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SINGULAR SETS OF IDEAL INSTANTONS AND

POINCARÉ DUALITY

By

Yasuyuki Nagatomo

Abstract. A point in the boundary of a moduli space of quaternion

ASD connections can be regarded as a singular ASD connection with

a particular singular set. In the case of generalized 1 instantons on

HPn and Gr2ðC nþ2Þ, it is proved that Poincaré dual of the singular

set is the Chern class of the vector bundle.

1. Introduction

The purpose of the present paper is to show that Poincaré dual of the

homology class represented by the singular set of an ideal instanton is the even

degree Chern class of the vector bundle on which the ideal instanton is defined

(Theorem 2.3 and the Table).

It is well known that the moduli space of 1 instantons on the 4 dimensional

sphere S4 is identified with the 5 dimensional open ball. From the viewpoint of

Uhlenbeck compactification, a point in the boundary of the moduli space can be

considered as an ASD connection with a point singularity. Since the Chern class

of the bundle is equal to 1, Poincaré dual of the singular set is the second Chern

class c2.

The quaternion projective space HPn and the complex Grassmannian man-

ifold Gr2ðC nþ2Þ are quaternion-Kähler manifolds and in particular, in the case

n ¼ 1, these manifolds are S4 and the complex projective plane CP2, respectively.

By definition, a quaternion-Kähler manifold is a 4n-dimensional Riemannian man-

ifold for which the linear holonomy group can be reduced to Spð1Þ � SpðnÞ. Anti-

self-duality can be defined over quaternion-Kähler manifolds in the same way as

in the 4-dimensional case (see, for example, Mamone Capria and Salamon [3]).

From this point of view, 1 instantons on S4 and CP2 are generalized to

objects on HPn and Gr2ðC nþ2Þ (Definition 2.1). The moduli spaces of these
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generalized 1 instantons can be described by the theory of monads on the Salamon

twistor space (see § 2). This theory indicates a natural compactification of moduli

spaces and a point in the boundary of the moduli can also be regarded as an

ASD connection which is defined only on the complementary set of a closed

subset of the base manifold. We call such a closed subset the singular set. In the

case of generalized 1 instantons, the singular sets are described in Theorem 2.2,

and all of them are quaternion submanifolds.

As for the method of our proof, see § 3. In particular, we use holomorphic

vector bundles and sections of them on the twistor spaces. All the holomorphic

vector bundles stated here have common properties in terms of ASD bundles and

line bundles on the twistor spaces. These properties will be formulated in the

forthcoming paper.
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classes. The author is a Monbusho-sponsored Japanese Overseas Reserch Fellow

and would also like to thank the Ministry of Education and Culture for the

support.

2. Preliminaries

The symmetric spaces HPn and Gr2ðC nþ2Þ are quaternion-Kähler manifolds

with positive scalar curvature. A connection on a vector bundle on a quaternion-

Kähler manifold is called an ASD connection if its curvature 2-form is invariant

under the action of I ; J;K (see, for example, [3]). A vector bundle with an ASD

connection is also called instanton (bundle). On the other hand, every quaternion-

Kähler manifold has a twistor space with a natural complex structure [9]. The

twistor spaces of HPn and Gr2ðC nþ2Þ are the odd dimensional complex projective

spaces CP2nþ1 and the generalized flag manifolds F 2nþ1 ¼ SUðnþ 2Þ=SðUð1Þ �
UðnÞ �Uð1ÞÞ, respectively. The pull-back bundle with ASD connection on the

twistor space has a holomorphic structure induced by the pull-back connection.

Hence we do not distinguish ASD bundles on quaternion-Kähler manifolds from

the pull-back bundles on the twistor space, and we use the same symbol for both.

