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1. Introduction

Let P,(C) denote an n-dimensional complex projective space with the Fubini-
Study metric of constant holomorphic sectional curvature 4c and M a real
hypersurface in P,(C) with the induced metric.

The problem with respect to the type number ¢, i.e., the rank of the second
fundamental form of real hypersurfaces in P,(C) has been studied by many
differential geometers ([1], [2] and [3] etc.).

The second named author [4] showed that there is a point p on M such that
{(p) =2 and M. Kimura and S. Maeda [1] gave an example of real hypersurface
in P,(C) satisfying ¢ = 2, which is non-complete. Y. J. Suh [3] proved that there
is a point p on a complete real hypersurface M in P,(C) (n>3) such that
t(p) = 3. According to [2], there is a point p on a complete real hypersurface M
in P,(C) such that #(p) > n, but there is a mistake in deducation to lead a certain
formula.

In this paper, we shall prove the following Main theorem

MAIN THEOREM. Let M be a complete real hypersurface in P,(C) (n>4).
Then there exists a point p on M such that t(p) > 4.
2. Preliminaries

Let P,(C) (n = 4) be a complex projective space with the metric of constant
holomorphic sectional curvature 4c and M a real hypersurface in P,(C) with the

induced metric. Choose a local field of orthonormal frames ey,..., ey, in P,(C)
such that ey, ..., e, restricted to M, are tangent to M. We use the following
convention on the range of indices unless otherwise stated: A, B,...=1,...,2n
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and i,j,...=1,...,2n — 1. We denote by w* and wj the canonical 1-forms and
the connection forms, respectively. Then they satisfy

(2.1) dcoA—i—Zw,’;/\wB:O, o Aol =0.

We restrict the forms under consideration to M. Then we have w*" = 0 and
by Cartan’s lemma we may write as

(2.2) $i=wf" = hyo, hy=h.

The quadratic form 3 h;0’ ® @’/ and the matrix H = (h;) is called second
fundamental form and the shape operater of M for e,,, respectively. Moveover,
the curvature form Q; of M are defined by

(2.3) Q) =dol+ > wj A of.

We denote by J the complex structure of P,(C). Let (ij , /) be the almost
contact metric structure of M, i.e., J(e;) =3 J/ej + fieon. Then (J}, f;) satisfies

0 S Ik =fif, -0, LA =0,
’ 2 i i
Sfi=1, Ji+J =0

The parallelism of J implies
dei = E(J]éwjk - J]](wlk) - fz¢j + fj¢i,
df; = L(fe! = J14).

The equation of Gauss and Codazzi are given by

(2.5)

(2.6) Q =4, A+’ Aol +0Y (T +TTH Ao,
(2.7) de, = — Z¢j N cZ(f,Ji +];-J,i)wj A o,
respectively.

3. Formulas

Let M be a real hypersurface in P,(C). In this section, we assume that the
rank of second fundamental form is not larger than m on an open set U. In the
sequel, we use the following convention on the range of indices: a,b,...=
1,...,mand r,s,...=m+1,...,2n — 1. Then for an arbitary point p in U we
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can take a local field of orthonormal frames {e1,...,e2,-1} on a neighborhood of
p such that the 1-forms ¢, can be written as

¢a = Zhabwba

¢, = 0.

(3.1)

Here, we put
(32) g)ra — ZArabwb + ZBZng-
Taking the exterior derivative of ¢, =0 and using (2.7) and (3.1), we have
D kb A of =S (I 4 fTo! A @l =0,

which, together with (3.2), implies

(3.3) > (hacAly — heAS) — cfJ] + cfyd! — 2cf I8 =0,
(3.4) > haBh — cfyd! +cf ] = 2ef, T4 =0,
(3.5) FJI = fJT+2f0F =0.

The above equation (3.5) is equivalent to
(3.6) LJP=0.

Similarly, taking the exterior derivative of $. = > hupw® and making use of
(2.1), (2.7), (3.1), (3.2) and (3.4), we get

(37) dhab - Z(ha(a)[f + hbcw; - Z hafAerwr)
+ e (i — flfo" +2f, 0" =0 (mod o).

Here, we denote by T the maximal value of the type number ¢.
The following two Lemmas are proved in [2] and [3].

