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1. Introduction

Pedersen and Swann [7] and Higa [2] studied the existence of an Einstein-

Weyl structure on principal circle bundles over Einstein Kaehler manifolds of

positive scalar curvature and obtained many examples of Einstein-Weyl spaces. In

a Riemannian submersion n : M ―>N with totally geodesic fibers of dimension

one over an Einstein manifold TV, we studied the relation between an Einstein-

Weyl structure and a Sasakian structure of M (cf. [5]).

On the other hand, in [4], we investigated some geometric structures of a

Riemannian submersion n : M ―>TV, where Mis a CR-submanifold of a locally

conformal Kaehler manifold L. Let M be a leaf of the canonical foliation Ji

given by the Lee form co ― 0 of a locally conformal Kaehler manifold L. Then M

admits an almost contact metric structure. We obtained a necessary and sufficient

condition for the manifold M to admits a Sasakian structure.

In this paper, we shall study the existence of an Einstein-Weyl structure on

an almost contact metric manifold. Let M be a complete and simply connected

Sasakian manifold with constant ^-sectional curvature k. We show that if k > 1,

then M admits an Einstein-Weyl structure.

Next, we assume that all local Kaehler metrics g' = e~rg of a locally

conformal Kaehler manifold L have the same constant nonnegative holomorphic

sectional curvature p. We show that if the induced almost contact metric structure

of a leaf M of the canonical foliation Ji of L is Sasakian, then M admits an

Einstein-Weyl structure. Finally, we discuss the existence of an Einstein-Weyl

structure on a leaf of the canonical foliation of a complete and simply connected

generalized Hopf manifold.
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2. Preliminaries

Firstly,we give the definition of an Einstein-Weyl space. Let (M,g) be a

Riemaneian manifold. Let 5 be a torsion-free affine connection on M. A

manifold M is said to have an Einstein-Weyl structureif there exist a 1-form ju

and a function A on M such that

(1) Dg = ix<g>g and DRic{X, Y) + DRic{ 7, X) = Ag(X, Y),

where DRic is the Ricci tensor of D. Since D is not a metric connection, the Ricci

tensor is not necessarily symmetric. The Einstein-Weyl equation is conformally

invariant. Let V be the Levi-Civita connection of g. We define a vector fieldE by

g(X,E) = fJ.{X).Then, since Dg = /zR g, we have

(2) DxY = VxY-^(X)Y-±p(Y)X +
±g(X,Y)E.

Let DR and R be the curvature tensor of D and V respectively.Then, we have

(3) DR(X, Y)Z = R{X, Y)Z -S{[

[(Vr/i)Z
+

g(Y,Z)

Wxli)Z +

^(J>(Z)]

hxE + ＼

i/i(l>(Z)j
Y

X+((VXfi)Y)Z-((VYLL)X)Z

fi(X)E + g{X,Z)

-l-＼[i＼2(g(Y,Z)X-g(X,Z)Y):

(Vy
E+1-ii(Y)e＼

where X, Y and Z are any vector fields on M.

Next, we give the definition of an almost contact metric manifold. A

Riemannian manifold (M, g) is said to be an almost contact metric manifold if

there exista tensor field^ of type (1,1), a unit vector field V and a 1-form n such

that

n(V) = i, <t>2x= -x + t1(x)v,

g{+XJY) = g(X,Y)-n(X)i,(Y),

for any vector fields X, Y on M (cf. [1]).

For an almost contact metric structure {<f>,V, r＼,g) on M we put O(A", Y) =

g(X, ^F). An almost contact metric structure is said to be:

Contact metric if dr＼= <D.

K-contact if <iw = > and F is a Killing vector field with respect to g.
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Sasakian if dn = O and N^ + ldrj^V = 0, where N+(X, Y) = [a^X^Y] -

<t>[</>X,Y}-<f>[X,<f>Y}+<j>2lX,Y}.

If the Ricci tensor Ric of a contact metric manifold M is of the form

(5) Ric(X, Y) = {3g(X, Y) + yn(X)n(Y),

fi and y being constant, then M is called n-Einstein manifold.

