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A CONSTRUCTION OF BRAIDED HOPF ALGEBRAS*

By

Shuan-hong WANG

Abstract. Under suitable assumption, we present a method to
construct braided Hopf algebras (braided groups) B and B in Yetter-
Drinfel’d category H@QIH and H@D@ZH respectively. As applications,
we study some special cases in both module and comodule form for
H quasitriangular and for H coquasitriangular respectively. Finally,
some examples are given.

§1. Introduction and Preliminaries

There has been some interest in the theory of braided Hopf algebras (braided
groups) or Hopf algebras in braided categories [AS1-2, D, Maijl-3]. Appli-
cations in physics include the spectrum generating quantum groups and the
constructions of inhomogeneous quantum groups. Applications in pure mathe-
matics include the proof of Schur’s double centralizer theorems in [CFW], [FM],
[XSW] and the complete classification of all pointed Hopf algebras of dimen-
sion p? or p® [AS1-2], and also linearly recursive sequences [NT].

Majid has introduced a procedure termed Bosonisation by which one can
construct a braided Hopf algebras in the four categories denoted by p.#, .4y,
By and .#" for left, right modules and left, right comodules respectively.
Bosonisation generalise the Jordan-Wigner bosonisation transform for Z;-graded
systems in physics, and connectes to every Hopf algebra B in the braided cate-
gory of representations of H an equivalent ordinary Hopf algebra B>« H (left
handed cases) or H <t B (right handed cases).

We find that Bosonisation and Radford’s biproducts [R] associated to
Yetter-Drinfeld categories are not the same. This means that general braided
Hopf algebras in the Yetter-Drinfeld category p# %! are much more general
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than the braided Hopf algebras in y.# for H quasitriangular or in Z# for H
coquasitriangular. Thus, a natural and further question is: Does there exist a
more general method to construct a braided Hopf algebra in the Yetter-Drinfeld
categories?

We give a description about this in this paper, this is one motivation of this
paper. Another motivation is due to [AS1-2] and [D] in which the authors
investigate braided Hopf algebras of order p in the category y#Z™ of left-right
Yetter-Drinfeld module over a more general Hopf algebra H and the trace
formular for braided Hopf algebras respectively.

The present paper begins in Section 2 where we consider two braided
monoidal category p#Z{ and y# %!, and define one twisted algebra B for
a bialgebra B which is both in y#Z{ and y#% %4, and then under suitable
assumption, we show that B is a braided Hopf algebra in y#%3’. Similarly, it is
proved that there exists another braided Hopf algebra B in y#Z{.

Section 3 is concerned with the conditions under which B and B above
respectively become braided Hopf algebras.

The main results of the paper are some detailed calculation of the braided
Hopf algebra B living in the category of modules of a quasitriangular Hopf
algebra (H,R) associated to a dual pairing Hopf algebra (B,H,7) and of
comodules of a coquasitriangular Hopf algebra (H,<|)) associated to a dual
R-Hopf algebra pair (B, H, R), these results are investigated in Section 4.

Throughout this paper, k denotes a fixed field and (H,mpy, 1y, Ay, eq) a
Hopf algebra over k& with multiplication my, unit 1y, comultiplcation
A:H — H® H and counit ¢ : H — k. We use Sweedler’s Hopf algebra notation
[Mont, Sw] and use the “‘sigma” notation for A: A(h) = ® hy, for all he H,
where we omit parentheses on subscripts and the sum notation. Sy denotes the
antipode of H. Sy;' denotes its composition inverse if Sy is bijective. All maps
are k-linear, ® means &, unless otherwise specified, etc. Denote by y.# the
category of left H-modules and by .# the category of right H-comodules. For
(V.p) e ", we use notation: p(v) = v @ vy eV ® H, for any ve V. Also,
for (W,0) e 4", we use notation: d(w) = w® @ wl) e W ® H, for any we W.

By [RT] a left-right Yetter-Drinfeld category % 2", whose morphisms are
simultanously module and comodule maps, is the category of objects (M,-,d)
such that (M,-) is in p.# and (M,d) is in .#" satisfying the compatibility
condition:

h - m© @ hamV = (hy-m) O @ (hy - m)Viy (1.1)

for all he H and me M.
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If Sy is bijective, then the equation (1.1) is equivalent to:
p(h-m) = hy-m9 @ hymV S, (hy).

If H is a finite-dimensional Hopf algebra, then the Yetter-Drinfeld ;%2
can be identified with the category p(z).# of left modules over the Drinfeld
double D(H), see [Mont, p. 214].

There exist two prebraiding monoidal structures on %% [RT] as follows.

