AREA-MINIMIZING OF THE CONE OVER SYMMETRIC R-SPACES

By
Daigo Hirohashi, Takahiro Kanno and Hiroyuki Tasaki

Introduction

Let B denote a submanifold of the unit sphere in \mathbb{R}^{n} and C_{B} the cone over B, which is the union of rays starting from the origin and passing through B.

A cone is called area-minimizing if the truncated cone C_{B}^{1} inside the unit ball is area-minimizing among all surfaces with boundary B. The surfaces we will use are integral currents. A tangent cone to surface S at a point $p \in S$ can be thought of as the union of rays starting from p and tangent to S at p. This is the generalization of the notion of tangent plane. If the tangent cone at p is not a plane, then p is a singular point of S. If S is area-minimizing, then each tangent cone to S is area-minimizing. Thus in order to study area-minimizing surface with singularities, we need to know which cones are area-minimizing.
G. R. Lawlor proposed a criterion for area-minimization in [5]. His principal idea is to construct an area-nonincreasing retraction $\Pi: \boldsymbol{R}^{n} \rightarrow C$. If S is another surface which has the same boundary as C_{B}^{1}, it will follow that

$$
\operatorname{vol}(S) \geq \operatorname{vol}(\Pi(S)) \geq \operatorname{vol}\left(C_{B}^{1}\right)
$$

since $\Pi(S)$ must cover all of C_{B}^{1}. Using this method, he gave a complete classification of area-minimizing cones C over products of spheres and the first example of minimizing cone over a nonorientable manifold. In order to construct the retraction he solved a differential equation with numerical analysis.

In this paper, we consider the canonical imbeddings of symmetric R-spaces which are linear isotropy orbits of symmetric pairs. Using root systems, we construct area-nonincreasing retractions concretely.

In section 1 we prepare some notation and terminology, and prove an essential theorem (Theorem 1.6) for construction of the retractions. In section 2 we describe the canonical imbeddings of symmetric R-spaces, and construct
retractions onto the cones over them. In section 3 we apply the result of section 2 to symmetric R-spaces associated with symmetric pairs of type B_{l}.

Concerning the cones over symmetric R-spaces, B. N. Cheng [1] proved the cone over $U(n) / O(n)$ and $U(n)$ are area-minimizing in $\mathbb{R}^{n^{2}+n}$ for $n \geq 7$ and $\boldsymbol{R}^{2 n^{2}}$, respectively, by calibration. G. R. Lawlor [5] proved the cone over $S O(n)$ are area-minimizing in $\boldsymbol{R}^{\boldsymbol{n}^{2}}$. Using the criterion of Lawlor in [5], M. Kerckhove [4] proved the cone over an isolated orbit of the action of $S U(n)$ on the unit sphere in the vector space of traceless n-by- n Hermitian symmetric matrices is areaminimizing for $n>2$ and the cone over an isolated orbit of the adjoint action of $S O(n)$ is area-minimizing for $n>3$.

The authors would like to thank the referee for reading carefully the manuscript and for pointing out some mistakes in it.

1. Preliminaries

Let G be a compact connected Lie group and θ an involutive automorphism of G. We denote by G_{θ} the closed subgroup of all fixed points of θ in G. For a closed subgroup K of G which lies between G_{θ} and the identity component of $G_{\theta},(G, K)$ is a Riemannian symmetric pair. Let g and \mathfrak{f} be the Lie algebras of G and K respectively. The involutive automorphism θ of G induces an involutive automorphism of \mathfrak{g}, which is also denoted by θ. Since K lies between G_{θ} and the identity component of G_{θ}, we have

$$
\mathfrak{f}=\{X \in \mathfrak{g} \mid \theta(X)=X\} .
$$

An inner product \langle,$\rangle on \mathfrak{g}$ which is invariant under the actions of $\operatorname{Ad}(G)$ and θ induces a bi-invariant Riemannian metric on G and G-invariant Riemannian metric on the homogeneous space $M=G / K$, which are also denoted by the same symbol \langle,$\rangle . Then M$ is a compact Riemannian symmetric space with respect to \langle,$\rangle . Conversely any compact symmetric space is constructed in this way. Put$

$$
\mathfrak{m}=\{X \in \mathfrak{g} \mid \theta(X)=-X\} .
$$

Since θ is involutive, we have an orthogonal direct sum decomposition of \mathfrak{g} :

$$
\mathfrak{g}=\mathfrak{f}+\mathfrak{m} .
$$

This decomposition is called a canonical decomposition of the orthogonal symmetric Lie algebra (\mathfrak{g}, θ).

Take and fix a maximal Abelian subspace \mathfrak{a} in \mathfrak{m} and a maximal Abelian subalgebra t in \mathfrak{g} including \mathfrak{a}. Let \mathfrak{c} be the center of \mathfrak{g} and $\mathfrak{g}^{\prime}=[\mathfrak{g}, \mathfrak{g}]$. We have an
orthogonal direct sum decomposition:

$$
\mathfrak{g}=\mathfrak{c}+\mathfrak{g}^{\prime}
$$

We set

$$
\mathfrak{a}^{\prime}=\mathfrak{a} \cap \mathfrak{g}^{\prime}, \quad \mathfrak{c}_{\mathfrak{m}}=\mathfrak{c} \cap \mathfrak{m} .
$$

We have an orthogonal direct sum decomposition:

$$
\mathfrak{a}=\mathfrak{c}_{\mathfrak{m}}+\mathfrak{a}^{\prime}
$$

Put

$$
\mathfrak{b}=\mathrm{t} \cap \mathfrak{t} .
$$

Since t is θ-invariant we get an orthogonal direct sum decomposition of t :

$$
\mathfrak{t}=\mathfrak{b}+\mathfrak{a}
$$

For $\alpha \in t$ we put

$$
\tilde{\mathfrak{g}}_{\alpha}=\left\{X \in \mathfrak{g}^{C} \mid[H, X]=\sqrt{-1}\langle\alpha, H\rangle X(H \in \mathfrak{t})\right\}
$$

and define the root system $\tilde{R}(\mathfrak{g})$ of \mathfrak{g} by

$$
\tilde{R}(\mathfrak{g})=\left\{\alpha \in \mathfrak{t}-\{0\} \mid \tilde{\mathfrak{g}}_{\alpha} \neq\{0\}\right\} .
$$

We also denote \tilde{R} instead of $\tilde{R}(\mathfrak{g})$. For $\alpha \in \mathfrak{a}$ we put

$$
\mathfrak{g}_{\alpha}=\left\{X \in \mathfrak{g}^{C} \mid[H, X]=\sqrt{-1}\langle\alpha, H\rangle X(H \in \mathfrak{a})\right\}
$$

and define the root system $R(\mathfrak{g}, \mathfrak{f})$ of $(\mathfrak{g}, \mathfrak{f})$ by

$$
R(\mathfrak{g}, \mathfrak{f})=\left\{\alpha \in \mathfrak{a}-\{0\} \mid \mathfrak{g}_{\alpha} \neq\{0\}\right\} .
$$

