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Introduction

Let B denote a submanifold of the unit sphere in Rn and Cg the cone over B,

which is the union of rays starting from the origin and passing through B.

A cone is called area-minimizing if the truncated cone ClB inside the unit ball

is area-minimizing among all surfaces with boundary B. The surfaces we willuse

are integral currents. A tangent cone to surface S at a point p e S can be thought

of as the union of rays starting from p and tangent to S at p. This is the gener-

alization of the notion of tangent plane. If the tangent cone at p is not a plane,

then p is a singular point of S. If S is area-minimizing, then each tangent cone to

S is area-minimizing. Thus in order to study area-minimizing surface with singul-

arities,we need to know which cones are area-minimizing.

G. R. Lawlor proposed a criterionfor area-minimization in [5].His principal

idea is to construct an area-nonincreasing retraction II : Rn ―*C. If S is another

surface which has the same boundary as CB, it will follow that

vol(S) > vol(n(5)) > vol(Ci)

since 11(5') must cover all of CB. Using this method, he gave a complete classifi-

cation of area-minimizing cones C over products of spheres and the firstexample

of minimizing cone over a nonorientable manifold. In order to construct the

retraction he solved a differentialequation with numerical analysis.

In this paper, we consider the canonical imbeddings of symmetric i?-spaces

which are linear isotropy orbits of symmetric pairs. Using root systems, we con-

struct area-nonincreasing retractions concretely.

In section 1 we prepare some notation and terminology, and prove an

essential theorem (Theorem 1.6) for construction of the retractions.In section

2 we describe the canonical imbeddings of symmetric i?-spaces, and construct
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retractions onto the cones over them. In section 3 we apply the result of section 2

to symmetric i?-spaces associated with symmetric pairs of type 2?/.

Concerning the cones over symmetric i?-spaces, B. N. Cheng [1] proved the

cone over U(n)/O(n) and U(n) are area-minimizing in R"2+n for n > 7 and R2"2,

respectively, by calibration. G. R. Lawlor [5] proved the cone over SO(n) are

area-minimizing in Rn . Using the criterion of Lawlor in [5], M. Kerckhove [4]

proved the cone over an isolated orbit of the action of SU(n) on the unit sphere

in the vector space of traceless n-hy-n Hermitian symmetric matrices is area-

minimizing for n > 2 and the cone over an isolated orbit of the adjoint action of

SO(n) is area-minimizing for n > 3.

The authors would like to thank the referee for reading carefully the manu-

script and for pointing out some mistakes in it.

1. Preliminaries

Let G be a compact connected Lie group and 9 an involutive automorphism

of G. We denote by Ge the closed subgroup of all fixed points of 9 in G. For a

closed subgroup K of G which lies between Go and the identity component of

Gq, (G,K) is a Riemannian symmetric pair. Let g and f be the Lie algebras of G

and K respectively. The involutive automorphism 9 of G induces an involutive

automorphism of g, which is also denoted by 9. Since K liesbetween Ge and the

identity component of Ge, we have

1={Xeq＼9(X) = X}.

An inner product <, > on g which is invariant under the actions of Ad(G) and

9 induces a bi-invariant Riemannian metric on G and (/-invariant Riemannian

metric on the homogeneous space M = G/K, which are also denoted by the same

symbol <, >. Then M is a compact Riemannian symmetric space with respect to

<, >. Conversely any compact symmetric space is constructed in this way. Put

m={XEQ＼9(X) = -X}.

Since 9 is involutive, we have an orthogonal direct sum decomposition of g:

g = f + m.

This decomposition is called a canonical decomposition of the orthogonal sym-

metric Lie algebra (g, 9).

Take and fix a maximal Abelian subspace a in m and a maximal Abelian

subalgebra t in g including a. Let c be the center of g and g' = [g,g]. We have an



Area-minimizing cone 173

orthogonal direct sum decomposition:

g = c + g'.

We set

a' = aflg', cm = cflm.

We have an orthogonal direct sum decomposition:

a = cm + a'.

Put

b = tni

Since t is ^-invariant we get an orthogonal direct sum decomposition of t:

t = b + ct.

For a g t we put

9a = {* e gc |[H, X] = V=T<a, H>X(H e t)}

and define the root system R(q) of g by

i?(g) = {aet-{0}|ga*{0}}.