Let V, W e gW " For v@we V@ W and he H, one structure is defined by
the following structure (1.2)—(1.4):

h— (v@w)=h -v®h -w (1.2)
S @w) =1 @w® Ml (1.3)
(v ®w) = @0 (1.4)

and then the category H@QIH denotes the category y# 2™ which is equipped
with the above prebraiding monoidal structures. Then (V' ® W,—,d) is in the
PRAZS

Another structure is given by the following structure (1.5)—(1.7):

h— (v@w)=h -v®h-w (1.5)
P @w) = vy @ wi) @ wyv() (1.6)
T,I;, (0@ w) =we) @ w) v (1.7)

and by the category H@@f we denotes the category zp# % with the prebraiding
monoidal structures (1.5), (1.6) and (1.7). Then (V' ® W,—,p) is in the y %%,
Let A,H be two Hopf algebras. In [Milit], the author study a relation-
ship between a Long dimodule category and some of D-equations. By a gen-
eralized Long dimodule category ».#“ we mean a triple (M,—,0) such that
(M,—) ey and (M,5) e .#" satisfying the compatibility condition:
S(h—b)=h— b @b (1.8)
whose morphisms are simultanously module and comodule maps. Especially,
when 4 = H we get a Long dimodule category 5%
A quasitriangular Hopf algebra is a pair (H, R), where H is a Hopf algebra
over k and R = R ® R? e H ® H is invertible such that the following (r = R):

(QT1) ARY @ R® = RV @ ) @ RO 2
(072) RY @ AR® = RV @ 1 @ R?)

(OT3) A“’(h) = RA(h)R™
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is satisfied, where A“?(h) =hy, ® hy for all he H. If R™!' = R® ® R, then
(H,R) is called a triangular Hopf algebra.

As a dual concept (see [DT, Sect 3]), a coquasitriangular Hopf algebra
is a pair (H,<{|)) where H is a Hopf algebra over k and {|D: H® H — k is a
k-linear form which is convolution invertible in Hom;(H ® H, k) such that the
following hold:

(BR1) <h|gly = <|lY<{halg»
(BR2) <hg|l> = <h|h)<glh>
(BR3) <hi|giyhags = gihi<ha|g2).

If <hi|g1)<galha)y = e(g)e(h) then (H,{|)) is called a cotriangular Hopf algebra.
A Hopf pairing (B, H,7) means a triple (B,H,t), where B, H are Hopf
algebras and the 7: Bx H — k is a (convolution) invertible bilinear form sat-

isfying:
(DP1)  t(ab,h) = t(a,hy)(b, hy)
(DP2)  t(a,hl) = t(ay, h)t(as, 1)
(DP3) (1,h) = e(h)1
(DP4) 1(a,1) = &(a)l

It is easy to see that (DP1) and (DP2) yield
(DP1) v Yab,h) =t (a,hy)t " (b, Iy)
(DP2)" tNa,hl) =t (ay, )t~ (az, h)

for a,be B, h,l e H.

Let C be a coalgebra. The opposite coalgebra C”? is C as a k-module with
comultiplication given by A“’(¢) =c; ® ¢; for ce C, where we write A(c) =
¢ ® ¢3. Let H be a Hopf algebra. Suppose the antipode S of H is bijective (this
holds true if H is quasitriangular or coquasitriangular). Then, H% and H“” are
both Hopf algebras with antipode S—!.

ExampLE 1.1. Let (B,H,t) be skew-pairing Hopf algebra ([DT]). Then
(B,HP,t) and (B°,H,t) are Hopf pairings.

ExampLE 1.2. Let (H,{|)) be coquasitriangular Hopf algebra. Then
(H,H®? {]») and (H°,H,{|)) are Hopf pairings.
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ExampLE 1.3. Let H be a finite-dimensional Hopf algebra. Then
(H*,H,<,>) is Hopf pairing, where H* is the dual Hopf algebra and <, ) is the
evalution map.

Dually, we define a dual R-Hopf algebra is a triple (B, H,R), where B, H
are two Hopf algebras and the R = R() ® R® € B® H is an invertible element
such that the following (r = R):

(OT1) ARM ® R® — R ® ) ® R(?,(2)
(0T2) R ® AR® — R, (1) ® R® ® o)
is satisfied, for all #e H. It is not hard to show R ® R? = SR ® SR® =

SZRD @ R® = RD ® S2R? and R!' = SRV @ R® = R & SR,

ExampLE 1.4. Let (B, H, R) be a R-Hopf algebras ((WZJ]). Then (B, H,R)
and (B,H“? R) are dual R-Hopf algebras.

ExaMPLE 1.5. Let (H, R) be quasitriangular Hopf algebra. Then (H??, H, R)
and (H,HP,R) are dual R-Hopf algebras.