Next, let L be an almost Hermitian manifold with metric g, complex

stracture / and the fundamental 2-form Q. The manifold L is said to be a locally

conformal Kaehler manifold if every x e L has an open neighborhood U with a

differentiablefunction r : U ―>R such that g'v ―e~rg＼vis a Kaehler metric on U.

If we can take U = L, the manifold is globally conformal Kaehler. The locally

conformal Kaehler manifold L is characterized by

(6) Nj = 0, dQ, = (DAQ, dco = 0,

where Nj is the Nijenhuis tensor of / and co is a globally defined 1-form on L.

We call co the Lee form. Since for dim L ― 2 we have </O = 0, we may suppose

dim L > 4. Next we define a Lee vector field B by

(7) 0(jr,*) = c(*).

The Weyl connection WV is the linear connection defined by

(8) WVXY :=VXY -l-co(X)Y -^a)(Y)X +l-g(X,Y)B,

where V is the Levi-Civita connection of g. WV is the Levi-Civita connection of a

local Kaehler metric g'.It is shown in [9] that an almost Hermitian manifold L is a

locally conformal Kaehler if and only if there is a closed 1-form at on L such that

(9) WVXJ = 0.

Let L be a locally conformal Kaehler manifold. Let RL be the curvature

tensor field of the connection V and WR the curvature tensor field of the Weyl

connection WV. Since dco ―0, we obtain (Woo) 7 - (Vya>)X = 0. Thus, we have

(10) WR(X, Y)Z = RL(X, Y)Z

1

2

[(V^)Z
+
i≪(X)£y(Z)JF

＼(VYaj)Z
+

^co(Y)co(Z)
}x -g(Y,Z)(vxB + ^co(X)B＼

+ g(X,Z)(wYB + io>(F)lA} l-＼co＼2(g(Y,Z)X-g(X,Z)Y),

where X, Y and Z are any vector fields on L (cf. [Ill)
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Let Ji be the foliation given by co = 0 of a locally conformal Kaehler

manifold (L,J,g). Ji is called the canonical foliation.

A locally conformal Kaehler manifold (L,J,g) is said to be a generalized

Hopf manifold if the Lee form is parallel, that is Vco = 0 (co # 0).

Let M be a submanifold of a Riemannian manifold L. We denote by the

same g the Riemannian metric tensor fieldinduced on M from that of L. Let VM

denote covariant differentiationof M. Then the Gauss formula for M is written as

(11) VxY = V^Y + a(X,Y)

for any tangent vector fieldsX, Y on M where a denotes the second fundamental

form of M in L.

Let RM be the Riemannian curvature tensor field of M. Then we have the

equation of Gauss

(12)

RL(W,Z,X,Y) = RM{ W, Z, X, Y) + g(<r(X,Z), a( Y, W)) - g(a( Y, Z), a(X, W))

3. Elnstein-Weyl structures

Let (M,</>,V,rj,g) be an almost contact metric manifold of dimension 2≪+ 1.

Let VM be the Levi-Civita connection of g and RicM be the Ricci tensor of VM.

Then we obtain the following result.

Theorem 1. Let (M, <f>,V,n,g) he an almost contact metric manifold sat-

isfying Vf V = -#(X). If RicM(X, Y) = @g{X, Y) + yn{X)n{Y), where p and y

are constant,and y < 0, then M admits an Einstein-Weyl structure.

Proof. We define 1-form ju by pi―ft],where/is a function on M. Let E be

the dual vector field of ju. We define the connection D by

(13) DXY = V%Y -l-≫(X)Y -l-n(Y)X +l-g(X,Y)E.

Then D is a torsion-free connection and Dg = ju(x)g. Let DRic be the Ricci tensor

of D. From (3), we obtain

(14)

DRic(X, Y) = RicM{X, Y) + w(V^) Y -]- (V^)X

+
4 (2n-l)M(X)/i(Y)+g{X,Y)

6
-div£--(2≪-l)H2 (cf. [7])
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Let V,Xi,$Xi,...,Xn,4Xn be an orthonormal basis of TpM. Since V^F =

-*(X), for j = 1,...,≪,we get Vf F = 0 and g(Vf 1), F) = -g(V%V,Xj) = 0.