To specify vector bundles, we need to describe the cohomology rings on

the twistor spaces. As for the complex projective spaces, x is defined as the

standard positive generator of H 2ðCP2nþ1;ZÞ. Since the twistor space F 2nþ1 can

be expressed as the projective bundle of the holomorphic cotangent bundle of

CPnþ1, the Leray-Hirsch theorem implies that the cohomology ring H �ðF 2nþ1;ZÞ
is isomorphic to the quotient ring of Z½x; y� by the ideal generated by xnþ2 and
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xnþ1 � xnyþ � � � þ ð�1Þnþ1
ynþ1, where x is the pull-back of the standard positive

generator of H 2ðCPnþ1;ZÞ. The twistor space F 2nþ1 has another fibration over

the dual complex projective space CPnþ1 �
. Then y is the pull-back of the standard

positive generator of H 2ðCPnþ1 �
;ZÞ.

We now define the ASD bundles which we wish to consider in the present

paper.

Definition 2.1. (0) Let E0 be an ASD bundle on HPn with structure

group SpðnÞ. The total Chern class cðE0Þ of E0 is assumed to be equal to

ð1 � x2Þ�1. More precisely, the Chern classes are expressed as c2ðE0Þ ¼ x2,

c4ðE0Þ ¼ x4; . . . ; c2nðE0Þ ¼ x2n.

(1) Let E1 be an ASD bundle on Gr2ðC nþ2Þ with structure group SpðnÞ. The

total Chern class cðE1Þ of E1 is assumed to be equal to ð1 � x2Þ�1ð1 � y2Þ�1.

More precisely, the Chern classes are expressed as c2iðE1Þ ¼
P i

k¼0 x
2i�2ky2k,

where i ¼ 1; 2; . . . ; n.

(2) Let E2 be an ASD bundle on Gr2ðC nþ2Þ with structure group SUðnþ 1Þ.
The total Chern class cðE2Þ of E2 is assumed to be equal to f1 þ ð�xþ yÞg �
ð1 � xÞ�1ð1 þ yÞ�1. More precisely, the Chern classes are expressed as ciðE2Þ ¼
�
P i�1

k¼1 x
i�kð�yÞk, where i ¼ 1; 2; . . . ; nþ 1.

Remark. In the case n ¼ 1, E0 is nothing but a 1 instanton on S4 and E1

and E2 are isomorphic to each other, because Spð1ÞGSUð2Þ, and our relations

for generators of the cohomology yield that cðE1Þ ¼ cðE2Þ. The last two bundles

are 1 instantons on CP2.

Let M0, M1 and M2 be the moduli spaces of ASD connections on E0, E1

and E2, respectively. From the viewpoint of [6],

(0) M0 is identified with an open ball in 52C 2nþ2, where 52C 2nþ2 is the

corresponding representation of Spðnþ 1Þ.
(1) M1 is identified with an open cone over Pð52C nþ2Þ, where 52C nþ2 is the

corresponding representation of SUðnþ 2Þ.
(2) M2 is identified with an open cone over PðC nþ2Þ, where C nþ2 is the

standard representation space of SUðnþ 2Þ.
The completeness of these moduli spaces is proved in [1], [2], [8] and [4]. In

particular, the theory of monads is available for proving the completeness of the

moduli ([3], [2], [8] and [4]). From the viewpoint of the theory of monads, the

boundary point of the moduli spaces represents a singular ASD connection with

a singular set, which we denote by S. These singular sets are described in [1],

[7] and [4].
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Theorem 2.2. In each case, the singular set is one of the following quaternion

submanifolds of HPn or Gr2ðC nþ2Þ:
(0) HPi, where i ¼ 0; 1; . . . ; nþ 1,

(1) HPi, where i ¼ 0; 1; . . . ; ½ðnþ 2Þ=2� and

(2) Gr2ðC nþ1Þ,
where ½m� is the greatest integer not greater than m.

Theorem 2.3 (Main Theorem). The Poincaré dual of the homology class

represented by the (real ) 4ðn� iÞ-dimensional singular set is the 2ith Chern class of

the ASD bundle on which the singular ASD connection is defined.

� Table (Singular sets)

Bundles Singular sets Poincaré dual

E0 1 point, HP1; . . . ;HPn�1 c2nðE0Þ; c2n�2ðE0Þ; . . . ; c2ðE0Þ
E1 1 point, HP1; . . . ;HP½n=2� c2nðE1Þ; c2n�2ðE1Þ; . . . ;

cnðE1Þðn: evenÞ; cnþ1ðE1Þðn: oddÞ
E2 Gr2ðC nþ1Þ c2ðE2Þ

3. Zero Loci of Sections

The following two sections are devoted to the proof of the Main Theorem.