ExamMpLE 1.6. Let H be a finite-dimensional Hopf algebra. Then
(H,H*,R) is dual R-Hopf algebras, where H* is the dual Hopf algebra and
R=>",h®h here {h;} and {h}} are dual basis of H and H*.

§2. Braided Bialgebras in ;% 2"

Let (4,-,04) be an algebra in yp# % where - and J4 is a left H-module
structure and a right H-comodule structure on A4 respectively. We define 4* = 4
as linear space, with a twisted multiplication given by:

axb= (b .a)p"
PROPOSITION 2.1. (A4*,x*) is an associative algebra.

Proor. It is easy to see that 1, is a unit of 4*. As to associativity of x,
one has:

(axb)xc= (c(1> . [(b(l) ~a)b<°)])c(°>

(2 (cD26M - a) (M) - @)l (since 4 is H-module algebra)
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D2 5) Ve - a (D 5) )

This concludes the proof.

ReMARK. That (4,-,04) is an algebra in z#2Z{ is not a necessary con-
dition for (4*,«) to be an associative algebra. This is seen in the following (2.10)
and the proof of Theorem 2.3.

Similarly, for any (4, -,p) € ¥ 2 we define 4* = 4 as linear space with a
twisted multiplication defined by:

axb= Cl(o)(d(]) . b),
and we have the following proposition:
PROPOSITION 2.2. (A*,*) is an associative algebra.
Let (B,—,6) be an algebra in y#%{ and (B,—,p) an algebra in y# %1
such that (B,—,p) and (B, —,d) are in 2.

Now, we assume that the following condition (A) are satisfied:

CoNDITION (A).

h—(—b)=1— (h—b) 2.1)

(b — b1) ® (hr — b2) = &(h)by @ b (2.2)
A(h—b) = (h— b)) ® b (2.3)

A(h— b) = by ® (h — by) (2.4)

B @ 6% 1) ® b ) = by ® bty ® bio)” (2.5)
b1y ® b2 @ byWby(1y =by ® by ® 1 (2.6)
b @b, @b =5 @b, @b (2.7)

b1 ® b0y ® b1y = b1 ® by ® by, (2.8)

for any be B and h,/l € H.
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Then, we define:

h—b=h — (hy —b) (2.9)
axb=bY = a)b? (2.10)
28(b) = b)) @ byb)'". (2.11)

It is not hard to verify that (B,—) is a left H-module; that (B, yj) is a right
H-comodule; and that (B, —, ) is an object in z# %, But the (B, mp, —) is not
an algebra in z#Z4. In fact, we have

h— (ab) = hy — (hy — (@b)) "= hy — [(hy — a)(hs — b))

2 (hy — (s — @) — (hs — b)) = (b2 = @)(Iy — (s — b))
# (I = a)(h2 = b),

and this proves that (B,—,dp) is not an H-module algebra. Thus we cannot
apply Proposition 2.1 to (B,mg,—). However, one can calculate:

ax(bxc) CL (V) = b)cl

(1.3)(2.10) (V) — b)(l)c(o)(l) — (M — b)(O)C(O)(O)

1y — (M = )YV = gDy — (D5 — p))De©

(L) [c<')2(c<l)3 _ b)(l) . a](C(l)l N (c(l)3 _ b)(o))c(o)

(L) (c(l)zb(l) — a)(c(l)1 — (C(1>3 - b(O)))c(O)

29
D10, (e — D S @)Dy — (g — HO))c®

1.2
W () (M) — BN = a)) (D5 — pO)])e©

— (c<l)1 — (C(l)2 - [(b“) N a)b(o))])c(o)
= (M = [(BY = a)bO)])c® = (ax b) xc,
and this proves that (B,*) is an associative algebra with the unit 13.

THEOREM 2.3. Let H be any Hopf algebra, and B a bialgebra. Let (B,—,0)
be an algebra in y Y9t and (B, —,p) an algebra in y% 2% such that (B, —,p)
and (B,—,0) are in g L. If the condition (A) hold, then there exists a bialgebra
Bin y% 23, B= B as a linear space and as an object in gy 25" with a H-module
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structure defined by (2.9), and H-comodule structure defined by (2.11) respectively.
The coalgebra structure and unit in B coincide with those of B. The multiplication
is given by (2.10).