We also denote R instead of R{q). For a e a we put

ga = {X e gc |[H, X] = ^T<a, H}X(H e a)}

and define the root system i?(g,I) of (g,f) by

i?(g,f) = {aea-{0}|ga#{0}}.

We also denote R instead of i?(g,I). Put

i?0(g) = i?(g)nb

and denote the orthogonal projection from t to a by H i―>H. Then we have

i?(g,f) = {a|a£i?(g)-i?0(g)}.

We extend a basis of a to that of t and define the lexicographic orderings >

on a and t with respect to these bases. Then for H e t,H > 0 implies H > 0. We

denote by F(q) the fundamental system of R(q) with respect to the ordering >.

We also denote F instead of F(q). Put

^o(g) = ^(g)ni?o(g).
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Then the fundamental system F(g, I) of R(q, I) with respect to the ordering > is

given by

F(g,!) = {a|ae#(g)-F0(g)}.

We define positive root systems by

J?+(g) = {aejR(g)|a>0}

i?+(g,f) = {aei?(g,f)|a>0}.

We also denote R+ and R+ instead of i?+(g) and R+(q, f). Then

i?+(g,f) = {a|aei?+(g)-^o(g)}

holds. We set

io = {Xel＼[X,H]=O(H £a)}

and

!a = fn(ga + g_a)

ma = mn(ga + g_a)

for aei?+(g, I). We have the following lemma ([2]).

Lemma 1.1. (1) We have orthogonal direct sum decompositions:

f = fo + Y^ f≪, m = a +

cteR+

(2) For each a e R+ ―Ro thereexistS^el and Ta e m such that

{Sa|a e R+, a = A}, {7a|a e R+, a = 2}

≪rerespectivelyorthonormal bases of lx, m^ a≪<if/?a?/or H e a

[H,Sa] = <a,#>7a, [//,ral= -<a,if>5a.

We denote mi = dim m^ = dim 1^ and callit the multiplicityof X.

We define a subset D of a by

D= U{Hea＼(a,H} = 0}.
aeR

Each connected component of a ―D is called a Weyl chamber. We define the

fundamental Weyl chamber by
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Its closureis given by
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{Hea＼(a,H}>0 (aeF(g,I))}

C = {Hea＼<a,H}>0 (aeF(g,f))}.

For each subset AcF = F(q,I) we define a subset CA of C by

CA = {HeC＼(oi,H}>O (oteA),(P,H> = Q {P e i7 - A)}

We easilyget the followinglemma.

Lemma 1.2. (1) For Ai <=F

u

AcA

CA

is a disjointunion. In particular

(2) For Ai, A2 c F, Aj c A2

C = Uacf^A a disjointunion,

if and only if CAl c C^.

For /?e F we take Hp e a' satisfying the following condition.

We have

and for A c F

<<x,fl≫ =

C = cm x

CA = cm x

{

{: (≪ =

cceF

aeA

fi)

fi)

?a>0
i

t*>0>

175

For H m we put

ZH = {geG＼Ad(g)H = H},

Z% = {keK＼ Ad(k)H = H}.

Z% = ZH flK holds.ZH is a closed subgroup of G and Zjf is a closedsubgroup

of K. We can prove the followinglemma by the standard argument of compact

Lie groups, so we omit its proof.
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Lemma 1.3. ZH is connected,

For AcF we put

NA {geG＼Ad(g)CA = CA}

ZA = {geG＼Ad(g)＼cA

NA {keK＼Ad(k)CA

= 1}

= CA}

Z* = {keK＼Ad(k)＼cA = l}

By the above definitionswe have N£ = NaHK and Z| = ZA (1K. ZA is a closed

subgroup of G and Zj£is a closed subgroup of K. If H e CA, then

ZA <^ Z^ ZA c- z^

We put

and

i?A = i?n(F-A)z

i?A = RA (1R+

gA = l0 + a + ^ (!a+ ma)

fA = gAn! = fo+ Via

mA = gA H m = a + Y~] ma

aei?f

We have an orthogonal directsum decomposition:

qA = lA + mA.

Lemma 1.4. For A cz F and H e CA, we obtain the following equations.

