A NOTE ON THE TYPE NUMBER OF REAL HYPERSURFACES IN $P_{n}(C)$

By
Hiroyuki Kurihara and Ryoichi Takagi

1. Introduction

Let $P_{n}(\boldsymbol{C})$ denote an n-dimensional complex projective space with the FubiniStudy metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $P_{n}(\boldsymbol{C})$ with the induced metric.

The problem with respect to the type number t, i.e., the rank of the second fundamental form of real hypersurfaces in $P_{n}(\boldsymbol{C})$ has been studied by many differential geometers ([1], [2] and [3] etc.).

The second named author [4] showed that there is a point p on M such that $t(p) \geq 2$ and M . Kimura and S . Maeda [1] gave an example of real hypersurface in $P_{n}(C)$ satisfying $t=2$, which is non-complete. Y. J. Suh [3] proved that there is a point p on a complete real hypersurface M in $P_{n}(C)(n \geq 3)$ such that $t(p) \geq 3$. According to [2], there is a point p on a complete real hypersurface M in $P_{n}(\boldsymbol{C})$ such that $t(p) \geq n$, but there is a mistake in deducation to lead a certain formula.

In this paper, we shall prove the following Main theorem

Main Theorem. Let M be a complete real hypersurface in $P_{n}(C)(n \geq 4)$. Then there exists a point p on M such that $t(p) \geq 4$.

2. Preliminaries

Let $P_{n}(C)(n \geq 4)$ be a complex projective space with the metric of constant holomorphic sectional curvature $4 c$ and M a real hypersurface in $P_{n}(C)$ with the induced metric. Choose a local field of orthonormal frames $e_{1}, \ldots, e_{2 n}$ in $P_{n}(C)$ such that $e_{1}, \ldots, e_{2 n-1}$, restricted to M, are tangent to M. We use the following convention on the range of indices unless otherwise stated: $A, B, \ldots=1, \ldots, 2 n$

[^0]and $i, j, \ldots=1, \ldots, 2 n-1$. We denote by ω^{A} and ω_{B}^{A} the canonical 1-forms and the connection forms, respectively. Then they satisfy
\[

$$
\begin{equation*}
d \omega^{A}+\sum \omega_{B}^{A} \wedge \omega^{B}=0, \quad \omega_{B}^{A} \wedge \omega_{A}^{B}=0 \tag{2.1}
\end{equation*}
$$

\]

We restrict the forms under consideration to M. Then we have $\omega^{2 n}=0$ and by Cartan's lemma we may write as

$$
\begin{equation*}
\phi_{i} \equiv \omega_{i}^{2 n}=\sum h_{i j} \omega^{j}, \quad h_{i j}=h_{j i} . \tag{2.2}
\end{equation*}
$$

The quadratic form $\sum h_{i j} \omega^{i} \otimes \omega^{j}$ and the matrix $H=\left(h_{i j}\right)$ is called second fundamental form and the shape operater of M for $e_{2 n}$, respectively. Moveover, the curvature form Ω_{j}^{i} of M are defined by

$$
\begin{equation*}
\Omega_{j}^{i}=d \omega_{j}^{i}+\sum \omega_{k}^{i} \wedge \omega_{j}^{k} \tag{2.3}
\end{equation*}
$$

We denote by \tilde{J} the complex structure of $P_{n}(C)$. Let $\left(J_{j}^{i}, f_{k}\right)$ be the almost contact metric structure of M, i.e., $\tilde{J}\left(e_{i}\right)=\sum J_{i}^{j} e_{j}+f_{i} e_{2 n}$. Then $\left(J_{j}^{i}, f_{k}\right)$ satisfies

$$
\begin{gather*}
\sum J_{k}^{i} J_{j}^{k}=f_{i} f_{j}-\delta_{j}^{i}, \quad \sum f_{j} J_{i}^{j}=0 \\
\sum f_{i}^{2}=1, \quad J_{j}^{i}+J_{i}^{j}=0 \tag{2.4}
\end{gather*}
$$