ProoF. We show that (B,—,x) is a left H-module algebra in %4 as

follows. Thus

2.10)(1.5
h— (axb) P2 p iy — (0D = @)y — 5O

—

= (hy — (h3 — (bm —a)))(h — (hy — b(O)))

2.1
(= (2 — (0 — @) (hs — (= b))
(s — (b — (60 — a))) (ks — (I — b))

1.1
= (s — (U = 6Ok = () — @) (hs — (b2 — 5))

[S5]

1

@b ((hy — b(o))<1>h1 — (h3bV) — a))(hg — (hy — b<0))(0))

(L.1) ((hs — b)<°><1>h1 — (hy — b)“)hz — a)(hy — (h3 — b)<°><°))

[S5]
o

)

L ((hy — b)Vhy = a)(hy — (hy — b))

S (hy — (hy — b)Vhy — a)(hs — (hy — b))

G (hy — )V — a)(hy — b)) = (hy — @)  (hs — b),

which is as required.
And then, we check that (B,x,y) is a right H-comodule algebra in % %3
according to the equation (1.6). In fact, one has
28(@)x5(b) = a)? x bo)” & b1)boyVaa)!
— (b<0)(0)(1) N a(o)(o))b(())(o)(()) ® b<1>b(0>(1)a(1)a(0)(1>7
on the other hand,

(2.10)
xplaxb) =" (b — a)p®)

2.11
LY (b — a)b(o))(o)(o) ® (b — a)b(o))(l)((b“) - a)b(()))(())(l)
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= (b(l>1 N (b(1)2 _ a))(o)(o)b(O)m)(O) ®b(0>(1>(b(1>1 N (b(1>2 _ a))<1>
BV — bV, — a))(0>(1)b(0>(0><1)
=" (bW, — WV, — a)(o))(o)b(O)(O)(O) ®b(0>(1>(b(”2 _ a)(l)

(B0} — (b1 — ) )5 )V

=" (b1 = (b2 — a)0)) b0 ® b1y (b2 — @)

(bo) "1 = (b2 — @) ) Vi) O

(1.1)
=" (bo)"1 = (b3 — @) ) ")b0)” & by (b3 — a)

b(O)(l)Z(b(0)<1)3 — a)(())(l)

2.5
2 (p0; — (60 — 1)) ©)p® o) @ BO ) (BVy — )

x bW, (pV; — a)(())(l)

1.1)
W0, — o, - a10) )5 o) ® b 1My (63 — aggy)V

—
—
=)

)
(b(l)1 N (b<1>2 - a<0)<0)))b<0)(0) ® b(o)“)b(l)ga(l)a(o)(l)
= (b1 = a9 )b 0 ® b b Vaaqya)

= (b0 """ = a0)™)b) " ® b)) Vagae) ",

again as required.

It is easy to see that (B,Ap,—) is a module coalgebra in z# 24 by the
conditions (2.2), (2.3) and (2.4). It follows from the formulae (2.6)—(2.8) that
(B,A, ) is a left H-comodule coalgebra in p# ¥,

In final, using the braiding " in z# %4 (see (1.7)), we can form a braided
tensor product B® B : (a ® b)(c ® d) = acg) ® (c(1y — b)d for any a,b,c,d € B.
We are prepared to show that Ap is an algebra map from B to B® B. Thus, one

does a calculation as follows:

Aglaxb) = bV - a),p0 ® (BV) — a),b,

— (b(l)1 N al)b(())l ® (b(1>2 N Clz)b(o)z]

(since (B,Ap,—) € g¥Z5" is a module coalgebra)
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B0~ B0,y — a)p®, @ (b5 — by — ay)b®,

(2.1&242) (b(l)l R al)b(())1 ® (b(1)2 _ az)b(O)Z;

and on the other hand, we have
ay x b1 @ (bi1ybi(o)V — a2) x b

= (bl(o)(o)(l) - al)bl(O)(O)(O) ® (bz(l)b1(1>b1<0)(1) — a2)b,")

2.5
(23) (b1(0>(') R a1)b1(0)<0)(o) ® (bz“)b](‘))(‘))(l)b]“) — az)b2(0>

= (511 = a1)b1V ) @ (b V51V 151V — a3)b, )

= () = bWy — a)b gy @ (52151 (11615
_ bz(l)zbl(o)(1)zb1(1>4 _ az)b2(0>

21)(22
>1e2 (b1 = a)b1 @ g ® (b2 1510 1y — B350 101y — a3) 5,

2.7
@D (b(1>l N al)b(o)l(o) ® (b<0>2<1>1b<0>1(1)1 N b(0)2(1)2b(0)1<1)2b(1)2 _ az)b(o)g(o)

= (6D} — )b ® (B2 V5O, 1)), — (BO, V6O, 0)),515 — ay)p®,©

29
260, — a)b? 10y @ (M6 4) — (b5 — a2))p @,

<2:6> (b(1>1 — al)b(o)l ® (b(l)z - Clz))bm)z.