We also denote R instead of $R(\mathfrak{g}, \mathfrak{f})$. Put

$$
\tilde{R}_{0}(\mathfrak{g})=\tilde{R}(\mathfrak{g}) \cap \mathfrak{b}
$$

and denote the orthogonal projection from \mathfrak{t} to \mathfrak{a} by $H \mapsto \bar{H}$. Then we have

$$
R(\mathfrak{g}, \mathfrak{f})=\left\{\bar{\alpha} \mid \alpha \in \tilde{R}(\mathfrak{g})-\tilde{R}_{0}(\mathfrak{g})\right\} .
$$

We extend a basis of \mathfrak{a} to that of t and define the lexicographic orderings $>$ on \mathfrak{a} and t with respect to these bases. Then for $H \in \mathrm{t}, \bar{H}>0$ implies $H>0$. We denote by $\tilde{F}(\mathfrak{g})$ the fundamental system of $\tilde{R}(\mathfrak{g})$ with respect to the ordering $>$. We also denote \tilde{F} instead of $\tilde{F}(\mathfrak{g})$. Put

$$
\tilde{F}_{0}(\mathfrak{g})=\tilde{F}(\mathfrak{g}) \cap \tilde{R}_{0}(\mathfrak{g})
$$

Then the fundamental system $F(\mathfrak{g}, \mathfrak{f})$ of $R(\mathfrak{g}, \mathfrak{f})$ with respect to the ordering $>$ is given by

$$
F(\mathfrak{g}, \mathfrak{f})=\left\{\bar{\alpha} \mid \alpha \in \tilde{F}(\mathfrak{g})-\tilde{F}_{0}(\mathfrak{g})\right\} .
$$

We define positive root systems by

$$
\begin{aligned}
\tilde{R}_{+}(\mathfrak{g}) & =\{\alpha \in \tilde{R}(\mathfrak{g}) \mid \alpha>0\} \\
R_{+}(\mathfrak{g}, \mathfrak{f}) & =\{\alpha \in R(\mathfrak{g}, \mathfrak{f}) \mid \alpha>0\} .
\end{aligned}
$$

We also denote \tilde{R}_{+}and R_{+}instead of $\tilde{R}_{+}(\mathfrak{g})$ and $R_{+}(\mathfrak{g}, \mathfrak{f})$. Then

$$
R_{+}(\mathfrak{g}, \tilde{f})=\left\{\bar{\alpha} \mid \alpha \in \tilde{R}_{+}(\mathfrak{g})-\tilde{R}_{0}(\mathfrak{g})\right\}
$$

holds. We set

$$
\mathfrak{E}_{0}=\{X \in \mathfrak{f} \mid[X, H]=0(H \in \mathfrak{a})\}
$$

and

$$
\begin{aligned}
\mathfrak{f}_{\alpha} & =\mathfrak{f} \cap\left(\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}\right) \\
\mathfrak{m}_{\alpha} & =\mathfrak{m} \cap\left(\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}\right)
\end{aligned}
$$

for $\alpha \in R_{+}(\mathfrak{g}, \mathfrak{f})$. We have the following lemma ([2]).
Lemma 1.1. (1) We have orthogonal direct sum decompositions:

$$
\mathfrak{f}=\mathfrak{f}_{0}+\sum_{\alpha \in R_{+}} \mathfrak{f}_{\alpha}, \quad \mathfrak{m}=\mathfrak{a}+\sum_{\alpha \in R_{+}} \mathfrak{m}_{\alpha} .
$$

(2) For each $\alpha \in \tilde{R}_{+}-\tilde{R}_{0}$ there exist $S_{\alpha} \in \mathfrak{F}$ and $T_{\alpha} \in \mathfrak{m}$ such that

$$
\left\{S_{\alpha} \mid \alpha \in \tilde{R}_{+}, \bar{\alpha}=\lambda\right\}, \quad\left\{T_{\alpha} \mid \alpha \in \tilde{R}_{+}, \bar{\alpha}=\lambda\right\}
$$

are respectively orthonormal bases of $\mathfrak{i}_{\lambda}, \mathfrak{m}_{\lambda}$ and that for $H \in \mathfrak{a}$

$$
\left[H, S_{\alpha}\right]=\langle\alpha, H\rangle T_{\alpha}, \quad\left[H, T_{\alpha}\right]=-\langle\alpha, H\rangle S_{\alpha}
$$

We denote $m_{\lambda}=\operatorname{dim} \mathfrak{m}_{\lambda}=\operatorname{dim} \mathfrak{f}_{\lambda}$ and call it the multiplicity of λ.
We define a subset D of a by

$$
D=\bigcup_{\alpha \in R}\{H \in \mathfrak{a} \mid\langle\alpha, H\rangle=0\}
$$

Each connected component of $\mathfrak{a}-D$ is called a Weyl chamber. We define the fundamental Weyl chamber by

$$
C=\{H \in \mathfrak{a} \mid\langle\alpha, H\rangle>0(\alpha \in F(\mathfrak{g}, \mathfrak{f}))\}
$$

Its closure is given by

$$
\bar{C}=\{H \in \mathfrak{a} \mid\langle\alpha, H\rangle \geq 0(\alpha \in F(\mathfrak{g}, \mathfrak{f}))\}
$$

For each subset $\Delta \subset F=F(\mathfrak{g}, \mathfrak{f})$ we define a subset C^{Δ} of \bar{C} by

$$
C^{\Delta}=\{H \in \bar{C} \mid\langle\alpha, H\rangle>0(\alpha \in \Delta),\langle\beta, H\rangle=0(\beta \in F-\Delta)\}
$$

We easily get the following lemma.
Lemma 1.2. (1) For $\Delta_{1} \subset F$

$$
\overline{C^{\Delta_{1}}}=\bigcup_{\Delta \subset \Delta_{1}} C^{\Delta}
$$

is a disjoint union. In particular $\bar{C}=\bigcup_{\Delta \subset F} C^{\Delta}$ is a disjoint union.
(2) For $\Delta_{1}, \Delta_{2} \subset F, \Delta_{1} \subset \Delta_{2}$ if and only if $C^{\Delta_{1}} \subset \overline{C^{\Delta_{2}}}$.

