TSUKUBA J. MATH.
Vol. 26 No. 2 (2002), 205-228

SPECTRAL PROPERTIES OF QUASIPERIODIC
KRONIG-PENNEY MODEL

By

Masahiro KamMINaAGA and Fumihiko NAKANO

Abstract. We study some spectral properties of quasiperiodic
Kronig-Penney model. We show the absence of point spectrum in
some situations, and derive a relationship between the spectrum of
this model and that of the corresponding tight-binding model.

1. Introduction

In 1984, Schechtman et al. [22] discovered the quasicrystalline phase in a
metallic solid (an Al-Mn alloy), which is neither crystalline nor amorphous. It
has symmetrical properties inconsistent with crystal structure, and thus it is called
“quasicrystal”. The behavior of electrons in the quasicrystal is described by the
Schrédinger operator with quasiperiodic potential, of which the spectral theory is
far from complete despite intensive researches by many mathematical physicists
since eighties. In fact, most of basic problems are unsolved for dimension larger
than one.

However, in one-dimensional case, the quasiperiodic Schréodinger operators
such as the following tight-binding Hamiltonian on /?(Z) are known to have
interesting spectral properties.

(L.1) (ho(Mu)(n) :==um+ 1) +u(n — 1) + Avg(n)u(n),

(1.2) vp(n) = 4(®(an) +0),

where A is a real constant, y, is the characteristic function of an interval 4 on
the torus R/Z, ® is the canonical projection from R onto R/Z, o€ (0,1), and
6e R/Z. The operator (1.1) is proposed by Kohmoto et al. [14] and Ostlund

et al. [18] in the case of &= (v/5—1)/2, 4 =®([1 —a,1)), and 6 =0. When «
is irrational, wvg(n) is quasiperiodic and by Luck and Petritis [17], the oper-
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ator hp(A) is interpreted as a model describing the phonon spectra in one-
dimensional quasicrystals. In the above-mentioned case (ie., o= (v/5—1)/2,
A=0(1—o,1)), and 0=0), Sutd ([23], [24]) proved that the spectrum of
ho(2) is a Cantor set (i.e., nowhere dense closed set without isolated points) of
zero Lebesgue measure and purely singular continuous. Furthermore, Bellissard
et al. [4] extended Siité’s result to the case where o is an any irrational number.
Delyon-Petritis [7] and Kaminaga [11] proved the absence of point spectrum for
a.e. 0 with respect to the Lebesgue measure under certain conditions.

The operator we study in this paper is a continuous analogue of (1.1) for-
mally given by

d? . .
(1.3) Hy 5:*W+ZV()(1)5(X*J),
jeZ
where ¢ denotes the one-dimensional delta-function, and {¥j(/)};. 7 is a sequence
which takes only two positive values 41,4, (41,4 > 0,4 # A):

(1.4) Vo(J) = 214 (®(%)) +0) + Aoy 4o (P(o)) +0), jeZ.

An explicit definition of (1.3) will be given in the next section. Some interesting
spectral properties of Hy (or variant of that), such as the hierarchical structure,
are discussed in physics literature (e.g., [3], [8], [10], [15], [25], [26]) partly with
the aid of numerical computations. When 1; = 1, = A, Hy is called the Kronig-
Penney model and its spectrum is known to coincide with the following set

(1.5) T(2) = {E € (0,0)|2 cos VE + zSir:/\_E{E € [—2,2]}7

which consists of infinitely many closed intervals ([1], Theorem III.2.3.1). Kirsch-
Martinelli [13] studied the spectrum of the random Kronig-Penney model

d? . .
H? = ——5+ > Ve()dx—)),
X jeZ

where {V'“(j)};c are independent, identically distributed random variables on
a probability space (Q,#,P), and V*(0) satisfies 0 < ¢; < V,(0) < ¢; < oo for
some constants c1,¢, > 0 almost surely. They proved that the spectrum of H®

is given by
(16) X = E( Vmin)v

almost surely, where Vi, = ess-inf{q|q € supp P}.
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In this paper, we prove the absence of point spectrum of Hy, under certain
conditions and show that, in the case of 4 = ®([1 —«,1)), o(Hp) (the spectrum
of Hy) can be represented in terms of a(/y(4)). Our main result (Theorem 4.1)
implies that o(Hy) is related to the family of a(hy(1)) : {a(ho(1)) |4 € C}, where
C is a certain subset of R, and not to a(hy(4)) for a particular value of 4
alone. Moreover, a(Hy) is even related to g(h(0)): the spectrum of free discrete
Laplacian (Cor. 4.1 (1)). We remark that a similar relation is already found in [5],
[26]. Their argument to derive it is to transform the transfer matrix of Hjy into
that of a certain tight-binding Hamiltonian. On the other hand, our argument
described below is to compare corresponding discrete dynamical systems.

