A NOTE ON THE TYPE NUMBER OF REAL HYPERSURFACES IN $P_n(C)$

By

Hiroyuki KURIHARA and Ryoichi TAKAGI

1. Introduction

Let $P_n(C)$ denote an *n*-dimensional complex projective space with the Fubini-Study metric of constant holomorphic sectional curvature 4c and M a real hypersurface in $P_n(C)$ with the induced metric.

The problem with respect to the type number t, i.e., the rank of the second fundamental form of real hypersurfaces in $P_n(C)$ has been studied by many differential geometers ([1], [2] and [3] etc.).

The second named author [4] showed that there is a point p on M such that $t(p) \ge 2$ and M. Kimura and S. Maeda [1] gave an example of real hypersurface in $P_n(C)$ satisfying t = 2, which is non-complete. Y. J. Suh [3] proved that there is a point p on a complete real hypersurface M in $P_n(C)$ ($n \ge 3$) such that $t(p) \ge 3$. According to [2], there is a point p on a complete real hypersurface M in $P_n(C)$ such that $t(p) \ge n$, but there is a mistake in deducation to lead a certain formula.

In this paper, we shall prove the following Main theorem

MAIN THEOREM. Let M be a complete real hypersurface in $P_n(C)$ $(n \ge 4)$. Then there exists a point p on M such that $t(p) \ge 4$.

2. Preliminaries

Let $P_n(\mathbb{C})$ $(n \ge 4)$ be a complex projective space with the metric of constant holomorphic sectional curvature 4c and M a real hypersurface in $P_n(\mathbb{C})$ with the induced metric. Choose a local field of orthonormal frames e_1, \ldots, e_{2n} in $P_n(\mathbb{C})$ such that e_1, \ldots, e_{2n-1} , restricted to M, are tangent to M. We use the following convention on the range of indices unless otherwise stated: $A, B, \ldots = 1, \ldots, 2n$

Received December 15, 1997.

Revised April 20, 1998.

and $i, j, \ldots = 1, \ldots, 2n - 1$. We denote by ω^A and ω_B^A the canonical 1-forms and the connection forms, respectively. Then they satisfy

(2.1)
$$d\omega^A + \sum \omega^A_B \wedge \omega^B = 0, \quad \omega^A_B \wedge \omega^B_A = 0.$$

We restrict the forms under consideration to M. Then we have $\omega^{2n} = 0$ and by Cartan's lemma we may write as

(2.2)
$$\phi_i \equiv \omega_i^{2n} = \sum h_{ij} \omega^j, \quad h_{ij} = h_{ji}.$$

The quadratic form $\sum h_{ij}\omega^i \otimes \omega^j$ and the matrix $H = (h_{ij})$ is called second fundamental form and the shape operator of M for e_{2n} , respectively. Moveover, the curvature form Ω_i^i of M are defined by

(2.3)
$$\Omega_j^i = d\omega_j^i + \sum \omega_k^i \wedge \omega_j^k.$$

We denote by \tilde{J} the complex structure of $P_n(C)$. Let (J_j^i, f_k) be the almost contact metric structure of M, i.e., $\tilde{J}(e_i) = \sum J_i^j e_j + f_i e_{2n}$. Then (J_j^i, f_k) satisfies

(2.4)
$$\sum J_k^i J_j^k = f_i f_j - \delta_j^i, \quad \sum f_j J_i^j = 0$$
$$\sum f_i^2 = 1, \quad J_j^i + J_i^j = 0.$$

The parallelism of \tilde{J} implies

(2.5)
$$dJ_j^i = \sum (J_k^i \omega_j^k - J_k^j \omega_i^k) - f_i \phi_j + f_j \phi_i,$$
$$df_i = \sum (f_j \omega_i^j - J_i^j \phi_j).$$

The equation of Gauss and Codazzi are given by

(2.6)
$$\Omega_j^i = \phi_i \wedge \phi_j + c\omega^i \wedge \omega^j + c\sum (J_k^i J_l^j + J_j^i J_l^k) \omega^k \wedge \omega^l,$$

(2.7)
$$d\phi_i = -\sum \phi_j \wedge \omega_i^j + c \sum (f_i J_k^j + f_j J_k^i) \omega^j \wedge \omega^k,$$

respectively.