For $\beta \in F$ we take $H_{\beta} \in \mathfrak{a}^{\prime}$ satisfying the following condition.

$$
\left\langle\alpha, H_{\beta}\right\rangle= \begin{cases}1 & (\alpha=\beta) \\ 0 & (\alpha \neq \beta)\end{cases}
$$

We have

$$
\bar{C}=\mathfrak{c}_{\mathfrak{m}} \times\left\{\sum_{\alpha \in F} t_{\alpha} H_{\alpha} \mid t_{\alpha} \geq 0\right\}
$$

and for $\Delta \subset F$

$$
C^{\Delta}=\mathfrak{c}_{\mathfrak{m}} \times\left\{\sum_{\alpha \in \Delta} t_{\alpha} H_{\alpha} \mid t_{\alpha}>0\right\}
$$

For $H \in \mathfrak{m}$ we put

$$
\begin{aligned}
Z^{H} & =\{g \in G \mid \operatorname{Ad}(g) H=H\}, \\
Z_{K}^{H} & =\{k \in K \mid \operatorname{Ad}(k) H=H\} .
\end{aligned}
$$

$Z_{K}^{H}=Z^{H} \cap K$ holds. Z^{H} is a closed subgroup of G and Z_{K}^{H} is a closed subgroup of K. We can prove the following lemma by the standard argument of compact Lie groups, so we omit its proof.

Lemma 1.3. Z^{H} is connected.

For $\Delta \subset F$ we put

$$
\begin{aligned}
N^{\Delta} & =\left\{g \in G \mid \operatorname{Ad}(g) C^{\Delta}=C^{\Delta}\right\} \\
Z^{\Delta} & =\left\{g \in G|\operatorname{Ad}(g)|_{C^{\Delta}}=1\right\} \\
N_{K}^{\Delta} & =\left\{k \in K \mid \operatorname{Ad}(k) C^{\Delta}=C^{\Delta}\right\} \\
Z_{K}^{\Delta} & =\left\{k \in K|\operatorname{Ad}(k)|_{C^{\Delta}}=1\right\} .
\end{aligned}
$$

By the above definitions we have $N_{K}^{\Delta}=N^{\Delta} \cap K$ and $Z_{K}^{\Delta}=Z^{\Delta} \cap K . Z^{\Delta}$ is a closed subgroup of G and Z_{K}^{Δ} is a closed subgroup of K. If $H \in C^{\Delta}$, then

$$
Z^{\Delta} \subset Z^{H}, \quad Z_{K}^{\Delta} \subset Z_{K}^{H}
$$

We put

$$
\begin{aligned}
& R^{\Delta}=R \cap(F-\Delta)_{Z} \\
& R_{+}^{\Delta}=R^{\Delta} \cap R_{+} \\
& \mathfrak{g}^{\Delta}=\mathfrak{f}_{0}+\mathfrak{a}+\sum_{\alpha \in R_{+}^{\Delta}}\left(\mathfrak{f}_{\alpha}+\mathfrak{m}_{\alpha}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathfrak{f}^{\Delta}=\mathfrak{g}^{\Delta} \cap \mathfrak{f}=\mathfrak{E}_{0}+\sum_{\alpha \in R_{+}^{\Delta}} \mathfrak{I}_{\alpha} \\
& \mathfrak{m}^{\Delta}=\mathfrak{g}^{\Delta} \cap \mathfrak{m}=\mathfrak{a}+\sum_{\alpha \in R_{+}^{\Delta}} \mathfrak{m}_{\alpha} .
\end{aligned}
$$

We have an orthogonal direct sum decomposition:

$$
\mathfrak{g}^{\Delta}=\mathfrak{f}^{\Delta}+\mathfrak{m}^{\Delta} .
$$

Lemma 1.4. For $\Delta \subset F$ and $H \in C^{\Delta}$, we obtain the following equations.
(1) $R_{+}^{\Delta}=\left\{\alpha \in R_{+} \mid\langle\alpha, H\rangle=0\right\}$
(2) $R^{\Delta}=\{\alpha \in R \mid\langle\alpha, H\rangle=0\}$
(3) $\mathfrak{g}^{\Delta}=\{X \in \mathfrak{g} \mid[H, X]=0\}$

Proof. Any $\alpha \in R_{+}$can be written as follows:

$$
\alpha \in \sum_{\gamma \in F} n_{\gamma} \gamma \quad\left(n_{\gamma} \in \mathbb{Z}, n_{\gamma} \geq 0\right) .
$$

So we obtain

$$
\langle\alpha, H\rangle=\sum_{\gamma \in F} n_{\gamma}\langle\gamma, H\rangle=\sum_{\gamma \in \Delta} n_{\gamma}\langle\gamma, H\rangle .
$$

From this $\langle\alpha, H\rangle=0$ if and only if $\alpha \in R_{+}^{\Delta}$. Therefore we obtain

$$
R_{+}^{\Delta}=\left\{\alpha \in R_{+} \mid\langle\alpha, H\rangle=0\right\}
$$

This implies

$$
R^{\Delta}=\{\alpha \in R \mid\langle\alpha, H\rangle=0\} .
$$

Any $X \in \mathfrak{g}$ can be written as follows:

$$
X=S_{0}+\sum_{\alpha \in R_{+}} a_{\alpha} S_{\alpha}+T_{0}+\sum_{\alpha \in R_{+}} b_{\alpha} T_{\alpha},
$$

where $S_{0} \in \mathfrak{I}_{0}$ and $T_{0} \in \mathfrak{a}$. It follows from Lemma 1.1 and (1) that

$$
[H, X]=\sum_{\alpha \notin R_{+}^{\Delta}} a_{\alpha}\langle\alpha, H\rangle T_{\alpha}-\sum_{\alpha \notin R_{+}^{\Delta}} b_{\alpha}\langle\alpha, H\rangle S_{\alpha} .
$$

From this $[H, X]=0$ if and only if $X \in \mathfrak{g}^{\Delta}$. Therefore we obtain

$$
\mathfrak{g}^{\Delta}=\{X \in \mathfrak{g} \mid[H, X]=0\}
$$

Lemma 1.5. (1) Take $\Delta_{1}, \Delta_{2} \subset F, H_{1} \in C^{\Delta_{1}}, H_{2} \in C^{\Delta_{2}}$ and $g \in G$. If $\operatorname{Ad}(g) H_{1}$ $=H_{2}$, then $\operatorname{Ad}(g) \mathfrak{g}^{\Delta_{1}}=\mathfrak{g}^{\Delta_{2}}$.
(2) If $\Delta \subset F$, then $N^{\Delta} \subset N\left(\mathfrak{g}^{\Delta}\right)$. For any $H \in C^{\Delta}$, all of $Z^{H}, Z^{\Delta}, N^{\Delta}$ and $N\left(\mathfrak{g}^{\Delta}\right)$ are compact subgroups of G and all of their Lie subalgebras coincide with \mathfrak{g}^{Δ}.

Proof. (1) By Lemma $1.4 \mathfrak{g}^{\Delta_{1}}$ is the centralizer of $H_{1} . \operatorname{Ad}(g) \mathfrak{g}^{\Delta_{1}}$ is the centralizer of $\operatorname{Ad}(g) H_{1}=H_{2}$, so is equal to $\mathrm{g}^{\Delta_{2}}$.
(2) (1) with $\Delta_{1}=\Delta_{2}=\Delta$ implies $N^{\Delta} \subset N\left(\mathfrak{g}^{\Delta}\right) . Z^{H}$ and $N\left(\mathfrak{g}^{\Delta}\right)$ are compact subgroups in G.