Since our strategy is common to all three cases, we shall now describe it.

First of all, we determine a holomorphic vector bundle V on the twistor

space which has a (holomorphic) section s. It is shown that the zero locus of the

section s is the inverse image ~SS by the twistor fibration of the singular set S and

is transverse to the zero section. Hence, Poincaré dual of ~SS equals the top Chern

class of V.

Next, it is proved that the top Chern class of V equals the pull-back of the

appropriate Chern class of the ASD bundle.

Finally, the Gysin sequence or fibre integration yields the desired results and

we omit the details of this procedure.

3.1. The case of E0. We may choose V to be the direct sum of line

bundles of degree 1. To put it more accurately, we denote by ½z0; z1; . . . ; z2nþ1�
the homogeneous coordinates on CP2nþ1 and by OðdÞ the line bundle of degree

d on CP2nþ1. Now V is the direct sum Oð1Þl2i, the top Chern class of V is

x2i, and so it equals c2iðE0Þ. The section s of V which we should choose is

ðz2ðn�iÞþ1; z2ðn�iÞþ2; . . . ; z2n; z2nþ1Þ.
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3.2. The case of E1 and E2. Since F 2nþ1 is a Fano manifold, the Picard

group is H 2ðF 2nþ1;ZÞ. We denote by Oðp; qÞ the line bundle of which the first

Chern class is pxþ qy. As mentioned in the previous section, F 2nþ1 has two

holomorphic fibrations:

p1 : F 2nþ1 ! CPnþ1 and p2 : F 2nþ1 ! CPnþ1 �
:

From our definition of the cohomology classes x and y, we obtain p�
1Oð1ÞG

Oð1; 0Þ and p�
2Oð1ÞGOð0; 1Þ. For brevity, we fix a unitary basis fe1; . . . ; enþ2g

of the standard representation space C nþ2 of SUðnþ 2Þ and the dual basis

fe1; . . . ; enþ2g of C nþ2 �
. The corresponding homogeneous coordinates on CPnþ1

and CPnþ1 �
are denoted by ½z1; . . . ; znþ2� and ½w1; . . . ;wnþ2�, respectively. Then

F 2nþ1 can be identified with the divisor on CPnþ1 � CPnþ1 �
defined by the equa-

tion
Pnþ2

i¼1 ziwi ¼ 0.

Let t be a holomorphic section of Oð1; 0Þ. If t is the pull-back section of

Oð1Þ on CPnþ1 which corresponds to
P

aizi, we shall say that t is the section

corresponding to
P

aizi. We also use a similar terminology for a section of

Oð0; 1Þ.

Lemma 3.1. Let s be a section of the direct sum Oð1; 0ÞlOð0; 1Þ. If s cor-

responds to ðznþ2;wnþ2Þ, then the zero locus of s is F 2n�1 which is the twistor space

of the quaternion submanifold Gr2ðC nþ1Þ of Gr2ðC nþ2Þ.

Proof. Using our notation, we define divisors CPn ¼ fznþ2 ¼ 0g and

CPn� ¼ fwnþ2 ¼ 0g on CPnþ1 and CPnþ1 �
, respectively. Then we have s�1ð0Þ ¼

p�1
1 ðCPnÞV p�1

2 ðCPn � Þ. r

In this case, it is clear that s�1ð0Þ is transverse to the zero section. The second

Chern class of Oð1; 0ÞlOð0; 1Þ is xy, and so it is equal to c2ðE2Þ. Thereby, in the

case of E2, the proof is completed.

