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ANNIHILATOR CHARACTERIZATIONS OF
DISTRIBUTIVITY, MODULARITY AND
SEMIMODULARITY

By

Juhani NIEMINEN and Matti PELTOLA

The concept of geodetic annihilators was introduced in [3]. This concept is
based on the graph theoretic properties of the Hasse diagram of a finite lattice.
The result of [3, Thm. 3] shows that every geodetic annihilator in a finite
semimodular lattice is an intersection of prime geodetic annihilators. This and
appropriate additional conditions of geodetic annihilators characterize semi-
modularity, modularity and distributivity in finite lattices. The graphs of these
lattices are also characterized.

1. Characterizations of finite lattices

Mandelker introduced in [2] the concept of an annihilator in lattices: an
annihilator {a,b)> of a with respect to b is the set {x|x A a <b}. The dual
annihilator (a,b), is the set {y|y v a > b}. We shall consider in this paper finite
lattices only.

Let L be a lattice. We denote the undirected Hasse diagram graph of a lattice
L by Gy and call it briefly the graph of the lattice L. The distance d(a, b) between
two elements (vertices) a and b in a graph is the length of the shortest a — b path.
In graph theory, a shortest path is frequently called a geodesic. We call a set
a,b), of a lattice L, a,be L, a geodetic annihilator, briefly a g-annihilator, if
{a,b), = {x|bis on an x — a geodesic in G.}. A set B < L is order convex, if for
any two elements b,c € B with b < ¢ every element x satisfying the relation b <
x < ¢ belongs to B. A set B of vertices in a graph is distance convex, if for any
two vertices b,c € B every vertex on any b — ¢ geodesic belongs to B. We first
briefly recall some results proved in [3], which are necessary for obtaining results
of this note.
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LeMma 1 ([3, Thm. 1]). In a finite distributive lattice L the equality
{a,b), =<a,b)N<a,b), holds for every pair a,be L.

Mandelker proved that a lattice is distributive if and only if the annihilator
{a,b) is an ideal for any two elements a and b [2, Thm. 1]. The dual of this
result holds also, and so every g-annihilator in a distributive lattice is, as the
intersection of an ideal and a dual ideal, an order convex sublattice. As known,
an order convex sublattice of a distributive lattice is also distance convex.

As usual, we say that an element a covers an element b, in symbols a = b, if
a>b and if a>c>b implies a =c or b =c. A g-annihilator {a,b), is called
prime, if {a,b), =L or

{a,by,N<b,ay, = & and <a,by,ULb,ay, = L.

As one can easily show, (see e.g. the proof of Theorem 2 in [3]), the relation
{a,b),N<b,a>, = & holds in every graph (and thus in every lattice, too) when
a # b. Thus the condition <{a,b>,N<b,a), = & can be replaced by the condition
a#b.

A g-annihilator {a,b}, with a # b is prime only if a = b or b > a. Indeed, if
neither a > b nor b > a holds, there is an a — b geodesic containing an element
x # a,b, and by the definition of a g-annihilator, x belongs neither to <a,b), nor
to <b,ay,. Then {a,b),U<{b,a), # L, and thus {a,b), cannot be prime. It has
been proved in [3, Thm. 3]: “In a finite lattice L satisfying the Jordan-Holder
condition, every g-annihilator is an intersection of prime g-annihilators”. This
result implies the following lemma.

LeMMA 2. In a finite semimodular lattice L, every g-annihilator {a,b}, is an
intersection of prime g-annihilators.

Now we can prove the first characterization.

THEOREM 3. A finite lattice L is semimodular if and only if the following
conditions hold

(1) every g-amnihilator in L is an intersection of prime g-annihilators;,

(ii) if b < a, then b v x € <a,b), for every xe<a,b),.

PrOOF. Assume first that L is semimodular. The property (i) follows from
Lemma 2, and so it remains to prove (ii). Let b < a and x € {a,b),. We prove
the assertion by induction on the distance d(x,b). If d(x,b) =0 or 1, then either
x=xvbor b=xv b whence an x —b geodesic goes over x v b, and thus
x v belab), Assume now that one y—b geodesic goes over y v b for all
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elements ye<a,b), with d(y,b) <n, and let d(x,b)=n. Let x,y;, ...,
VYu_1,b,a be an x-—a geodesic, where, let us say, y, =y vb and
N=<Vy =y =<yp=y vb If x<y, then xvb=y vb and xvbe
{a,b),. If x>y, then x Vv y, > x,y,, and by the same reason we obtain:
X<XV Py =XV Y3<-<XVy>y. Now xVvy=xvy vb=xvbh,
and the x — y; — y, — -+ — y; geodesic has the same length as the x —x v y, —
XV y3—---—XV y — ¥ geodesic. Hence x v b e {a,b),, and (ii) follows.