Thus we have (Vf/i)K = !)(/), (Vf/i)(Xy)= 0, (Vf^)F = V(f), (V^/i)X; = 0

for alli, y, (VjrAI)(^) = O for i*j and (Vf//)(^-) + (V^./i)Zy-= 0. From

these,we have

(15)

(16)

DRic(Xj,V)+DRic(V,Xj)
i(2fi-l)A)(/),

DRic((t>Xj,V) + DRk(V, jXj) =U2n- l)*Xj(f),

(17) 2-DRk(V,V)=2(B + y) +

(18)

and

i(2n
- 1)(2F(/) +f2)+divE-l-(2n - I)/2

2 ･DRic(Xj,Xj) = 2fi+ divE--(2≪ - I)/2

(19) 2 ･ DRic(</>Xj,<f>Xj)= 2P + divE - ^ (2/i- I)/2.

We set f2 = -(4/(2* - l))y. Then V(f) = 0, A}(/) = ^-(/) = 0 for j = 1,...,≫

and divE = V ■fi{V) = V(f) = 0. Thus, by using equations (15)―(19),we obtain

(20) DRic(X, Y) + DRic( Y, X) = Ag(X, 7),

where X, Y are tangent vectors of M and A = 2{fi+ y). Therefore Af admits an

Einstein-Weyl structure. ■

Remark 1. ^-contact manifold and Sasakian manifold satisfy the condition

Vf V = -4>{X) (cf.[1]).Let n : M2n+l -> N2n be a Riemannian submersion with

totally geodesic fibers of dimension one over an Einstein manifold N2n such

that RicN(X,Y) = cg(X,Y). Moreover, we assume that (M2n+l,0,V,t],g) is a

standard Sasakian manifold. Let V,Xi,$Xi,... ,Xn,0Xn be an orthonormal basis

of TPM. Then we get RicM(Xj,Xj) = RicM(<f>XjJXj) =c-2, RicM(V, V) = 2n,

RicM{Xj, V) = RicM(<f>Xj,V) = 0, RicM{Xu 0Xj) = 0 for alli,j and RicM(Xh Xj) =

RicM(</>Xi,<f>Xj)= 0 for i ^j. (cf.[5]).Therefore M is an ^-Einstein manifold such

that RicM(X, Y) = (c - 2)g(X, Y) + (2≪- c + 2)rj(X)rj(Y). If the scalar curvature

s of N is s > 4n(n + 1), then In - c + 2 = (l/(2≪))(4≪2+ 4/i- 1) < 0. Thus, as a

corollary of Theorem 1, we obtain Theorem 2 in [5].

Next, let (M, </>,V, tj,g) be a Sasakian manifold of constant ^-sectional

curvature k and dim M ― 2n 4-1. The curvature of M is
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(21) RM(X, Y,Z, W) =
Jfc+ 3
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{g(X,Z)g(Y,W)-g(X,W)g{Y,Z)}

{n(X)ri(Z)g(Y, W) - n(Y)n(Z)g(X, W)

4

k -1

4~~

+ g(X, Z)tj{Y)g( V, W) - g{ Y, Z)r,(X)g{ F, W)

+ g(<{>Y1Z)g(</>X,W) - g(0X,Z)g(<f>Y, W)

+ 2g(X,tY)g(+Z,W)} (cf. [12]).

From this equation, we get

(22) RicM(X, Y) = fig(X, Y) + yn(X)n( Y),

where fi=({n+ l)/2)k + ((3n - l)/2) and y = -((≪+ l)/2)(k - 1).

Let S2n+l be the unit sphere in Cn+l and x be real number such that t > 0.

