kXt1x)+uint(t,x)

k=0

n

k=0

l,&l=k+l

x)

)

Ci/,(t,Dx)%ll J2 aJMk,fi)(^xA

J°j+＼^＼<m,j<m ＼ {

n

xcj^Dt,Dx)Y,u{k＼t,x)

k=Q

+ cktP(t,Dt1Dx)

TQp(t,Dx)%1

Ij2u{k)(t,x)
+ uint{t,x)

＼Jfc=O

75

)

)}>
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+ J2 <*,/*(',A, Ac) w(l°(*,*)
[ Yl

aJ^p)
UxAzcktp(t,DhDx)u^(t,x)

101*0 J°y+|a|<w,y<m ＼ [

+ ck)fi{t,Dt,Dx)

U=o ＼ k=o

Finally we can rewrite (3.4) to (3.6) as a Cauchy problem for firstorder

Integra-differentialsystem for a vector-valued function % in the following way

(3.10) ― = K{t,x,{Cw{tJnt,Dx)%},Dx)^ + KQ{t)%

+ F(t

(3.11)

Here K = K(t,<%) Is a

depending on t and %,

,x,{Cn,(t,Int,Dx)W},Dx)% + Fn(t,x),

W(O,x)=O.

family of pseudodifferential operators in

KqU) is a diagonal matrix with elements

{(m-l)X'(t)/X(y)}T=l while

(3.12) F(t, x, {Qfi(t, Int, Dx)R}, Dx)r

- £

j+＼a＼<,m-l

A(t)J+M-mA(t)aM

+ ckR(t,Dt,Dx)

UP

＼A:=0

lt,x
rip

y; ≪<*>(*,*)+!≪*,(

t,Dx)rl)
i:

^M)

(''*'|

+ cM(f, Du Dx)
I J2

uik)fa x) + uin

＼k=0

E

l,B

{clfi(t,Dx)rl)
＼l

J2

^°j+＼a＼<m,j<m

X aJMk,P)
(*

≫*≫

+ cktp(t,Dt,

＼

zCif,{t,Dx)Wl

(t,DxW

,.,)

OPSl(Tn)

(Dxy-m+1Dax'TJ+l

QM, Dx)＼

t(t,xuyjdr

Dx)
(i£dk＼t,x)+Uto(t,x)]X＼dT

k=0



(3.13) Fn(t,x) =

Quasilinear hyperbolic operators

^2ck,p{t,DhDx)u

i,fi

+ ckAt,Dt,Dx)

X

^2 ckj{t,Dt,

J0 j+＼u＼<m,j<m

+ ckR(t,Dt,Dx)

77

<">(*,x)
^

G{Kp)
UxJ

rck,p(t,Dt,Dx)u^(t,x)

(

fV)(r,x)+ M^)]lV

Dx)uW(t,x)

aiAKP)

(
t,x, TCktP(t,Dt,Dx)uW(t,x)

(n-＼

[J2u(k)(t,x) + uint(t

＼k=0

xcM(t,Dt,Dx)J2uW(t,

k=0

4. Proof of Theorem 0.1

x)

'x))}V

To prove Theorem 0.1 we use the followingiterativemethod. For a given

%{t,x) defined on [0,T] x Tn with <%(0,x)= 0 we define Q% := tT to be the

solutionto the system

(4.1)

(4.2)

where

(4.3)

~dt = K{t,x,{CiP(tJX,Dx)%},Dx)'r + Ko(t)r

+ F(t,x,{Qfi{t,n,Dx)V},Dx)r + FH{t,x)

r(o,x) = o,

FneXNC([O,T＼',H'(TH)).

For the sake of simplicity of notations we consider the case of equation (0.1)

with terms Ck,fi{t,Dt,Dx)u,k + |/?|= m ―1, only. Moreover we assume that a.jA=

0 for j + |a| < m ―2. Thus we consider the following most important special case

of equation (0.1):

(4.4) D?u + J2

m―＼<j+＼a＼<m,j<m

ajtlx(t,x, {ck,s(t, A, Dx)u})cjta{t, Du Dx)u

= F(t,xAckA^D^Dx^
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where k + ＼fl＼― m - 1. At that rate

(4.5)

where

F^t,X

(4.8)

?-'('.*･{

･

+

X'(t)

cp{Dx)%k+l^

x＼=m-＼ ＼

(

X'{t)

system (4.1) becomes

cpiDj^yD^r + KoWr

cp{Dx)%k+l＼D^＼r + Fn{t,x)

cp(Dx)&+1

<Dxy-WD≪rj+1

Gh)[t'x

E

j+＼ct＼<m,j<m

)

{

■

ajrtk,P)

l'(t)

cp{Dx)%k+l

{

x(t)
c*{Dx)≪k+l

w

+ F＼t,xA

k=0

kit)

