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ON THE COMMON DIVISOR OF

DISCRIMINANTS OF INTEGERS

By

Satomi Oka

Abstract. Let F be an algebraic number field of a finite degree, and

let K be an extension of F of a finite degree. Denote by dðK=FÞ the

greatest common divisor of the discriminants of integers of K with

respect to K=F . Then, dðK=F Þ is divisible by the discriminant dðK=F Þ
of K=F .

Let p be an arbitrary prime ideal of F, let p ¼ qe1

1 qe2

2 � � � qeg
g be

the decomposition of p in K into primes, and let fi be the degree

of qi. The set of indices f1; 2; . . . ; gg is then divided into the union

of maximal subsets I such that fi ¼ fj whenever i and j belong to

a common I. We write fI instead of fi for i A I , and denote by gI

the number of elements in I. Put on the other hand cðIÞ ¼P
dj fI mð fI=dÞNpd , where m is the Möbius function. Then, p divides

dðK=FÞdðK=F Þ�1 if and only if there exists an I such that

cðIÞ < fI gI .

§ 1. Introduction

Let F be an algebraic number field of a finite degree, and K an extension over

F of a finite degree. A basic theorem in the general theory of algebraic number

fields says that the greatest common divisor of di¤erents of integers of K with

respect to K=F is equal to the di¤erent dðK=FÞ of K=F . Therefore, the greatest

common divisor dðK=FÞ of discriminants of integers of K with respect to K=F , as

an ideal of F, is divisible by the discriminant dðK=FÞ ¼ NK=FdðK=F Þ of K=F . It

is known, however, that dðK=FÞ is not always equal to dðK=FÞ. In the present

paper, we will give a necessary and su‰cient condition in a simple, elementary
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form for an arbitrary prime ideal p of F to divide dðK=FÞdðK=FÞ�1. The main

theorem is in § 4. A prime divisor of dðK=F Þ which does not divide dðK=F Þ was

called ‘‘Ausserwesentlicher Diskriminantenteiler’’ (Dedekind [1]).

§ 2. Preliminaries

1. Throughout the paper, we use standard terminology of number theory as

in [2] and [4].

Let F be an algebraic number field of a finite degree, and K be an extension

over F of a finite degree n. The di¤erent dða;K=F Þ of an element a of K with

respect to F is then defined by f 0ðaÞ ¼ dða;K=F Þ where f ðXÞ is the characteristic

polynomial of a ¼ að1Þ with respect to K=F . If að1Þ; að2Þ; . . . ; aðnÞ are conjugates of

a with respect to K=F , the equality dða;K=FÞ ¼
Q

i01ðað1Þ � aðiÞÞ holds. Fur-

thermore,

dða;K=FÞ ¼

1 að1Þ � � � að1Þn�1

1 að2Þ � � � að2Þn�1

. . . . . . . . . : :

1 aðnÞ � � � aðnÞn�1

���������

���������

2

¼
Y

i>j
ðaðiÞ � að jÞÞ2

¼ ð�1Þnðn�1Þ=2
Y

i0j
ðaðiÞ � að jÞÞ

¼ ð�1Þnðn�1Þ=2
NK=Fdða;K=FÞ

implies the relation

dða;K=F Þ ¼ ð�1Þnðn�1Þ=2
NK=Fdða;K=F Þ

between the di¤erent of a and the relative discriminant dða;K=F Þ of a with

respect to K=F .

2. We insert here some elementary facts concerning finite fields.

Let K1 be a finite field, and Kf an extension of K1 of degree f . Then, the

Galois group Z of Kf =K1 is cyclic of order f , and, for a divisor d of f , there is a

unique subfield Kd of Kf of degree d over K1. Denote by Cd the set of elements

g of Kf such that K1ðgÞ ¼ Kd , and by cd the number of elements of Cd . Then,

6
dj f Cd ¼ Kf implies

P
dj f cd ¼ q f , where q ¼ c1 is the number of elements of

K1. Thus, Möbius’ inversion formula yields

cf ¼ cðq; f Þ;ð1Þ
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where cðq; f Þ is defined by

cðq; f Þ ¼
X

dj f m
f

d

� �
qd

for any two natural numbers q; f . Every f elements of Cf are mutually conjugate

under the action of the Galois group Z. So, denoting the set of such conjugate

classes of Cf by ~CCf , the number of elements of ~CCf is

cf

f
¼ 1

f

X
dj f m

f

d

� �
qd :

3. Let, as in 1, F be an algebraic number field of a finite degree, and K an

extension over F of a finite degree n. Assume that p is a prime ideal of F, and L

is a normal extension over F of a finite degree containing K. For instance, we

may take as L the Galois closure of K=F .