Assume conversely that the properties (i) and (ii) hold in L. We shall prove
the semimodularity of L by induction on the length of the longest 0 — 1 chain in
L. If the longest 0 — 1 chain is of length one, then L is clearly semimodular.
Assume that L is semimodular if the lenght of the longest 0 — 1 chain is less than
n, and let L be a lattice where the length of this longest chain is #n. Assume that
e,f ~e A f. The intersection property of (i) goes down to the order convex
sublattices of L as well as the property (ii). Hence, if e A f #0 or e v f 5 1, the
length of the longest 0 — 1 chain in [e A f] (or in [e v f]) is less than n, and the
relation e v f > e, f follows from the induction assumption. Thus we assume
that 0 =e A f <e,f and e v f = 1. We may also assume that an x — y geodesic
with x from 0 — e — 1 chain and y from 0 — f — 1 chain always goes either over
the element 1 or the element 0. Choose now two elements ay and by as follows:
ap = by=-e. If ay =1, choose ay > by = f, and if also in this case ay = 1, the
relation e, f < e v f follows. So we may assume that 1> ay > by =e. Now
clearly f e <ao,bo),, and by (ii), f v by = 1 € {ag,bo),. If there is not a 1 —ay
geodesic over by, we have a contradiction, and if there is a 1 — ay geodesic over
by, choose new elements a; and b; as follows: a; > by =ap = by =e > 0. By
continuing the choosing process, we certainly obtain a contradiction (at least in
the case 1 =a; >~ bj=a;_1 > bj_1 = bj_y = --- > by =e), where 1€<a;,b;), by
the condition (ii) and 1 € {b;,a;), by the definition of a g-annihilator. Thus this
case is absurd, and the semimodularity of L follows.

By dualizing the condition (ii), a characterization of the dual semimodularity
is obtained. A finite lattice is modular if and only if it is semimodular and dually
semimodular. Thus Theorem 3 and its dual imply the next characterization.

THEOREM 4. A finite lattice L is modular if and only if the following con-
ditions hold

(i) every g-amnihilator in L is an intersection of prime g-annihilators;

(ii) if b < a then b v x, b A xe<a,b), for every xe<a,b),.

Finally we characterize the distributivity.
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THEOREM 5. A finite lattice L is distributive if and only if the following
conditions hold

(1) every g-annmihilator in L is an intersection of prime g-amnihilators;

(ii) every g-amnmihilator {a,b), is an order convex sublattice of L

ProOOF. Let L be distributive. The property (i) follows from Lemma 2, and
Lemma 1 and the considerations immediately after it prove the validity of (ii).

Assume conversely that (i) and (i) hold for L. By Theorem 4, L is at least
modular, and as one can prove, if a finite lattice is modular and nondistributive,
it contains the least modular and nondistributive lattice, the diamond M3, as a
sublattice. Let M3 = {a,b,c,d,e} with three noncomparable elements b,¢ and d
and with the order relations: a < b< e, a<c < e and a < d < e. Because of the
distance properties of a finite modular lattice, <b,e), > {e,c,d}, and a=c A d ¢
b, e»,, which contradicts (ii). Thus L cannot contain M3 as a sublattice, and the
distributivity of L follows.

As the proof above shows, the condition can be reduced to the form “every
g-annihilator <a,b), is a sublattice of L”.

2. The graphs of finite lattices

The definitions of a g-annihilator and a prime g-annihilator do not depend on
lattice operations, and so we can speak about g-annihilators and prime g-
annihilators in finite undirected graphs, too.

A median m for vertices x,y and z is a vertex satisfying the equations
d(x,y) =d(x,m)+d(m,y), d(x,z) =d(x,m)+d(m,z) and d(y,z) =d(y,m)+
d(m,z). As well known [1], the median of any three elements x, y and z exists, is
unique and is equal to (x A y) v (x A z) v (y A z) in a finite distributive lattice.
In a finite modular lattice a median exists for all three elements but it need not be
unique. In a dually semimodular finite lattice there are triples having no median
but the median m(x, y,0) of x,y and 0 exists for all x and y, it is unique
and equal to x A y. Dually, in a finite semimodular lattice the unique median
m(x,y,1) exists for all pairs x and y and is equal to x v y. Now we can present
our first characterization for graphs.

