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1. Introduction

Pedersen and Swann [7] and Higa [2] studied the existence of an Einstein-
Weyl structure on principal circle bundles over Einstein Kaehler manifolds of
positive scalar curvature and obtained many examples of Einstein-Weyl spaces. In
a Riemannian submersion n: M — N with totally geodesic fibers of dimension
one over an Finstein manifold N, we studied the relation between an Einstein-
Weyl structure and a Sasakian structure of M (cf. [5]).

On the other hand, in [4], we investigated some geometric structures of a
Riemannian submersion n: M — N, where M is a CR-submanifold of a locally
conformal Kaehler manifold L. Let M be a leaf of the canonical foliation .#
given by the Lee form w = 0 of a locally conformal Kaehler manifold L. Then M
admits an almost contact metric structure. We obtained a necessary and sufficient
condition for the manifold M to admits a Sasakian structure.

In this paper, we shall study the existence of an Einstein-Weyl structure on
an almost contact metric manifold. Let M be a complete and simply connected
Sasakian manifold with constant ¢-sectional curvature k. We show that if £ > 1,
then A/ admits an Einstein-Weyl structure.

Next, we assume that all local Kaehler metrics ¢’ = e g of a locally
conformal Kaehler manifold L have the same constant nonnegative holomorphic
sectional curvature p. We show that if the induced almost contact metric structure
of a leaf M of the canonical foliation .# of L is Sasakian, then M admits an
Einstein-Weyl structure. Finally, we discuss the existence of an Einstein-Weyl
structure on a leaf of the canonical foliation of a complete and simply connected
generalized Hopf manifold.
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2. Preliminaries

Firstly, we give the definition of an Einstein-Weyl space. Let (M,g) be a
Riemannian manifold. Let D be a torsion-free affine connection on M. A
manifold M is said to have an Einstein-Weyl structure if there exist a 1-form u
and a function A on M such that

(1) Dg=u®g and PRic(X,Y)+PRic(Y,X)=Ag(X,Y),

where PRic is the Ricci tensor of D. Since D is not a metric connection, the Ricci
tensor is not necessarily symmetric. The Einstein-Weyl equation is conformally
invariant. Let V be the Levi-Civita connection of g. We define a vector field E by
g(X,E) = u(X). Then, since Dg=u® g, we have

1 1 1
(2) DXY=VXY—§/1(X)Y—'2'#(Y)X+§9(X, Y)E.

Let PR and R be the curvature tensor of D and V respectively. Then, we have

(®) R, VZ=RX,1Z-1 { [(vmz ; %u(X)ﬂ(Z)] Y

- [(vyu)z + (Y)u(Z)] X+ (Vaw) V)Z — (Ve X)Z

—_4(¥,2) (VXE + %,u(X)E) +9(X,2) (VyE 3l Y)E) }

— 3l a(Y, 2)X — g(x,2)Y),

where X, Y and Z are any vector fields on M.

Next, we give the definition of an almost contact metric manifold. A
Riemannian manifold (M, g) is said to be an almost contact metric manifold if
there exist a tensor field ¢ of type (1,1), a unit vector field ¥ and a 1-form # such
that

nV)=1, #X=-X+nX)V,
9(¢X,8Y) = g(X, Y) — n(X)n(Y),
for any vector fields X, ¥ on M (cf. [1]).
For an almost contact metric structure (¢, V,7,g) on M we put ®(X,Y) =
g(X,4Y). An almost contact metric structure is said to be:

Contact metric if dn = ®.
K-contact if dn = ® and V is a Killing vector field with respect to g.

(4)
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Sasakian if dp=® and Ns+2dp® V =0, where Ny(X,Y)=[¢X,4Y] -
Jl8X, Y] - $1X, Y] + #°[X, Y.
If the Ricci tensor Ric of a contact metric manifold M is of the form

(5) Rie(X,Y) = pg(X, Y) +yn(X)n(Y),

B and y being constant, then M is called #-Einstein manifold.