Since \mathfrak{g}^{Δ} is the centralizer of H by Lemma 1.4, the Lie algebra $\mathscr{L}\left(Z^{H}\right)$ of Z^{H} is equal to \mathfrak{g}^{Δ}.

We show that the Lie algebras $\mathscr{L}\left(Z^{\Delta}\right), \mathscr{L}\left(N^{\Delta}\right)$ and $\mathscr{L}\left(N\left(\mathfrak{g}^{\Delta}\right)\right)$ of Z^{Δ}, N^{Δ} and $N\left(\mathfrak{g}^{\Delta}\right)$ are all equal to \mathfrak{g}^{Δ}. By their definitions $Z^{\Delta} \subset N^{\Delta} \subset N\left(\mathfrak{g}^{\Delta}\right) . Z^{\Delta}, N\left(\mathfrak{g}^{\Delta}\right)$ is a closed subgroup of G, so we have $\mathscr{L}\left(Z^{\Delta}\right) \subset \mathscr{L}\left(N\left(\mathfrak{g}^{\Delta}\right)\right)$. Any element X of \mathfrak{g}^{Δ} can be written as follows:

$$
X=S_{0}+\sum_{\alpha \in R_{+}^{\Delta}} a_{\alpha} S_{\alpha}+T_{0}+\sum_{\alpha \in R_{+}^{\Delta}} b_{\alpha} T_{\alpha} \quad\left(S_{0} \in \mathfrak{f}_{0}, T_{0} \in \mathfrak{a}\right) .
$$

From this we get $X \in \mathscr{L}\left(Z^{\Delta}\right)$, hence $\mathfrak{g}^{\Delta} \subset \mathscr{L}\left(Z^{\Delta}\right)$. Therefore

$$
\mathfrak{g}^{\Delta} \subset \mathscr{L}\left(Z^{\Delta}\right) \subset \mathscr{L}\left(N\left(\mathfrak{g}^{\Delta}\right)\right) .
$$

Conversely we assume an element

$$
X=S_{0}+\sum_{\alpha \in R_{+}} a_{\alpha} S_{\alpha}+T_{0}+\sum_{\alpha \in R_{+}} b_{\alpha} T_{\alpha} \quad\left(S_{0} \in \mathfrak{I}_{0}, T_{0} \in \mathfrak{a}\right)
$$

in \mathfrak{g} is contained in $\mathscr{L}\left(N\left(\mathfrak{g}^{\Delta}\right)\right)$. Since

$$
[H, X]=\sum_{\alpha \in R_{+}} a_{\alpha}\langle\alpha, H\rangle T_{\alpha}-\sum_{\alpha \in R_{+}} b_{\alpha}\langle\alpha, H\rangle S_{\alpha}
$$

we obtain $X \in \mathfrak{g}^{\Delta}$. Therefore we get

$$
\mathfrak{g}^{\Delta}=\mathscr{L}\left(Z^{\Delta}\right)=\mathscr{L}\left(N\left(\mathfrak{g}^{\Delta}\right)\right) .
$$

N^{Δ} satisfies $Z^{\Delta} \subset N^{\Delta} \subset N\left(\mathfrak{g}^{\Delta}\right)$ and $\mathscr{L}\left(Z^{\Delta}\right)=\mathscr{L}\left(N\left(\mathfrak{g}^{\Delta}\right)\right)$. So N^{Δ} is also a compact subgroup of G and $\mathscr{L}\left(N^{\Delta}\right)=\mathfrak{g}^{\Delta}$ holds.

Theorem 1.6. For any $\Delta \subset F$ and $H \in C^{\Delta}$

$$
Z^{\Delta}=Z^{H}=N^{\Delta}, \quad Z_{K}^{\Delta}=Z_{K}^{H}=N_{K}^{\Delta}
$$

Proof. By the definition we have $Z^{\Delta} \subset Z^{H}$ and by the above lemma their Lie algebras coincides. Moreover Z^{H} is connected by Lemma 1.3, so we obtain $Z^{\Delta}=Z^{H}$.
Z^{Δ} and N^{Δ} are compact and have the same Lie algebra \mathfrak{g}^{Δ}. Since Z^{Δ} is the kernel of the homomorphism

$$
\text { Ad : } N^{\Delta} \rightarrow \text { The permutation group of } C^{\Delta}
$$

Z^{Δ} is a normal subgroup of N^{Δ} and N^{Δ} / Z^{Δ} is a finite group. For any $g \in N^{\Delta}$, the action of $\operatorname{Ad}(g)$ on C^{Δ} has a finite order, that is, there is an integer N satisfying $\left.\operatorname{Ad}(g)^{N}\right|_{C^{\Delta}}=1$. Take $H_{0} \in C^{\Delta}$ and put

$$
H_{1}=\frac{1}{N}\left(H_{0}+\operatorname{Ad}(g) H_{0}+\cdots+\operatorname{Ad}(g)^{N-1} H_{0}\right)
$$

Each $\operatorname{Ad}(g)^{i} H_{0}$ is contained in C^{Δ} and C^{Δ} is convex, so we get $H_{1} \in C^{\Delta}$. $\operatorname{Ad}(g) H_{1}=H_{1}$ holds and $g \in Z^{H_{1}}=Z^{\Delta}$. Hence $N^{\Delta} \subset Z^{\Delta}$ and we obtain $Z^{\Delta}=N^{\Delta}$.

The second equation follows from the first one.

2. Construction of Retractions

The notation of the preceding section will be preserved. Let B be a compact submanifold of the unit sphere in \boldsymbol{R}^{n}. We call $C_{B}=\{t x \mid x \in B, t \geq 0\}$ the cone over $B . C_{B}$ is said to be area-minimizing if $C_{B}^{1}=\{t x \mid x \in B, 0 \leq t \leq 1\}$ has the least area among all surfaces with boundary B.

For an unit vector $H \in \bar{C}$, the orbit $\operatorname{Ad}(K) H$ is a submanifold of the unit sphere in m. Then the mapping

$$
f: k Z_{K}^{H} \mapsto \operatorname{Ad}(k) H
$$

is a diffeomorphism of the homogeneous space K / Z_{K}^{H} to $\operatorname{Ad}(K) H$.

Proposition 2.1. The orbit $\operatorname{Ad}(K) H$ is connected.

Proof. Since $\mathfrak{m}=\bigcup_{k \in K_{0}} \operatorname{Ad}(k) \cdot \mathfrak{a}$, where K_{0} be the identity component of K, for any $\operatorname{Ad}(k) H \in \operatorname{Ad}(K) H$ there exists an element $k_{1} \in K_{0}$ such that $\operatorname{Ad}\left(k_{1} k\right) H \in \mathfrak{a}$. From Proposition 2.2 (p.285) of [2], there exists a member of Weyl group whose action on \mathfrak{a} is represented by $\operatorname{Ad}\left(k_{2}\right)$ for some $k_{2} \in K_{0}$ such that $\operatorname{Ad}\left(k_{1} k\right) H=$ $\operatorname{Ad}\left(k_{2}\right) H$. If we put $k_{0}=k_{1}^{-1} k_{2} \in K_{0}$, then $\operatorname{Ad}(k) H=\operatorname{Ad}\left(k_{0}\right) H$ holds. Thus we get $\operatorname{Ad}(K) H=\operatorname{Ad}\left(K_{0}\right) H$ and it is connected.

