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LJUNGGREN’S TRINOMIALS AND MATRIX EQUATION

Ax þ Ay ¼ Az

By

Aleksander Grytczuk and Jarosław Grytczuk

Abstract. We give some necessary and su‰cient conditions for

solvability of the matrix equation (*) Ax þ Ay ¼ Az, with certain

restrictions on integers x; y; z and a matrix A A MkðZÞ, by applying

Ljunggen’s result on trinomials. Moreover, we obtain full solution

of (*) for the case k ¼ 2 by another technique.

1. Introduction

We consider the general problem of finding necessary and su‰cient con-

ditions for the matrix A A MkðZÞ to satisfy the equation

Ax þ Ay ¼ Azð�Þ

for some positive integers x; y and z. Le and Li [7] proved that if A A M2ðZÞ,
then, for x ¼ mr, y ¼ ms, z ¼ mt, where m > 2 and r; s; t are positive integers,

(*) has a solution if and only if the matrix A is nilpotent or det A ¼ TrA ¼ 1.

Another proof of this result has been given in [5]. The restriction to multiplies

of m is motivated by another matrix equation of the famous form, namely by the

equation of Fermat

Xm þ Ym ¼ Zm:ð��Þ

In fact (*) is equivalent to Fermat’s equation (**) for X ¼ Ar, Y ¼ As and

Z ¼ At. We note, that if m ¼ 4 the Domiaty [2] remarked that the equation (**)

has infinitely many solutions in M2ðZÞ generated by Pythagorean triples. This

fact is in opposition to the well-known case of ordinary integers, as proved by

Wiles [13].
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In this connection it is a very important problem to find a su‰cient and

necessary condition for solvability of Fermat’s equation (**) in the set of matrices

(cf. [10], [12]). Khazanov [6] found such conditions for the matrices X ;Y ;Z A

SL2ðZÞ and X ;Y ;Z A GL3ðZÞ. Further investigations connected with Khazanov’s

results have been given in the papers [1], [5], [7] and [9]. Some necessary condition

for solvability of (**) in the set M2ðZÞ is contained in the paper [3]. In general

case, it was proved in [4] that if the matrix A A MkðCÞ, kb 2 has at least one

real eigenvalue a >
ffiffiffi
2

p
and (*) is satisfied in positive integers x; y and z, then

maxfx� z; y� zg ¼ �1.

In the present paper we give an application of Ljunggren’s [8] result on

trinomials to find a su‰cient and necessary condition for solvability of (*) in

positive integers x; y and z under some restrictions for A A MkðZÞ, kb 2 con-

cerning the set of exponents x; y and z. Moreover, we present full solution of (*)

for the case k ¼ 2 without using Ljunggren’s result on trinomials. In the first

part of this paper we prove the following theorem.

Theorem 1. Let A A MkðZÞ, kb 2 be a given non-zero and non-singular ma-

trix with the characteristic polynomial f ðtÞ ¼ detðtI � AÞ ¼ tk þ a1t
k�1 þ � � � þ ak.

Then the matrix equation (*) has a solution in positive integers x; y and z such that

x ¼ y or x ¼ z or y ¼ z if and only if

(i)

Am ¼ 2I ;

where m ¼ k=a, 1a aa k is a divisor of k, det A ¼G2a and aðz� xÞ ¼
kb 2. Moreover, if the positive integers x; y; z satisfy the conditions:

x > y > z and x� zb 2ðy� zÞb kb 2, with ðx� z; y� zÞ ¼ ðn;mÞ ¼ d and

3a ðx� zÞ=d þ ðy� zÞ=d, then (*) has a solution, if and only if

(ii) ai ¼ 0, for i0m; k, and am ¼ e1 and ak ¼ det A ¼ e2, where e1 ¼G1 and

e2 ¼G1 or if 3 j ðx� zÞ=d þ ðy� zÞ=d then

(iii)

A2d þ e
y�z
1 ex�z

2 Ad þ I ¼ O or hðAÞ ¼ O;

where hðtÞ is irreducible factor of the polynomial gðtÞ given by the equality

gðtÞ ¼ tx�z þ e1t
y�z þ e2 ¼ ðt2d þ e

y�z
1 ex�z

2 td þ 1ÞhðtÞ;

where ðx� zÞ=d; ðy� zÞ=d are both odd and e1 ¼ 1 or ðx� zÞ=d is even and e2 ¼ 1

or ðy� zÞ=d is even and e1 ¼ e2.
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2. Basic Lemmas

In the proof of the Theorem 1 we use of the following Lemmas.

