
TSUKUBA J. MATH.
Vol. 22 No. 3 (1998), 681-686

ANNIHILATOR CHARACTERIZATIONS OF

DISTRIBUTIVITY, MODULARITY AND

SEMIMODULARITY

By

Juhani Nieminen and Matti Peltola

The concept of geodetic annihilators was introduced in [3]. This concept is

based on the graph theoretic properties of the Hasse diagram of a finitelattice.

The result of [3, Thm. 3] shows that every geodetic annihilator in a finite

semimodular latticeis an intersection of prime geodetic annihilators. This and

appropriate additional conditions of geodetic annihilators characterize semi-

modularity, modularity and distributivityin finitelattices.The graphs of these

lattices are also characterized.

1. Characterizations of finite lattices

Mandelker introduced in [2] the concept of an annihilator in lattices: an

annihilator <a,b} of a with respect to b is the set {x＼xAa<b}. The dual

annihilator (,a,b}d is the set {y ＼y v a > b}. We shall consider in this paper finite

lattices only.

Let L be a lattice. We denote the undirected Hasse diagram graph of a lattice

L by Gl and call it briefly the graph of the lattice L. The distance d(a, b) between

two elements (vertices) a and b in a graph is the length of the shortest a ―b path.

In graph theory, a shortest path is frequently called a geodesic. We call a set

(a, byg of a lattice L, a,b e L, a geodetic annihilator, briefly a g-annihilator, if

<0, b}g ―{x |b is on an x ―a geodesic in Gl}. A set B cz L is order convex, if for

any two elements b,c e B with 6 < c every element x satisfying the relation b <

x < c belongs to B. A set B of vertices in a graph is distance convex, if for any

two vertices b,c e B every vertex on any b ― c geodesic belongs to B. We first

briefly recall some results proved in [3], which are necessary for obtaining results

of this note.
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Lemma 1 ([3, Thm. 1]). In a finite distributive lattice L the equality

<a, b}g = <a, by 0 (a, b}d holds for every pair a,b e L.

Mandelker proved that a lattice is distributive if and only if the annihilator

<≪,&> is an ideal for any two elements a and b [2, Thm. 1]. The dual of this

result holds also, and so every g-annihilator in a distributive lattice is, as the

intersection of an ideal and a dual ideal, an order convex sublattice. As known,

an order convex sublattice of a distributive lattice is also distance convex.

As usual, we say that an element a covers an element b, in symbols a y b, if

a > b and if a > c > b implies a ― c or b ― c. A g-annihilator <a, b}g is called

prime, if <≪,b}g = L or

<a,bygn<b,a>g = 0 and <a,b}gU <M>, = L.

As one can easily show, (see e.g. the proof of Theorem 2 in [3]), the relation

<a, b}g H (b, a}g = 0 holds in every graph (and thus in every lattice, too) when

a # b. Thus the condition <a, byg D (b, a}g = 0 can be replaced by the condition

a^b.

A gf-annihilator <a, b}g with a # b is prime only if a >- Z> or & >*-a. Indeed, if

neither a >~b nor b y a holds, there is an a ― b geodesic containing an element

x # a,b, and by the definition of a g-annihilator, x belongs neither to <a,,b}g nor

to <Jb,a)g. Then (a,byg＼J(b,a}g # L, and thus (a,b}g cannot be prime. It has

been proved in [3, Thm. 3]: "In a finite lattice L satisfying the Jordan-Holder

condition, every ^-annihilator is an intersection of prime g-annihilators". This

result implies the following lemma.

Lemma 2. In a finitesemimodular latticeL, every g-annihilator (a,byg is an

intersection of prime q-annihilators.

Now we can prove the firstcharacterization.

Theorem 3. A finitelattice L is semimodular if and only if the following

conditions hold

(i) every g-annihilatorin L is an intersection of prime g-annihilators;

iii)if b -<a, then b v x e <a, b}g for every x e (a, b}g.

Proof. Assume firstthat L is semimodular. The property (i) follows from

Lemma 2, and so it remains to prove (ii).Let b -< a and xe (a,b}g. We prove

the assertion by induction on the distance d(x,b). If d{x, b) = 0 or 1, then either

x = x v b or b ― x v b, whence an x ―b geodesic goes over x v b, and thus

x v b e (a,b}q. Assume now that one y ―b geodesic goes over y v b for all
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elements ye(a,b}g with d(y,b)<n, and let d(x,b) ― n. Let x, y{, y2,
■■■■,

yn_x,b,a be an x-a geodesic, where, let us say, yk ― yx v b and

y＼ ~<yi ~<i■■■
>
-< y>k = y＼ v b. If x -< yx, then x v b = _>>!v Z?, and x v 6 e

(a,b}g. If x^j>b then xv^^x,^, and by the same reason we obtain:

x -< x v y2 -< x v _y3 -< ･ ･･ -< x v yk >- yk. Now x v yk= x v yx v b ― x v b,

and the x ― y{ ― y2 ― ■■■― yk geodesic has the same length as the x ― x v y2 ―

x v j3 ― ･･■― x v yk ― yk geodesic. Hence x v b e <≪,byq, and (ii) follows.

