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1. Introduction

Let Pn(C) denote an ^-dimensional complex projective space with the Fubini-

Study metric of constant holomorphic sectional curvature Ac and M a real

hypersurface in Pn{C) with the induced metric.

The problem with respect to the type number t,i.e.,the rank of the second

fundamental form of real hypersurfaces in Pn{C) has been studied by many

differentialgeometers ([1],[2] and [3] etc.).

The second named author [4] showed that there is a point p on M such that

t{p) > 2 and M. Kimura and S. Maeda [1] gave an example of real hypersurface

in Pn{C) satisfying t ― 2, which is non-complete. Y. J. Suh [3] proved that there

is a point p on a complete real hypersurface M in Pn(C) (≪> 3) such that

t(p) > 3. According to [2],there is a point p on a complete real hypersurface M

in Pn(C) such that t(p) > n, but thereis a mistake in deducation to lead a certain

formula.

In this paper, we shall prove the following Main theorem

Main Theorem. Let M he a complete realhypersurfacein Pn{C) (n > 4).

Then thereexistsa point p on M such that tip)> 4.

2. Preliminaries

Let Pn(C) (n > 4) be a complex projective space with the metric of constant

holomorphic sectional curvature Ac and M a real hypersurface in Pn(C) with the

induced metric. Choose a local fieldof orthonormal frames e＼,...,^ in Pn{C)

such that e＼,...,e2n-i, restricted to M, are tangent to M. We use the following

convention on the range of indices unless otherwise stated: A.B,... ― 1,...,2≪
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and i,j,...= 1,...,2n ―1. We denote by a>A and (Og the canonical 1-forms and

the connection forms, respectively. Then they satisfy

(2.1) dmA + V wi a coB = 0, oj^ a wBA = 0

We restrictthe forms under considerationto M. Then we have co2n= 0 and

by Cartan'slemma we may write as

(2.2) fa = cof" = V hij(oJ, htj = hji

The quadraticform ^ hy-co'R cojand the matrix H = (hy) is calledsecond

fundamental form and the shape operater of M for ein,respectively.Moveover,

the curvature form Q' of M are defined by

(2.3) aj = da>} + Y/<≫k*<≫r

We denote by / the complex structure of Pn{C). Let (･/,･,/*.)be the almost

contact metric structure of M, i.e.,7(e,-)= E J[e}+ f^n- Then (Jj,//^ satisfies

T.4Jj=fifj-^ E/// = o,

The parallelism of / implies

(2.5)

The equation of Gauss and Codazzi are given by

(2.6)

(2.7)

Qj = fa A fa + CW[ A (Oj + cY]i.JkjJl + JJJl)(Ok A CO1

d*t= - E * a wi+c E(^+//*k A w"

respectively.

3. Formulas

Let M be a real hypersurface in Pn(C). In this section, we assume that the

rank of second fundamental form is not larger than m on an open set U. In the

sequel, we use the following convention on the range of indices: ≪,&,...=

1,...,m and r,s,... = m + 1,...,In - 1. Then for an arbitary point p in U we
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can take a local fieldof orthonormal frames {e＼,...,£2≪-i}on a neighborhood of

p such that the 1-forms ^>tcan be written as

<t>a―
y^habCOb,

(3.1)

6 =0.

Here, we put

(3.2) < = 5>>* + E*>'-

Taking the exterior derivative of (f)r= 0 and using (2.7) and (3.1), we have

J2 habCOb ACO?-C Y,(frjj + fity * A ^ = °'

which, together with (3.2),implies

(3.3)
Y^{hacAcrb - hbcAcra)

- cfaJ[ + cfbJTa- 2cfrJah = 0,

(3.4)
£ KbBbrs

- cfJl + cfsJra- 2cfrJ≪ = 0,

(3.5) fsJ[-ftj; +2/^ = 0.

The above equation (3.5) is equivalent to

(3.6) /r// = 0.

Similarly, taking the exterior derivative of <j>a― Y^hab<x>b and making use of

(2.1), (2.7), (3.1), (3.2) and (3.4), we get

(3.7) dhab - J2{haccocb + hbcmca - J2hacAcrbwr)

+ cY,(fbJ>r - frJ>r + 2MV) = 0 {mod coa).

Here, we denote by T the maximal value of the type number t.

The following two Lemmas are proved in [2] and [3].