Pulling back the Euler sequence on CPnþ1 �
, we obtain the exact sequence:

0 ! Oð1;�1Þ ! Oð1; 0Þlnþ2 ! Q ! 0:

Using weights for example, we also obtain the exact sequence:

0 ! V ! Q ! Oð2; 0Þ ! 0:

(The vector bundle V is the ‘‘twisted tautological bundle’’.) By the Bott-Borel-

Weil theorem, H 0ðF 2nþ1;VÞ is identified with 52C nþ2�
as representations of

SUðnþ 2Þ.
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For brevity, we replace SUðnþ 2Þ by G and the isotropy subgroup SðUð1Þ �
UðnÞ �Uð1ÞÞ by KZ. As a Cy vector bundle, V is identified with the associated

vector bundle with G of which the typical fibre is the representation space

Ce1 nC n �
of KZ, where C n �

is spanned by e2; . . . ; enþ1. We denote the orthogonal

projection by p :52C nþ2� ! Ce1 nC n �
, which is explicitly given by

pðfÞ ¼ e15 iðe1Þf� hðf; e15enþ2Þe15enþ2;

where f A52C nþ2 �
, i is the interior product and h is the induced Hermitian

inner product on 52C nþ2�
. Using p, the isomorphism between 52C nþ2 �

and

H 0ðF 2nþ1;VÞ is expressed as

sf½g� ¼ ½g; pðg�1fÞ�;

where ½g� is the point of F 2nþ1 represented by g A G, and ½g; pðg�1fÞ� is the

element of V represented by ðg; pðg�1fÞÞ.

Proposition 3.2. We assume that n is even. If f A52C nþ2�
is non-degenerate,

then the zero locus of sf is expressed as

s�1
f ð0Þ ¼ fð½v�; ½iðvÞf�Þ A CPnþ1 � CPnþ1�gGCPnþ1:

Proof. With our notation, s�1
f ð0Þ ¼ f½g� A F 2nþ1 j pðg�1fÞ ¼ 0g. From the

definition of p, pðg�1fÞ ¼ 0 if and only if fðge1; gelÞ ¼ 0 for an arbitrary l ¼
2; . . . ; nþ 1 and so, there exists a non-zero constant a such that iðg�1e1Þf ¼
agenþ2, because f is non-degenerate. r

If n is odd, then any f A52C nþ2�
is degenerate, but in the generic case, the

rank of f is equal to nþ 1. Note that if f is of rank nþ 1, then there exists a

non-zero vector v0 A C nþ2 such that iðv0Þf ¼ 0.

Proposition 3.3. We assume that n is odd. If f A52C nþ2�
is of rank nþ 1

and satisfies iðv0Þf ¼ 0 for non-zero vector v0 A C nþ2, then the zero locus of sf is

isomorphic to the blow up of CPnþ1 at one point. More explicitly, the zero locus is

expressed as

s�1
f ð0Þ ¼ fð½v�; ½iðvÞf�Þ A CPnþ1 � CPnþ1 � j ½v�0 ½v0�:g

U fð½v0�; ½c�Þ A CPnþ1 � CPnþ1 � jcðv0Þ ¼ 0:g

Proof. Under the same notation as in the proof of Proposition 3.2, we
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obtain the same condition fðge1; gelÞ ¼ 0 for an arbitrary l ¼ 2; . . . ; nþ 1. This

implies the explicit expression of the zero locus in the Proposition.

To see that this set is identified with the blow up of CPnþ1 at ½v0�, we

may assume that v0 ¼ enþ2 and f ¼ e15e2 þ e35e4 þ � � � þ en5enþ1. Under

the assumption znþ2 0 0, we introduce the inhomogeneous coordinate xm ¼
zm=znþ2 for m ¼ 1; . . . ; nþ 1. After a ‘‘compatible’’ transformation on CPnþ1

ðe1 7! e2; e2 7! �e1; . . . ; enþ1 7! �en, and enþ2 7! enþ2Þ related to f, on a neigh-

bourhood of ð½v0�; ½e1�Þ A F 2nþ1 HCPnþ1 � CPnþ1�
, the zero locus can be ex-

pressed as ð½x1; . . . ; xnþ1; 1�; ½w1; . . . ;wnþ1; 0�Þ, where there exists l A C such that

ðx1; . . . ; xnþ1Þ ¼ lðw1; . . . ;wnþ1Þ. r

Lemma 3.4. If f A52C nþ2 �
is of full rank, then the corresponding section

sf A H 0ðF 2nþ1;VÞ is transverse to the zero section.