(1) i^ = {aGi?+|<a,If> = 0}

(2) RA = {a e R |<a, H} = 0}

(3) 9A = {X£g|[/f,11=0}

Proof. Any cceR+ can be writtenas follows

a g Y^ nyy (nv E %, ny > 0).

yeF
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yeF

nY<y,H} 5>y<y,#>.

yeA

From this<a,i/> = 0 if and only if cceR+. Therefore we obtain

R$ = {a e R+＼<a,H> = 0}.

This implies

RA = {a e i? |<a,//> = 0}

Any X 6 g can be written as follows:

x = so+j2a≪s≪ + T°+Yl b≪T≪'
oceR, a eR+

where So e fo and To a. It follows from Lemma 1.1 and (1) that

[H,X] = V a≪<0L,H}Ta- V b^HyS*.
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From this [H,X] = 0 if and only if IegA. Therefore we obtain

qa = {Xeq＼[H,X}=0}.

Lemma 1.5. (1) Take Au A2 <= F, Hx e CAl, H2 e CAl and g e G. IfAd(g)Hi

= H2i then Ad(fif)gA>= gA^.

(2) If AczF, then NA a N(qA). For any H e CA, all of ZH, ZA, NA and

N(qa) are compact subgroups of G and all of theirLie subalgebras coincide with

9A-

Proof. (1) By Lemma 1.4 gAl is the centralizer of H＼. Ad(g)gAl is the

centralizer of Ad(g)H＼ = H2, so is equal to gA2.

(2) (1) with Aj = A2 = A implies NA c N(qa). Zh and N(qa) are compact

subgroups in G.

Since gA is the centralizerof H by Lemma 1.4,the Lie algebra ££(ZH) of ZH

is equal to gA.

We show that the Lie algebras if (ZA), &(NA) and if(N(qa)) of ZA, NA

and N(qa) are allequal to gA. By their definitionsZA cz NA c #(gA). ZA, ./V(gA)

is a closed subgroup of G, so we have if (ZA) <= J^(iV(gA)). Any element X of gA

can be written as follows:



178 Daigo Hirohashi, Takahiro Kanno and Hiroyuki Tasaki

X = S0 + ^2 floA + ^o +
<xeR$

(So g f0, To £ a)

From thiswe get X e J^(ZA), hence gA c J^(ZA). Therefore

gA c ^(ZA) c=if(N(qa))

Conversely we assume an element

X = So + V ≪oA + r0 + V KTa {So e Io,To e a)
asR+

in g is contained in =Sf(A^(gA)).Since

aeR+

[h,x＼ = V ≪.<≪,#>ra - J2 b≪<aiH>s*

xeR+

we obtain X e gA. Therefore we get

oieR,

NA satisfiesZA c 7VA c iV(gA) and ^(ZA) = ^(7V(gA)). So iVA is also a

compact subgroup of G and J£(NA) = gA holds.

Theorem 1.6. For any Acf and H e CA

ZA = ZH = NA, ZA = Z" = NA

Proof. By the definitionwe have ZA c ZH and by the above lemma their

Lie algebrascoincides.Moreover ZH is connected by Lemma 1.3,so we obtain

ZA = ZH.

ZA and NA are compact and have the same Lie algebra gA. SinceZA is the

kernel of the homomorphism

Ad : NA ―>The permutation group of CA,

ZA is a normal subgroup of NA and NA/ZA is a finitegroup. For any g e NA,

the action of Ad(g) on CA has a finiteorder, that is, thereis an integer N

satisfyingAd(g)N＼CA= 1. Take Hq e CA and put

H＼=^ {Ho + Ad(g)H0 + ■■■+ Ad(g)N-lH0).

Each Ad(g)lHo is contained in CA and CA is convex, so we get Hi e CA.

Ad(g)Hi = Hi holds and g e ZHi = ZA. Hence 7VA c=ZA and we obtain

ZA = 7VA.

The second equation follows from the firstone.
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2. Construction of Retractions

The notation of the preceding section will be preserved. Let B be a compact

submanifold of the unit sphere in Rn. We call CB = {tx＼xe B, t > 0} the cone

over B. CB is said to be area-minimizing if CB = {tx＼xe B, 0 < t < 1} has the

least area among all surfaces with boundary B.

For an unit vector H e C, the orbit Ad(K)H is a submanifold of the unit

sphere in m. Then the mapping

f:kZg*-+ Ad{k)H,

is a diffeomorphism of the homogeneous space K/Z^ to Ad(K)H.