Next, let L be an almost Hermitian manifold with metric g, complex
structure J and the fundamental 2-form Q. The manifold L is said to be a locally
conformal Kaehler manifold if every x € L has an open neighborhood U with a
differentiable function r : U — R such that g, = e™"g|, is a Kachler metric on U.
If we can take U = L, the manifold is globally conformal Kaehler. The locally
conformal Kaehler manifold L is characterized by

(6) N;y=0, dQ=wArQ, do=0,
where N is the Nijenhuis tensor of J and w is a globally defined 1-form on L.

We call w the Lee form. Since for dim L = 2 we have dQ = 0, we may suppose
dim L > 4. Next we define a Lee vector field B by

™) 9(X, B) = o(X).
The Weyl connection "V is the linear connection defined by
1 1 1
(8) YVyY = VXY—Ew(X)Y—Ew(Y)X+§g(X, Y)B,

where V is the Levi-Civita connection of g. ¥V is the Levi-Civita connection of a
local Kaehler metric ¢. It is shown in [9] that an almost Hermitian manifold L is a
locally conformal Kaehler if and only if there is a closed 1-form w on L such that

) YVyJ =0.

Let L be a locally conformal Kaehler manifold. Let RF be the curvature
tensor field of the connection V and "R the curvature tensor field of the Weyl
connection ”'V. Since dw = 0, we obtain (Vyw)Y — (Vyw)X = 0. Thus, we have

(10)¥R(X,Y)Z =R*(X,Y)Z - % { [(wa)z + %a)(X)w(Z)] Y

- [(Vyw)z + %w( Y)w(Z)] X —g(Y,2) (VXB + %w(X)B)

+9(x,2)(VrB+ J0(NB )| - S0P a(Y. 2)X — (X, 2)Y),

where X, Y and Z are any vector fields on L (cf. [11}]).
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Let .# be the foliation given by w =0 of a locally conformal Kaehler
manifold (L,J,g). # is called the canonical foliation.

A locally conformal Kaehler manifold (L,J,g) is said to be a generalized
Hopf manifold if the Lee form is parallel, that is Vo =0 (o # 0).

Let M be a submanifold of a Riemannian manifold L. We denote by the
same g the Riemannian metric tensor field induced on M from that of L. Let VM
denote covariant differentiation of M. Then the Gauss formula for M is written as

(11) VxY =V¥Y +4a(X,Y)

for any tangent vector fields X, ¥ on M where o denotes the second fundamental
form of M in L.

Let R™ be the Riemannian curvature tensor field of M. Then we have the
equation of Gauss

(12)
REW,Z,X,Y)=RM(W,Z,X,Y) + g(o(X,2),0(Y, W)) — g(a(Y, Z),a(X, W)).

3. Einstein-Weyl structures

Let (M,¢,V,n,g) be an almost contact metric manifold of dimension 2n + 1.
Let V¥ be the Levi-Civita connection of g and Ric® be the Ricci tensor of V¥,
Then we obtain the following result.

THEOREM 1. Let (M,$,V,n,9) be an almost contact metric manifold sat-
isfying VYV = —¢(X). If RicM(X,Y) =pg(X,Y) + yp(X)n(Y), where B and y
are constant, and y <0, then M admits an Einstein-Weyl structure.

PrOOF. We define 1-form u by u = f#, where fis a function on M. Let E be
the dual vector field of u. We define the connection D by

1 1 1
(13) DXY:V}lY—Eu(X)Y—E,u(Y)XJrEg(X, Y)E.