Assume conversely that the properties (i) and (ii) hold in L. We shall prove

the semimodularity of L by induction on the length of the longest 0―1 chain in

L. If the longest 0―1 chain is of length one, then L is clearly semimodular.

Assume that L is semimodular if the lenght of the longest 0―1 chain is less than

n, and let L be a lattice where the length of this longest chain is n. Assume that

e,f y e a /. The intersection property of (i) goes down to the order convex

sublattices of L as well as the property (ii).Hence, if e a / # 0 or e v / # 1, the

length of the longest 0-1 chain in [e a f] (or in [e v /]) is less than n, and the

relation e v / >- e, / follows from the induction assumption. Thus we assume

that 0 = e a f -< e,f and e v / = 1. We may also assume that anx-j geodesic

with x from 0 ―e ― 1 chain and y from 0 - / ― 1 chain always goes either over

the element 1 or the element 0. Choose now two elements a$ and ho as follows:

ao >- bo = e. If Go = 1, choose uq >- bo = /, and if also in this case ao ― I, the

relation e,f-<evf follows. So we may assume that 1 > ao y bo ― e. Now

clearly / e <≪o,^o>3, and by (ii), / v bo = 1 e <≪o,^o>3- If there is not a 1 - ao

geodesic over bo, we have a contradiction, and if there is a 1 ― ao geodesic over

bo, choose new elements a＼ and b＼ as follows: a＼>- b＼= ≪o >- &o = e >- 0. By

continuing the choosing process, we certainly obtain a contradiction (at least in

the case ＼= ctj>- bj = aj-＼ y bj-＼ y bj-i y ･■･ y bo = e), where 1 e <≪/,bj)g by

the condition (ii) and 1 e (bj,aj}g by the definition of a g-annihilator. Thus this

case is absurd, and the semimodularity of L follows.

By dualizing the condition (ii), a characterization of the dual semimodularity

is obtained. A finitelattice is modular if and only if it is semimodular and dually

semimodular. Thus Theorem 3 and its dual imply the next characterization.

Theorem 4. A finitelattice L is modular if and only if the following con-

ditions hold

(i) every g-annihilator in L is an intersection of prime g-annihilators;

(ii)if b -<a then h v x, b a x e <a, b}g for every x e (a,b}g.

Finally we characterize the distributivity.



684 Juhani Nieminen and Matti Peltola

Theorem 5. A finite lattice L is distributiveif and only if the following

conditions hold

(i) every g-annihilator in L is an intersection of prime g-annihilators;

(ii)every g-annihilator <a,b}q is an order convex sublattice of L

Proof. Let L be distributive.The property (i) follows from Lemma 2, and

Lemma 1 and the considerations immediately after it prove the validity of (ii).

Assume conversely that (i) and (ii)hold for L. By Theorem 4, L is at least

modular, and as one can prove, if a finitelatticeis modular and nondistributive,

it contains the least modular and nondistributive lattice,the diamond M3, as a

sublattice.Let M3 = {a, b, c,d,e} with three noncomparable elements b, c and d

and with the order relations: a < b < e, a < c < e and a < d < e. Because of the

distance properties of a finitemodular lattice,(h,e}g =){e,c,d}, and a = c a d $

(b,eyg, which contradicts (ii).Thus L cannot contain Mj, as a sublattice,and the

distributivityof L follows.

As the proof above shows, the condition can be reduced to the form "every

g-annihilator (.a,b}g is a sublattice of L".

2. The graphs of finitelattices

The definitionsof a g-annihilator and a prime g-annihilator do not depend on

lattice operations, and so we can speak about g-annihilators and prime g-

annihilators in finiteundirected graphs, too.

A median m for vertices x,y and z is a vertex satisfying the equations

d(x,y) = d(x,m)+d(m,y), d(x,z) = d(x,m) + d(m,z) and d(y,z) = d{y,m) +

d{m,z). As well known [1],the median of any three elements x,y and z exists,is

unique and is equal to (x a y) v (jc a z) v (y a z) in a finitedistributivelattice.