(4.6) cp{Dx) = <Dx>^dP

is a zero-order pseudodifferential operator, while

(4.7)

,D*

V

,xA

w

kit)

A(r) ,t^ ,
v ' j+＼a＼=m-l

+ ckiP{t,Dt,Dx)

E

k+＼B＼=m-＼

k+＼0＼=m-l

w

(Dxy^D^kA
f

u{k)(t,x) + uint{t,x)＼＼＼dT

cfi(Dx)rk+l
)i:

t,x) + uint(t,x)

kit)

U,x,

dxcj^DuD^Y.u^x)

X{t)

+ cKP{t,Dt,Dx)
＼k=0

X{t)

+ ck≪(t,Dt,Dx)

(

If we introduce a diagonal matrix of zero-order pseudodifferential operators

Ce(t,Dx) by

(C/,(t,Dx)V)k:=SmMm^Cfi(Dx)Rk

then for (4.1) we get more simple representation



(4.9)

where

dV

dt

Quasilinear hyperbolic operators

= K{t,x,{Cp{t,Dx)%}, Dx)r + Ko(t)r

+ F{t,x,{CB(t,Dx)%},Dx)r + Fn{t,x)

(4.10)

F(t,x,{Cp(t,Dx)R},Dx)r

+

l{t)

Yl aj*

(

(t,x

＼A:=0

Cifi{t,Dx)Vl

u{k)(t,x)+uint{t,x)

<DX>-I^T*+1

)))<"
xy-＼≪＼D≪rJ+l

))>≪('･*

u{k＼t,x) + uint{t,x)

c*{Dx)rk+l

u^(t,x)

)i:

))"

j+＼x＼<m,j<m

)})

■■

a'jAW)

dx

X(t)
CB(Dx)%k+l

79

C/?(DX)#+1

A(t) . ,f^ ,
v > j+＼u＼=m-l

+ ckR(t,DhDx)

k+M=m-l

k+＼fi＼=m-l

x{t)

+ ck*(t,Dt,Dx)
＼k=0

kit)

U,x ･

x(t)X{t)

+ ckn(t,Dt,Dx)
＼k=0

n

xcM{t,Dt,Dx)Y^

k=Q

The Cauchy problem (4.4),(4.2) can be handled in the same way as itis done

in Sec. 5 Ch. IV [21]. The only differenceis that instead of Gronwall's inequality

one has to apply Nersesian's lemma.

Suppose that

(4.11) % e AArC([0,T];HM(Tn)) and {d/dt)% e A'A^CQO, T];HM-l{Tn)).

First of all,take M and N large enough so that there is a unique solution

r e ANC([0, T]-Hn{Tn)) and {d/dt)r e A'A^CQO, T]-Hn{Tn)). Say thishappens

if

(4.12) M>Mi N>Nt.
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To obtain more precise estimates on ir, it is convenient to obtain equations

for various derivatives of "V. Indeed, set Fn:= F and

Similarly define 'Woa, ^ia- Applying the chain rale to (4.1) yields

(4.13) T,^
= K(t,x, {Cfi(t,Dx)<%},Dx)n≪ + Ko(t)n≪

+ F(t, x,{Cfi(t, Dx)%}, Dx)rQa + FOa{t, x)

+

il + - + SM = S

^...^{Qfo AcWw, ･･･{Cp{t,Dx)*!i}^

x KYJt,x,{CB(t,Dx)%},Dx)na

+

<$l + - + fy = <5

x F(t,x,{Cp(t,Dx)%},Dx) rOa

Here Kytl= ^Dz^(f,x,z,Dx),

Pja{fM), where

(4.14)

and

(4.15)

irM

Fy*=DU)SF{t x,z,Dx). Now replacef^- by

= iK^Kf" :0 < |a|< M,0 < |^|< M - 1} := OC^1)

Pjo{VM) = <Ac>-(M-;-|ff|) J2 cafi{x,Dx)-rJP, 7 = 0,1

j

c^(x^)eS° being appropriately chosen. Thus Pja e ^-(^-y-kl). Similarly,

replace %s by PjsW and

(4.16) FM = 1^0 >M ) := (FOa,F^-)

We rewrite the system (4.13) as

(4.17)

＼ot＼

= M, ＼p＼= M-＼

- rQM = K(t, x,{Q(/, />,)*}, Dx)<r0M + K0(t)r0M

+ F(t, x,{Cfi{t,/),)*}, Dx)r0M + FQM(t, x) + *& + <
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where due to (4.11) we have

(4.18) ^M = (<^,^f), <%" eANC([0,T＼;L2(Tn)),

%*f eA'2.N-lC([0,T];L2(Tn)).