The parallelism of \tilde{J} implies

$$
\begin{gather*}
d J_{j}^{i}=\sum\left(J_{k}^{i} \omega_{j}^{k}-J_{k}^{j} \omega_{i}^{k}\right)-f_{i} \phi_{j}+f_{j} \phi_{i}, \\
d f_{i}=\sum\left(f_{j} \omega_{i}^{j}-J_{i}^{j} \phi_{j}\right) . \tag{2.5}
\end{gather*}
$$

The equation of Gauss and Codazzi are given by

$$
\begin{gather*}
\Omega_{j}^{i}=\phi_{i} \wedge \phi_{j}+c \omega^{i} \wedge \omega^{j}+c \sum\left(J_{k}^{i} J_{l}^{j}+J_{j}^{i} J_{l}^{k}\right) \omega^{k} \wedge \omega^{l} \tag{2.6}\\
d \phi_{i}=-\sum \phi_{j} \wedge \omega_{i}^{j}+c \sum\left(f_{i} J_{k}^{j}+f_{j} J_{k}^{i}\right) \omega^{j} \wedge \omega^{k} \tag{2.7}
\end{gather*}
$$

respectively.

3. Formulas

Let M be a real hypersurface in $P_{n}(\boldsymbol{C})$. In this section, we assume that the rank of second fundamental form is not larger than m on an open set U. In the sequel, we use the following convention on the range of indices: $a, b, \ldots=$ $1, \ldots, m$ and $r, s, \ldots=m+1, \ldots, 2 n-1$. Then for an arbitary point p in U we
can take a local field of orthonormal frames $\left\{e_{1}, \ldots, e_{2 n-1}\right\}$ on a neighborhood of p such that the 1 -forms ϕ_{i} can be written as

$$
\begin{align*}
& \phi_{a}=\sum h_{a b} \omega^{b}, \tag{3.1}\\
& \phi_{r}=0 .
\end{align*}
$$

Here, we put

$$
\begin{equation*}
\omega_{r}^{a}=\sum A_{r b}^{a} \omega^{b}+\sum B_{r s}^{a} \omega^{s} \tag{3.2}
\end{equation*}
$$

Taking the exterior derivative of $\phi_{r}=0$ and using (2.7) and (3.1), we have

$$
\sum h_{a b} \omega^{b} \wedge \omega_{r}^{a}-c \sum\left(f_{r} J_{j}^{i}+f_{i} J_{j}^{r}\right) \omega^{i} \wedge \omega^{j}=0
$$

which, together with (3.2), implies

$$
\begin{gather*}
\sum\left(h_{a c} A_{r b}^{c}-h_{b c} A_{r a}^{c}\right)-c f_{a} J_{b}^{r}+c f_{b} J_{a}^{r}-2 c f_{r} J_{b}^{a}=0, \tag{3.3}\\
\sum h_{a b} B_{r s}^{b}-c f_{a} J_{s}^{r}+c f_{s} J_{a}^{r}-2 c f_{r} J_{s}^{a}=0, \tag{3.4}\\
f_{s} J_{t}^{r}-f_{t} J_{s}^{r}+2 f_{r} J_{t}^{s}=0 \tag{3.5}
\end{gather*}
$$

The above equation (3.5) is equivalent to

$$
\begin{equation*}
f_{r} J_{t}^{s}=0 \tag{3.6}
\end{equation*}
$$

Similarly, taking the exterior derivative of $\phi_{a}=\sum h_{a b} \omega^{b}$ and making use of (2.1), (2.7), (3.1), (3.2) and (3.4), we get

$$
\begin{align*}
d h_{a b}- & \sum\left(h_{a c} \omega_{b}^{c}+h_{b c} \omega_{a}^{c}-\sum h_{a c} A_{r b}^{c} \omega^{r}\right) \tag{3.7}\\
& +c \sum\left(f_{b} J_{r}^{a} \omega^{r}-f_{r} J_{b}^{a} \omega^{r}+2 f_{a} J_{r}^{b} \omega^{r}\right) \equiv 0 \quad\left(\bmod \omega^{a}\right)
\end{align*}
$$

Here, we denote by T the maximal value of the type number t.
The following two Lemmas are proved in [2] and [3].
Lemma 3.1 ([3]). Assume that there exists a point $p \in M$ such that $\tilde{J}\left(\operatorname{ker} H_{p}\right) \perp \operatorname{ker} H_{p}$. Then $t(p) \geq n-1$. Furthermore, the equality holds if and only if $\tilde{J}\left(\left(\operatorname{ker} H_{p}\right)^{\perp}\right) \subset \operatorname{ker} H_{p}$, where $\left(\operatorname{ker} H_{p}\right)^{\perp}$ denotes the set of all vectors normal to $\operatorname{ker} H_{p}$.