Thus, (B,A,*) is a bialgebra in y#% concluding the proof.
Similarly, we can make another definition as follows:

h>=b=h — (hp —b) (2.12)

axb = a(g(aqy = b) (2.13)

Ep(b) = b)) ® by Vb (2.14)

In what follows, we postulate the following condition (2.15) and (2.16)

respectively instead of the equation (2.2) and (2.6). In the condition (A).
(}lz — b]) ® (h] — bz) = S(h)bl ® b2 (2.15)
b1y ® b ® binbV =b @b, ® 1. (2.16)

Then we have another main theorem of this section:
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THEOREM 2.4. Let H be any Hopf algebra, and B a bialgebra. Let (B,—,0)
be an algebra in yY 9t and (B,—,p) an algebra in y% ¥ such that (B, —,p)
and (B,—,0) are in g L. Assume that the conditions (2.1), (2.3)-(2.5), (2.7)-
(2.8), and the conditions (2.15)—(2.16) hold. Then there exists a bialgebra B in
H@@f’ , B= B as a linear space and as an object in H@@f’ with a H-module
structure defined by (2.12), and H-comodule structure defined by (2.14) respectively.
The coalgebra structure and unit in B coincide with those of B. The multiplication
is given by (2.13).

Proor. Similar to that of the theorem 2.3.

REmMARK 2.5. The left Yetter-Drinfeld modules form the braided category
Hay g, see [Mont, p. 214]. Similarly, the right such modules form #Z}. We have
natural identification of braided categories,

H _ H g0 H H
wyal =Ty, gyal =yqlly.

Replace H by H, and identify H°»“? with H via S: H = Hopeop, Thus, if M
is an object in o ZI" with structures (h%,m)+— hm, H” ® M — M and
m—m® @m), M — M ® H, then it is identified with an object in %% with
the structures given by

hm = Sh)"m, im)=S"m"Y@m"eH® M.

Theorem 2.3 is translated as follows.
Let B be a bialgebra. Suppose the algebra B is further an algebra object in
Hy < and also in @95 . Suppose that each pair of structures indicated by

wBu, "B", yBY By

commutes with each other (the commutativity in 7B, for example, means that
B is an H-bicomodule). Denote the left and the right H-comodule structures on
B by

Ab) ="V @60, pb) =Y @bV (beB),
respectively, and suppose further that
bih® by = b1 ® hba, p(b1) ® by = by ® A(b2);
A(hb) = hby ® by,  A(bh) = by ® byh;
Mb)@ by =V @ADBY), by @ p(by) = AB") @ b,
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where b € B, h e H. Then the coalgebra B forms a bialgebra in @95 , given the
following new structures:
b—h:= Sil(hl)bhz;

axb:=(a—SH")PO = (6Vas(H2))p0;
b b ®sH"pY, B B®H,

where a,be B, he H.

Similarly, Theorem 2.4 can be reformulated in a symmetric form, which will
give a construction of bialgebras in #%%. These reformulated statements look
simpler than the original, although here one has to assume that the antipode S of
H is bijective.

§3. Braided Hopf Algebras

Let H be a Hopf algebra with a bijective antipode S, and B a Hopf algebra
with an antipode Sp. In this section we give a sufficient condition for the braided
bialgebras as defined in §2 to be a braided Hopf algebra. At first, we assume that
the following condition (B) is satisfied:

ConpITIONS (B).

Sg(h— b) =h — Sg(b) (3.1)

Sp(h — b) = S™2h — Sp(b) (3.2)
(S5(0)"” @ (S5(b))" = Spboy ® S (b)) (3.3)
(S5(h))0) ® (S5(b)) 1) = Spb® @ b, (34)

where the S~2 denotes the (S—!)7.

ProposITION 3.1. In the situation of the Theorem 2.3. Assume that the

condition (B) holds. If B has an antipode then B has an antipode in the category
H@@f. It is defined by
S(b) = b(l) - SB(b(o))

ProOF. We need to prove that S is a morphism in #%%,. For this, we have
S(h— b) = (h = b)) = Sa((h — b))

2.9)(1.8
B (hy — b)) — Salh — (hy — b) g))

(lil) /’l4b<1)S71(/’12) — SB(hl — h3; — b(g))
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2.9
(:> h5b(1)1S71(h3) — h6b(1)2571(h2) — SB(hl — hy — b(o))

31
( h5b ]Sil(h3) — héb(])zSil(/’lz)hl — 572(114) — SBb(())

2.1
= byt — haby, — Sab(o)

- S0).

and this prove S is H-module map.
Also, one has

&po S(b) = (bay — Sb) )" ® (bay — Sbo) 1) (by — Sebio) "
= (bay — bay — (SBb(O))(O))(O) ® b1)a(Ssb(0)) 1)
S~ by (bayn — bay — (SBb(O))(o))(l)
= (bays — by — Sa(b)™ 0)) ® by
S~ by )b(1)3S 2(bo) 1)) S™ 1(b(l)l)
=5 g1) = Sp(6 (0)0)) ® b
— (S®id)(" ) ® b<°>(1>b“>) = (S ® id)&p(h),

where the second equation follows (1.8) and (1.1); the third follows using the
(2.1), (1.8) and (1.1); the forth follows equations (2.5) and (2.9), completing the
S is a morphism in %23