Proposition 2.1. The orbit Ad(K)H is connected.

Proof. Since m= ＼JkeK Ad(k) ■a, where Ko be the identity component of K,

for any Ad(k)HeAd(K)H there existsan element k＼eKq such that Ad(k＼k)Hea.

From Proposition 2.2 (p. 285) of [2],there existsa member of Weyl group whose

action on a is represented by Ad{ki) for some k2 e K$ such that Ad(k＼k)H =

Ad(k2)H. If we put ko = k＼xk2 e Ko, then Ad{k)H = Ad(ko)H holds. Thus we

get Ad(K)H = Ad(K0)H and it is connected.

From now on we assume that (G,K) is irreducible.

Let F(g,!) = {aj,... ,a/} be the fundamental root system and a =

72iai + ＼-≪/a/ be the highest root of i?(g, f). Select a, e F(g,f) such that nt = 1,

we put ao = ≪/ and v4o = i/ao/|i/aJ. It is known that/is an isometry of K/Z^-0

with the normal homogeneous Riemannian metric multiplied some constant

onto Ad(K)Ao and that K/Z^° is a symmetric space. We call this space a

symmetric R-space, and / its canonical imbedding. Because Ad(K)Ao is an isolated

orbit, A&(K)Aq is a minimal submanifold of the unit sphere in rrt by a result of

Hsiang [3]. Hence the cone C＼d(K)A0 ls a*s0 a minimal submanifold of m ([6] p. 97,

Prop. 6.1.1). The purpose of this articleis to prove CAd(K)Ao is an area-minimizing

cone.

Proposition 2.2. Let V and W be two vector spaces with inner products.

Suppose n = dim W < dim V. For a linear mapping F of V to W we put

JF = SUP{|F(wi) A ･･･ A%)|},

where u＼,...,un runs over all orthonormal vectors of V. If F is not surjective,then
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JF = 0. If F is surjective,then JF coincides with

|%)A-A%)|,

for an orthonormal base v＼,...,vn of (keri7)1.

Let B be a compact submanifold of the unit sphere in m. We calla dif-

ferentiableretraction<X>: m ―>Cb a area-nonincreasingif

J{d<bx) < 1. (1)

for x m.

Proposition 2.3. The cone Cb over a compact submanifold B of the unit

sphere in m is area-minimizing if there exists an area-nonincreasing retraction

<D: m -> CB-

Proof. Let S be a surfacein m with boundary B. Since C＼<=R(S), we

have vol(Cg) < vol(O(5')).Let e＼,...,enbe an orthonormal frame of S, then

vol(O(5))=
f
＼d<l>{elA---AeH)＼dfis

Js

<
f

J(dRx)djus
JS

<
f

dps
JS

= vol(S).

Consequently,

vol(Cl) < vol(O(5)) < vol(S).

This proves the proposition.

We shallnow consider a way to constructarea-nonincreasingretractions.

Lemma 2.4. Suppose <f>is a mapping of C into itselfsuch that </>{CA)c: CA

for each A <=F(g,f). Then (/>extends to a mapping <$>of m as

for each X = Ad( k)H em (keK,HeC).
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Proof. Suppose k＼,kieK and H＼,HieC satisfy AA(k＼)H＼ ― Ad(k2)H2.

Then Ad(k2lk＼)H＼ = Hi e a and we have H＼ = Hi, because each orbit of the

Weyl group on a intersects C in exactly one point ([3], p. 293, Th. 2.22). Let

A = {aeF＼(a,HO>0}.

We have H＼ e CA and (j>{H＼)e CA by the assumption of <f>.Thus Theorem 1.6

implies

therefore Ad(A:2"1A:1)^(i/1) = </>(Hi).

From Lemma 2.4, we have the following.

Proposition 2.5. Let </>:C ―> {tA0＼t > 0} be a differentiable mapping. Denote

(f)[x)= f(x)Ao. If f satisfies f(tA0) = t (t > 0) and fl^^ = 0, then <$>extends to

a differentiable retraction <X>: m ―> Ca<i(k)Ao-

In this case ^> is area-nonincreasing if and only if (I) holds for each x e C.

We will compute J(d$>x) of <J>in Proposition 2.5 for x e C.