3. Formulas

Let *M* be a real hypersurface in $P_n(C)$. In this section, we assume that the rank of second fundamental form is not larger than *m* on an open set *U*. In the sequel, we use the following convention on the range of indices: $a, b, \ldots = 1, \ldots, m$ and $r, s, \ldots = m + 1, \ldots, 2n - 1$. Then for an arbitrary point *p* in *U* we

can take a local field of orthonormal frames $\{e_1, \ldots, e_{2n-1}\}$ on a neighborhood of p such that the 1-forms ϕ_i can be written as

(3.1)
$$\phi_a = \sum h_{ab} \omega^b,$$
$$\phi_r = 0.$$

Here, we put

(3.2)
$$\omega_r^a = \sum A_{rb}^a \omega^b + \sum B_{rs}^a \omega^s.$$

Taking the exterior derivative of $\phi_r = 0$ and using (2.7) and (3.1), we have

$$\sum h_{ab}\omega^b \wedge \omega_r^a - c \sum (f_r J_j^i + f_i J_j^r) \omega^i \wedge \omega^j = 0,$$

which, together with (3.2), implies

(3.3)
$$\sum (h_{ac}A_{rb}^{c} - h_{bc}A_{ra}^{c}) - cf_{a}J_{b}^{r} + cf_{b}J_{a}^{r} - 2cf_{r}J_{b}^{a} = 0,$$

(3.4)
$$\sum h_{ab}B_{rs}^b - cf_a J_s^r + cf_s J_a^r - 2cf_r J_s^a = 0,$$

(3.5)
$$f_s J_t^r - f_t J_s^r + 2f_r J_t^s = 0.$$

The above equation (3.5) is equivalent to

$$(3.6) f_r J_t^s = 0$$

Similarly, taking the exterior derivative of $\phi_a = \sum h_{ab}\omega^b$ and making use of (2.1), (2.7), (3.1), (3.2) and (3.4), we get

(3.7)
$$dh_{ab} - \sum (h_{ac}\omega_b^c + h_{bc}\omega_a^c - \sum h_{ac}A_{rb}^c\omega^r) + c\sum (f_b J_r^a\omega^r - f_r J_b^a\omega^r + 2f_a J_r^b\omega^r) \equiv 0 \pmod{\omega^a}.$$

Here, we denote by T the maximal value of the type number t. The following two Lemmas are proved in [2] and [3].

LEMMA 3.1 ([3]). Assume that there exists a point $p \in M$ such that $\tilde{J}(\ker H_p) \perp \ker H_p$. Then $t(p) \ge n-1$. Furthermore, the equality holds if and only if $\tilde{J}((\ker H_p)^{\perp}) \subset \ker H_p$, where $(\ker H_p)^{\perp}$ denotes the set of all vectors normal to $\ker H_p$.

LEMMA 3.2 ([2]). If $\tilde{J}(\ker H_{|U}) \perp \ker H_{|U}$, then $T \ge n$ on U.

We shall take T as m in above. In the remainder of this section we restrict the forms under consideration to the following open set V_T defined by

$$V_T = \{ p \in M \, | \, J_s'(p) \neq 0, t(p) = T \}.$$

From (3.6) we have $f_r = 0$. Thus we may set $f_1 = 1$ and $f_2 = \cdots = f_T = 0$. This and (2.4) show

(3.8)
$$J_a^1 = 0, \quad J_r^1 = 0.$$

Furthermore, the fact that $df_a = 0$ and $df_r = 0$ tells us

(3.9)
$$\omega_a^1 = -\sum J_b^a \phi_b,$$

$$(3.10) A_{ra}^1 = \sum h_{ab} J_r^b,$$

$$(3.11) B_{rs}^1 = 0,$$

where we have used (2.5), (3.1), and (3.2). The above equation (3.9) yields

(3.12)
$$\omega_a^1 \equiv 0 \pmod{\omega^a}.$$

From (3.4), we have

$$(3.13) \qquad \qquad \sum h_{ab}B^b_{rs} = cf_a J^r_s.$$

Moreover, from (3.11) and (3.13), it follows that (cf. [3])