Lemma 3.1 ([3]). Assume that there exists a point peM such that

J(kerHp) ± ker Hp. Then t{p) >n―＼. Furthermore, the equality holds if and only

if J((ker Hp)1) cz keiHp, where (ker Hp)1 denotes the set of all vectors normal to

kerHp.

Lemma 3.2 ([2]). If J{kQTHw) ± kerHirj, then T>n on U.
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We shall take T as m in above. In the remainder of this section we restrict

the forms under consideration to the following open set Vt defined by

VT = {peM＼j;{p)*O,t{p) = T}.

From (3.6) we have fr = 0. Thus we may set fx = 1 and f2 = ･･■= fT = 0. This

and (2.4) show

(3.8) /J=0, 7,1=0.

Furthermore, the fact that dfa = 0 and dfr = 0 tellsus

(3.9)

(3.10)

(3.11)

where we have used (2.5),(3.1

(3.12)

From (3.4),we have

(3.13)

)

CO

, and (3.2). The above equation (3.9) yields

＼= 0 {mod ma)

Y,habBbrs = cfaJrs

Moreover, from (3.11) and (3.13), it follows that (cf.[31)

(3.14) det(hab)=O (a,b = 2,...,T)

Thus, for a suitable choice of a field{ea} of orthonormal frames, we may set

(3.15) hab = ka$ab {a,b = 2,...,T).

Combining (3.15) with (3.14),we can set Xi = 0. Since det(hab) = ―(hn) h ･･■̂ t,

it follows that

(3.16) /?i2#0 and haa = ka * 0 (a = 3,...,7),

because det(hab) does not vanish on Vj-

On the other hand, the equation (3.10), together with (3.8) and (3.15), yields

(3.17) Ai2 = 0.

Now put a - 2 and b > 3 in (3.3). Then using (3.10), (3.15) and (3.16), we

find

(3.18) Ahrl= hnJhr (b>3)
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= 1 and b ― 2 in (2.4). Then we obtain
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It follows from (3.10),(3.15),(3.17) and (3.18) that the above equation can be

rpfnrmprl ac

(3.19) hnA?2 = hl2J2hlaJ?-hl2J2h

≪>3

＼aJr ~ CJ}

We put a = 2 and b > 3 in (3.7) and take account of (3.12) and (3.15). Then

hhbm＼ - hu ^ Axrb(or = 0 (mod coa)

which, together with (3.8),(3.10) and (3.16), leads to

(3.20) eo%=hi2y2Jrbcor forb>3 (moda)a)

Put a= 1 and h = 2 in (3.7).Then from (3.12)it follows that

dhl2 -
Y^{hib(ob2

-J2hu>Ar2c°r) + 2c V/r2cor = 0 (mod coa)

Combining this equation with (3.8),(3.12) and (3.17)~(3.20),we get

(3.21) dhl2+ {(hn)2 + c)YVV = 0 {mod coa)

On the other hand, from (3.13) we have

haiBlrs+
Y,habBbrs

b>2

Using (3.11) and (3.15), we obtain

This equation yields

(3.22)

= 0 for a # 1.

laK = 0.

B% = 0 fora #2.

Similarly, from (3.4), we find

hl2B2rs= c/;,

which, together with (3.17), lead to

(3.23) E2 - ― Jr
rs ~ h s
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4. The proof of Main theorem

In this section, we keep the notation in section 3 unless otherwise stated. If

/(ker H) _L ker H on a non-empty open set, then Lemma 3.2 proves Main

theorem. Therefore, we have only consider the case where the open set Vj

defined section 3 is not empty. It is known that T > 3 (cf.[3]). Assume M is

complete and T = 3 and derive a contradiction.

Lemma 4.1. J} ^ 0 on any non-empty open subset of Vi

Proof. If there exist an open subset of Vj,such that /r2= 0, then from (2.4)

we get

/2=±1, j? = 0 for/#2.

Taking account of the coefficientof cosin dJ^ = 0, and using (2.5),(3.2) and

(3.22) we find

Bi = 0.

This implies Jrs = 0. which contradicts the fact that rank J = 2n ―2 > 4. n

Thus, owing to Lemma 4.1, we have

(4.1) V/> F3, Vtf(/0,3? e t/(/>) such that jj(q) # 0,

where £/(/>)denotes a neighborhood of p.

Moveover, we consider the open set V[ defined by

v; = {Pzv3＼j?(p)*o}.

Since V{ is dense subset of F3 by (4.1),any equality obtained on V[ holds also on

F3. Hence, we may assume K3 = F3' whenever we treat equalities.