Lemma 3.1 ([3]). Assume that there exists a point peM such that
J(ker H,) L ker H,. Then t(p) > n — 1. Furthermore, the equality holds if and only
if J((ker H,,)L) < ker H,, where (ker H,,)L denotes the set of all vectors normal to
ker H,,.

Lemma 3.2 (2). If J(ker Hjy) L ker Hy, then T >n on U.
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We shall take T as m in above. In the remainder of this section we restrict
the forms under consideration to the following open set V7 defined by

Vr={peM|J](p) #0,t(p) =T}

From (3.6) we have f, = 0. Thus we may set f; =1 and f, = --- = f; =0. This
and (2.4) show

(3.8) Jl=0, J'=0.

Furthermore, the fact that df, =0 and df, =0 tells us

(3.9) wy == Jib
(3.10) A= hapd?,
(3.11) BL. =0,

where we have used (2.5), (3.1), and (3.2). The above equation (3.9) yields

(3.12) w, =0 (mod w®).

1
From (3.4), we have
(3.13) > haBh = cfJ].
Moreover, from (3.11) and (3.13), it follows that (cf. [3])
(3.14) det(hg) =0 (a,b=2,...,T).
Thus, for a suitable choice of a field {e,} of orthonormal frames, we may set
(3.15) hap = Aabap (a,0=2,...,T).

Combining (3.15) with (3.14), we can set 4, = 0. Since det(hg) = -—(hlz)zig oA,
it follows that

(3.16) hip #0 and hg=As #0 (a=3,...,7),

because det(h,;) does not vanish on Vr.
On the other hand, the equation (3.10), together with (3.8) and (3.15), yields

(3.17) AL =0.

Now put @ =2 and » >3 in (3.3). Then using (3.10), (3.15) and (3.16), we
find

(3.18) Al = hpd? (b= 3).
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Similarly, put a=1 and b =2 in (2.4). Then we obtain
> (hiadl — h2aAf) + ¢J? = 0.

It follows from (3.10), (3.15), (3.17) and (3.18) that the above equation can be
reformed as

(3.19) hdly =ho Y hidf —hp Y hadf — 2.

az3

We put a =2 and b > 3 in (3.7) and take account of (3.12) and (3.15). Then
we have

hbbwé’ —hp ZArlba)’ =0 (mod w?).

which, together with (3.8), (3.10) and (3.16), leads to
(3.20) Y ZJ,ba)’ forb>3 (mod w?).

Put a=1 and b=2 in (3.7). Then from (3.12) it follows that

dhyy — Z(hlbwf - Zhlewa’) + ZCZJrzw’ = (mod w*).

Combining this equation with (3.8), (3.12) and (3.17)~(3.20), we get
(3.21) dhiz + (h2)? + €)Y T2 =0 (mod o).

On the other hand, from (3.13) we have

haBl+Y huBl =0 fora#1.
b>2

Using (3.11) and (3.15), we obtain
AaB), = 0.
This equation yields
(3.22) B =0 foras#2.
Similarly, from (3.4), we find
hi2BE = cJ!,
which, together with (3.17), lead to

(3.23) BL="1"
hi2
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4. The proof of Main theorem

In this section, we keep the notation in section 3 unless otherwise stated. If

J(ker H) L ker H on a non-empty open set, then Lemma 3.2 proves Main
theorem. Therefore, we have only consider the case where the open set Vr
defined section 3 is not empty. It is known that T >3 (cf. [3]). Assume M is
complete and 7 =3 and derive a contradiction.

LeMMA 4.1. J? #0 on any non-empty open subset of V3.
Proor. If there exist an open subset of ¥3 such that J? =0, then from (2.4)
we get
JP=+1, J}=0 fori#2.

Taking account of the coefficient of @* in dJ,3 =0, and using (2.5), (3.2) and
(3.22) we find

B2 =0.

This implies J = 0, which contradicts the fact that rank J =2n—-2>4. [

Thus, owing to Lemma 4.1, we have
(4.1) ¥pe V3,YU(p),3g € U(p) such that J(g) # 0,

where U(p) denotes a neighborhood of p.
Moveover, we consider the open set V; defined by

Vi={peVs|J}(p)#0}.

Since Vj is dense subset of V3 by (4.1), any equality obtained on V7 holds also on
V5. Hence, we may assume V3 = V; whenever we treat equalities.