The rest of this paper is organized as follows. In section 2, we clarify the
definition of the quasiperiodic Kronig-Penney model. In section 3, we prove the
absence of point spectrum for almost all # under certain conditions (Theorem
3.2) by applying the arguments in [7], [L1]. In section 4, we prove that o(Hy)
is independent of 6, and give an explicit representation of o(Hy) in terms of
a(hg(2)). The argument in section 4 is based on the works of Siité [23], and
Bellissard et al. [4] where they proved a(/h(1)) is equal to the set (which is called
the dynamical spectrum) such that the sequence of traces of transfer matrices is
bounded. We show that a similar fact also holds for the sequence of transfer
matrices of Hy which satisfies the same recursive equation as that of /y(4), and
thus derive a relationship between a(hy(4)) and o(Hy) by comparing initial values
of them.

2. Definition of the Quasiperiodic Kronig-Penney Model

In this section, we define the quasiperiodic Kronig-Penney model, and derive
the transfer matrix of the solution of the equation Hyy = k*y. We define the
formal Schrédinger operator

2
Hy= S V)

jeZ

as the one-dimensional Laplacian

LA, =
0 dx2a

with domain

D(—0g) ={Y e H'(R)NH*(R\Z) |Y'(j+0) —y'(j — 0) = Vy()¥()).j € Z}.
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H?(D) denotes the Sobolev space of order p over an open set D (c=R). The
operator — Ay is self-adjoint on L?(R), and coincides with the unique self-adjoint
operator on L?(R) associated with the closed quadratic form on H'(R) given
by

QW ¢) == (W', 4) + > _ Vo) ()d().

jeZ

(-,-) is the inner product on L?*(R). For proofs of these known facts, we refer
to [1], [9], [13]. By the definition of Hj, the solution of the equation Hypj = kv
is given by

o sin k(x — j) + B; cos k(x —j), (if k> 0),
N (if k=0),

xe(j,j+1), o,peC,
which satisfies
Y(j+0)=y(-0),
Y(+0)—y'(j=0)=V(i)Y()), jeZ.
Let

W,‘ Z:t (oq,,[)’j)ecz, jGZ,

cosk+ (V/k)sink —sink+ (V/k)cosk .
, ( sin k cos k (i k> 0),
(2.2) Ry(k”):= | |
(V 1+V>’ (if £=0).

R(j,k*) == Ry,;)(k*), jeZ,k=>0.
Then we have the following equation
(2.3) W= R(j,k*)w-1, jeZk=0.

We call R(j,k?) the transfer matrix of Hy.

3. Absence of Point Spectrum

In this section, we prove that Hy has no point spectrum for Lebesgue-a.e.
0 under certain conditions. Let us consider the continued fraction expansion
of a,
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1

o =
ar +

a +

with a, € N. The associated rational approximations p,/q, obey

(3.1) Dntl = Qn1Pn + Pn—1,

(3.2) Gnl = @na1 G+ qu-1, 1 =0,

with po=0, go=1, p_1 =1, and ¢g_; = 0. The following facts are well-known
(e.g., [16]).

1

, n>1
qnqn+1

- )

<

(3.3) 'oc—f;:

(3.4)  lguoll = (=1)"(gnor — pn) < |lkel|, k=1,....¢us1 — 1,k # qu,n > 1,

where ||x|| ;= inf,cz|x — n| is the distance from x to Z. As for the spectrum of
hy(2), the following result is known.

THeorem 3.1 (Kaminaga [11]). Suppose that limsup,_ ., a, >4 or A=
O([1 —a,1)). Then hyg(2) has no point spectrum for almost every 6 with respect
to the Lebesgue measure.

REMARK 3.1. Damanik-Lenz [6] has shown that hy(1) has no point spectrum
Sor all 0 € R/Z under the condition: A= ®([1 —a,1)) and limsup,_,., a, # 2.

By using the arguments in [7], [11], we can show the following result which
means the absence of point spectrum under the same assumptions as in
Theorem 3.1.

THEOREM 3.2.  Suppose that limsup,_,., a, >4 or A = ®([1 —a,1)). Then Hy
has no point spectrum for almost every 0 with respect to the Lebesgue measure.

Proor oF THEOREM 3.2. We first consider the eigenvalue equation Hypy =
k*y (k> 0). By (2.1), the solution of this equation is given by
Y(x) = oy sin k(x —j) + B cos k(x —j), xe(j,j+1),

for some (o, ;) € C?. Then k2 € g,(Hy) (k > 0) if and only if the following con-
dition holds.
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1
vl = ZJ |oyj sin kx + f8; cos kx| dx < 0.
jez 0
Iy, is the L?>(R)-norm of . It is easy to verify

: 1/2 —sin 2k /(4k 1 - 2k)/(4k
L|ocjsinkx+ﬁjcoskx|2dx:’Wj(/ sin 2k/(4k) (1 — cos 2k) /( )> ;

(1 —cos 2k)/(4k) 1/2+ sin 2k/(4k)

The least eigenvalue of the matrix in RHS is (1 —k~!|sin k|)/2 which implies

! . 1 sin k
(3.5) Jo |oy; sin kx + f3; cos kx|? dx > 3 (1 _| A |>(|ctj|2 + |/3j|2).