(3.14)
$$det(h_{ab}) = 0 \quad (a, b = 2, ..., T).$$

Thus, for a suitable choice of a field $\{e_a\}$ of orthonormal frames, we may set

$$(3.15) h_{ab} = \lambda_a \delta_{ab} \quad (a, b = 2, \dots, T).$$

Combining (3.15) with (3.14), we can set $\lambda_2 = 0$. Since $det(h_{ab}) = -(h_{12})^2 \lambda_3 \cdots \lambda_T$, it follows that

(3.16)
$$h_{12} \neq 0$$
 and $h_{aa} = \lambda_a \neq 0$ $(a = 3, \dots, T),$

because $det(h_{ab})$ does not vanish on V_T .

On the other hand, the equation (3.10), together with (3.8) and (3.15), yields

(3.17)
$$A_{r2}^1 = 0$$

Now put a = 2 and $b \ge 3$ in (3.3). Then using (3.10), (3.15) and (3.16), we find

(3.18)
$$A_{r2}^b = h_{12}J_r^b \quad (b \ge 3).$$

Similarly, put a = 1 and b = 2 in (2.4). Then we obtain

$$\sum (h_{1a}A_{r2}^a - h_{2a}A_{r1}^a) + cJ_r^2 = 0.$$

It follows from (3.10), (3.15), (3.17) and (3.18) that the above equation can be reformed as

(3.19)
$$h_{12}A_{r2}^2 = h_{12}\sum h_{1a}J_r^a - h_{12}\sum_{a\geq 3}h_{1a}J_r^a - cJ_r^2.$$

We put a = 2 and $b \ge 3$ in (3.7) and take account of (3.12) and (3.15). Then we have

$$h_{bb}\omega_2^b - h_{12}\sum A_{rb}^1\omega^r \equiv 0 \pmod{\omega^a}.$$

which, together with (3.8), (3.10) and (3.16), leads to

(3.20)
$$\omega_2^b \equiv h_{12} \sum J_r^b \omega^r \quad \text{for } b \ge 3 \pmod{\omega^a}.$$

Put a = 1 and b = 2 in (3.7). Then from (3.12) it follows that

$$dh_{12} - \sum (h_{1b}\omega_2^b - \sum h_{1b}A_{r2}^b\omega^r) + 2c\sum J_r^2\omega^r \equiv 0 \pmod{\omega^a}.$$

Combining this equation with (3.8), (3.12) and $(3.17)\sim(3.20)$, we get

(3.21)
$$dh_{12} + ((h_{12})^2 + c) \sum J_r^2 \omega^r \equiv 0 \pmod{\omega^a}.$$

On the other hand, from (3.13) we have

$$h_{a1}B_{rs}^{1} + \sum_{b\geq 2} h_{ab}B_{rs}^{b} = 0 \text{ for } a \neq 1.$$

Using (3.11) and (3.15), we obtain

$$\lambda_a B_{rs}^a = 0.$$

This equation yields

$$B^a_{rs} = 0 \quad \text{for } a \neq 2.$$

Similarly, from (3.4), we find

$$h_{12}B_{rs}^2 = cJ_s^r,$$

which, together with (3.17), lead to

(3.23)
$$B_{rs}^2 = \frac{c}{h_{12}} J_s^r.$$

800 Hiroyuki Kurihara and Ryoichi Takagi

4. The proof of Main theorem

In this section, we keep the notation in section 3 unless otherwise stated. If $\tilde{J}(\ker H) \perp \ker H$ on a non-empty open set, then Lemma 3.2 proves Main theorem. Therefore, we have only consider the case where the open set V_T defined section 3 is not empty. It is known that $T \ge 3$ (cf. [3]). Assume M is complete and T = 3 and derive a contradiction.

LEMMA 4.1. $J_r^2 \neq 0$ on any non-empty open subset of V_3 .