Lemma 4.1. The mapping Q:<%＼-*ir definedby (4.17) maps the set

(4.19)
Ul

e {XN x nN~l)C{% T];L2(Tn)) :^＼＼%Qx＼＼+j^ri 11*1*11 ^ ^0

81

into itselffor T < Tq with Tq sufficientlysmall and N sufficientlylarge.

Proof. Indeed, for m x K tuple system (4.17) one can construct a sym-

metrizer R(t,x,z,Dx) for the block diagonal matrix operator K(t, x, z,Dx) and

substituting{Cp{t,Dx)<%} for z, gives R(t,x,(A'/'X)C{Dx)Pm%,Dx) e OPHM'SQlQ,

where C{DX) is a zero-order pseudodifferential operator corresponding to cp{Dx)

in (4.8). One can write

(4.20) Jt(RnM,r0M)

+

<C0

(―

B(＼＼^＼＼L2)(Rr0M, r0M) + B(＼＼Rf+l ＼＼L2)(RnM, r0M)

Jo

x-ww＼＼*)(s)e-m*M＼＼*)*＼＼FM(s)＼＼ to

w

I ＼＼^rM＼＼IIj?M＼＼+ IITO IIl2IKO Hl2'

where B is some function of its argument which we need not specify.It follows

(4.21) ＼＼rQM{i)＼＼Ll< Ck^*^≫＼t)JW*'tW

for all te[0,T]. We can choose N > CqB(＼＼^＼＼l2)when T is small enough.

(See, also, Remark 2.2.) From system (4.17) keeping in mind the relation

(d/dt)r0M-1 =r~lM~lwe derive an estimate for ＼＼{d/dt)^-l＼＼L2:
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(4.22)

If

(4

we

25)
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j.rr＼t)
L2

< cx{t)g{＼＼≪nf+l＼＼Ll)＼＼rQM{t)＼＼L2+ c^

+ c

Jo

＼＼nM~＼t)＼y

^mf+l＼＼v)＼＼K-＼t)＼＼L2 + ＼＼F0M-＼t)＼＼L2

I */-'≪)

R{＼＼<＼＼Li)＼＼nM-l{t)＼＼L1

I?

^ Cm

= K(t,x,{Cp(t,Dx)R},Dx)<r0M

I

.
rN(s)＼＼FM(s)＼＼L2ds

x{t)

+ cx{t)g{＼＼^＼＼L2)＼＼r,M{t)＼＼L2+ cf-S

X-C,m^＼＼L2){s)e-Bm-＼＼Ll)S^FM{s)uds

for all te[0,T＼. Thus

(4.23)

To check convergence of "Vk―Qk(^ we estimate the differencebetween

rM = Q{M)mM and ^m = q(m)^m_ From the equation we get

(4.24) j(roM-roM)

-K{t,x,{Cp{t,Dx)4f},Dx)rf

+ *b(0(*o" - r,M) + P(t, *,{Q(r, dx)*}, Dx)rQM

-F(tiX,{Cp(t,Dx)R},Dx)<r0M

denote W^ = t^QM - r~0M then

jttr? = K(t,x,{cfi(t,Dx)v},Dx)ir?

+ (K(t,x, {Cp(t, Dx)R},Dx) - K(t, x,{Cp{t,Dx)%},Dx))r0M

+ Ko(t)1TF + F(t, x,{CM, Dx)%], Dx)1fM
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+ (F{t, x,{Cp(t, Dx)%}, Dx) - F{t,x, {Cp(t, Dx)4t}, Dx))roM

= K(t,x,{cp{t,/),)*},Dx)tr% + Ko(t)ir?

+ F{t,x,{Cp(t,Dx)%}, DX)W^ + A,

where accordingto Lemma 5.5[21]one has

(4.26) ||A(0|U < C*|K - ^＼＼A＼＼nM{t)＼＼m+ ClK)

and

(4.27)

Then

(4.28)

+ cF

+ CF

lK-<MlinMWII,2 + c1F)

f

Jo

rN(s)＼＼A(s)＼＼L2dS

rN(s)＼＼FM+l(s)＼＼L2ds

IK(*)-<(5)IIL2U

(0
f
rN-＼s)A'(s)＼＼^(s) - <(.)||L2 ds

Jo
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X{t)

ll*o"(OII/fi* II*o"+1(OIIl* ^ cM+lxN(t)