Next, we consider the equation Hypyy = 0. By (2.1), the solution of this equation
is given by

lﬁ(X):OCj“rﬁj(x—j), XG(],]+1)
By the same argument as above, we have

[ 4o vi

(3.6) ) o + B dx = ——— (| + 1)

(3.5) and (3.6) imply that, if ZjEZ(|O(j|2 + |ﬁj|2) = oo, then k? ¢ a,(Hp).
In what follows, we mimic the argument in [11]. Let
E(n) :={0€R/Z|Vy(m — q,) = Vy(m) = Vy(m + q),1 <m < q,},

M :={0eR/Z|c,(Hy) = &},

where ¢, is determined by (3.2). Suppose there exists an integer r such that
Volj = 1) = Vo) = V(i +7),

for 1 <j <r. Then we have

(3.7) max(jw_|, W], [ws,|) > w2,

where |- | is the Euclidean norm in C? ([7], Lemma 1) and hence

limsup E(n) = M.

n— o0

On the other hand, by the same argument as in Kaminaga ([11], Section 2, 3), we
can show
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(a) w(M)=0or 1,

(b) ,u(lim sup E(n)) >0,

n— oo

if limsup,_,,, @y >4 or A =®([1 —0,1)). u denotes the Lebesgue measure on
R/Z. Hence we have

(M) =1,

under that condition which completes the proof. O

4. The Spectrum of H)

From now on, we consider the case where 4 = ®([l —a,1)) and a e (0,1)
is irrational. We prove the following property which corresponds to Lemma 3
in [4].

ProposITION 4.1. Let A = ®([1 —a,1)) and « € (0,1) is irrational. Then the
set a(Hy) is independent of 0 € R/ Z.

PrROOF. Let 7, be the n-shift operator on L?(R):

(tnf)(x):=f(x+n), neZ.

It is easy to see Hy,_qmuy) = t, ' Hp, 7, for any 0, € R/Z, ne Z, thereby unitarity
of 7, gives

(41) J(Hﬂlf(b(mz)) = O-(HHI)'

Since « is irrational, for any 0, € R/Z there exists a sequence of integers {n},,
such that

0<60,—Ona)—60, —0, ask — oo.

In what follows, we prove Hy,_q(n..) — Hp, as k — oo in the strong resolvent
sense. Then by Theorem VIII.24 in [19] and the fact that o(Hp, _o(y,) is inde-
pendent of k, we have

O-(H02) < U(Hﬁl—d)('lw)) = U(H01)7

from which the assertion follows.
Because V() is right continuous and piecewise constant with respect to 0,
it follows that for each je Z, there exists K; such that
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(4.2) Vbl—(D(nkot) (J) = V52 (])’

if k> K;. The resolvent of Hy has the following representation ([1], Theorem
111.2.1.3)

(43)  (Hy— By "y(x) = j Ge(x — y)(y) dy

= S (T, Gl — i) j Ge(y — () v,

ijeZ

where € L?(R), Im E # 0, and

1 _V"Elx
Gp(x) = ———e¢ A
") =5 F

is Green’s function of the free Laplacian. The branch of /—E is chosen such that
Re(v/—E) > 0. Tg g is the bounded operator on /?>(Z) whose (i, j)-component is

Jjj o
(44) (TE~9)U: Vo(lj)+GE(l_J)a l,]EZ.

d; is Kronecker’s delta. Since the operator B: L*(R) — [*(Z) defined by
(B = | Gelx—mp() dx. neZ,pe LXR)
R

is bounded, it suffices to show T% g, @) — TE,0, In the strong resolvent sense.
By (4.4), we have

2

3

2
(TE,0, -0 — Te.0.)ulli22) = Z
iz

1 1 .
< I/bl —O(n0) (]) B ng (])) u(])

for any ue I*(Z). ||- ||z is the *(Z)-norm. By (4.2), the last expression goes
to zero as k — co. Since T g, o and Tg g, are bounded and symmetric, and
since T 1 is uniformly bounded with respect to 0 if |Im E| is sufficiently large,
it follows that T% g, @) — Tk, in the strong resolvent sense. O

By Proposition 4.1, we have only to consider the case # = 0. For the sake
of simplicity, we write H, h(4), instead of Hy, hy(1) respectively. We introduce
the following function to state Theorem 4.1 which is the main result of this

paper.
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2 cos x+/1M, if x> 0),
g1(x) = VA VE (, )
242, (if x=0).

THEOREM 4.1. Let A =®([1 —a,1)) and o€ (0,1) is irrational. Then

o(H) ={E €0, 0)[g,,(E) € a(h(4)), 4 = 91, (E) — g2, (E)}.