Then D is a torsion-free connection and Dg = u ® g. Let PRic be the Ricci tensor
of D. From (3), we obtain
(14)

1
PRic(X,Y) = Ric™(X,Y) + n(V¥u)Y — 5 (V¥ x

+3@n = DUOOUCY) + 90X, ) (3 E — 5 2 = Dl ) f. 7).
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Let V,Xi,6Xi,...,Xn,¢X, be an orthonormal basis of T,M. Since V{V =
—¢(X), for j=1,...,n, we get ViV =0 and g(V¥ X}, V) = —g(V¥V,X;) = 0.
Thus we have (VY{u)V = X;(/), (Vi) (X)) =0, (VW/u)V =V(f), (V¥u)X; =0
for all i, j, (V¥u)(¢X;) =0 for i#; and (V{u)(4X))+ (V4 m)X; =0. From
these, we have

(15) PRic(Xj, V) + PRic(V, X;) = £ (21~ DX,(/),

(16) PRic(¢X;, V) + PRic(V, X)) = = (2n — 1) X; (),

N

(17) 2-PRic(V, V) =2(8+7) +%(2n - DV +52) +divE—%(2n ~1)f2,

(18) 2 - PRic(X;, X)) =2ﬂ+divE—%(2n— 1)£2,
and
(19) 2-PRic(pX;, 4X;) = 2,B+divE—%(2n— )2

We set 2 =—(4/(2n—1))y. Then V(f) =0, X;(f) = ¢X;(f) =0 for j=1,...,n
and divE =V - u(V) = V(f) = 0. Thus, by using equations (15)—(19), we obtain

(20) PRic(X,Y) + PRic(Y,X) = Ag(X, Y),

where X, Y are tangent vectors of M and A = 2(8 + y). Therefore M admits an
Finstein-Weyl structure. &

ReMARK 1. K-contact manifold and Sasakian manifold satisfy the condition
VMY = ~4(X) (cf. [1]). Let n: M*"*! - N? be a Riemannian submersion with
totally geodesic fibers of dimension one over an Einstein manifold N?* such
that Ric¥(X,Y) = cg(X, ¥). Moreover, we assume that (M2t ¢ V 5. g) is a
standard Sasakian manifold. Let V, X, 4X),..., X,, #X, be an orthonormal basis
of T,M. Then we get Ric™(Xj,X;) = Ric™(¢X;,4X;) = ¢~ 2, Ric™(V,V) = 2n,
Ric™(X;, V) = Ric"(¢X;, V) = 0, Ric™ (X;, $X;) = 0 for all i, j and RicM(X;, X;) =
RicM(4X;, ¢X;) = O for i # j. (cf. [5]). Therefore M is an n-Einstein manifold such
that Ric™ (X, Y) = (¢ — 2)g(X, Y) + (2n — ¢ + 2)n(X)n(Y). If the scalar curvature
§of Nis §>4n(n+1), then 2n— c+2 = (1/(2n))(4n* + 4n — §) < 0. Thus, as a
corollary of Theorem 1, we obtain Theorem 2 in [5].

Next, let (M,¢,V,n,g) be a Sasakian manifold of constant ¢-sectional
curvature k and dim M =2rn + 1. The curvature of M is
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Q1) R*(X,¥,2,W) = "2 4400, 2097, W) - (X, W)(¥, 2))

k —

- L @om@)e(r, W) - n(m@)e(x, W)

+9(X, Z)n(Y)g(V, W) = g(Y, Z)n(X)g(V, W)
+9(8Y,Z)g(pX, W) — g(¢X, Z)g(¢Y, W)
+29(X,¢Y)g(¢Z, W)} (cf. [12]).

From this equation, we get

(22) Ric" (X, Y) = Bg(X,Y) + m(X)n(Y),

where = ((n+1)/2)k+ (3n—1)/2) and y= —((n+1)/2)(k — 1).