Let (/, h) be the flatKaehler structure on Cn+l and U be the unit normal vector

fieldof S2n+l in Cn+l. We define tensor field</>and 1-forra fjon S2n+l by /(X) =

f(X)-rj(X)U. And we put V=(1/t)JU, rj= xfj and ^ = xti + t(t - 1)^ R ^,

where A' is the induced metric on S2^1 by h. Then ($,V,rj,g) is a Sasakian

structure with constant ^-sectional curvature k = (4/t) ― 3 and we denote S2n+l

with this structure by S2n+l{k) (cf.[8]).Thus we have (22) and V|F = -j(X),

where V5 is the Levi-Civita connection of g. From a Theorem of Tanno [8] and

Theorem 1, we obtain the following result.

Theorem 2. Let M be a complete and simply connected Sasakian manifold

with constant^-sectionalcurvaturek. If k>＼, then M admits an Einstein-Weyl

structure.

Remark 2. Let {</>,V, rj,g) be a Sasakian structure of the sphere (S2n+l (k), g).

In the Hopf fibration n : (S2n+1(k),g) -> (Pn(C){k + 3),g), for constant a # 0,

we define a Riemannian metric ga by ^a = ^*^ + a2tj R ^ (cf. [2]). We set

V=(l/a)V and fj= an. Then drj = aR, where 6(JT, F) = ga(XJY). Let ^

be the integrability tensor of the Riemannian submersion na : (S2n+1(k),ga) ―*■

(Pn(C)(k + 3),g) with totally geodesic fibers. Let Rs and Rp denote the curvature

tensors of (S2n+1(k),ga) and (Pn(C)(k + 3),gf) respectively. We recall the fol-

lowing curvature identity.

(23) RS(W,Z,X, Y)=RP(W1Z,X, Y) - ga(AYZ,AxW)

+ ga(AxZ,AYW)+2ga(AxY,AzW),
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where X, Y, Z and W are tangent vector fieldson Pn(C)(k + 3) and X, Y, Z and

W are the horizontal liftsof X, Y, Z and W respectively(cf.[6]).For a function

/on S2n+l(k), we put fi=fij. We define the connection D, by

DXY = VaxY -^pi(X)Y -l-ft(Y)X +1-ga(X,Y)EJ

where Va is the Levi-Civita connection of ga and E is the dual vector fieldof fi.

Let 3Rica be the Ricci tensor of D. Since y4z7 = (1/2)^[X, F] (cf.[6])and V is

a unit vertical vector field,we get AxY = ―drj{X, Y)V = ―aga(X,$Y)V, where

X, Y are horizontal vector fields.Using |/i|2= (f2/a2), for an orthonormal basis

V,Xh0Xh...,Xn,4>Xn of TpS2n+1 (k), we get following.

2 ･ 3Rica(V, V) = Ana2 +
i(2w

- 1)
(
-

and

n/) +

2 ･ DRica{Xj, Xj) = (n + l){k + 3)

a2)
+ divE -

i(2≫-D

Aa2 + divE--{2n-＼)J―

DRica(Xj,V) + DRica{V,X,) =
l-(2n-l)Xj(9

a2

For <f>Xj,we also have same equations.

Let constant a be (k + 3)/4>a2 and set f2 = (2(≪+ I)a2/{2n - 1)) x

(k + 3 ―4a2). Then we have

BRica{X, Y) + 5Rica{Y,X) = Aga(X, 7),

where A = Ana2. Therefore, for k > -3, (S2n+l(k),ga,/i) admits an Einstein-Weyl

structure but not Sasakian for a # 1.

4. Foliations of locally conformal KaeMer manifolds

As an application of Theorem 1 and Theorem 2, we consider the canonical

foliation of a locally conformal Kaehler manifold. Let (L,J,g) be a locally

conformal Kaehler manifold of dimension In + 2 and a> the Lee form and Jl the

canonical foliation given by co = 0. Let M be a leaf of the canonical foliation Ji,

that is M is an orientable real hypersurface of L. Let B be the Lee vector field.

We set C=(B/＼a>＼), V = JC, ri(X)=g{X,V) and JX = <j>X-ri{X)C. It is

known that every orientable real hypersurface of an almost Hermitian manifold

has an almost contact metric structure {(j>,V,r],g)(cf. [1],[10]).
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We show the following theorem.