The following corollary may be regarded as an analogue of the result of Kirsch-
Martinelli in (1.6).

COROLLARY 4.1.
(1) {n*n[n=1,2,....} < o(H);

(2) o(H) < 2(min{iy,42}), in particular, 0 ¢ o(H).

LemMa 4.1 (Kato [12], Theorem 4.10). Let # be a Hilbert space and B(H)
the set of all bounded operators on #. Let T be self-adjoint and K € B(H) sym-
metric. Then J =T + K is self-adjoint and dist(a(J),a(T)) < ||K||, that is,

sup dist(t,o(T)) < |K||, sup dist(t,a(J)) < ||K].
tea(J) tea(T)

ProOF OF COROLLARY 4.1.
(1) Using Theorem 4.1 and o(#(0)) = [-2,2], we have

g (n’n%) =2 (=1)" € a(h(0)) = a(h(gs, (n*n*) — g3, (n*n?))).

Hence we obtain the inclusion in (1).
(2) At first, assume A; > 4, > 0 and E # 0. It is easy to show X(4;) = Z(4,).
Let

U, = J{E>0|(2n— )n < VE < 2um),

n=1

U_ = G{E>0|2nn< VE < 2n+ 1)z}
n=0
Suppose E € o(H)N U,. By Theorem 4.1, g,,(E) € a(h(4)), where 1 =g,,(E) —
9, (E) = (Ja — A1) sin VE/VE = 0. Then by Lemma 4.1, a(h(1)) = [-2,2+ 1] =
[-2,-24+2)U([-2,2] + 1) (we define C+ A:={a+ A|ae C}, for a set C (cR),
and 4 € R). It follows that g;,(E) € [-2,—-2+ A) U ([-2,2] + 1) and hence at least
one of the following two holds:
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(@) gu(E) <-2<gp(E), or (b) g;(E)e[-22]

E e U, implies ¢,,(E) <2 and hence E € X(4,). o(H) N U- < Z(4,) follows sim-
ilarly. If 0 € o(H), we would have

gAZ(O) =24+ ea(h(lz —ll)) c [—2—1—12 - 11,2],

which is impossible since 1, > 0. Therefore we proved Corollary 4.1 (2) when
A1 > 3. The proof of the other case is similar. O

We recall some notations and definitions used in [4] to state a series of
lemmas, which are necessary to prove Theorem 4.1. Let 7'(n,e) be the transfer
matrix associated to A(4):

-2 -1
T(n,e)::(e lv(n) 0), neZ,eeR.

Moreover, let

M(n,e):=T(qn,e)---T(2,e)T(l,e), n=>1,

M(0,¢) == T(0,¢) = (fl” _01)

M(—1,e) = (é _1/1>

E(nye) :=tr M(n,e), n>-—1.

We collect some properties of these defined above which we use later. These facts
are proved in [4]. When o = (v/5—1)/2, they are proved in [23].

LemmA 4.2 ([4], Lemma 1, Proposition 1).

(1) v(n) =[(n+ o] — [na], [x] :=max{neZ|n < x}.
2) vo(gn+k)=0k), 1 <k <gu1—2, n>1.

(3) v(-=n)=v(m—-1), n>2.
“)

4) (recursive equation)
(4.5) M+ 1,e)=M@n—1,e)M(n,e)™', n=>0.

We recall that a, € N is defined in the fraction expansion of o (section 3).
(5) For each 2 x 2 matrix with det M =1, and a€ N,

(4.6) M*=8,1(E)M — S, 281,
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where & :=tr M, I is the identity matrix, and S,(x) is the Chebyshev polynomial
generated by the following recursive equations.

Sfl(x) = 0, S()(x) = 17 Sl (x) =X,

(4.7) Sa(x) = Su_1(x)x — Sa_n(x).

THEOREM 4.2 ([4], Theorem).
a(h(1)) = By,

where B, := {e € R|the sequence {&(n,e)},_ | is bounded}.

REMARK 4.1. Bellissard et al. [4] also proved o(h()) has zero Lebesgue

measure.

The following lemma is a detailed presentation of Proposition 2 in [4]. For

its proof, we need some notations. We recall that if |x| < 2,
sin(a + 1)0
Su(x) = ——5—, > 1,
) sin ¢ “

where 0 = arccos(x/2) € (0,7). If S,(x) = sin(a + 1)0/sin 0 = 0 for some |x| < 2,
then S,y1(x) = (—1)", where n is uniquely determined by (a + 1)0 = nr. In this
case, we write n = f(x,a) = ((a + 1)/n) arccos(x/2) € N.

LemMA 4.3, Let {M,},~_| be a sequence of 2 x 2 matrices such that det

n=-—1
M, =1 and satisfies the following recursive equation

(48) M, = ]\/[,,,1]\/[;"“7 n>0.