THEOREM 6. A finite undirected graph G is isomorphic to the graph G of a
dually semimodular finite lattice L if and only if the following conditions hold

(i) every g-amnihilator in G is an intersection of prime g-annihilators;

(ii) there are two vertices p and q in G such that for no vertex x # p,q the
vertex p lies on an x — q geodesic and the vertex q lies on an x — p geodesic;
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(iii) a unigque median m(x, y, p) exists for all pairs x and y of vertices in G, and
if x,y€{p,z),, then also (x,y,p)e{p,z)4

(iv) if @ and b are adjacent and b € {p,a),, then the median m(x, b, p) belongs
to {a,b), for all x € <a,b),.

PrOOF. Assume that G satisfies the properties (i)—(iv). We order the vertices
of G as follows: x <y & (p,xy, ©{p,y), According to the set theoretical
inclusion, the order defined above is a partial order with p as the least element.
The definition implies that x < y < y € {p,x),. Assume that two vertices x and
y of G have a common lower bound b, which implies that x, y € € p,b>,. Now
(i) implies that m(x,y,p)e {p,b>4, and thus b <m(x,y,p). Clearly,
m(x,y,p) < x,y. Because G 1is finite, the considerations above imply that
m(x, y, p) is the unique maximal lower bound for x and y, and so the order
defined above is a meetsemilattice order. The condition (ii) and the definition of
the order relation imply that x < ¢ for all vertices x of G, whence ¢ is the greatest
element, and so the vertices of G constitute a lattice L. The condition (iv) says
that if a covers b, then x A b e {a,b), for all x e {a,b),. This, (i) and the dual of
Theorem 3 imply that L is dually semimodular.

If x and y are adjacent in G, then there is a median m(x, y, p) which lies
on an x — y geodesic, and thus either x = m(x, y,p) =x A y or y =m(x, y,p) =
x A y. Assume that x > y = x A y. The element x covers y, because otherwise
there is a vertex z such that one x — y — p geodesic is also and x—z—y—p
geodesic, which is absurd when x and y are adjacent. So we can conclude that x
covers y or y covers x if and only if x and y are adjacent in G. Therefore the
graph G and the graph of the lattice L are isomorphic, and the first part of the
theorem follows.

The converse proof is obtained easily by putting p=0, g=1, and by
applying the dual of Theorem 3. This completes the proof.

Theorem 6, its dual and Theorem 4 imply the following characterization of
the graphs of finite modular lattices.

THEOREM 7. A finite undirected graph is isomorphic to the graph Gp of a
finite modular lattice if and only if the following conditions hold

(i) every g-anmhilator in G is an intersection of prime g-annihilators;

(ii) there are two vertices p and q in G such that for no vertex x # p,q, the
vertex p lies on an x — q geodesic and the vertex g lies on an x — p geodesic;

(iii) unique medians m(x, y,p) and m(x,y,q) exist for all pairs x and y of
vertices in G, and if x,y € {p,z),, then also m(x,y,p) € {p,z),;
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(iv) if a and b are adjacent and b € {p,a),, then the medians m(x,b, p) and
m(x,b,q) belong to <{a,b), for all x € {a,b),.

In a finite distributive lattice L, every g-annihilator is a distance convex set,
and this property implies that x A b, x v b e<a,b), for all elements x € {a,b),.
On the other hand, a modular lattice, where every g-annihilator is a distance
convex set, is distributive. Hence we can substitute the condition (iv) of Theorem
7 by the condition of distance convexity and obtain the following characterization
for the graphs of finite distributive lattices.

THEOREM 8. A finite undirected graph G is isomorphic to the graph Gp of a
finite distributive lattice L if and only if the following conditions hold

(1) every g-amnihilator in G is an intersection of prime g-annihilators;

(ii) there are two vertices p and q in G such that for no vertex x # p,q, the
vertex p lies on an x — q geodesic and the vertex q lies on an x — p geodesic;

(iil) unique medians m(x,y,p) and m(x, y,q) exist for all pairs x and y of
vertices in G;,

(iv) every g-amnihilator {a,b), in G is a distance convex set.
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