Lemma 3.2 ([2]). If $\tilde{J}\left(\operatorname{ker} H_{\mid U}\right) \perp \operatorname{ker} H_{\mid U}$, then $T \geq n$ on U.

We shall take T as m in above. In the remainder of this section we restrict the forms under consideration to the following open set V_{T} defined by

$$
V_{T}=\left\{p \in M \mid J_{s}^{r}(p) \neq 0, t(p)=T\right\}
$$

From (3.6) we have $f_{r}=0$. Thus we may set $f_{1}=1$ and $f_{2}=\cdots=f_{T}=0$. This and (2.4) show

$$
\begin{equation*}
J_{a}^{1}=0, \quad J_{r}^{1}=0 \tag{3.8}
\end{equation*}
$$

Furthermore, the fact that $d f_{a}=0$ and $d f_{r}=0$ tells us

$$
\begin{gather*}
\omega_{a}^{1}=-\sum J_{b}^{a} \phi_{b} \tag{3.9}\\
A_{r a}^{1}=\sum h_{a b} J_{r}^{b} \tag{3.10}\\
B_{r s}^{1}=0 \tag{3.11}
\end{gather*}
$$

where we have used (2.5), (3.1), and (3.2). The above equation (3.9) yields

$$
\begin{equation*}
\omega_{a}^{1} \equiv 0 \quad\left(\bmod \omega^{a}\right) \tag{3.12}
\end{equation*}
$$

From (3.4), we have

$$
\begin{equation*}
\sum h_{a b} B_{r s}^{b}=c f_{a} J_{s}^{r} \tag{3.13}
\end{equation*}
$$

Moreover, from (3.11) and (3.13), it follows that (cf. [3])

$$
\begin{equation*}
\operatorname{det}\left(h_{a b}\right)=0 \quad(a, b=2, \ldots, T) \tag{3.14}
\end{equation*}
$$

Thus, for a suitable choice of a field $\left\{e_{a}\right\}$ of orthonormal frames, we may set

$$
\begin{equation*}
h_{a b}=\lambda_{a} \delta_{a b} \quad(a, b=2, \ldots, T) \tag{3.15}
\end{equation*}
$$

Combining (3.15) with (3.14), we can set $\lambda_{2}=0$. Since $\operatorname{det}\left(h_{a b}\right)=-\left(h_{12}\right)^{2} \lambda_{3} \cdots \lambda_{T}$, it follows that

$$
\begin{equation*}
h_{12} \neq 0 \quad \text { and } \quad h_{a a}=\lambda_{a} \neq 0 \quad(a=3, \ldots, T) \tag{3.16}
\end{equation*}
$$

because $\operatorname{det}\left(h_{a b}\right)$ does not vanish on V_{T}.
On the other hand, the equation (3.10), together with (3.8) and (3.15), yields

$$
\begin{equation*}
A_{r 2}^{1}=0 \tag{3.17}
\end{equation*}
$$

Now put $a=2$ and $b \geq 3$ in (3.3). Then using (3.10), (3.15) and (3.16), we find

$$
\begin{equation*}
A_{r 2}^{b}=h_{12} J_{r}^{b} \quad(b \geq 3) \tag{3.18}
\end{equation*}
$$

Similarly, put $a=1$ and $b=2$ in (2.4). Then we obtain

$$
\sum\left(h_{1 a} A_{r 2}^{a}-h_{2 a} A_{r 1}^{a}\right)+c J_{r}^{2}=0
$$

It follows from (3.10), (3.15), (3.17) and (3.18) that the above equation can be reformed as

$$
\begin{equation*}
h_{12} A_{r 2}^{2}=h_{12} \sum h_{1 a} J_{r}^{a}-h_{12} \sum_{a \geq 3} h_{1 a} J_{r}^{a}-c J_{r}^{2} \tag{3.19}
\end{equation*}
$$