Using (2.6), one has that Sh; x by = &(h) holds. We also have

by * S(by) = [(ba1) — Sgbao)) — by)(by1y — 53172(0))(0>
= [(b20113(S8b20) M ST bapiy — Bil[bagiya — bayy — (SBbz(o>)(0>]

= [(bag1y2 — bays — bil[ba1)s — bagyr — Saba)]

28
= by1) — b1Spby) =4 by — b)1Sb(0)2 = &(b),

here the second identity follows the formulae (2.9), (1.1), and (1.8); the third
follows (3.3) and (2.9); the forth is given via the formulae (2.1), (1.2), (1.5) and
(2.9). As required.

This completes the proof of the proposition 3.1.

Similarly, we postulate the following
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Conbrtions (C).

h — Sgb = Sg(h — b) (3.5)
S2h — Spb = Sp(h — b) (3.6)
(S5(b)” @ (S5(0)" = Szbi) ® b)) (3.7)
(S5(b))10) @ (S5(b)) (1) = Sb'” @ S2bV (3.8)

hold. Thus we have the following result similar to the proposition 3.1.

ProOPOSITION 3.2. In the situation of the theorem 2.4. Assume that the con-
dition (C) hold. If B has an antipode then B has an antipode in the category
H@QIH. It is defined by

S(b) = bW = Sp(H).

Proor. The proof is similar to that of Proposition 3.1.

§4. Applications and Examples

In this section we give some of the braided Hopf algebras in the cate-
gory p.# for a quasitriangular Hopf algebra H and the category .#% for a
coquasitriangular Hopf algebra H.

When (H,R) is quasitriangular, By [CFW], the category g.# of the left
modules over the quasitriangular Hopf algebra (H, R) is endowed with the fol-
lowing structure:

"m®n)=R?P - n@RY -m, h-(m®n)=(h-m)® (hy-n),

for any me M e y#l, ne Ne g, and he H.

In this case, the category y% %% contains this braided monoidal category
uA# as its subcategory. In our setting, y.#» = y./ with the well known coaction:
p(m) =R .- m® R,

Similarly, we have a braided monoidal subcategory pg.#; with the well
known coaction: p(m) = R® -m® RY, and the braiding ' :m®@n— RV . n®
R® -m, and the monoidal structure i-(m®n)=hy -m@h;-n for any me
Megygdli, ne Negdi and he H.

When (H,{|») is coquasitriangular, the category p#Z contains a
braided monoidal subcategory .4 which is endowed with the following struc-
ture, i -m = {himgyym), " m @ n— {ngylmay dney ® mg), p(m @ n) =mg @
n) ® ngymyy for any me M e 43" and ne N e /7.
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Similarly, we have a braided monoidal subcategory .# lH armed with
the following structure, /-m = <hlm)ym), t':m @ n— <mWnMyn® @ m©),
dm®n) =m®@n"®@mn" for any me M e .#f and ne Ne ..

In what follows, we construct two class of braided Hopf algebra in the
categories g./1, yM, and MF, and 4}

Let (H,R) be a quasitriangular Hopf algebra. Let (B, H,7) be a Hopf
pairing. We define 7 — b = 1(Shy,h)b, and h — b =1(by,h)b; for all be B,
heH. In g, it is natural that we have §(h) = R® — b ® R - ) ® b
and p(b) = R b @ RN L by @ byy).

It is easy to verify that (B,—,0) is an algebra in z# %[ and that (B, —,p)
is an algebra in y% %% . Obviously, (B,—,p) and (B,—,d) are objects in Long
dimodule category ;%%.

Thus, by (2.9)-(2.10) and the proposition 3.1, we obtain

/’l—>b=h1 — (hz—rb)ZT(S(bl)b3,h)b2 (4.1)
axb= (Y — a)b" = 2(S(ay)az, RV)asb,t(S(hy), R*) (4.2)
S(b) = by — Sa(b)) = 1(b2, R)(RY — Sg(hy)), (4.3)

for all a,be B and he H.
We now have the following:

THEOREM 4.1. Let H be quasitriangular. With the notation above. Then there
is a braided Hopf algebra B in y.#>, B= B as a linear space and as an object in
u Ay with a H-module structure defined by (4.1). The coalgebra structure and unit
in B coincide with those of B. The multiplication is given by (4.2). Its antipode is
given by (4.3).