Proof. It is su‰cient to show that there exists X A suðnþ 2Þ such that

fðXge1; gelÞ þ fðge1;XgelÞ0 0 for an arbitrary l ¼ 2; . . . ; nþ 1 under the assump-

tion fðge1; gelÞ ¼ 0 for an arbitrary l ¼ 2; . . . ; nþ 1. In the case that n is even,

we may choose Xl such that Xlge1 ¼
ffiffiffiffiffiffiffi
�1

p
ge1 and Xlgel ¼ genþ2.

If n is odd and ge1 ¼ v0, then Xl may be chosen such that

fðXlge1; gelÞ0 0, because f is non-degenerate on the orthogonal complement

of Cv0 in C nþ2. r

Proposition 3.5. We now assume that n is even. If f A52C nþ2 �
defines a

compatible quaternion structure with the Hermitian inner product h on C nþ2, then

the zero locus of the section sf of V is the twistor space of a quaternion sub-

manifold HPðnþ2Þ=2 of Gr2ðC nþ2Þ.

Proof. From the assumption, there exists a unitary basis fe1; . . . ; enþ2g of

C nþ2 such that f ¼ e15e2 þ e35e4 þ � � � þ enþ15enþ2. The corresponding

quaternion structure is denoted by j.

We denote by sF the real structure of F 2nþ1 [9]. If ð½v�; ½iðvÞf�Þ is in the zero

locus of the section sf, we obtain sF ð½v�; ½iðvÞf�Þ ¼ ð½�jv�; ½ið jvÞf�Þ. This means

that the real structure sF can be restricted to the zero locus and corresponds to

the real structure of CPnþ1 as the twistor space of HPðnþ2Þ=2. r

In the case that n is odd, we define a vector bundle V 0 as V 0 ¼ V lOð1; 0Þ.
Using Lemma 3.1 and Proposition 3.3, we can find a section whose zero locus is

holomorphically isomorphic to CPn. Then, the following proposition is obtained

in a similar way.
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Proposition 3.6. In the case that n is odd, it is assumed that f A52C nþ2 �

defines a compatible quaternion structure with the Hermitian inner product h on

C nþ1, where C nþ1 is the orthogonal complement of Cv0 and v0 A C nþ1nf0g satisfies

iðv0Þf ¼ 0. The corresponding section ðsf; sv0Þ of V 0 is defined in the following way.

The section sf is the corresponding section of V. The linear form v0 is defined as

Ker v0 ¼ C nþ1 and v0ðv0Þ ¼ 1. The section sv0 is the section of Oð1; 0Þ corre-

sponding to v0.

Then the zero locus of the section ðsf; sv0Þ of V 0 is the twistor space of a

quaternion submanifold HPðnþ1Þ=2 of Gr2ðC nþ2Þ.

Using Lemma 3.1 and Propositions 3.5 and 3.6, we know that the vector

bundles V l ðOð1; 0ÞlOð0; 1ÞÞlk has a section of which the zero locus is the

twistor space of HPðnþ2Þ=2�k in the case that n is even and the vector bundle

V 0 l ðOð1; 0ÞlOð0; 1ÞÞlk has a section whose zero locus is the twistor space

of HPðnþ1Þ=2�k in the case that n is odd. Lemma 3.4 yields that each section is

transverse to the zero section.

4. The Chern Classes

Under our notation, V is isomorphic to G �KZ
Ce1 nC n �

. Theorem 3.4 in

[6] assures that the vector bundle G �KZ
C n �

is isomorphic to the pull-back of

an instanton bundle E on Gr2ðC nþ2Þ. The pull-back of E can be obtained by the

monad [5]:

Oð0;�1Þ ! C nþ2 � ! Oð1; 0Þ:

Hence we have cpðEÞ ¼
Pp

i¼0ð�xÞ iyp�i.

Lemma 4.1. The top Chern class cnðVÞ of V on F 2nþ1 equals
P½n=2�

p¼0 x2pyn�2p.