Let S2*+! be the unit sphere in C"*! and 7 be real number such that 7 > 0.
Let (J,h) be the flat Kaehler structure on C"*! and U be the unit normal vector
field of S+ in C"*!. We define tensor field ¢ and 1-form 7 on $2*! by J(X) =
#(X)-7(X)U. And we put ¥V =(1/7)JU, n=17 and g=1h +1(t — 1)1 @7,
where /' is the induced metric on S**! by h. Then (¢, V,7,g) is a Sasakian
structure with constant ¢-sectional curvature k = (4/7) — 3 and we denote S%**!
with this structure by $?*+!(k) (cf. [8]). Thus we have (22) and V5V = —¢(X),
where V¥ is the Levi-Civita connection of g. From a Theorem of Tanno [8] and
Theorem 1, we obtain the following result.

THEOREM 2. Let M be a complete and simply connected Sasakian manifold
with constant ¢-sectional curvature k. If k > 1, then M admits an Einstein-Weyl
structure.

REMARK 2. Let (4, V,7,g) be a Sasakian structure of the sphere (S**+!(k), g).
In the Hopf fibration n: (S?"*1(k),g) — (P.(C)(k +3),§), for constant a # 0,
we define a Riemannian metric g, by g, =n*§+a?n®n (cf. [2]). We set
V =(1/a)V and # =an. Then dij = a®, where ®(X,Y) =g,(X,¢Y). Let 4
be the integrability tensor of the Riemannian submersion 7, : (S*"*1(k), g,) —
(Pa(C)(k + 3),g) with totally geodesic fibers. Let RS and R? denote the curvature
tensors of (S?"*1(k),g,) and (P.(C)(k +3),§) respectively. We recall the fol-
lowing curvature identity.

(23) RS (W,Z,X,Y)=RV(W,Z,X,Y) - g(AvZ, Ax W)

+ g (AxZ, Ay W) + 2g,(Ax Y , Az W),
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where X, Y, Z and W are tangent vector fields on P,(C)(k + 3) and X, ¥, Z and
W are the horizontal lifts of X, ¥, Z and W respectively (cf. [6]). For a function
fon S¥(k), we put u=fn. We define the connection D, by

DyY = V}Y—%u(X)Y—%ﬂ(Y)X+%ga(X, Y)E,
where V¢ is the Levi-Civita connection of g, and E is the dual vector field of u.
Let DRic® be the Ricci tensor of D. Since AxY = (1/2)¥'[X, Y] (cf. [6]) and ¥ is
a unit vertical vector field, we get Ay Y = —df(X, Y)V = —ag.(X,$Y)V, where
X, Y are horizontal vector fields. Using |u|* = (f2/a?), for an orthonormal basis
V,X1,6X1,. .., Xn, ¢Xy of T,S"1(k), we get following.

~ . 1 2 f? . 1 2
.Dp;:.a — 2 i _ = - — L _
2-PRic*(V,V) = 4na +2(2n 1)(a V(f)+ az) +divE 2(Zrz 1) 7
Dp;.a 2 : 1 f2
2-“Ric*(X;, Xj) = (n+1)(k + 3) — 4a +d1VE—§(2n—1)?

and

PRic*(X;, V) + PRic*(V, X;) = 5 (2n = 1) X; (9 '

N =

For ¢X;, we also have same equations.
Let constant a be (k+3)/4>a* and set f2=(2(n+1)a®/(2n—1)) x
(k + 3 — 4a). Then we have

PRic*(X, Y) + PRic*(Y, X) = Aga(X, Y),

where A = 4na®. Therefore, for k > —3, (S**!(k), g, 1) admits an Einstein-Weyl
structure but not Sasakian for a # 1.

4. Foliations of locally conformal Kaehler manifolds

As an application of Theorem 1 and Theorem 2, we consider the canonical
foliation of a locally conformal Kaehler manifold. Let (L,J,g) be a locally
conformal Kaehler manifold of dimension 2z + 2 and @ the Lee form and .# the
canonical foliation given by w = 0. Let M be a leaf of the canonical foliation .4,
that is M is an orientable real hypersurface of L. Let B be the Lee vector field.
We set C=(B/|lo|), V=JC, p(X)=g(X,V) and JX =¢X —y(X)C. It is
known that every orientable real hypersurface of an almost Hermitian manifold
has an almost contact metric structure (¢, V,7%,g9) (cf. [1], [10]).
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We show the following theorem.