Let &, :=tr M, (n>—1). Then the sequence {&,},__, is uniquely determined if
we specify the initial values &_, &y, &1, and tr(MoM_y), and does not depend on
any particular form of these matrices.

REMARK 4.2.  The same result also holds if {M}" | satisfies the following
recursive equation instead of (4.8).

(4.9) M, =M M.

n+1 —

For the sake of completeness, we give the proof of Lemma 4.3.
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Proor. Fix n (n>1). We aim to represent &, in terms of & for k <n — 1.
We consider two complementary cases:

case (1) there exists k (k=1,...,n) such that S, (&) #0,

case (2) Sy-1(&_1) =0, for all k=1,...,n.

Case (1). We have the following equation whose proof is given below.
(4.10) Eut = (—1)E w0, (E)bk, = Sa-2(En)Ent,
where
g() :=f (&1, a1 —1) €N,

Sa (Ek-1) 1
by = o i el
K Sa—1(Ex1) 2 Sur—1(Ee1) k-2 >1,

K,:=max{keN|l <k <n,S,_1(&_1) #0}.

When K, =n, we define Y ;L g(/) := 0.

Casg (2). We have the following equation.

(1D &= (CDE0S, (&) t(MoM ) = Sy (G
The statement of Lemma 4.3 clearly follows from (4.10), (4.11).
Proor oF (4.10). If K, =n, the derivation of (4.10) is given in [4]. If

K, <n-—1, then S, _1(&1) =0, for k=K,+1, K, +2,...,n. For such k, by
4.6), (4.7),

M) = =Sy (&) = Sq (&) = (=1)/ ST,
Multiplying Mj_, from the left and using (4.8), we have

(4.12) My =(-1D)'""M5 k=K, +1,K,+2,....n

Cast (la). If n and K, + 1 have the same parity, then

M, = (—)ER Py
(4.13)

(n—1-(Kn+2))/2 K, 4242
My = (~DEE T s g

n*®

Casg (Ib). If n and K, + 1 have the opposite parity, then
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("*(K;Hrl))/zg

M, = (~1)ER" 220
(4.14)

(n—1—(Kn+1))/2

M, | = (_1)2170 y(Kn+1+21)MK L
In Case (la), by using (4.8), (4.6), and (4.13), we have
(415) M, = M,HMn””“
= SaHlfl(fn)Mnfan - S(t,,+172(én)Mn71

_ (_1)Z/:Kn+19(1)5a”+1_1 (&) My My

- Sa,,,l—z (én)Mn—l-
On the other hand,
(416) MKn = MKn,QM;fil

= Suy,—1(Ex,—1) Mk, 2 Mg, 1 — Say,—2(Ek,—1) Mk, -2,
(417) MKWMKy,fl = MKI,QM;;’I:"_TI
= Sax, (Ex,—1)Mk,~2Mk, 1 — Say,—1(Ek,—1) Mk, 2.

Combining (4.16) with (4.17), we have

Mk, + Say, - )Mk -
(4.18) My My :Sax,,(fKn—l){ K, + Sag,—2(Ek,—1) Mk, 2}

Sdkn*I (éanl)

— Suy,—1(Ex,—1) Mk, 2.

Suk (éK 71) 1
= 2 Sy — My .
Sal(n_](fK,,—l) Ko SaKn—l(éKn—l) fo2

We used Sg,,—1(k,—1) # 0, and the fact that the quantity S,(x)Sq—2(x) — S?2

a—1 (X) is

constant independent of a: S,(x)S,—2(x) — S2_,(x) = —1, which follows from (4.7).
Combining (4.18) with (4.15), we have

M, i = (_1)Z/:K”+1g(1)san+_1(én)

Sal( (fK 71) )
X | - Mg _
<Sa1<,,1(f](n—1) K SaK,;l(iK”—l) o2

— Sa,—2(E) Moy
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By taking trace, we obtain (4.10). The proof of that in Case (1b) is similar, except
that we use the cyclicity of trace.
ProoF oF (4.11). (4.12) implies
(4.19) My = (—1)ZE A = (<D
if n is odd, and
(4.20) M, = (_1)27519(21)]\40’ M, | = (_1)2}1210(2171)M71’

if n is even. We combine (4.19) or (4.20) with (4.15), depending on the parity of
n. Then

My = (_1)27:lg(l)san+1—l(én)MOM—l =S4 —2(E) My,
if n is odd. If n is even, MyM_;| should be replaced by M_; M. Taking trace, we
obtain (4.11). O
LemmA 4.4 ([4], Proposition 4). {&(n,e)},— | is unbounded if and only if
there exists N; > 0 such that
IEN1 = Le)| <2, [E(Ni,e)| >2, [E(N1+Le)| >2.
Moreover, Ni in uniquely determined, |&(n+2)| > |E(n+ 1)|[|E(n)|/2 for all
n> Ny, and E(n) > 2C% n> N; for some C > 1.
We define the following sets to state the next lemma.