From now on we assume that (G, K) is irreducible.
Let $F(\mathfrak{g}, \mathfrak{f})=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be the fundamental root system and $\tilde{\alpha}=$ $n_{1} \alpha_{1}+\cdots+n_{l} \alpha_{l}$ be the highest root of $R(\mathfrak{g}, \mathfrak{f})$. Select $\alpha_{i} \in F(\mathfrak{g}, \mathfrak{f})$ such that $n_{i}=1$, we put $\alpha_{0}=\alpha_{i}$ and $A_{0}=H_{\alpha_{0}} /\left|H_{\alpha_{0}}\right|$. It is known that f is an isometry of $K / Z_{K}^{A_{0}}$ with the normal homogeneous Riemannian metric multiplied some constant onto $\operatorname{Ad}(K) A_{0}$ and that $K / Z_{K}^{A_{0}}$ is a symmetric space. We call this space a symmetric R-space, and f its canonical imbedding. Because $\operatorname{Ad}(K) A_{0}$ is an isolated orbit, $\operatorname{Ad}(K) A_{0}$ is a minimal submanifold of the unit sphere in m by a result of Hsiang [3]. Hence the cone $C_{\mathrm{Ad}(K) A_{0}}$ is also a minimal submanifold of $\mathfrak{m t}$ ([6] p. 97, Prop. 6.1.1). The purpose of this article is to prove $C_{\mathrm{Ad}(K) A_{0}}$ is an area-minimizing cone.

Proposition 2.2. Let V and W be two vector spaces with inner products. Suppose $n=\operatorname{dim} W \leq \operatorname{dim} V$. For a linear mapping F of V to W we put

$$
J F=\sup \left\{\left|F\left(u_{1}\right) \wedge \cdots \wedge F\left(u_{n}\right)\right|\right\},
$$

where u_{1}, \ldots, u_{n} runs over all orthonormal vectors of V. If F is not surjective, then
$J F=0$. If F is surjective, then $J F$ coincides with

$$
\left|F\left(v_{1}\right) \wedge \cdots \wedge F\left(v_{n}\right)\right|,
$$

for an orthonormal base v_{1}, \ldots, v_{n} of $(\operatorname{ker} F)^{\perp}$.
Let B be a compact submanifold of the unit sphere in \mathfrak{m}. We call a differentiable retraction $\Phi: \mathfrak{m} \rightarrow C_{B}$ a area-nonincreasing if

$$
\begin{equation*}
J\left(d \Phi_{x}\right) \leq 1 \tag{1}
\end{equation*}
$$

for $x \in \mathfrak{m}$.
Proposition 2.3. The cone C_{B} over a compact submanifold B of the unit sphere in m is area-minimizing if there exists an area-nonincreasing retraction $\Phi: \mathfrak{m} \rightarrow C_{B}$.

Proof. Let S be a surface in \mathfrak{m} with boundary B. Since $C_{B}^{1} \subset \Phi(S)$, we have $\operatorname{vol}\left(C_{B}^{1}\right) \leq \operatorname{vol}(\Phi(S))$. Let e_{1}, \ldots, e_{n} be an orthonormal frame of S, then

$$
\begin{aligned}
\operatorname{vol}(\Phi(S)) & =\int_{S}\left|d \Phi\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right| d \mu_{S} \\
& \leq \int_{S} J\left(d \Phi_{x}\right) d \mu_{S} \\
& \leq \int_{S} d \mu_{S} \\
& =\operatorname{vol}(S)
\end{aligned}
$$

Consequently,

$$
\operatorname{vol}\left(C_{B}^{1}\right) \leq \operatorname{vol}(\Phi(S)) \leq \operatorname{vol}(S)
$$

This proves the proposition.
We shall now consider a way to construct area-nonincreasing retractions.
Lemma 2.4. Suppose ϕ is a mapping of \bar{C} into itself such that $\phi\left(C^{\Delta}\right) \subset \overline{C^{\Delta}}$ for each $\Delta \subset F(\mathrm{~g}, \mathrm{f})$. Then ϕ extends to a mapping Φ of m as

$$
\Phi(X)=\operatorname{Ad}(k) \phi(H)
$$

for each $X=\operatorname{Ad}(k) H \in \mathfrak{m}(k \in K, H \in \bar{C})$.

Proof. Suppose $k_{1}, k_{2} \in K$ and $H_{1}, H_{2} \in \bar{C}$ satisfy $\operatorname{Ad}\left(k_{1}\right) H_{1}=\operatorname{Ad}\left(k_{2}\right) H_{2}$. Then $\operatorname{Ad}\left(k_{2}^{-1} k_{1}\right) H_{1}=H_{2} \in \mathfrak{a}$ and we have $H_{1}=H_{2}$, because each orbit of the Weyl group on \mathfrak{a} intersects \bar{C} in exactly one point ([3], p. 293, Th. 2.22). Let

$$
\Delta=\left\{\alpha \in F \mid\left\langle\alpha, H_{1}\right\rangle>0\right\} .
$$

We have $H_{1} \in C^{\Delta}$ and $\phi\left(H_{1}\right) \in \overline{C^{\Delta}}$ by the assumption of ϕ. Thus Theorem 1.6 implies

$$
k_{2}^{-1} k_{1} \in Z_{K}^{H_{1}}=Z_{K}^{\Delta},
$$

therefore $\operatorname{Ad}\left(k_{2}^{-1} k_{1}\right) \phi\left(H_{1}\right)=\phi\left(H_{1}\right)$.
From Lemma 2.4, we have the following.
Proposition 2.5. Let $\phi: \bar{C} \rightarrow\left\{t A_{0} \mid t \geq 0\right\}$ be a differentiable mapping. Denote $\phi(x)=f(x) A_{0}$. If f satisfies $f\left(t A_{0}\right)=t(t \geq 0)$ and $\left.f\right|_{\left\{\alpha_{0}\right\}^{\perp}} \equiv 0$, then ϕ extends to a differentiable retraction $\Phi: \mathrm{m} \rightarrow C_{\mathrm{Ad}(K) A_{0}}$.