TueorReM 3. Let (L,g) be a locally conformal Kaehler manifold and assume
that all its local Kaehler metrics ¢’ = e™’g have the same constant nonnegative
holomorphic sectional curvature p. Let M be a leaf of the canonical foliation M. If
the induced almost contact metric structure of M is Sasakian, then M admits an
Einstein-Weyl structure.

ProoF. It is known that M admits a Sasakian structure if and only if

(24) o, 1) =~ ( (310l = 1)ax, 1)+ anCOM(™) ) .

where « is a function on M (cf. [4]). Let C,V, X1,JX1,..., X, JX, be an
orthonormal basis of T,L such that V, X1,9X,..., X,, ¢X, (¢X; = JX;) form an
orthonormal basis of T,M. We denote the Ricci tensor of V of L by Rict. Using
(12), for X,Y e T,M, the Ricci tensor Ric” of VM of M is

(25) Ric™(X,Y) = Ric*(X,Y) — RH(C,Y,C,X) - {g(c(V,Y),0(X, V))

~ 4(o(X, ¥),0(7, V) + S la(o(Xs, ¥), (X, X))

i=1
= g(a(X, Y),0(X;, X)) + g(0(4X;, ¥), 0(X, 4Xi))
—9(a(X, Y),0(4X;, $X:))]}.

Since the local Kaehler metrics ¢’ have the same constant nonnegative holo-
morphic sectional curvature p, the curvature tensor of ¢’ is given by

(26) R(X,Y,Z, W)= g-{g’(X,Z)g'(Y, W) —g(X,W)d(Y,Z)
+ 4 (X,JZ)g(Y,JW) — ¢ (X,IJW)4(Y,JZ)
+24/(X,JY)g(Z,JW)}  (cf. [12]).

We put "R(X,Y,Z W)=g("R(Z,W)Y,X). Since R(X,Y,Z, W)=
e™VR(X,Y,Z, W), we get

@7) PR Y,Z,W) =L {g(X, 2)g(¥, W) — g(X, W)4(Y, 2)
+29(X,JY)g(Z,TJW)}.
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From this equation, we get
(28) WRic(X, Y) = ge*'(zn +4)g(X, Y).
From (10), for any vector fields X, Y tangent to M, we have

(29) RHC,Y,C,X) = 5e(g(X, ¥) + 3(X)n(Y)) ~ 34((Vx) V)C, C)

|
~59(X, V)g(VcB, C)

and
(30)
Ric"(X,Y) = p e'2n+4)9(X,Y) —n(Vxw)Y — (—l—divB—ln|a)|2 (X,Y)
’ - 4 g 3 X 2 2 g ’ .
From (11) and (24), we have
6D ()Y =—o(¥r¥) = ((3lol = 1)ax, 1)+ m0ON(T) ) o

and

(32) divB=g(VcB,C)+g(VvB, V) + > g(Vx.B, X))+ ) _ g(Vix,B,JX)

i=1 i=1
=g(VeB,C) + (2n + 1)|w| (%|w| — 1) + o]

By using (29), (30), (31) and (32), we have
(33) Ric"(x,Y)-REC,Y,C,X)

= Ze*’{(zn +3)9(X,Y) = 3n(X)n(Y)}

+ (=50 + 20| - 36001 )a(x, 7) ~ (slol = 3o ) sn(0n().