On the other hand, for a suitable choice of a field {e,} of orthonormal
frames, we can set

(4-2) Jszz“'z-]zzn—l=J63:"':J23n—1:0'

For simplicity, we put a = J7 and f=J}. Then from (2.4) and (4.2), we
obtain
4+ =1,

43
@3 BIE = 0.
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Since f# 0 on Vj, above equation implies
(4.4) J;‘ =0 on V;.

From (2.4), (4.2) and (4.4), we get

DN =+ (IR =1,
which yields
Ji=xp.

We may assume
(4.5) 7 =B,

by taking —es instead of es if necessary. Similarly, from (2.4), (4.2), (4.4), (4.5)
and the equation ) J3J/ =0, we have

(4.6) J;=a
It follows from (2.4), (4.2), (4.4)~(4.6) and the equation E(Ji“)2 =1, that
(4.7) ==l === =0

Hence, we obtain the following matrix

0O 06 0 0 0
0 6 o« g O
hn_ |0 —« 0 0 g 0
(4.8) =1, 50 0 —a
0 0 - a O
0 *

LemMma 4.2. B has not zero points everywhere on Vs.

Proor. Taking the exterior derivative of J2 = 0 and making use of (3.20),
(3.22) and (4.8), we have

Blw§ + hafew’) + azh—c—wS =0 (mod w?).
12

Then if there exists a point p on ¥3 such that B(p) =0, we get «(p) = 0. This
contradicts (4.3). O
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On the other hand, we put F = hj,, then the equation (3.21) is equivalent to
(4.9) dF + (F2 + c)pw* =0  (mod o).

Let p be any point of V3 and let y : I — V3 be a maximal integral curve of
the unit vector field e; on V3 through p. Assume that I has an infimum or a
supremum, say ?o.

LemMA 4.3.

lim hs3(y(2)) # 0.
=1

ProOF. Put a=b=3 in (3.7). Then we get
dhyy =2 haew§ + Y A0 =0 (mod o).
From (3.8), (3.10), (3.12) and (3.15), it follows that
(4.10) dhys + hy3 > _(haJ} + A" =0 (mod o).
We restrict the forms under consideration to y. Then (4.10), together with (4.4),

becomes

dhs;
7+h33Ag3 =0, tel.
On the otherhand, since M is complete, there exists a limit point lim,_, y(?)
on M. Suppose that lim,_, h33(y(f)) =0. Then from the above differential

equation, we have h3; =0 on y. This contradicts (3.16). ]

LeEMMA 4.4.

lim F(y()) = 0.

11—l

PROOF. Assume that lim,_, F(y(¢)) #0. Owing to Lemma 4.3, we see
1(y(to)) = 3. Since y is maximal, we have J/(y(to)) = 0. Then by Lemma 3.1, we
obtain

t(y(to)) =n—1=4 forn>5,

which is a contradiction. For a case where n =4, also by using Lemma 3.1 we
get f,(y(t)) = 0. This also contradicts f;(y(t)) = 1. O
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Put 1y = inf J(> —o0) and #y = sup/(< o0). Then there are four possibilities
of an open interval (#;,%). Namely, the interval 7 is one of the following:
(1) =00 < 11,8 < 0,
(2) — o0 =11, < 00,
(3)— o0 < ty,8 = 00,
(4) — o0 =11, = 0.

Case (1):

Owing to Lemma 4.4 it is seen that there exist a real number ¢’ such that
ty <t' <ty, dF =0 at y(¢') € V3. Then (4.9) gives B(y(¢')) = 0. This contradicts
Lemma 4.2.

Case (2), (3), (4):
Taking the exterior derivative of J? = and using (2.5) and (4.8), we have

df = — %a2w4 (mod ).

We restrict the forms under consideration to y. Then above equation becomes

ap_ ¢,
dt F
Put g = Ff and from (4.9) and (4.11), we have

(4.11)

dg 2
. — = —g° - I.
(4.12) 7 g-—c, te

Then solving (4.12), we get
(4.13) g(7(1)) = —Vetan Ve(t — 1),

where 1, is a constant. However, (4.13) is defined only for a finite interval, which
is contradiction.
It completes the proof of Main theorem.
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