On the other hand, for a suitable choice of a field{er} of orthonormal

frames, we can set

(4.2) /| = ...=j|i_1=/3 = ...=y3|_i=O-

For simplicity,we put a = /32 and fl = J%. Then from (2.4) and (4.2), we

obtain

a2 + /?2 = l.
(4.3)

pjt = o.
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Since /?# 0 on VL above

(4.4)

equation implies

/34 = 0 on K3.

From (2.4), (4.2) and (4.4), we get

which yields

We may assume

(4.5)

Ew3)2 = ≪2+w3)2 = i

J =

n

±p

=p
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by taking ―e$ instead of es if necessary. Similarly, from (2.4),(4.2),(4.4), (4.5)

and the equation V j}j＼ = 0, we have

(4.6) Jl a.

It follows from (2.4), (4.2), (4.4)~(4.6)and the equation E(^)2 = 1, that

(4.7)
/■4
_ _ r4 _ r5 _ j5 A

J6 - ･ ･ ･ - Jln-＼ - J6 - ■■･- Jjn-i ~ U

Hence, we obtain the following matrix

(4.8)

V)

/

＼

0

0

0

0

0

0

0

-a

-fi

0

0

a

0

0

-±

0

0

p

0

0

a

0

0

―a

0

0

*

Lemma 4.2. B has not zero points everywhere on V＼.

Proof. Taking the exterior derivative of /52= 0 and making use of (3.20),

(3.221 and (4.81 we have

fi{co45+ hl2/3co5) + a2
h

c

＼2

CO5 = 0 {mod (oa)

Then if there exists a point p on F3 such that fi(p) = 0, we get <x(p)― 0. This

contradicts (4.3). □
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On the other hand, we put F ―h＼2,then the equation (3.21) is equivalent to

(4.9) dF + [F1 + c)pcoA = 0 (mod coa).

Let p be any point of F3 and let y : / ―^F3 be a maximal integral curve of

the unit vector field e$ on F3 through p. Assume that / has an infimum or a

supremum, say to.

Lemma 4.3.

lim/i33(K0) #0.
/―>/n

Proof. Put a = b = 3 in (3.7). Then we set

dh33 -2V hccoc3+ ]T h3cAcr3cor= 0 (mod wa)

From (3.8),(3.10), (3.12) and (3.15),it follows that

(4.10) dh3i+ /133J2^lJr + ^sK - ° (mod ""I

We restrictthe forms under consideration to y. Then (4.10), together with (4.4),

becomes

dhx

dt
+ h33Al = 0, tel

On the otherhand, since M is complete, there exists a limit point lim,-^ y(t)

on M. Suppose that ＼imt^tnhniyit)) = 0. Then from the above differential

equation, we have A33 = 0 on y. This contradicts (3.16).

Lemma 4.4.

lim F(y(O)

f->fo

0

□

Proof. Assume that limt_>toF(y(t))＼=0. Owing to Lemma 4.3, we see

t{y(to))- 3. Since y is maximal, we have Jrs{y{h)) = 0. Then by Lemma 3.1, we

obtain

t(y(to))>n-l>4 for n > 5,

which is a contradiction. For a case where n ―4, also by using Lemma 3.1 we

get fa{y(t0)) = 0. This also contradicts /i(y(fo)) = 1- □
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Put t＼= inf/(> -oo) and to = sup/(<oo). Then there are four possibilities

of an open interval (h,to). Namely, the interval / is one of the following:

(1) - 00 < ti,to< 00,

(2)- 00 = ti,t0< GO,

(3) - GO < t＼,to= 00,

(4) - oo = ti,t0= oo.

Case (1):

Owing to Lemma 4.4 it is seen that there exist a real number t' such that

h < t'< t0, dF = 0 at y(t')e K3. Then (4.9) gives fi(y(t'))= 0. This contradicts

Lemma 4.2.

Case (2), (3), (4):

Taking the exterior derivative of J＼ = /? and using (2.5) and (4.8), we have

dfi= -^ol2co4 (modcoa).
F

We restrictthe forms under consideration to y. Then above equation becomes

(4.U)
*-£,>,

,≪/.

Put a = FB and from (4.9) and (4.11), we have

(4.12)
dg

dt
= -92 - C. t G /

Then solving (4.12), we get

(4.13) g(y(t))= -^t&n^(t-t2),

where tiis a constant. However, (4.13) is defined only for a finiteinterval, which

is contradiction.

It completes the proof of Main theorem.
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