Proposition 2.6. We denote R+(Aq) = {A

J(d*x) = |grad(/)|
n

AeR+(A0)

eR+KlAo

<^4o>

>>0}

(2)

Proof. If f(x) = 0, then the both sides of the equation are 0. So we

consider the case f(x) # 0. By the definition of $, dRx(a) c RAq. By using the

equation

d_

It
Ad(exp tSa)x

for a R+(q), a^O, we have

From thiswe get

d<bx(Ta)=

= -<≪

<≪,#(*)>

<a,x>

*>ra

ra

dRx( Y^m*)c Yl mA
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so we can write

J(d<S>x)= Jl{x)-J2(x),

J1(x)=J(d<$>x＼a),

J2(x) = J(dd>x＼^mi)

Take a unit vector v in a

Therefore

dd>x(v) = djx(v)

= dfx{v)A0

= <grad(/),i;Mo.

J＼(x)= max{|fif >x(u)|＼ve a,＼v＼― 1}

= |grad(/)|.

Secondly for hix), we see the kernel of d<!>x＼spm. By the above expression

of dRx(Ta) we get

We

ker

can take

He-)1-

J2M

ker(***l$>) =
£

<Mo>=O

m;.

{Ta＼oce R+(q), <a, Aq} > 0} as an orthonormal base of

It follows that

A d*x{T.)
aeR+

<<x,/lo>>O

n

XeR+(A0)

where mA is the multiplicityof X. So we have

J{dQ>x)= |grad(/)| I]
f<^

fix)

3. Construction of Area-nonincreasing Retractions

Theorem 3.1. The cones over

5*0(2/+1)

50(2) xS0(2l-l)

)

SO(l) x SO(l + n)

S'(OU-l) x o(l + n-＼))
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corresponding to symmetric pairs

(S0(2l+ I)2,SO(2l +1)) (SO(2l + n),SO(l)xSO(l + n)) (n>2)

respectivelyare area-minimizing, where

S'(O(l- l)x0(/ + w-l))

A

= <

e

＼ b)

e SO(l) x SOU + n)
e = ±l,AeO(l-＼)

BeO(l + n-l)

>
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Proof. We consider symmetric pairs of type 2?/. Let £i,...,£/ be an

orthonormal basis of the maximal Abelian subspace o such that all roots are

+£;± Sj (1 < I < j < /), +£/ (1 < I < /).

Then for a suitable ordering

F(&*) = {ai,a2,...,a/_i,oc/},

a,-= £t- e/+i (1 < i < I), ≪/= £/,

Ha, =£!+■･･+£/ (1 <i<l),

a = ai + 2a2 H h 2a/ = £i+ £2

and we nut

We have

R+(A0) =

Ao

fr}u{&'

U<5c

k
E

i=2

a,-

2<k<l

2<k<l-l

}

Wi

Because the multiplicitiesof roots of same length coincide with each other,

we can denote by mi the multiplicityof the YlLi a* anc* ^y m2 tne multiplicityof

the rest. For x = y＼(_,x,i/a.e C we define
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f(x) = >/<ai,x><a,x> = xi(x＼+ 2x2 H 1-2xi)

then it satisfiesProposition 2.5. Using (2), we calculate J(d<frr).Since

we get

Xi -＼ ＼-Xi
7

SH ^'^

/i(x) = |grad(/)| =

We also obtain

Mx)

Therefore

For any k,

(
/

<£/=!≪/>*>

J(d<bx) =

E

i=＼

)mx

X

dxi

/-I
n

k=2

a,-

<ai,s)2 + <g,s)2

2<ai,x><a,x>

1-1/

k=2＼

{t

""x

){

*-

t

2<

/ *

＼l=l

<≪1

(Xi,Xj

x>2 + <a,x>2

ai,x><a,x>

V<ai,x)<≪,*)＼

<ai,x)<g,x)

oti,x

＼

<a,x

x><a,x> +

>-(Ea^)(Ea''x)

= <ai,x><a,x> +

> <ai,x><a,x>,

/ k

＼i=2

GCj,Xj <a,

(i≪"){

*>

<a,x>

/ *

Oti.X

)

>{§

(I

f""*

))



hence

On the other hand

Therefore
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<oci,x><a,x>

<Eti ≪/>*><≪-

it""') -<<xi,x><a

=

{p

"x

)

£,=2 ≪/.*>

*>

-<ai,x>

■(§-')(§

=(S*'*) >0.