Lemma 1 ([11], p. 210). Let A be a k � k, kb 2 matrix with entries in the

field K. Then each polynomial g A K½x� with property gðAÞ ¼ O is divisible by the

minimal polynomial m A K ½x� of the matrix A. In particular, the minimal poly-

nomial m divides the characteristic polynomial f A K ½x� of the matrix A and the

polynomial f has the same roots, but possibly with di¤erent multiplicities.

Remark 1. The minimal polynomial of the matrix A is the unique polynomial

m A K ½x� of minimal degree with leading coe‰cient equal to one and such that

mðAÞ ¼ O.

Lemma 2 (Ljunggren [8], Thm. 3, p. 69). If n ¼ dn1, m ¼ dm1, nb 2m where

ðn1;m1Þ ¼ 1, then the polynomial gðxÞ ¼ xn þ e1x
m þ e2, where e1; e2 ¼G1 is irre-

ducible, apart from the following three cases, when n1 þm1 1 0 ðmod 3Þ: 10 n1;m1

both odd and e1 ¼ 1, 20 n1 even and e2 ¼ 1, 30 m1 even and e1 ¼ e2 and then

gðxÞ ¼ ðx2d þ em1 e
n
2x

d þ 1ÞhðxÞ, where hðxÞ is an irreducible polynomial.

3. Proof of the Theorem 1

Suppose that (*) has a solution in positive integers x; y and z and let the

matrix A A MkðZÞ be a non-zero and non-singular matrix. First, we note that if

x ¼ z or y ¼ z then (*) is impossible, since (*) reduces in these cases to the form

Ay ¼ O or Ax ¼ O. Both these equations imply det A ¼ 0, which contradicts the

assumptions. If x ¼ y then (*) has the form

2Ax ¼ Az:ð3:1Þ

By (3.1) it follows that x0 z and z > x and consequently we have

Az�x ¼ 2I :ð3:2Þ

From (3.2) we obtain det Az�x ¼ ðdet AÞz�x ¼ 2k, so det A ¼G2a, where

1a aa k. Hence, ðG2Þaðz�xÞ ¼ 2k and aðz� xÞ ¼ kb 2, where a or z� x is even

if det A ¼ �2a and z� x ¼ k=a ¼ m. Then by (3.2) it follows that Am ¼ 2I and

the proof of (i) is finished. Now, we can consider the case when x0 y0 z. In this

case, by the equation (*) and the assumptions about x; y and z it follows to

consider the following equation:

Ax�z þ Ay�z ¼ I :ð3:3Þ
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Let d ¼ ðx� z; y� zÞ ¼ ðn;mÞ be the greatest common divisor of n and m

and let x� zb 2ðy� zÞb kb 2 and denote by gðtÞ the polynomial of the form

gðtÞ ¼ tx�z þ ty�z � 1:ð3:4Þ

Then by (3.3) it follows that gðAÞ ¼ O. If 3a ðx� zÞ=d þ ðy� zÞ=d then

from Lemma 2 it follows that the polynomial gðtÞ is irreducible and therefore the

characteristic polynomial f ðtÞ of the matrix A is equal to gðtÞ in (3.4). Com-

paring the coe‰cients and degrees of these polynomials we obtain the condition

(ii). Let 3 j ðx� zÞ=d þ ðy� zÞ=d, then by Ljunggren’s result given in Lemma 2

we obtain that

gðtÞ ¼ ðt2d þ em1 e
n
2 t

d þ 1ÞhðtÞ:ð3:5Þ

From (3.5) in virtue of gðAÞ ¼ O we obtain that

A2d þ em1 e
n
2A

d þ I ¼ O or hðAÞ ¼ O

with some restrictions concerning m; n; d and the polynomial hðtÞ given by

the assumptions of the Ljunggren’s Lemma 2. The proof of the Theorem 1 is

complete.