Proof. Since V GEnOð1; 0Þ and c1ðOð1; 0ÞÞ ¼ x, it follows that

cnðVÞ ¼
Pn

p¼0 cpðEÞxn�p ¼
Pn

p¼0

Pp
i¼0ð�1Þ ixn�pþiyp�i. Consequently, we obtain

cnþ1ðV nþ1Þ ¼ cnðVÞxþ
Pnþ1

i¼0 ð�xÞ iynþ1�i, where V nþ1 is defined on F 2ðnþ1Þþ1.

The induction yields our result. r

4.1. n: even. The relation xnþ1 � xnyþ � � � þ ð�1Þnþ1
ynþ1, the definition of

E1 and Lemma 4.1 imply that cnðVÞ ¼ cnðE1Þ and xcnðVÞ ¼ ycnðVÞ. On the other

hand,

cnþ2kðV l ðOð1; 0ÞlOð0; 1ÞÞlkÞ ¼ xkykcnðVÞ;
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cnþ2kðE1Þ ¼ cnðE1Þy2k þ x2m
Xk

q¼1

x2qy2k�2q:

The relation xnþ2 ¼ 0 yields cnþ2kðE1Þ ¼ cnðE1Þy2k ¼ cnðVÞy2k ¼ xkykcnðVÞ.
Thereby, cnþ2kðV l ðOð1; 0ÞlOð0; 1ÞÞlkÞ ¼ cnþ2kðE1Þ.

4.2. n: odd. Lemma 4.1 yields cnþ1ðV 0Þ ¼ xy
Pðn�1Þ=2

p¼0 x2pyn�1�2p. This

equation, the relation xnþ1 � xnyþ � � � þ ð�1Þnþ1
ynþ1 and the definition of E1

imply cnþ1ðV 0Þ ¼ cnþ1ðE1Þ. The relation ynþ2 ¼ 0 yields ycnþ1ðE1Þ ¼ xcnþ1ðV 0Þ ¼
xcnþ1ðE1Þ and cnþ1þ2kðE1Þ ¼ x2kcnþ1ðE1Þ. Hence

cnþ1þ2kðV 0 l ðOð1; 0ÞlOð0; 1ÞÞlkÞ ¼ xkykcnþ1ðV 0Þ ¼ x2kcnþ1ðE1Þ

¼ cnþ1þ2kðE1Þ:

References

[ 1 ] H. Doi and T. Okai, Moduli space of 1-instantons on a quaternionic projective space HPn,

Hiroshima. Math. J. 19 (1989), 251–258

[ 2 ] Y. Kametani and Y. Nagatomo, Construction of c2-self-dual Bundles on a Quaternionic

Projective space, Osaka. J. Math. 32 (1995), 1023–1033

[ 3 ] M. Mamone Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity

1 (1988), 517–530

[ 4 ] Y. Nagatomo, Another type of of instanton bundles on Gr2ðC nþ2Þ, Tokyo J. Math. 21 (1998),

267–297

[ 5 ] Y. Nagatomo, Examples of vector bundles admitting unique ASD connections on quaternion-

Kähler manifolds, Proc. Amer. Math. Soc. 127 (1999), 3043–3048

[ 6 ] Y. Nagatomo, Representation theory and ADHM-construction on quaternion symmetric spaces,

Trans. Amer. Math. Soc. 353 (2001), 4333–4355

[ 7 ] Y. Nagatomo and T. Nitta, Moduli of 1-instantons on G2ðC nþ2Þ, Di¤erential Geom. Appl. 7

(1997), 115–122

[ 8 ] Y. Nagatomo and T. Nitta, k-instantons on G2ðC nþ2Þ and stable vector bundles, Math. Z 232

(1999), 721–737

[ 9 ] S. M. Salamon, Quaternionic Kähler Manifolds, Invent. Math. 67 (1982), 143–171

Institute of Mathematics

University of Tsukuba

Tsukuba-shi, Ibaraki 305, Japan

Mathmatical Institute, 24-29 St. Giles’

Oxford, OX1 3LB, UK

Current Address: Faculty of Mathematics

Kyushu University, Ropponmatsu, Fukuoka, 810-8560, Japan

E-mail address: nagatomo@math.kyushu-u.ac.jp

Singular sets and Poincaré duality 47