PROOF. If there exist an open subset of V_3 such that $J_r^2 = 0$, then from (2.4) we get

$$J_3^2 = \pm 1, \quad J_i^3 = 0 \quad \text{for } i \neq 2.$$

Taking account of the coefficient of ω^s in $dJ_r^3 = 0$, and using (2.5), (3.2) and (3.22) we find

$$B_{rs}^2 = 0.$$

This implies $J_s^r = 0$, which contradicts the fact that rank $J = 2n - 2 \ge 4$. \Box

Thus, owing to Lemma 4.1, we have

(4.1)
$$\forall p \in V_3, \forall U(p), \exists q \in U(p) \text{ such that } J_r^2(q) \neq 0,$$

where U(p) denotes a neighborhood of p.

Moveover, we consider the open set V'_3 defined by

$$V'_{3} = \{ p \in V_{3} \, | \, J^{2}_{r}(p) \neq 0 \}.$$

Since V'_3 is dense subset of V_3 by (4.1), any equality obtained on V'_3 holds also on V_3 . Hence, we may assume $V_3 = V'_3$ whenever we treat equalities.

On the other hand, for a suitable choice of a field $\{e_r\}$ of orthonormal frames, we can set

(4.2)
$$J_5^2 = \cdots = J_{2n-1}^2 = J_6^3 = \cdots = J_{2n-1}^3 = 0.$$

For simplicity, we put $\alpha = J_3^2$ and $\beta = J_4^2$. Then from (2.4) and (4.2), we obtain

(4.3)
$$\begin{aligned} \alpha^2 + \beta^2 &= 1, \\ \beta J_2^4 &= 0. \end{aligned}$$

Since $\beta \neq 0$ on V'_3 , above equation implies

(4.4)
$$J_3^4 = 0 \text{ on } V_3$$

From (2.4), (4.2) and (4.4), we get

$$\sum (J_i^3)^2 = \alpha^2 + (J_5^3)^2 = 1,$$

which yields

$$J_5^3 = \pm \beta.$$

We may assume

$$(4.5) J_5^3 = \beta,$$

by taking $-e_5$ instead of e_5 if necessary. Similarly, from (2.4), (4.2), (4.4), (4.5) and the equation $\sum J_i^3 J_4^i = 0$, we have

$$J_4^5 = \alpha.$$

It follows from (2.4), (4.2), (4.4)~(4.6) and the equation $\sum (J_i^4)^2 = 1$, that

(4.7)
$$J_6^4 = \dots = J_{2n-1}^4 = J_6^5 = \dots = J_{2n-1}^5 = 0.$$

Hence, we obtain the following matrix

(4.8)
$$(J_j^i) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \alpha & \beta & 0 \\ 0 & -\alpha & 0 & 0 & \beta & 0 \\ 0 & -\beta & 0 & 0 & -\alpha & \\ 0 & 0 & -\beta & \alpha & 0 & \\ \hline 0 & 0 & -\beta & \alpha & 0 & \\ \hline 0 & 0 & -\beta & \alpha & 0 & \\ \hline \end{array} \right)$$

LEMMA 4.2. β has not zero points everywhere on V_3 .

PROOF. Taking the exterior derivative of $J_5^2 = 0$ and making use of (3.20), (3.22) and (4.8), we have

$$\beta(\omega_5^4 + h_{12}\beta\omega^5) + \alpha^2 \frac{c}{h_{12}}\omega^5 \equiv 0 \pmod{\omega^a}.$$

Then if there exists a point p on V_3 such that $\beta(p) = 0$, we get $\alpha(p) = 0$. This contradicts (4.3).

801

On the other hand, we put $F = h_{12}$, then the equation (3.21) is equivalent to

(4.9)
$$dF + (F^2 + c)\beta\omega^4 \equiv 0 \pmod{\omega^a}.$$

Let p be any point of V_3 and let $\gamma: I \to V_3$ be a maximal integral curve of the unit vector field e_4 on V_3 through p. Assume that I has an infimum or a supremum, say t_0 .