p,={eeR||i(ne)]>2}, nx=-1

LEMmMA 4.5

(1) BS, = U (paNpus1), for any N =0,

(2) pnﬂpn+l = ﬂ Pks for any n=0.

k>n

Proor. By Lemma 4.4,

s

(4.21) BS, = (pyNpy) U ( (- mpnnpm)

n=1

where ¢, := p- (complement is taken in R). Clearly, the equality
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n

Pu Py = (poNp1)U (U (k-1 NV pe Ny ﬂpn+1)> (disjoint union)
k=1

holds for any n > 0. By Lemma 4.4, |&(n,e)] > 2 holds for all n > N; which
implies
n
Pu N Py = (poNp1)U <U(‘7k1 ﬂpknpk+1)>~
k=1

By this equality, p,Np,.; is monotonically increasing with respect to n:
PN Pyt S Pus1 N p,o which gives the second statement of Lemma 4.5. More-
over, we have

.
U (2N put) = (poNpy) U <U (Gu-1Np, ﬂpn+1)> ,
n>N n=1

for any N > 0 which, combined with (4.21), gives the first statement. O

REMARK 4.3. The proof of Lemma 4.5 requires the conclusion of Lemma
4.4 only. The proof of Lemma 4.4 requires | || <2, (4.8), (4.10) (in the case of
K, =n), and the fact that the following quantity is constant with respect to n:

In = ,3_,_1 + é,f + [ZV(MnMnJrl)}z - én+1§n tr(MnMnJrl)a

which follows from (4.8). Therefore, the conclusion of Lemma 4.4 and 4.5 also
holds for any sequence {M,}," | of 2 x 2 matrices which satisfies det M, =1,
|E_1| <2, and (4.8) or (4.9).

We consider the Kronig-Penney analogue of these facts stated above. Let
W(n,E):=R(gn,E)---R2,E)R(1L,E), n>1,
W(0,E) := R(0,E),
W(-1,E) := R;,(E)R;,(E)""

[} )

1 A=A

VE ) (if E>0),

0

1 0 .
(M_b 1), (if £ =0),

r(n,E) :=tr W(n,E).
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Then W(n,E) satisfies the same recursion equation as M(n, E):
(4.22) Wn+1,E)y=Wn—-1,E)YW(nE)"™', n>0.
We define the following sets.

B, :={E€0,0)|{r(n,E)}_, is bounded},

n=-—1
p, ={E€[0,00)]||r(n, E)| > 2}.
In the next lemma, we compare the initial values of the sequence {&(n,e)},~
with that of {r(n, E)}, | by which we have the relationship between a(h(4)) and
o(H).

LEMMA 4.6.
B, ={E€[0,0)|g(E) € a(h(2)), %= g;,(E) — 9., (E)},

B N[0,0)= ) (p,NPp1), for any N =0,

n>N

and  p,Np, = () pe for any n>0.

k>n

ProoF. By (4.22), the sequence {W(n,E)}~ | satisfies the assumption of
Lemma 4.3. Moreover, by Remark 4.3, the conclusion of Lemma 4.4, and 4.5 are

also valid for r(n,E), B, and p, instead of &(m,e), B, and p,, respectively.
Therefore we have the second and the third equality. Lemma 4.3 implies that

o0

the sequence {r(n,E)},_ , is determined by the following initial conditions.
r(=1LE)=2, r(0,E)=gy(E),
r(1, E) = Sa,-1(92,(E)) g, (E) — 284, -2(9, (E)),
tr(W(0,EYW(—1,E)) = g,,(E).

The sequence {&(n,e)},” | is determined by

f(_lve) =2, 5(0,8) =e,
E(1,€) = Sup1(€)(e — 2) — 25, (),
tr(M(0,e)M(—1,e)) =e— A

Let EeX:={E€l0,0)|9,(E)ea(h(l),A=g)(E)—g,(E)}. Then e:=
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g5,(E) € a(h(4)) for 2 :=g,,(E) — g,,(E) and hence by Theorem 4.2, the sequence
{&(n,e)},~_, is bounded. The initial condition of {&(n,e)},” | is

S(=le)=2, £(0,e) =e=yg,(E),
<(1,e) = Su-1(e)(e = 4) — 284, 2(e)
= Sa,-1(9:,(E)) 95, (E) — 284,-2(91, (E)),
tr(M0,e)M(—1,e)) =e—A=g,, (E).