Theorem 3. Let (L,g) be a locally conformal Kaehler manifold and assume

that all its local Kaehler metrics g' = e~rg have the same constant nonnegative

holomorphic sectional curvature p. Let M be a leaf of the canonical foliation Ji. If

the induced almost contact metric structure of M is Sasakian, then M admits an

Einstein-Weyl structure.

Proof. It is known that M admits a Sasakian structure if and only if

(24) a(X, Y) = - 6= M-i

where a is a function on M (cf. [41)

g(X,Y)+an(X)n(Y)
y

Let C, V, Xh JXh ...,Xn, JXn be an

orthonormal basis of TPL such that V, X＼,<j>X＼,...,Xn, $Xn (</>Xt= JXt) form an

orthonormal basis of TPM. We denote the Ricci tensor of V of L by RicL. Using

(12), for X, Y e TpM, the Ricci tensor RicM of VM of M is

(25) RicM{X, Y) = Ri^iX, Y) - RL(C, Y, C,X) - {g(a(V, F),(r(X, V))

-g(a(X, 7),a(F, V))+ Y)g{p{Xu Y),a(X,Xt))

- g(a(X, Y),a{XhXi))+g{a{<f>Xh Y),a(XJXt))

-g^IJ),^!,-,^))]}.

Since the local Kaehler metrics g' have the same constant nonnegative holo-

morphic sectional curvature p, the curvature tensor of g' is given by

(26) #{X, Y, Z,W) =
P-
{g'(X, Z)g＼ Y, W) - g'{X, W)g'{ Y, Z)

+ g'(X,JZ)g'(Y,JW)-g'(X,JW)g'(YJZ)

+ 2g'(X,JY)g'(ZJW)} (cf.[12]).

We put WR(X, 7,Z, W) = g{wR{Z, W) Y,X). Since R'{X, Y,Z, W) =

e-rWR(X,Y,Z,W), we get

(27) WR(X, Y,Z, W) = ^e-r{g(X,Z)g(Y1 W)-g(X, W)g(Y,Z)

+ g(X, JZ)g{ 7, JW) - g(X, JW)g{ Y, JZ)

+ 2g(X,JY)g(Z,JW)＼.
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From thisequation,we get

(28) wRic(X,Y)
4

From (10), for any vector fields X,

(29) RL(C,Y,C,X) =
pr

e-r(2n + 4)g(X,Y)

Y tangent to M, we have

(g(X, Y) + 3t,(X)t,(Y))--g(((Vxa>)Y)C, C)

l-g(X,
Y)g(VcB, C)

and

(30)

RicL(X, Y) =
P-
e~＼2n+ 4)g(X, Y) - n(Vxco) Y -

From (11) and (24), we have

(31) {Vxoj)Y = -co(VxY) =

and

(G

G
divi? ―-≪|ca|2

)

g(X, Y)

＼eo＼-l^g(X,Y) + arI(X)r!(Y)＼＼co＼

(32) divB = g(VcB, C) + g(VvB, V) + V g{VXiB,Xt) + V g(VjxA J*t)

= g(VcB,C) + (2n+l)＼co＼

1=1

fxH" 0 + <*|co|

By using (29), (30), (31) and (32), we have

(33) RicL(X, Y) - RL(C, Y, C, X)

r

{(2n + 3)g(X,Y)-3ti(X)r,(Y)}

- -|co|2 + 2n＼co＼―

From (24),we obtain

(34) g(a(V,Y),a(X,V)) +

=

s

n
£

1=1

1 , ,
-a＼(o＼

)

g(x, Y) I WM

i=＼

l

-＼m＼＼ati{X)ti{Y).