In a finitemodular latticea median existsfor all three elements but it need not be

unique. In a dually semimodular finitelatticethere are tripleshaving no median

but the median m(x,y,0) of x,y and 0 exists for all x and y, it is unique

and equal to x a y. Dually, in a finitesemimodular lattice the unique median

m(x, y,＼) existsfor all pairs jcand y and is equal to jc v y. Now we can present

our firstcharacterization for graphs.

Theorem 6. A finite undirected graph G is isomorphic to the graph Gi of a

dually semimodular finite latticeL if and only if the following conditions hold

(i) every g-annihilator in G is an intersection of prime g-annihilators;

(ii)there are two verticesp and q in G such that for no vertex x # p,q the

vertex p lies on an x ―q geodesic and the vertex q lies on an x ―p geodesic;
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(iii)a unique median m(x, y,p) existsfor allpairs x and y of verticesin G, and

if x,ye (p, z}g, then also (x, y, p) e </>,z}g;

(iv) if a and b are adjacent and b e (p,a}g, then the median m(x,b,p) belongs

to (a,b}q for all xe<a,iV

Proof. Assume that G satisfiesthe properties (i)-(iv).We order the vertices

of G as follows: x < y ≪=>(p,x}g =></>, y}g. According to the set theoretical

inclusion, the order defined above is a partial order with p as the least element.

The definitionimplies that x < y <=$■y e (p,x}g. Assume that two verticesx and

y of G have a common lower bound b, which implies that x, y e (p,b}g. Now

(iii) implies that m(x, y,p) e (p,b}g, and thus b < m(x, y,p). Clearly,

m(x, y,p) < x, y. Because G is finite, the considerations above imply that

m(x, y,p) is the unique maximal lower bound for x and y, and so the order

defined above is a meetsemilattice order. The condition (ii)and the definition of

the order relationimply that x < q for all verticesx of G, whence q is the greatest

element, and so the vertices of G constitute a lattice L. The condition (iv) says

that if a covers b, then x a b e (a,b}g for all x e (a,hyg. This, (i) and the dual of

Theorem 3 imply that L is dually semimodular.

If x and y are adjacent in G, then there is a median m(x,y,p) which lies

on an x ―y geodesic, and thus either x = m(x, y, p) = x a y or y = m(x, y,p) =

x a y. Assume that x > y = x a y. The element x covers y, because otherwise

there is a vertex z such that one x ―y ―p geodesic is also and x ―z ―y ―p

geodesic, which is absurd when x and y are adjacent. So we can conclude that x

covers y or y covers x if and only if x and y are adjacent in G. Therefore the

graph G and the graph of the latticeL are isomorphic, and the firstpart of the

theorem follows.

The converse proof is obtained easily by putting p = 0, q ― 1, and by

applying the dual of Theorem 3. This completes the proof.

Theorem 6, its dual and Theorem 4 imply the following characterization of

the graphs of finitemodular lattices.

Theorem 7. A finite undirected graph is isomorphic to the graph Gx of a

finite modular latticeif and only if the following conditions hold

(i) every g-annhilator in G is an intersection of prime g-annihilators;

ill)there are two verticesp and q in G such thatfor no vertex x # p,q, the

vertex p lies on an x ―q geodesic and the vertex q lies on an x ―p geodesic;

(iii)unique medians m(x,y,p) and m(x,y,q) exist for all pairs x and y of

verticesin G, and if x, y e (p,z}q, then also m(x, y,p) e (p,z} ;
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(iv)if a and b are adjacentand be (p,a}g, then the medians m(x,b,p) and

m(x,b,q) belong to (a,b}g for allxe(a,b}g.

In a finitedistributivelatticeL, every g-annihilator is a distance convex set,

and this property implies that x a b, x v b e (a,b}g for all elements x e (a,b}g.

On the other hand, a modular lattice,where every g-annihilator is a distance

convex set,is distributive.Hence we can substitute the condition (iv) of Theorem

7 by the condition of distance convexity and obtain the following characterization

for the graphs of finitedistributivelattices.

Theorem 8. A finite undirected graph G is isomorphic to the graph Gl of a

finite distributivelatticeL if and only if the following conditions hold

(i) every g-annihilator in G is an intersection of prime g-annihilators＼

(ii)there are two verticesp and q in G such thatfor no vertex x ^ p,q, the

vertex p lies on an x ―q geodesic and the vertex q lies on an x ―p geodesic;

(iii)unique medians m(x, y, p) and m(x, y, q) exist for all pairs x and y of

verticesin G;

(iv) every g-annihilator (a,b}g in G is a distance convex set.
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