Therefore by Lemma 4.3, r(n,E) = &(n,e) and the sequence {r(n,E)},_ | is
bounded which gives E € B,,. The proof of converse is similar. O

Due to Lemma 4.6, it suffices to show o(H) = By, to prove Theorem 4.1.
In order to do that, we consider a periodic approximation of the operator H:

n d2 n)( .
H" = ol Z Ve (j)e(x — ),
JjeZ

where V() is the periodic sequence given by
VO ()) = 2, (@(f) + orag (@) Awi=[1 =0, 1),

and o, := p,/q, is the principal convergent of o given in (3.1), (3.2).
To discuss the spectrum of the periodic Kronig-Penney model in general
situation, let

d? . .
Hyer = g2t z;f(J)(S(X -
je

where {/(j)};cz is a real-valued, positive, and periodic sequence with period
LeN. Let RE(j,E) be the transfer matrix of Hye : RE(j, E) := Ry(;)(E) (ie., V
in (2.2) is replaced by f(j)) and define

M (E):= RY(L,E)R*(L — 1,E)---RX(2, E)R:(1,E).

Lemma 4.7

o(Hye) = {E € R||tr My (E)| < 2}.

Proor. We consider the direct integral decomposition of H,., (e.g., [21])
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@ do
HJer:J Hereiv
! 0,27) P ( )27[
where
2
Hpe,,(O) = —W, on @9,
Gy :={geH' (1/2,L+1/2)NH*((1/2,L+1/2)\{1,2,...,L})|
g(L+1/2) =eg(1/2),9"(L+1/2) = ¢"4'(1/2),
g (+0)—g'(j-0)=f(N9(j), j=1,2,...,L}.

H,.(0) have purely discrete spectrum for each 6 € [0,2n) (e.g., [2]) and we have

(4.23) o(Hper) = | o(Hper(0)).
0€(0,2m)

Let E € 0(Hper). Then E € a(Hp(0)) for some 0 € [0,2n). Let ¢ € 2y satisty
the equation H,.(0)p = Ep. ¢ has the form as given in (2.1) on (j,j+1)
(j=0,1,...,L) with w;:=(,5;) € C? which satisfies w; = M (E)w,. Since
p€ Py, wp = e”wy. Therefore E € o(H,,(0)) if and only if the corresponding
matrix M (E) has eigenvalue e”. Since det M (E) = 1, eigenvalues of M (E) are
equal to 4,4~ for some 1 e C, and hence 1, 2~' = e*. Therefore |tr M (E)| =
|2 cos 9] < 2. Since tr M (E) € R, the converse is easy to prove. O

Lemma 4.8. (1) If n is even,
(4.24) VO =V ) for —gu—1<j<qu
(2) If n is odd,
(4.25) VG =V (), for —gu+1<j<g,—2.
ProOF. Since V(j) = (A1 — A2)v(j) + 4, it suffices to show v(j) = vl (}),

where v (j) := [(j + Do) — [jouu]. If m is even, o, :=p,/q, < o ([(16], p. 8). A
sufficient condition to have [(j+ 1)a,] = [(j+ 1)a] is

G+ D= 1) = (g = ) < G+ 1l

n

Therefore by (3.4), the condition 1 <j<g,—1 is sufficient to have v(j) =
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v (). By direct computation, we always have v (0) = v(0) = 0 and v (-1) =
v(—1) =1. When j = gq,,
0(¢n) = [(¢n + 1] — [gno]

= [gnot — pn + o] — [gnot — .
Because 0 < ¢,o — py = ||gs|| and o € (0,1), we have v(g,) = 0. Direct compu-
tation gives v")(g,) = 0. Therefore by Lemma 4.2 (3), we obtain (4.24). The proof
of (4.25) is similar. O
In what follows, we let

pr(T) :=p(T)NR,
pi(T) = p(T) N[0, c0),

where p(T) is the resolvent set of an operator 7.

Lemma 4.9. H" converges to H in the strong resolvent sense. Moreover,
P (H") = p,.

Proor. The first statement follows easily by using Lemma 4.8 and the resol-
vent formula (4.3). Let R™(j, E) := Ryw(;(E) be the transfer matrix of H,
When n is even, by Lemma 4.7, 4.8, we have

Pn=1{E = 0[|r(R(qn, E)R(qn — 1, E) --- R(1, E))| > 2}
={E = 0|[tr(R™ (g, E)R" (¢, — 1,E) --- R" (1, E))| > 2}
= py(Hy).
When n is odd, we use the following equality [23]
(4.26) o—gur +1) =o(l), 1<1<q,

which holds if » is sufficiently large. To prove (4.26) for 1 </ <g,—2, we
proceed similarly as in the proof of Lemma 4.8. For / = ¢, — 1, ¢,, we compute
v(—¢n-1 + 1) and v(/) explicitly, and see that they are equal. Then p (H™) = p,
follows from (4.26), the periodicity of v (/), and the cyclicity of trace. O

LemmA 4.10 ([19], Theorem VIIL.24). Let L, L,, be self-adjoint operators on
a Hilbert space, and assume that L,, converges to L in the strong resolvent sense.
Then
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Int( ﬁ pR(Lm)> < pR<L)7

m=1

where Int C is the interior of C in R.

LemMa 4.11 ([23], Lemma 1). Let B be a 2 x 2 matrix with det B=1. Then
max{|r B| | Bul,|Bu[} > [u]/2,

for any ue C?.