In this case Φ is area-nonincreasing if and only if (1) holds for each $x \in C$.
We will compute $J\left(d \Phi_{x}\right)$ of Φ in Proposition 2.5 for $x \in C$.
Proposition 2.6. We denote $R_{+}\left(A_{0}\right)=\left\{\lambda \in R_{+} \mid\left\langle\lambda, A_{0}\right\rangle>0\right\}$.

$$
\begin{equation*}
J\left(d \Phi_{x}\right)=|\operatorname{grad}(f)| \prod_{\lambda \in R_{+}\left(A_{0}\right)}\left(\frac{\left\langle\lambda, A_{0}\right\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m_{\lambda}} . \tag{2}
\end{equation*}
$$

Proof. If $f(x)=0$, then the both sides of the equation are 0 . So we consider the case $f(x) \neq 0$. By the definition of $\Phi, d \Phi_{x}(\mathfrak{a}) \subset \boldsymbol{R} A_{0}$. By using the equation

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{Ad}\left(\exp t S_{\alpha}\right) x=-\langle\alpha, x\rangle T_{\alpha}
$$

for $\alpha \in \tilde{R}_{+}(\mathfrak{g}), \bar{\alpha} \neq 0$, we have

$$
d \Phi_{x}\left(T_{\alpha}\right)=\frac{\langle\alpha, \phi(x)\rangle}{\langle\alpha, x\rangle} T_{\alpha} .
$$

From this we get

$$
d \Phi_{x}\left(\sum_{\lambda \in R_{+}} \mathfrak{m}_{\lambda}\right) \subset \sum_{\lambda \in R_{+}\left(A_{0}\right)} \mathfrak{m}_{\lambda}
$$

so we can write

$$
\begin{aligned}
J\left(d \Phi_{x}\right) & =J_{1}(x) \cdot J_{2}(x) \\
J_{1}(x) & =J\left(d \Phi_{x} \mid \mathfrak{a}\right) \\
J_{2}(x) & =J\left(d \Phi_{x} \mid \sum \mathfrak{m}_{\lambda}\right)
\end{aligned}
$$

Take a unit vector v in a.

$$
\begin{aligned}
d \Phi_{x}(v) & =d \phi_{x}(v) \\
& =d f_{x}(v) A_{0} \\
& =\langle\operatorname{grad}(f), v\rangle A_{0} .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
J_{1}(x) & =\max \left\{\left|d \Phi_{x}(v)\right||v \in \mathfrak{a},|v|=1\}\right. \\
& =|\operatorname{grad}(f)| .
\end{aligned}
$$

Secondly for $J_{2}(x)$, we see the kernel of $\left.d \Phi_{x}\right|_{\sum m_{\lambda}}$. By the above expression of $d \Phi_{x}\left(T_{\alpha}\right)$ we get

$$
\operatorname{ker}\left(d \Phi_{x} \sum_{\mathfrak{m}_{\lambda}}\right)=\sum_{\substack{\lambda \in R_{+} \\\left\langle\lambda, A_{0}\right\rangle=0}} \mathfrak{m}_{\lambda} .
$$

We can take $\left\{T_{\alpha} \mid \alpha \in \tilde{R}_{+}(\mathfrak{g}),\left\langle\alpha, A_{0}\right\rangle>0\right\}$ as an orthonormal base of $\operatorname{ker}\left(\left.d \Phi_{x}\right|_{\sum \mathrm{m}_{\lambda}}\right)^{\perp}$. It follows that

$$
J_{2}(x)=\left|\bigwedge_{\substack{\alpha \in \bar{R}_{+} \\\left\langle\alpha, A_{0}\right\rangle>0}} d \Phi_{x}\left(T_{\alpha}\right)\right|=\prod_{\lambda \in R_{+}\left(A_{0}\right)}\left(\frac{\left\langle\lambda, A_{0}\right\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m_{\lambda}},
$$

where m_{λ} is the multiplicity of λ. So we have

$$
J\left(d \Phi_{x}\right)=|\operatorname{grad}(f)| \prod_{\lambda \in R_{+}\left(A_{0}\right)}\left(\frac{\left\langle\lambda, A_{0}\right\rangle}{\langle\lambda, x\rangle} f(x)\right)^{m_{\lambda}}
$$

3. Construction of Area-nonincreasing Retractions

Theorem 3.1. The cones over

$$
\frac{S O(2 l+1)}{S O(2) \times S O(2 l-1)}, \quad \frac{S O(l) \times S O(l+n)}{S^{\prime}(O(l-1) \times O(l+n-1))}
$$

corresponding to symmetric pairs

$$
\left(S O(2 l+1)^{2}, S O(2 l+1)\right), \quad(S O(2 l+n), S O(l) \times S O(l+n)) \quad(n \geq 2)
$$

respectively are area-minimizing, where

$$
\begin{aligned}
& S^{\prime}(O(l-1) \times O(l+n-1)) \\
& \quad=\left\{\left.\left(\begin{array}{llll}
\varepsilon & & & \\
& A & & \\
& & \varepsilon & \\
& & & B
\end{array}\right) \in S O(l) \times S O(l+n) \right\rvert\, \begin{array}{c}
\\
\\
\end{array}\right. \\
&
\end{aligned}
$$

Proof. We consider symmetric pairs of type B_{l}. Let $\varepsilon_{1}, \ldots, \varepsilon_{l}$ be an orthonormal basis of the maximal Abelian subspace \mathfrak{a} such that all roots are

$$
\pm \varepsilon_{i} \pm \varepsilon_{j}(1 \leq i<j \leq l), \quad \pm \varepsilon_{i}(1 \leq i \leq l)
$$

Then for a suitable ordering

$$
\begin{aligned}
F(\mathfrak{g}, \mathfrak{f}) & =\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{l-1}, \alpha_{l}\right\}, \\
\alpha_{i} & =\varepsilon_{i}-\varepsilon_{i+1}(1 \leq i<l), \quad \alpha_{l}=\varepsilon_{l}, \\
H_{\alpha_{i}} & =\varepsilon_{1}+\cdots+\varepsilon_{i}(1 \leq i \leq l), \\
\tilde{\alpha} & =\alpha_{1}+2 \alpha_{2}+\cdots+2 \alpha_{l}=\varepsilon_{1}+\varepsilon_{2}
\end{aligned}
$$

and we put

$$
A_{0}=\frac{H_{\alpha_{1}}}{\left|H_{\alpha_{1}}\right|}=\varepsilon_{1} .
$$

We have

$$
\begin{aligned}
R_{+}\left(A_{0}\right)= & \left\{\sum_{i=1}^{l} \alpha_{i}\right\} \cup\left\{\sum_{i=1}^{k-1} \alpha_{i} \mid 2 \leq k \leq l\right\} \\
& \cup\left\{\tilde{\alpha}-\sum_{i=2}^{k} \alpha_{i} \mid 2 \leq k \leq l-1\right\} \cup\{\tilde{\alpha}\}
\end{aligned}
$$

Because the multiplicities of roots of same length coincide with each other, we can denote by m_{1} the multiplicity of the $\sum_{i=1}^{l} \alpha_{i}$ and by m_{2} the multiplicity of the rest. For $x=\sum_{i=1}^{l} x_{i} H_{\alpha_{i}} \in \bar{C}$ we define

$$
f(x)=\sqrt{\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}=\sqrt{x_{1}\left(x_{1}+2 x_{2}+\cdots+2 x_{l}\right)}
$$

then it satisfies Proposition 2.5. Using (2), we calculate $J\left(d \Phi_{x}\right)$. Since