From (24), we obtain

(34)  g(o(V, Y),0(X,V)) + Zn:[g(a(z"i, X),0(X;, Y)) + g(a(¢X;, X),0(¢X;, Y))]

i=1

2
_ G"‘" - 1) 49X, ) + (o2 + aloo| — 2a)n(X)n(Y).
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Thus, since o(V,V)=—((1/2)lw| — 1 +a)C and o(X;, X;) = —((1/2)|w| - 1)C,
we have

(35) —{g(o(V, ¥),0(X, V) - g(o(X, V),0(V, V) + 3 lg(o(Xi, ¥), 0(X, X))
i=1

—g(o(X, Y),0(X;, Xi)) + 9(0(¢X;, ¥),0(X, $X))) — g(o(X, ¥), 6 (4, $X:))] }

1 2
__ (5 o] — 1) 9(X, Y) - (2 + aloo| — 22)7(X)(Y)
2
+(@2n+ 1){ (-12- || — 1) 9(X,Y)+ (%lwl - 1>om(X)f7(Y)}

1
+atn(0n(7)+ (310l - 1)aa(x, )
n 2 1
= <§|w| — 2n|w| + 5a|a)| +2n— oc)g(X, Y)

+ (n|cu| —%]a)l —2n+ 1)0:17(X)77(Y).

Using (33) and (35), from (25), we have
(36) Ric™(X,Y) = Bg(X, Y) +yn(X)n(Y),

where f=2n—a+ (p/4)e"(2n+3) and y = a(1 — 2n) — (3/4)pe™". It is known
that if all local Kaehler metrics ¢’ = e'g of L have the same constant holo-
morphic sectional curvature p, then p =0 or L is a globally conformal Kaehler
manifold (cf. [11]). Since Be TM*', for tangent vector field X on M,X(r) =
dr(X) = w(X) = 0. Hence r is constant on M. Since M is a Sasakian manifold, 8
and y are constant on M and B+ y = 2n (cf. [12]). Thus, « = (p/4)e™" = constant
on M and B=2n+(p/2)e"(n+1), y=—(p/2)e”"(n+ 1) < 0. Therefore, from
Theorem 1, M admits an Einstein-Weyl structure. [

ExampLE. Let H'*! be a Hopf manifold. H7*! is isometric to S' x S+l
where $2**! is the unit sphere in C"*! with constant curvature 1. Let o be the
Lee form of H}!. The sphere $***! is a leaf of the canonical foliation given by
the Lee form w = 0. Since the local Kaehler metric of H}™' is flat and S2*!
admits a Sasakian structure, $?**! admits an Einstein-Weyl structure.

Next, we shall consider generalized Hopf manifolds.
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Let (M,¢,V,n,g) be a Sasakian manifold and L = M x R. We set

(1 2) = (b0, -n0)2),

((5x2). (70 2)) = s

where X, Y are vector fields on M and x, y functions on L. Then (L,J,k) is a
generalized Hopf manifold with Lee form w =2ds and Lee vector field
B =2(3/(ds)) (cf. [10]). Therefore S**!(k) x R is a generalized Hopf manifold.

Let (L,J,h) be a generalized Hopf manifold. Then |w| is constant. We set

ZM, uzﬁ)_, v=—uol, C:E—, V=JC.
2 || |l
Then we have dv = ¢(Q + 2uAv).
Let .# be the canonical foliation of a generalized Hopf manifold (L,J,4) and
M be a leaf of .#. Then M is a totally geodesic submanifold of L. We set

(38)

1 -~
(39) V==V, n=c, g=Chy,  $=J+1® Cur.

Then (M,¢,V,n,g) admits a Sasakian structure (cf. [10]).
From a Theorem of Vaisman [10] and Theorem 2, we have following.

THEOREM 4. Let L be a complete and simply connected generalized Hopf
manifold and every leaf M of the canonical foliation M be of constant ¢-sectional
curvature k. If k > 1, then M admits an Einstein-Weyl structure.

REMARK 3. In a generalized Hopf manifold (L,#), if all the local Kaehler
metrics ¢’ = e”"h have the same constant holomorphic sectional curvature p, then
every leaf M of the canonical foliation is of constant ¢-sectional curvature
k= (1/2)pe™" +1, where ¢ = (|w|/2). But converse is not true.
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