PrOOF OF THEOREM 4.1. By Lemma 4.6, it is sufficient to show o(H) = B...
Assume E € B, \o(H) and let

o). ) Zrox) cos VEX,  (if E>0),
76 {X(—1,0)(X)7 (if E=0).

By assumption, the equation (H — E) =f has an L?-solution. In particular,
((H— E)Y)(x) =0 holds for x¢ (—1,0) which implies

y() = | % sin VEG =) + fycos VE(x =), (if £>0)
%+ fi(x = j), (if E=0),

for xe (j,j+1) (j # —1). Since E € B, there exists a constant C > 0 such that
|r(n,E)| < C, for all n> —1.

By (2.3) and Lemma 4.2 (2), we have w,, = W (n, E)Wg, Wy, = W (n, E)*w, which,
combined with Lemma 4.11, imply

(4.27) max{C|wg,[, [Wa, [} = |wol/2.
Let L(n,E) := [R(1, E)R(2,E)---R(¢,, E)]”". By Lemma 4.2 (3),
L(I’l,E) = R(_qn - laE)ilR(_qnvE)il o 'R(_3aE)71R(_2aE)71a

so that we have w_,,_» = L(n, E)W_p, W_p4, 2 = L(n,E)2w_2. On the other hand,
tr L(n, E) = tr K(n, E), where K(n, E) is given by

K(H,E) = R(laE)R(sz)'”R(‘ZmE)» nx=l1,
K(0,E) := R(0,E),

K(-1,E) := R, '(E)R, (E).
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Then det K(n,E) =1 and K(n, E) satisfies the following recursive equation.
(4.28) K(n+1,E)=K(n,E)""'K(n—1,E), n=>0.

By Remark 4.2, and (4.28), we see that s(n, E) := tr K(n, E) satisfies the same
equations (4.10), (4.11), and initial conditions as r(n, E). Therefore tr L(n, E) =
s(n,E) =r(n,E) so that |tr L(n, E)| < C. By using Lemma 4.11 again, we have

(4.29) max{C|w_g, 2|, |W_2q, 2|} = |W_5|/2.

Therefore since € L*(R), (4.27) and (4.29) implies wo =w_, =0 and thus

Y(x) =0 for x ¢ (—1,0). Moreover, from the continuity of y, we have (0) =
Y(=1)=0 and ¥'(0) = ¢'(—1) = 0. Since Y(j) =0, je Z,

d2

dx?

Y =Ey+feL*R),

where the derivative in LHS is taken in the sense of distribution. Therefore
W e H*(R). If E >0, by the definition of H,

(4.30) If11z = (H = E), f)

0

:—JO " (x) cos VEx dx—EJ Y(x) cos VEx dx.
—1 -1

Take ,(x) € Cy(R) such that ¥, —  as n— oo in H*(R). Then
0 0
J Y"(x) cos VEx dx = lim J Y, (x) cos VEx dx.
-1 e )

By integration by parts,

n

JO W (x) cos VEx dx

1

= i(x) cos VER, + VE | " 0(x) sin VEx dx
1

= [y, (x) cos \/Ex](il + VE[y,(x) sin Ex]g1 — Ejol ,(x) cos VEXx dx.

By Sobolev’s embedding theorem (e.g., [20], Theorem 1X.24), wff)( j)— lp“) (j)=0
as n— oo for [ =0,1, and j= —1,0. Thus
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0

JO " (x) cos VEx dx = —EJ ¥(x) cos VEx dx,

which, together with (4.30), concludes f = 0 and hence contradicts the assump-

tion. If £ =0,
1£113 = (H, )

=— Jil " (x) dx

0
= — lim J W) (x) dx
-1

n— o0

= — lim (Y(0) — /(1))

n— o0
=0.

E > 0. Lemma 4.6
implies E € p,N p,,; for some n >0 which can be taken sufficiently large, and
then Lemma 4.9 implies E € p, (H™)Np (H"™M). Since E # 0, we have E €
Int(p, (H™)N p, (H"V)). Therefore

Therefore we obtain B, < a(H). Conversely, take E € B¢

o0

Ee Int(ﬁn N ﬁll+1)

= Int( N ﬁk>

= Int< N p+(H(k))>

k>n

< pR(H)7

where we used Lemma 4.6 and 4.10. If 0e B, then 0€p,Np,, , for some
n>0, and [0,6) = p, (H")Np, (H" D)=, p,(H®) for some & > 0. Since
(—00,0) = pr(HW) for all k > 0, we have (=6,6) = ()., pr(H*)) and conclude

0elnt () pr(H®) < pp(H).

k>n

Thus Theorem 4.1 is proved. O

REMARK 4.4. The inequalities (4.27), (4.29), together with the argument in the
proof of Theorem 3.2 also show the absence of point spectrum of H.
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