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}=\frac{x_{1}+\cdots+x_{l}}{f} \\
& \frac{\partial f}{\partial x_{i}}=\frac{x_{1}}{f} \quad(2 \leq i \leq l)
\end{aligned}
$$

we get

$$
J_{1}(x)=|\operatorname{grad}(f)|=\left|\sum_{i=1}^{l} \frac{\partial f}{\partial x_{i}} \alpha_{i}\right|=\sqrt{\frac{\left\langle\alpha_{1}, x\right\rangle^{2}+\langle\tilde{\alpha}, x\rangle^{2}}{2\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}}
$$

We also obtain

$$
J_{2}(x)=\left(\frac{f}{\left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle}\right)^{m_{1}} \times \prod_{k=2}^{l-1}\left(\frac{f^{2}}{\left\langle\sum_{i=1}^{k} \alpha_{i}, x\right\rangle\left\langle\tilde{\alpha}-\sum_{i=2}^{k} \alpha_{i}, x\right\rangle}\right)^{m_{2}}
$$

Therefore

$$
\begin{aligned}
J\left(d \Phi_{x}\right)= & \sqrt{\frac{\left\langle\alpha_{1}, x\right\rangle^{2}+\langle\tilde{\alpha}, x\rangle^{2}}{2\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}}\left(\frac{\sqrt{\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}}{\left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle}\right)^{m_{1}} \\
& \times \prod_{k=2}^{l-1}\left(\frac{\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}{\left\langle\sum_{i=1}^{k} \alpha_{i}, x\right\rangle\left\langle\tilde{\alpha}-\sum_{i=2}^{k} \alpha_{i}, x\right\rangle}\right)^{m_{2}}
\end{aligned}
$$

For any k,

$$
\begin{aligned}
\left\langle\sum_{i=1}^{k}\right. & \left.\alpha_{i}, x\right\rangle\left\langle\tilde{\alpha}-\sum_{i=2}^{k} \alpha_{i}, x\right\rangle \\
& =\left\langle\sum_{i=1}^{k} \alpha_{i}, x\right\rangle\langle\tilde{\alpha}, x\rangle-\left\langle\sum_{i=1}^{k} \alpha_{i}, x\right\rangle\left\langle\sum_{i=2}^{k} \alpha_{i}, x\right\rangle \\
& =\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle+\left\langle\sum_{i=2}^{k} \alpha_{i}, x\right\rangle\langle\tilde{\alpha}, x\rangle-\left\langle\sum_{i=1}^{k} \alpha_{i}, x\right\rangle\left\langle\sum_{i=2}^{k} \alpha_{i}, x\right\rangle \\
& =\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle+\left\langle\sum_{i=2}^{k} \alpha_{i}, x\right\rangle\left(\langle\tilde{\alpha}, x\rangle-\left\langle\sum_{i=1}^{k} \alpha_{i}, x\right\rangle\right) \\
& \geq\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle
\end{aligned}
$$

hence

$$
\frac{\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}{\left\langle\sum_{i=1}^{k} \alpha_{i}, x\right\rangle\left\langle\tilde{\alpha}-\sum_{i=2}^{k} \alpha_{i}, x\right\rangle} \leq 1 .
$$

On the other hand

$$
\begin{aligned}
& \left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle^{2}-\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle \\
& \quad=\left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle^{2}-\left\langle\alpha_{1}, x\right\rangle\left\langle\sum_{i=1}^{l} \alpha_{i}+\sum_{i=2}^{l} \alpha_{i}, x\right\rangle \\
& \quad=\left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle\left\langle\sum_{i=2}^{l} \alpha_{i}, x\right\rangle-\left\langle\alpha_{1}, x\right\rangle\left\langle\sum_{i=2}^{l} \alpha_{i}, x\right\rangle \\
& \quad=\left\langle\sum_{i=2}^{l} \alpha_{i}, x\right\rangle^{2} \geq 0
\end{aligned}
$$

Therefore

$$
\frac{\sqrt{\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}}{\left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle} \leq 1
$$

We consider the case $m_{1} \geq 2$ and let

$$
A=J_{1}(x)\left(\frac{\sqrt{\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle}}{\left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle}\right)^{2}
$$

If $A \leq 1$ then $J\left(d \Phi_{x}\right) \leq 1$.

$$
\begin{aligned}
A^{2} & =\frac{\left\langle\alpha_{1}, x\right\rangle^{2}+\langle\tilde{\alpha}, x\rangle^{2}}{2\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle} \frac{\left\langle\alpha_{1}, x\right\rangle^{2}\langle\tilde{\alpha}, x\rangle^{2}}{\left\langle\sum_{i=1}^{l} \alpha_{i}, x\right\rangle^{4}} \\
& =\frac{8\left(\left\langle\alpha_{1}, x\right\rangle^{3}\langle\tilde{\alpha}, x\rangle+\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle^{3}\right)}{\left(\langle\tilde{\alpha}, x\rangle+\left\langle\alpha_{1}, x\right\rangle\right)^{4}} .
\end{aligned}
$$

Here subtracting the numerator from the denominator we have

$$
\begin{aligned}
& \left(\langle\tilde{\alpha}, x\rangle+\left\langle\alpha_{1}, x\right\rangle\right)^{4}-8\left(\left\langle\alpha_{1}, x\right\rangle^{3}\langle\tilde{\alpha}, x\rangle+\left\langle\alpha_{1}, x\right\rangle\langle\tilde{\alpha}, x\rangle^{3}\right) \\
& \quad=\left(\langle\tilde{\alpha}, x\rangle-\left\langle\alpha_{1}, x\right\rangle\right)^{4} \geq 0
\end{aligned}
$$

Therefore if $m_{1} \geq 2$, we get $J\left(d \Phi_{x}\right) \leq 1$.