＼≪=1

a,-, x

＼

v/<ai,x><a,x>

We consider the case m＼> 2 and let

A = Ji(x)

If A < 1 then J(dd>x) < 1

A2

(

a,- +

< 1

t

;=2

<ai,*>

<*i,x)

＼i=2

< 1

/ ＼2V<ai,x)<g,s)＼

<£Li≪/,*>
)'

<ai,x>2 + <a,x)2 <ai,x>2<a,.y>2

2<a,,*><a,*> <£;=1a,,*>4

8≪ai,x>3<a,x> + <ai,x><a,x>3)

a,-, x

＼

≪a,x> + <ai,x≫4

Here subtractingthe numerator from the denominator we have

≪a,x> + <abx≫4 - 8≪ai,x>3<a,x> + <ai,x><a,x>3)

= ≪a,x>-<ai,x≫4>0.

Therefore if m＼ > 2, we get J(d<$>x)< 1

185
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There are two kind of symmetric pairs: (i) m＼ = n (n>2), mi = 1 and (ii)

m＼ = mi = 2.

(i) {G,K) = (SO(2l + n),SO(l) x SO(l + n)). It is denned by the involution:

Then

%) = In+ngli,l+n (geS0(2l + n))

g = so(2/ + n)

1 = *o(/)

{X e M2l+n{R)＼X+

X so(/ + ≪)

l( °

m = <

-{(:
y

xeM,i+n(R)

Since m is isomorphic to Mij+n(R)

through thisidentificationis

hj+n

lx 0}

( -//

0 Il+J

xe so(l),y e so(/ + ≪)

1

= Mu+n(R)

}

we identifythem. The action of K on m

"(5 ?)■* kx'k'

We define an Ad (K) -invariantinner product on m by

<JT,F> = Trace('lT) (X, Yem)

Let

I/O

a = <

I

■■

*

3-C

.･))

tl /

t(eR >

Then a is a maximal Abelian subspace in m. Next, we consider a root space

decomposition of m with respect to a. Let Epq be a matrix whose (/?,g)-entry is 1

and all other entries are 0. Then



Since AQ = ei
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£p ― Epp

l+n

q=l+＼

msp-sq = *£＼Eipq+ ■t'qp),

mEP+Bq = R{Epq ~ Eqp)-

= E＼1, we have

Zi° = S'{O{l-l) x 0(1+ n-I))

Hence the corresponding symmetric i?-spaceis

SOU) x SO(l + n)

that
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S'{O{l-l) x 0{l + n-＼))'

(ii)(G,K) = (SO(2l+l)＼SO(2l+l)). It is defined by the involution such

%1,02) =

Then

9

I

Ofe,0i) ((01,02) e 50(2/+1)).

= so(2/+l) xso(2/+l),

= {(X,X)|XG5O(2/+1)},

m = {(x, -x)＼xe so(2/+ 1)} ^ so(2/+ 1).

Since m isisomorphic to so(2/+ 1),we identifythem. The action of K on m

through thisidentificationis

Ad(fc)･x = kx'k {k e SO(2l + 1),x e so(2/+1)).

We define an Ad (K) -invariantinner product on m by

<JT,F> =
iTrace(rJr7)

(X, Fern).

Let

a = < t =

0/

<-
0

-u
") ,tteR c= m = so(2/ + 1).
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Then a is a maximal Abelian subspace in m. Next, we consider a root space

decomposition of rrx with respect to a. Let Gpq = Epq ―Eqp. Then

Ep = G2p-＼,2p-,

mEp = RG2P-i,2i+i + RG2P,2i+＼i

m£/j_£(?= R(G2p-＼,2q-＼― G2p,2q)+ R(G2p-l,2q + Glp,2q-l),

msp+Sa = R(G2p-＼,2q-l+ G2p,2q)+ R{G2p-＼,2q~ G2p,2q-＼)-

Since An ―gj = Gn, we have

Z^°= S0{2) xS0(2!-l)

Hence the corresponding symmetric i?-spaceis

SO(2l+ 1)

[1]

[2]

[3]

[4]

[5]

[6]

S0{2) xS0(2l- I)'
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