4. Full Solution of the Equation (*) for the Case A A M2ðZÞ

In this part of our paper we present full solution of the equation (*) in

positive integers x; y and z in the case when the matrix A belongs to M2ðZÞ. In

this purpose we replace Ljunggren’s result on trinomials by the following Lemma.

Lemma 3 ([4]). Let A be in MkðCÞ, where kb 2 and C denotes the field

of complex numbers. Suppose that A has at least one real eigenvalue a >
ffiffiffi
2

p
.

If the equation (*) has a solution in positive integers x; y and z then

maxfx� z; y� zg ¼ �1.

Now we prove the following theorem.

Theorem 2. Let A A M2ðZÞ be a given non-zero matrix with det A ¼ s and

Tr A ¼ r. Then the matrix equation (*) has a solution in positive integers x; y and z

if and only if one of the following conditions holds:

(i)

A ¼ 2I ;

(ii)

ðr; sÞ ¼ fð0; 0Þ; ð0; 2Þ; ð0;�2Þ; ð1; 1Þ; ð1;�1Þ; ð�1;�1Þg:
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Proof. Denote by f ðtÞ ¼ detðtI � AÞ ¼ t2 � ðTr AÞtþ det A the character-

istic polynomial of the matrix A A M2ðZÞ and let r ¼ Tr A and s ¼ det A.

Suppose that the matrix A is non-singular, so s ¼ det A0 0 and let positive

integers x; y and z satisfy the equation (*). If x ¼ z or y ¼ z then (*) reduces to

Ay ¼ O or Ax ¼ O, which is impossible, because s ¼ det A0 0. If x ¼ y then (*)

has the form: 2Ax ¼ Az. We observe that if xb z then we have 2Ax�z ¼ I , which

implies 4 det Ax�z ¼ 4ðdet AÞx�z ¼ 1 and we get a contradiction. Hence, x < z

and we obtain the following equation:

Az�x ¼ 2I :ð4:1Þ

From (4.1) it follows that det Az�x ¼ ðdet AÞz�x ¼ 4 and consequently

det A ¼G2 and z� x ¼ 2 or det A ¼ 4 and z� x ¼ 1. The case of z� x ¼ 1

implies by (4.1) the condition (i) of the Theorem 2. In the case of z� x ¼ 2

and s ¼ det A ¼G2 by (4.1) it follows that

A2 ¼ 2I :ð4:2Þ

Let A ¼ a b

c d

� �
be a given matrix with entries a; b; c; d A Z. Then by (4.1)

it follows that

A2 ¼ a b

c d

� �2

¼ a2 þ bc bðaþ dÞ
cðaþ dÞ d 2 þ bc

� �
¼ 2I ¼ 2 0

0 2

� �
:ð4:3Þ

Analyzing the equation (4.3) we obtain that b0 0 and c0 0, so implies

aþ d ¼ r ¼ 0. From this fact in virtue of s ¼ det A ¼G2 we obtain ðr; sÞ ¼ ð0; 2Þ;
ð0;�2Þ.

Now, we can consider the case when x0 y0 z and s ¼ det A0 0;G2 and

A0 2I . In these cases the equation (*) implies:

Ax�z þ Ay�z ¼ I ; if minfx; y; zg ¼ zð4:4Þ

Ax�y þ I ¼ Az�y; if minfx; y; zg ¼ yð4:5Þ

I þ Ay�x ¼ Az�x; if minfx; y; zg ¼ x:ð4:6Þ

For the corresponding equations (4.4)–(4.6) let gðtÞ be associated polynomial

of the form:

gðtÞ ¼ tx�z þ ty�z � 1; if ð4:4Þ holdsðP1Þ

gðtÞ ¼ tx�y � tz�y þ 1; if ð4:5Þ holdsðP2Þ

gðtÞ ¼ ty�x � tz�x þ 1; if ð4:6Þ holds:ðP3Þ
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From (P1)–(P3) and (4.4)–(4.6) we obtain gðAÞ ¼ O. Hence, by Lemma 1 it