We put $a=2$ and $b \geq 3$ in (3.7) and take account of (3.12) and (3.15). Then we have

$$
h_{b b} \omega_{2}^{b}-h_{12} \sum A_{r b}^{1} \omega^{r} \equiv 0 \quad\left(\bmod \omega^{a}\right)
$$

which, together with (3.8), (3.10) and (3.16), leads to

$$
\begin{equation*}
\omega_{2}^{b} \equiv h_{12} \sum J_{r}^{b} \omega^{r} \quad \text { for } b \geq 3 \quad\left(\bmod \omega^{a}\right) \tag{3.20}
\end{equation*}
$$

Put $a=1$ and $b=2$ in (3.7). Then from (3.12) it follows that

$$
d h_{12}-\sum\left(h_{1 b} \omega_{2}^{b}-\sum h_{1 b} A_{r 2}^{b} \omega^{r}\right)+2 c \sum J_{r}^{2} \omega^{r} \equiv 0 \quad\left(\bmod \omega^{a}\right)
$$

Combining this equation with (3.8), (3.12) and (3.17)~(3.20), we get

$$
\begin{equation*}
d h_{12}+\left(\left(h_{12}\right)^{2}+c\right) \sum J_{r}^{2} \omega^{r} \equiv 0 \quad\left(\bmod \omega^{a}\right) \tag{3.21}
\end{equation*}
$$

On the other hand, from (3.13) we have

$$
h_{a 1} B_{r s}^{1}+\sum_{b \geq 2} h_{a b} B_{r s}^{b}=0 \quad \text { for } a \neq 1
$$

Using (3.11) and (3.15), we obtain

$$
\lambda_{a} B_{r s}^{a}=0
$$

This equation yields

$$
\begin{equation*}
B_{r s}^{a}=0 \quad \text { for } a \neq 2 \tag{3.22}
\end{equation*}
$$

Similarly, from (3.4), we find

$$
h_{12} B_{r s}^{2}=c J_{s}^{r}
$$

which, together with (3.17), lead to

$$
\begin{equation*}
B_{r s}^{2}=\frac{c}{h_{12}} J_{s}^{r} \tag{3.23}
\end{equation*}
$$

4. The proof of Main theorem

In this section, we keep the notation in section 3 unless otherwise stated. If $\tilde{J}(\operatorname{ker} H) \perp \operatorname{ker} H$ on a non-empty open set, then Lemma 3.2 proves Main theorem. Therefore, we have only consider the case where the open set V_{T} defined section 3 is not empty. It is known that $T \geq 3$ (cf. [3]). Assume M is complete and $T=3$ and derive a contradiction.

Lemma 4.1. $\quad J_{r}^{2} \neq 0$ on any non-empty open subset of V_{3}.
Proof. If there exist an open subset of V_{3} such that $J_{r}^{2}=0$, then from (2.4) we get

$$
J_{3}^{2}= \pm 1, \quad J_{i}^{3}=0 \quad \text { for } i \neq 2 .
$$

Taking account of the coefficient of ω^{s} in $d J_{r}^{3}=0$, and using (2.5), (3.2) and (3.22) we find

$$
B_{r s}^{2}=0 .
$$

This implies $J_{s}^{r}=0$, which contradicts the fact that rank $J=2 n-2 \geq 4$.
Thus, owing to Lemma 4.1, we have

$$
\begin{equation*}
\forall p \in V_{3}, \forall U(p), \exists q \in U(p) \quad \text { such that } J_{r}^{2}(q) \neq 0 \tag{4.1}
\end{equation*}
$$

where $U(p)$ denotes a neighborhood of p.
Moveover, we consider the open set V_{3}^{\prime} defined by

$$
V_{3}^{\prime}=\left\{p \in V_{3} \mid J_{r}^{2}(p) \neq 0\right\} .
$$

Since V_{3}^{\prime} is dense subset of V_{3} by (4.1), any equality obtained on V_{3}^{\prime} holds also on V_{3}. Hence, we may assume $V_{3}=V_{3}^{\prime}$ whenever we treat equalities.