95

[g{a{XuX),o{Xu Y)) + g(aUXhX),a(^Xh Y))]

＼2

H - 1J g{X, Y) + (a2 + <x＼co＼- 2a)i/(X)//( Y).
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Thus, since a(V,V)

we have
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= -((i/2)M - l+a)C and a{XuXi) = -((i/2)M -1)C,

(35) -{g(a(V, Y),a{X, V))-g(a(X, Y),a(V, V)) +
£

[g{a{Xh Y):a(X,Xi))

1=1

g(<j(X,Y),a(Xi,Xi))+g(aMXh Y),a(XjXi))-g(a(X, Y)M+Xu4>Xi))＼}

(iM ')"･ (X1Y)-(a2 + a＼(o＼-2oc)ri(X)n(Y)

+ (2≪+l) {Gh

+ aVi>m

i) gix, Y) +

+
Q＼co＼-l＼ag(X,

(n.
,2 , , ,

1
i i-＼co＼ - 2n＼co＼ +-a＼co＼

+
(
≫M -

＼
＼od＼-2≪+l

+ 2n-

)

■

)

G

Y)

g(X, Y)

an(x)n(Y).

ari(X)n(Y)

＼

Using (33) and (35), from (25), we have

(36) RicM(X, Y) = fig(X, Y) + yn(X)n(Y),

where ft―In ―cc+ (p/4)e~r(2n + 3) and y = <x(l―2n) ―(3/4)pe~r.It is known

that if all local Kaehler metrics g' = e~rg of L have the same constant holo-

morphic sectional curvature p, then p = 0 or L is a globally conformal Kaehler

manifold (cf. [11]). Since BeTM1, for tangent vector field X on M,X(r) =

dr(X) = co(X) = 0. Hence r is constant on M. Since M is a Sasakian manifold, fi

and y are constant on M and ft+ y = 2n (cf.[12]).Thus, a = (p/4)e~r = constant

on M and fi = In + (p/2)e-r{n +1), y = -{p/2)e-r{n + 1) < 0. Therefore, from

Theorem 1, M admits an Einstein-Weyl structure. ■

Example. Let Hn^1 be a Hopf manifold. Hnx+l is isometric to S1 x S2n+l,

where S2n+l is the unit sphere in Cn+1 with constant curvature 1. Let co be the

Lee form of Hnk+X. The sphere S2n+l is a leaf of the canonical foliation given by

the Lee form co = 0. Since the local Kaehler metric of H"+l is flat and S2n+l

admits a Sasakian structure, S2n+1 admits an Einstein-Weyl structure.

Next, we shall consider generalized Hopf manifolds.
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Let (M, (j>,V,i/,g) be a Sasakian manifold and L = M x R. We set

･
a

-

h

dsj

jX + xV,-ri(X)

(j,y
I

dsl

= g{X,Y)+xy1

97

where X, Y are vector fieldson M and x, y functions on L. Then (JL,/,h) is a

generalized Hopf manifold with Lee form co = 2 ds and Lee vector field

B = 2(d/(ds)) (cf.[10]). Therefore S2n+l(k) x R is a generalized Hopf manifold.

Let (L,J,h) be a generalized Hopf manifold. Then leolis constant. We set

(38) c ==

＼co＼

T'
u

= i―r> v ― ―uo J.
＼co＼

c B
R

V = JC.

Then we have do ― c(Q -＼~2uav).

Let Ji be the canonical foliationof a generalized Hopf manifold (L, /, h) and

M be a leaf of Jl. Then M is a totally geodesic submanifold of L. We set

(39) V - V＼M, ij = cv, g = c2h{M, <f>= J + ?i<g> C＼M.

Then (M,#,V,t],g) admits a Sasakian structure(cf.[10]).

From a Theorem of Vaisman [10] and Theorem 2, we have following.

Theorem 4. Let L be a complete and simply connected generalized Hopf

manifold and every leaf M of the canonical foliation Ji be of constant (j>-sectional

curvature k. If k>＼, then M admits an Einstein-Weyl structure.

Remark 3. In a generalized Hopf manifold (L,h), if all the local Kaehler

metrics g' = e~rhhave the same constant holomorphic sectional curvature p, then

every leaf M of the canonical foliation is of constant ^-sectional curvature

k = (l/c2)pe~r+ 1, where c= (＼co＼/2).But converse is not true.

Acknowledgement. The author would like to thank the referee for his kind

advice and useful comments.
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