follows that if mðtÞ is the minimal polynomial then we have mðtÞ j gðtÞ. In this

connection we consider two cases: 10 f ðtÞ ¼ t2 � trþ s is an irreducible char-

acteristic polynomial of the matrix A, 20 f ðtÞ is reducible polynomial. In the

case 10 we have f ðtÞ ¼ mðtÞ and therefore f ðtÞ j gðtÞ, which by (P1)–(P3) implies

f ðtÞ j tx�z þ ty�z � 1; or f ðtÞ j tx�y � tz�y þ 1; or f ðtÞ j ty�x � tz�x þ 1:ð4:7Þ

From (4.7) in the case of t ¼ 0 we get f ð0Þ jG1. Since f ð0Þ ¼ s, then s ¼G1.

On the other hand putting in (4.7) t ¼ 1 we obtain f ð1Þ jG1. Since f ð1Þ ¼
1 � rþ s and s ¼G1 we get the following possibilities to consider:

ðr; sÞ ¼ fð1; 1Þ; ð3; 1Þ; ð�1;�1Þ; ð1;�1Þg:ð4:8Þ

Consider the case when ðr; sÞ ¼ ð3; 1Þ. In this case the characteristic poly-

nomial has the form: f ðtÞ ¼ t2 � 3tþ 1 and we have D ¼ 5 and the characteristic

roots a; b of this polynomial are equal to a ¼ ð3 þ
ffiffiffi
5

p
Þ=2 and b ¼ ð3 �

ffiffiffi
5

p
Þ=2.

Since a >
ffiffiffi
2

p
then by Lemma 3 it follows that maxfx� z; y� zg ¼ �1. Sup-

pose that maxfx� z; y� zg ¼ x� z. Then we have x� z ¼ �1, so z ¼ xþ 1 and

(*) implies

AxðA� IÞ ¼ Ay:ð4:9Þ

Since s ¼ det A ¼ 1 from (4.9) we obtain detðA� IÞ ¼ 1. If A ¼ a b

c d

� �

then the condition detðA� IÞ ¼ 1 implies ða� 1Þðd � 1Þ � bc ¼ 1 and conse-

quently ad � bc� ðaþ dÞ ¼ 0. Since ad � bc ¼ s ¼ 1 and aþ d ¼ Tr A ¼ r, thus

we obtain r ¼ 1, which is contrary to the fact that r ¼ 3. Therefore, in the case

of ðr; sÞ ¼ ð3; 1Þ the equation (*) has no solution. In a similar way we obtain a

contradiction for the case if maxfx� z; y� zg ¼ y� z.

It remains to consider the case 20 when the characteristic polynomial f ðtÞ is

reducible. In this case we have f ðtÞ ¼ ðt� aÞðt� bÞ, where a; b A Z. From (*) and

the assumption that A is non-singular matrix, it follows that det A ¼G1 and

in virtue of detA ¼ ab we get ab ¼G1. Hence, a ¼ b ¼ 1 or a ¼ 1 and b ¼ �1

or a ¼ �1 and b ¼ 1. For these cases we obtain that A ¼ I or A ¼ �I and

the equation (*) has no solutions in positive integers x0 y0 z. Now, we can

consider the final part of the proof. If the non-zero matrix A A M2ðZÞ is singular,

then det A ¼ 0. In this case, by simple inductive way, we get Am ¼ ðTr AÞm�1
A

for all positive integers m. Using this formula and the assumption that A0O

we obtain that (*) reduces to the form:

rx�1 þ ry�1 ¼ rz�1;ð4:10Þ
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where r ¼ Tr A A Z. It is easy to see that the equation (4.10) has a solution with

positive integers x0 y0 z and an integer r if and only if r ¼ 0 or r ¼ 2.

Summarizing, we get that the condition (ii) is satisfied and the proof of the

Theorem 2 is complete. 9
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