Proor. Firstly, in order to apply the Theorem 2.3, we need to check the
Condition (B) hold. A routine check can show that the conditions (2.1)—(2.4) are
satisfied. Then, by definition, and using (2.1), we have

) ® b(O)(l) ®b(0)(0) =RV ® (R(Z) N b)(l) ® (R(Z) N b)(O)
=RV @/ @r? — (R — b))
=RV @/ @R? — (+2 — b))
= — b)(1> @M e (r? — b)(o) - b(O)(l) ® by ®b(0)(0),

and the formula (2.5) is proven.
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The following computation:

bio) ® 52" @ b Vby 1) = R — by @ P — by @ 'V RW

T2 22
(L RV, — b ® RYy — by ® RV = b ®b,®1,
shows the equation (2.6).
Then, using definitions, and (2.4), we can obtain:

HY ®b, @b =RY — b @by, @RV
- (R(Z) —b),® (R<2) —b), ® RV =p0, @b, @ b1,

and this checkes the (2.7), and similarly, one has the (2.8). It is easy to that
S(b) = b — Sp(bV) = 1(by, RP)7(S?(b3)S(by), RV)b,.

In final, it is not hard to check the condition (B) hold, concluding the
proof.

For a quasitriangular Hopf algebra H. Let (B,H,7) be a Hopf pairing.
Similarly, we can define: &4 — b ="' (b, h)b, and h>b = 1t7'(Shy,h)b; for all

beB, heH. In y./y, it is natural that we have 6(b) = R? — bh® R -
b® @ b1 and p(b) = R? — b RD L by @ byy).
Thus, by (2.12)—(2.13) and the proposition 3.2 we have:
h=b=h — (/’12 — b) = r’l(ble3,h)b2 (44)
axb = a<0)(a(1> = b) = Tﬁl(bleg,, R<1>)a1bgr’1(S(a2), R<2)) (4.5)
S(b) = bV = Sp(b") = 71 (by, RP)(RY = Sp(hy)). (4.6)

We now have the following

THEOREM 4.2. Let H be quasitriangular. With the notation above. Then there
is a braided Hopf algebra B in y.#\, B= B as a linear space and as an object in
wMy with a H-module structure defined by (4.4). The coalgebra structure and unit
in B coincide with those of B. The multiplication is given by (4.5). Its antipode is
defined by (4.6)

Proor. Similar to Theorem 4.1.

Let (H,{|>) be coquasitriangular, and let B be a Hopf algebra. Assume
that f:B— H is a Hopf algebra map. Define 5(b):b2®S’1f(b1)de:f‘
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b0 @ bD), and p(b) = by ® f(bs) L b) ® by for b e B. Then we have h — b =
Ch| ST (by)Yby and h — b = <{h| f(by)>b; for he H, be B. It is easy to check
that (B, —,0) is an algebra in H@,@f’, and (B, —,p) an algebra in H@@{’
such that (B, —,p) is in 2, and (B”?,—,6) is in z.#1.

Then, by (2.10)—(2.11) and the proposition 3.1, one has

18(b) = b)Y @ b1ybo)") = by ® ST (f (b1)) f (b3) (4.7)
axb= (b — a)p® = (ST (f(b1))| f(az)ST (f (1)) >brar (4.8)
S(b) = by — Sp(b)) = {f(ba) | f(b3) [ (Sb1)>Sp(b2). (4.9)

It is easy to show the condition (A) and the condition (B) are satisfied, and
so by the theorem 2.3 and the proposition 3.1, we have:

THEOREM 4.3. Let (H,{|)) be coquasitriangular, and B a Hopf algebra. Let
f:B— H be a Hopf algebra map. Then there is a braided Hopf algebra B in
MY, B = B as a linear space and as an object in .M with a H-comodule structure
defined by (4.7). The coalgebra structure and counit in B coincide with those of B.
The multiplication is given by (4.8). Its antipode is defined by (4.9).

Let B be any bialgebra, and f : H — B a bialgebra map. If [ is a convolution
invertible map with an inverse f~', then f~': H — B is an anti-bialgebra map, i.e.,

SR = DS h) and Agf~t(h) = [~ () @ £ ().

ExampLe. If H is a Hopf algebra, then f~!= fSy is a convolution
invertible map.