On the other hand, for a suitable choice of a field $\left\{e_{r}\right\}$ of orthonormal frames, we can set

$$
\begin{equation*}
J_{5}^{2}=\cdots=J_{2 n-1}^{2}=J_{6}^{3}=\cdots=J_{2 n-1}^{3}=0 \tag{4.2}
\end{equation*}
$$

For simplicity, we put $\alpha=J_{3}^{2}$ and $\beta=J_{4}^{2}$. Then from (2.4) and (4.2), we obtain

$$
\begin{gather*}
\alpha^{2}+\beta^{2}=1 \\
\beta J_{3}^{4}=0 \tag{4.3}
\end{gather*}
$$

Since $\beta \neq 0$ on V_{3}^{\prime}, above equation implies

$$
\begin{equation*}
J_{3}^{4}=0 \quad \text { on } V_{3} . \tag{4.4}
\end{equation*}
$$

From (2.4), (4.2) and (4.4), we get

$$
\sum\left(J_{i}^{3}\right)^{2}=\alpha^{2}+\left(J_{5}^{3}\right)^{2}=1
$$

which yields

$$
J_{5}^{3}= \pm \beta
$$

We may assume

$$
\begin{equation*}
J_{5}^{3}=\beta, \tag{4.5}
\end{equation*}
$$

by taking $-e_{5}$ instead of e_{5} if necessary. Similarly, from (2.4), (4.2), (4.4), (4.5) and the equation $\sum J_{i}^{3} J_{4}^{i}=0$, we have

$$
\begin{equation*}
J_{4}^{5}=\alpha \tag{4.6}
\end{equation*}
$$

It follows from (2.4), (4.2), (4.4) $\sim(4.6)$ and the equation $\sum\left(J_{i}^{4}\right)^{2}=1$, that

$$
\begin{equation*}
J_{6}^{4}=\cdots=J_{2 n-1}^{4}=J_{6}^{5}=\cdots=J_{2 n-1}^{5}=0 . \tag{4.7}
\end{equation*}
$$

Hence, we obtain the following matrix

$$
\left(J_{j}^{i}\right)=\left(\begin{array}{ccccc|c}
0 & 0 & 0 & 0 & 0 & \tag{4.8}\\
0 & 0 & \alpha & \beta & 0 & \\
0 & -\alpha & 0 & 0 & \beta & 0 \\
0 & -\beta & 0 & 0 & -\alpha & \\
0 & 0 & -\beta & \alpha & 0 & \\
\hline & 0 & & *
\end{array}\right)
$$

Lemma 4.2. β has not zero points everywhere on V_{3}.
Proof. Taking the exterior derivative of $J_{5}^{2}=0$ and making use of (3.20), (3.22) and (4.8), we have

$$
\beta\left(\omega_{5}^{4}+h_{12} \beta \omega^{5}\right)+\alpha^{2} \frac{c}{h_{12}} \omega^{5} \equiv 0 \quad\left(\bmod \omega^{a}\right)
$$

Then if there exists a point p on V_{3} such that $\beta(p)=0$, we get $\alpha(p)=0$. This contradicts (4.3).

On the other hand, we put $F=h_{12}$, then the equation (3.21) is equivalent to

$$
\begin{equation*}
d F+\left(F^{2}+c\right) \beta \omega^{4} \equiv 0 \quad\left(\bmod \omega^{a}\right) \tag{4.9}
\end{equation*}
$$

Let p be any point of V_{3} and let $\gamma: I \rightarrow V_{3}$ be a maximal integral curve of the unit vector field e_{4} on V_{3} through p. Assume that I has an infimum or a supremum, say t_{0}.

Lemma 4.3.

$$
\lim _{t \rightarrow t_{0}} h_{33}(\gamma(t)) \neq 0
$$

Proof. Put $a=b=3$ in (3.7). Then we get

$$
d h_{33}-2 \sum h_{3 c} \omega_{3}^{c}+\sum h_{3 c} A_{r 3}^{c} \omega^{r} \equiv 0 \quad\left(\bmod \omega^{a}\right)
$$

From (3.8), (3.10), (3.12) and (3.15), it follows that

$$
\begin{equation*}
d h_{33}+h_{33} \sum\left(h_{31} J_{r}^{3}+A_{r 3}^{3}\right) \omega^{r} \equiv 0 \quad\left(\bmod \omega^{a}\right) . \tag{4.10}
\end{equation*}
$$

We restrict the forms under consideration to γ. Then (4.10), together with (4.4), becomes

$$
\frac{d h_{33}}{d t}+h_{33} A_{43}^{3}=0, \quad t \in I
$$

On the otherhand, since M is complete, there exists a limit point $\lim _{t \rightarrow t_{0}} \gamma(t)$ on M. Suppose that $\lim _{t \rightarrow t_{0}} h_{33}(\gamma(t))=0$. Then from the above differential equation, we have $h_{33}=0$ on γ. This contradicts (3.16).