There are two kind of symmetric pairs: (i) $m_{1}=n(n \geq 2), m_{2}=1$ and (ii) $m_{1}=m_{2}=2$.
(i) $(G, K)=(S O(2 l+n), S O(l) \times S O(l+n))$. It is defined by the involution:

$$
\theta(g)=I_{l, l+n} g I_{l, l+n} \quad(g \in S O(2 l+n)), \quad I_{l, l+n}=\left(\begin{array}{cc}
-I_{l} & 0 \\
0 & I_{l+n}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& \mathfrak{g}=\mathfrak{s o}(2 l+n)=\left\{X \in M_{2 l+n}(\boldsymbol{R}) \mid X+{ }^{t} X=0\right\}, \\
& \mathfrak{f}=\mathfrak{s o}(l) \times \mathfrak{s o}(l+n)=\left\{\left.\left(\begin{array}{ll}
x & 0 \\
0 & y
\end{array}\right) \right\rvert\, x \in \mathfrak{s o}(l), y \in \mathfrak{s o}(l+n)\right\}, \\
& \mathfrak{m}=\left\{\left.\left(\begin{array}{cc}
0 & x \\
-{ }^{t} x & 0
\end{array}\right) \right\rvert\, x \in M_{l, l+n}(\boldsymbol{R})\right\} \cong M_{l, l+n}(\boldsymbol{R}) .
\end{aligned}
$$

Since \mathfrak{m} is isomorphic to $M_{l, l+n}(\boldsymbol{R})$, we identify them. The action of K on \mathfrak{m} through this identification is

$$
\operatorname{Ad}\left(\begin{array}{cc}
k & 0 \\
0 & k^{\prime}
\end{array}\right) \cdot x=k x^{t} k^{\prime}
$$

We define an $\operatorname{Ad}(K)$-invariant inner product on m by

$$
\langle X, Y\rangle=\operatorname{Trace}\left({ }^{t} X Y\right) \quad(X, Y \in \mathfrak{m}) .
$$

Let

$$
\begin{aligned}
\mathfrak{a} & =\left\{\left(\begin{array}{cc}
0 & t \\
-{ }^{t} t & 0
\end{array}\right) \left\lvert\, t=\left(\begin{array}{ccc}
t_{1} & & \\
& \ddots & \\
& & t_{l}
\end{array}\right)\right., t_{i} \in \boldsymbol{R}\right\} \\
& \cong\left\{=\left(\begin{array}{lll}
t_{1} & & \\
& \ddots & \\
& & \mathbf{0}
\end{array}\right)\right\} .
\end{aligned}
$$

Then \mathfrak{a} is a maximal Abelian subspace in \mathfrak{m}. Next, we consider a root space decomposition of \mathfrak{m} with respect to \mathfrak{a}. Let $E_{p q}$ be a matrix whose (p, q)-entry is 1 and all other entries are 0 . Then

$$
\begin{aligned}
\varepsilon_{p} & =E_{p p}, \\
\mathfrak{m}_{\varepsilon_{p}} & =\sum_{q=l+1}^{l+n} \boldsymbol{R} E_{p q}, \\
\mathfrak{m}_{\varepsilon_{p}-\varepsilon_{q}} & =\boldsymbol{R}\left(E_{p q}+E_{q p}\right), \\
\boldsymbol{m}_{\varepsilon_{p}+\varepsilon_{q}} & =\boldsymbol{R}\left(E_{p q}-E_{q p}\right) .
\end{aligned}
$$

Since $A_{0}=\varepsilon_{1}=E_{11}$, we have

$$
Z_{K}^{A_{0}}=S^{\prime}(O(l-1) \times O(l+n-1)) .
$$

Hence the corresponding symmetric R-space is

$$
\frac{S O(l) \times S O(l+n)}{S^{\prime}(O(l-1) \times O(l+n-1))} .
$$

(ii) $(G, K)=\left(S O(2 l+1)^{2}, S O(2 l+1)\right)$. It is defined by the involution such that

$$
\theta\left(g_{1}, g_{2}\right)=\left(g_{2}, g_{1}\right) \quad\left(\left(g_{1}, g_{2}\right) \in S O(2 l+1)\right)
$$

Then

$$
\begin{aligned}
\mathfrak{g} & =\mathfrak{s v}(2 l+1) \times \mathfrak{s o}(2 l+1) \\
\mathfrak{f} & =\{(x, x) \mid x \in \mathfrak{s v}(2 l+1)\} \\
\mathfrak{m} & =\{(x,-x) \mid x \in \mathfrak{s v}(2 l+1)\} \cong \mathfrak{s v}(2 l+1)
\end{aligned}
$$

Since \mathfrak{m} is isomorphic to $\mathfrak{s v}(2 l+1)$, we identify them. The action of K on m through this identification is

$$
\operatorname{Ad}(k) \cdot x=k x^{t} k \quad(k \in S O(2 l+1), x \in \mathfrak{s o}(2 l+1)) .
$$

We define an $\operatorname{Ad}(K)$-invariant inner product on m by

$$
\langle X, Y\rangle=\frac{1}{2} \operatorname{Trace}\left({ }^{t} X Y\right) \quad(X, Y \in \mathfrak{m}) .
$$

Let

$$
\mathfrak{a}=\left\{\left.t=\left(\begin{array}{cccc}
t_{1}^{\prime} & & & \\
& \ddots & & \\
& & t_{l}^{\prime} & \\
& & & 0
\end{array}\right) \right\rvert\, t_{i}^{\prime}=\left(\begin{array}{cc}
0 & t_{i} \\
-t_{i} & 0
\end{array}\right), t_{i} \in \boldsymbol{R}\right\} \subset \mathfrak{m} \cong \mathfrak{s v}(2 l+1) .
$$

Then \mathfrak{a} is a maximal Abelian subspace in \mathfrak{m}. Next, we consider a root space decomposition of m with respect to \mathfrak{a}. Let $G_{p q}=E_{p q}-E_{q p}$. Then

$$
\begin{aligned}
\varepsilon_{p} & =G_{2 p-1,2 p}, \\
\mathfrak{m}_{\varepsilon_{p}} & =\boldsymbol{R} G_{2 p-1,2 l+1}+\boldsymbol{R} G_{2 p, 2 l+1}, \\
\mathfrak{m}_{\varepsilon_{p}-\varepsilon_{q}} & =\boldsymbol{R}\left(G_{2 p-1,2 q-1}-G_{2 p, 2 q}\right)+\boldsymbol{R}\left(G_{2 p-1,2 q}+G_{2 p, 2 q-1}\right), \\
\mathfrak{m}_{\varepsilon_{p}+\varepsilon_{q}} & =\boldsymbol{R}\left(G_{2 p-1,2 q-1}+G_{2 p, 2 q}\right)+\boldsymbol{R}\left(G_{2 p-1,2 q}-G_{2 p, 2 q-1}\right) .
\end{aligned}
$$

Since $A_{0}=\varepsilon_{1}=G_{12}$, we have

$$
Z_{K}^{A_{0}}=S O(2) \times S O(2 l-1) .
$$

Hence the corresponding symmetric R-space is

$$
\frac{S O(2 l+1)}{S O(2) \times S O(2 l-1)}
$$

References

[1] B. N. Cheng, Area-minimizing cone-type surfaces and coflat calibrations, Indiana Math. Univ. J. 37 (1988), 505-535.
[2] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, (1978).
[3] W. Y. Hsiang, On compact homogeneous submanifolds. Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 5-6.
[4] M. Kerckhove, Isolated orbits of the adjoint action and area-minimizing cones, Proc. Amer. Math. Soc. 121 (1994), 497-503.
[5] G. R. Lawlor, A sufficient criterion for a cone to be area-minimizing, Mem. Amer. Math. Soc. 91 no. 446, 1991.
[6] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki
305-8571
Japan
daigo@math.tsukuba.ac.jp
kanno@math.tsukuba.ac.jp
tasaki@math.tsukuba.ac.jp