LEMMA 4.3.

$$\lim_{t\to t_0} h_{33}(\gamma(t)) \neq 0.$$

PROOF. Put a = b = 3 in (3.7). Then we get

$$dh_{33}-2\sum h_{3c}\omega_3^c+\sum h_{3c}A_{r3}^c\omega^r\equiv 0 \pmod{\omega^a}.$$

From (3.8), (3.10), (3.12) and (3.15), it follows that

(4.10)
$$dh_{33} + h_{33} \sum (h_{31}J_r^3 + A_{r3}^3)\omega^r \equiv 0 \pmod{\omega^a}.$$

We restrict the forms under consideration to γ . Then (4.10), together with (4.4), becomes

$$\frac{dh_{33}}{dt} + h_{33}A_{43}^3 = 0, \quad t \in I.$$

On the otherhand, since M is complete, there exists a limit point $\lim_{t\to t_0} \gamma(t)$ on M. Suppose that $\lim_{t\to t_0} h_{33}(\gamma(t)) = 0$. Then from the above differential equation, we have $h_{33} = 0$ on γ . This contradicts (3.16).

Lemma 4.4.

$$\lim_{t\to t_0} F(\gamma(t)) = 0.$$

PROOF. Assume that $\lim_{t\to t_0} F(\gamma(t)) \neq 0$. Owing to Lemma 4.3, we see $t(\gamma(t_0)) = 3$. Since γ is maximal, we have $J'_s(\gamma(t_0)) = 0$. Then by Lemma 3.1, we obtain

$$t(\gamma(t_0)) \ge n - 1 \ge 4 \quad \text{for } n \ge 5,$$

which is a contradiction. For a case where n = 4, also by using Lemma 3.1 we get $f_a(\gamma(t_0)) = 0$. This also contradicts $f_1(\gamma(t_0)) = 1$.

802

Put $t_1 = \inf I(\ge -\infty)$ and $t_0 = \sup I(\le \infty)$. Then there are four possibilities of an open interval (t_1, t_0) . Namely, the interval I is one of the following:

$$(1) - \infty < t_1, t_0 < \infty,$$

$$(2) - \infty = t_1, t_0 < \infty,$$

$$(3) - \infty < t_1, t_0 = \infty,$$

$$(4) - \infty = t_1, t_0 = \infty.$$

Case (1):

Owing to Lemma 4.4 it is seen that there exist a real number t' such that $t_1 < t' < t_0$, dF = 0 at $\gamma(t') \in V_3$. Then (4.9) gives $\beta(\gamma(t')) = 0$. This contradicts Lemma 4.2.

Case (2), (3), (4):

Taking the exterior derivative of $J_4^2 = \beta$ and using (2.5) and (4.8), we have

$$d\beta \equiv -\frac{c}{F}\alpha^2\omega^4 \pmod{\omega^a}.$$

We restrict the forms under consideration to γ . Then above equation becomes

(4.11)
$$\frac{d\beta}{dt} = -\frac{c}{F}\alpha^2, \quad t \in I.$$

Put $g = F\beta$ and from (4.9) and (4.11), we have

(4.12)
$$\frac{dg}{dt} = -g^2 - c, \quad t \in I.$$

Then solving (4.12), we get

(4.13)
$$g(\gamma(t)) = -\sqrt{c} \tan \sqrt{c}(t-t_2),$$

where t_2 is a constant. However, (4.13) is defined only for a finite interval, which is contradiction.

It completes the proof of Main theorem.

References

- M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
- [2] H. S. Kim and R. Takagi, The type number of real hypersurfaces in $P_n(C)$, Tsukuba J. Math. 20 (1996) 349-356.
- [3] Y. J. Suh, On type number of real hypersurfaces in $P_n(C)$, Tsukuba J. Math. 15 (1991), 99–104.

- [4] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka. J. Math. 10 (1975) 495-506.
- [5] ——, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan. 27 (1975) 43-53, 507-516.

Graduate School of Science and Technology Chiba University Chiba-Shi, 263-8522 Japan Department of Mathematics and Informatics Chiba University Chiba-Shi, 263-8522 Japan

804