Lemma 4.4.

$$
\lim _{t \rightarrow t_{0}} F(\gamma(t))=0
$$

Proof. Assume that $\lim _{t \rightarrow t_{0}} F(\gamma(t)) \neq 0$. Owing to Lemma 4.3, we see $t\left(\gamma\left(t_{0}\right)\right)=3$. Since γ is maximal, we have $J_{s}^{r}\left(\gamma\left(t_{0}\right)\right)=0$. Then by Lemma 3.1, we obtain

$$
t\left(\gamma\left(t_{0}\right)\right) \geq n-1 \geq 4 \quad \text { for } n \geq 5
$$

which is a contradiction. For a case where $n=4$, also by using Lemma 3.1 we get $f_{a}\left(\gamma\left(t_{0}\right)\right)=0$. This also contradicts $f_{1}\left(\gamma\left(t_{0}\right)\right)=1$.

Put $t_{1}=\inf I(\geq-\infty)$ and $t_{0}=\sup I(\leq \infty)$. Then there are four possibilities of an open interval $\left(t_{1}, t_{0}\right)$. Namely, the interval I is one of the following:

$$
\begin{aligned}
& (1)-\infty<t_{1}, t_{0}<\infty, \\
& (2)-\infty=t_{1}, t_{0}<\infty, \\
& (3)-\infty<t_{1}, t_{0}=\infty, \\
& (4)-\infty=t_{1}, t_{0}=\infty .
\end{aligned}
$$

Case (1):
Owing to Lemma 4.4 it is seen that there exist a real number t^{\prime} such that $t_{1}<t^{\prime}<t_{0}, d F=0$ at $\gamma\left(t^{\prime}\right) \in V_{3}$. Then (4.9) gives $\beta\left(\gamma\left(t^{\prime}\right)\right)=0$. This contradicts Lemma 4.2.
Case (2), (3), (4):
Taking the exterior derivative of $J_{4}^{2}=\beta$ and using (2.5) and (4.8), we have

$$
d \beta \equiv-\frac{c}{F} \alpha^{2} \omega^{4} \quad\left(\bmod \omega^{a}\right)
$$

We restrict the forms under consideration to γ. Then above equation becomes

$$
\begin{equation*}
\frac{d \beta}{d t}=-\frac{c}{F} \alpha^{2}, \quad t \in I . \tag{4.11}
\end{equation*}
$$

Put $g=F \beta$ and from (4.9) and (4.11), we have

$$
\begin{equation*}
\frac{d g}{d t}=-g^{2}-c, \quad t \in I \tag{4.12}
\end{equation*}
$$

Then solving (4.12), we get

$$
\begin{equation*}
g(\gamma(t))=-\sqrt{c} \tan \sqrt{c}\left(t-t_{2}\right) \tag{4.13}
\end{equation*}
$$

where t_{2} is a constant. However, (4.13) is defined only for a finite interval, which is contradiction.

It completes the proof of Main theorem.

References

[1] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202 (1989), 299-311.
[2] H. S. Kim and R. Takagi, The type number of real hypersurfaces in $P_{n}(C)$, Tsukuba J. Math. 20 (1996) 349-356.
[3] Y. J. Suh, On type number of real hypersurfaces in $P_{n}(C)$, Tsukuba J. Math. 15 (1991), 99-104.
[4] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka. J. Math. 10 (1975) 495-506.
[5] , Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan. 27 (1975) 43-53, 507-516.

Graduate School of Science and Technology
Chiba University
Chiba-Shi, 263-8522
Japan
Department of Mathematics and Informatics
Chiba University
Chiba-Shi, 263-8522
Japan

[^0]: Received December 15, 1997.
 Revised April 20, 1998.