11*^(011* <;c^(0

< CMkN{t)

i:

jY"(4cyi<(*)-<(,)iiL2

< C'kN{t)
{'

rN(s)＼＼*≫(s)-4i><(s)＼＼L2ds

Jo

+ CmCfX

From the last inequality it is clear that Q^ %M will converge to a limit as

k -* oo in AC([O, T];L2{Tn)), provided that T is picked small, while N is picked

so large, in addition to above requirements, that N > CmC'f. The limit JfM must

be of the form {&Qa, 2£＼p: |a| < M, ＼fi＼< M - 1} for some

2 e XC([O, T];HM(Tn)) PIXjXC1 ([0,Tl;i^^1 (Tn)),
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and & must solve the problem. The rest of the proof is the quite repetition of the

proof of Theorem 5.6 [211, therefore we drop it. Theorem 0.1 is proved. □

Acknowledgement. This paper was written during the work of the second

author as a Foreign Professor at University of Tsukuba. He is very grateful to all

the members of Institute of Mathematics of University of Tsukuba for the helpful

and warm hospitality. Both authors thank M. Reissig and M. Dreher from

Bergakademie Freiberg, for the correction in the formula (1.13) of the original

version of the manuscript, and thank referee for many available remarks.

References

[ 1 ] S. Alinhac, Blowup for Nonlinear Hyperbolic Equations, Birkhauser, Boston et al, 1995.

[ 2 ] H. Bateman and A. Erdelyi, Higher transcendental functions, v.l, McGraw-Hill, New York,

1953.

[ 3 ] P. Hartman, Ordinary differential equations, John Wiley & Sons, New York, 1964.

[4] V. Ivrii, Linear hyperbolic equations, in: Linear Partial Differential Equations, 1974, (Modern

Mathematical Problems: Fundamental Trends) (in Russian), 33 (1988), 157-247.

[ 5 ] L. Hormander, The analysis of linear partial differentialoperators I-IV, Grundlehren, Springer,

256 (1983), 257 (1983), 274 (1985), 275 (1985).

[ 6 ] K. Kajitani, Local solution of Cauchy problem for nonlinear hyperbolic systems in Gevrey

classes, Hokkaido Math. J., 12 (1983), pp. 434-460.

[7] S. Kichenassamy, Nonlinear wave equations, New York et al., 1996.

[ 8 ] H. Kumano-go, Pseudo-differential operators, MIT Press, Cambridge 1982.

[9] E. Larsson, Generalized hyperbolicity, Ark. Mat., 7 (1966), 11-32.

[10] J. Leray and Y. Ohya, Systemes nonlineaires hyperboliques nonstrictes, Math. Ann., 7§(1967),

pp. 167-205.

[11] Li Ta-tsien, Global classical solutions for quasilinear hyperbolic systems, John Wiley & Sons,

1994.

[12] H. Lindblad, Counterexamples to local existence for semi-linear wave equation, American

Journal of Mathematics, 118 (1996), 1-16.

[13] S. Mizohata, Theory of Partial Differential Equations, Cambridge at University Press, 1973.

[14] A. Nersesian, On the Cauchy problem for degenerate hyperbolic equations of second order (in

Russian), Dokl, Akad. Nauk SSSR, 166 (1966), 1288-1291.

[15] A. Nersesian and G. Oganesian, On the Cauchy problem for weakly hyperbolic equations, (in

Russian) Izv. Akad. Nauk. Arm. SSR, Matematika, 9, no. 2 (1974), 149-165.

[16] R. Racke, Lectures on Nonlinear Evolution Equations. Initial Value Problem, v. 19, Vieweg-

Verlag, Braunschweig, 1992.

[17] M. Reissig, Weakly hyperbolic equations with time degeneracy in Sobolev spaces, to appear.

[18] M. Reissig and K. Yagdjian, Stability of Global Gevrey Solution to Weakly Hyperbolic

Equations, Chinese Annals of Mathematics, v. 18 (1997), Ser. B, No. 1, 1-14.

[19] K. Shinkai, Stokes multipliers and a weakly hyperbolic operator, Comm. Partial Diff. Equations,

16, 4 & 5 (1991), 667-682.

[20] S. Tarama, Sur le probleme de Cauchy pour une classe des operateurs differentiellesdu type

feiblement hyperbolique, J. Math. Kyoto Univ., vol. 22 (1982), no. 2, 333-368.

[21] M. Taylor, Pseudodifferential operators, Princeton Univ. Press, Princeton, 1981.

[22] M. Taylor, Pseudodifferential operators and nonlinear PDE, Birkhauser, Berlin, 1991.



Quasilinear hyperbolic operators 85

[23] K. Yagdjian, Pseudodifferential operators with the parameter and the fundamental solution of

the Cauchy problem for operators with multiple characteristics, Soviet J. of Contem-

porary Math. Anal, 21 (1986), pp. 1-29.

[24] Yi Zhou, Low regularity solutions for linear degenerate hyperbolic systems, Nonlinear Analysis,

26 (1996), no. 11, 1843-1858.

Institute of Mathematics

University of Tsukuba

Tsukuba, IBARAKI 305

Japan

e-mail: kajitani@math.tsukuba.ac.jp

yagdjian@math.tsukuba.ac.jp