Similarly, let (H,<|)) be coquasitriangular, and B a Hopf algebra. Let
B — H be a Hopf algebra map. Define d(b) = b, @ Sf(by) Y p0) @ b1, and
p(b)=b1® f(b2) de':f'b(m ® b1y for b e B. Naturaly, we get: h — b = {h|Sf(b1)>by
and h — b =<h| f(b2))by for he H, b e B. It is easy to check that (B, —,0) €
n@ 71 is an algebra, and (B”,—,p) € y% 73 an algebra such that (B, —,p)
is in y 2%, and (B”,—,9) is in y. £,

Thus, by (2.13)—(2.14) and the proposition 3.2, one has

Ep(b) = b)) @ by Vb = by @ S(f(b1)) 1 (b3) (4.10)
axb = a)(aq) = b) = <S(f(b1)) | f(a3)S(f (a1)) Yb2a (4.11)
S(b) = b > Sp(b©@) = (f(b1) | £ (b2) [ (Sba)>Ssbs. (4.12)

In final, it is not hard to the conditions (2.1)-(2.2), (2.4)-(2.5), (2.7)-(2.8),
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(2.15), (2.16) and the condition (C) are satisfied. By the theorem 2.4 and the
proposition 3.2, we have:

THEOREM 4.4. Let (H,{|>) be coquasitriangular and B a Hopf algebra. Let
f:B— H be a Hopf algebra map. Then there is a braided Hopf algebra B in
MY, B= B as a linear space and as an object in M1 with a H-comodule structure
defined by (4.10). The coalgebra structure and counit in B coincide with those of B.
The multiplication is given by (4.11). Its antipode is defined by (4.12).

By the theorem 4.1, we give an example explicitly as follows.

RemMARk 4.5. If (H,R) is a quasitriangular Hopf algebra, then H” is
a Hopf algebra, which has the quasitriangular structure R’ = R® @ R(). The
braided category y.# is identified with gep.#>, and hence with .#ys,, the 2nd
kind (or the natural) braided category of right modules over H*” := (H)“”. In
addition, if 7: B® H — k is a Hopf pairing, then 7! : B® H®” — k is a Hopf
pairing as shown by (DP1)" and (DP2)’. Therefore, it is not hard to check that
Theorem 4.2 follows from a variation of Theorem 4.1 which gives a construction
of Hopf algebras in .#y».

A similar investigation and verification would be given for Theorem 4.3
and 4.4.

ExamPLE 4.6. Let H, be the Sweedler’s 4-dimensional Hopf algebra, i.e.,
H, is a free k-module with basis 1, x,y,z and its Hopf algebra structure is defined
by

xX2=1, »>=0, xy=z xz=-zx=Y
AX)=x®x, AY)=ry®x+1®y, Alz)=z1+x®:z
8(2) :07 S(X) =X, S(y) =z S(Z> =)

™
PN
=
S~—
I
—_
)
~—~
<
N
I

For any o € k. Then (Ha,0,) has uniquely coquasitriangular Hopf algebra, where
0, 1s given via:

Oy | 1 x y z
1|1 1 0 0
x|1 -1 0 O
y |0 0 o -«
z|10 0 o «
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Note that Hy is also a quasitriangular Hopf algebra with
R, =12(1@01+1®x+x@1 -x®x) +0/2(y®@y+yQ@z+:Q®z-2QY).

Then two actions Hs on H,” is respectively defined by:

— | 1 x y z — | 1 x y z
1|1 x y z 1|1 x y z
x |1 —x -y =z and x |1 —x y —z
y {0 0 ol —ox y |0 O ax ol
z |0 0 ol ox z |0 0 —ax al

Thus, by the formula (4.1), the H,” is a left Hs-module where the Hy-
module structure is given by:

— | I x y z
I |1 x y z
x |1 x -y —z
y |10 0 ax+1) ax+1)
z 10 0 alx+1) alx+1)

By the equation (4.2), the multiplication on H,” is obtained by the following
table:

* | I x z
11 x z
x| x 1 z y
yly z £x+1) Ax+1
zlz y Ax+1) oP(x+1)

Therefore, by the theorem 4.1, the (H;;,A‘}Z’ ,x) is a braided Hopf algebra in
M. Its antipode is defined by

SH=1, Sx)=x, S =z S =y
Similarly, applying the theorem 4.2, we have
ExaMpPLE 4.6. Let H, be the Sweedler’s 4-dimensional Hopf algebra. Then
the (Hy, A}, *) is a braided Hopf algebra in p,.#. Its antipode is defined by

5(1):17 §(X>:X, §(y):—2, 5(2):—_)}
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The Hi-module structure and the multiplication on H,” is given respectively by
the following tables:

- | 1 x y z * | 1 x y z
1 {1 x y z 1 {1 x y z
x |1 x —y —z and x | x 1 —z -y
y 10 0 ax+1) —alx+1) y|ly —z B+l —ad(x+1)
z |0 0 alx+1) —oalx+1) zlz —y —(x+1) F(x+1)

REMARK. In the example 4.6, our two Hs-module structures associated to
the Hj-module structure >~ is given by respectively:

— | I x y z — | I x y z
1|1 x y z 1|1 x y z
x |1 —=x -y z and x |1 —x —z
y [0 O ol —ox y |10 0 —ox —al
z 10 0 al ox z |0 O ax  —ol
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