Put

GalðL=F Þ ¼ G; GalðL=KÞ ¼ H;

and let Z be the decomposition group of a prime factor P of p in L. Then, Ps

and Ps 0
, ðs; s 0 A GÞ, divide a common prime ideal q of K if and only if s and s 0

belong to a common double coset of ZnG=H. Fixing the representatives s1 ¼ 1,

s2; . . . ; sg of the double cosets so that

G ¼ 6g

i¼1
ZsiH

holds, the decomposition of p in K is of the form

p ¼ qe1

1 qe2

2 � � � qeg
g ;ð2Þ

where qi is the prime ideal of K divisible by Psi . Since Psi ¼ Psih; ðh A HÞ,
is equivalent to sihs

�1
i A Z, the number of di¤erent prime factors of qi in L is

ðH : s�1
i Zsi VHÞ. The product of the degree and the ramification exponent of

Psi over K is ðs�1
i Zsi VH : 1Þ. Therefore, the degree fi and the ramification

exponent ei of qi over F is given by

ei fi ¼ ðs�1
i Zsi : s

�1
i Zsi VHÞ

and

ei ¼ ðs�1
i Tsi : s

�1
i Tsi VHÞ;

where T is the inertia group of P.
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§ 3. Isomorphisms between Residue Class Fields

In the investigation of the di¤erent, it is basically enough to treat one single

prime ideal of the extention field. But, in the investigation of the discriminant, it

is required to handle all those prime ideals of the extension field at the same time

which divide a prime ideal of the base field. Actually, the discriminant is of a

semi-local nature. From this point of view, we summarize in this article some

propositions; they are e¤ectively used in the proof of the main theorem.

In this article, as before, F is an algebraic number field of a finite degree, and

K is an extension over F of a finite degree n. In addition, we employ same

notation and symbols as in 3 of § 2. Let now oL, oK and oF be the ring of integers

of L, K and F, respectively, p a prime ideal of F, and P a prime ideal of L

dividing p. Moreover, let Z be the decomposition group of P. Then, corre-

sponding to the decomposition (2) of p in K, we put

oF=p ¼ KðpÞ; oK=qi ¼ KðqiÞ

and

GðqiÞ ¼ GalðKðqiÞ=KðpÞÞ;ð3Þ

so that

ðKðqiÞ : KðpÞÞ ¼ fi; Nqi ¼ q fi ; q ¼ Np:

For every divisor d of fi, the finite field KðqiÞ has a unique subfield of degree d

over KðpÞ, which will be denoted by KðqiÞd . In particular, KðqiÞ ¼ KðqiÞfi and

KðqiÞ1 ¼ KðpÞ. We denote by CðqiÞ the set of elements g of KðqiÞ such that g

generates KðqiÞ over KðpÞ, and by cðqiÞ the number of elements of CðqiÞ. The

elements of CðqiÞ are divided into conjugate classes under the action of GðqiÞ,
and every conjugate class consists of fi elements. The set of such conjugate classes

will be denoted by ~CCðqiÞ. Considering KðqiÞ, KðqiÞd , fi, and q ¼ Np as to be Kf ,

Kd , f , and q in 2 of § 2, we have cðqiÞ ¼ cðq; fiÞ, or

cðqiÞ ¼
X

dj fi
m

fi

d

� �
Npdð4Þ

by (1). Accordingly, the number of elements of ~CCðqiÞ is
1

fi
cðqiÞ.

We write an element of KðqiÞ in the form a mod qi; ða A oKÞ, and we say

that a mod qi A KðqiÞ and b mod qj A KðqjÞ are weakly conjugate, if there is an

element s in s�1
i Zsj such that

as 1 b ðmod Psj Þ:ð5Þ
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Here, as need not belong to K. This definition of weak conjugation does not

depend on the choice of si. In fact, suppose

s 0
i ¼ xisihi; s 0

j ¼ xjsjhj; ðxi; xj A Z; hi; hj A HÞ;

and put s 0 ¼ h�1
i shj. Then, s 0 belongs to s 0�1

i Zs 0
j , and Ps 0

j ¼ Psjhj . Hence, it

follows from (5) that

as ¼ ahis
0h�1

j ¼ as 0h�1
j 1 b ðmod Psj Þ;

which implies

as 0
1 b ðmod Ps 0

j Þ:

The weak conjugation determines a relation between the residue classes a mod

qi and b mod qj , which proves to be an equivalence relation. Firstly the self-

equivalence is clear by a1 a ðmod PsiÞ for any a A oK . To see the reflectivity,

we note that Psjs
�1 ¼ Psi , if s�1 A s�1

j Zsi. From this and from (5) follows

bs�1

1 a ðmod PsiÞ. Assume now

as 1 b ðmod Psj Þ; bt 1 g ðmod Psk Þ; ða; b; g A oKÞ;

with s A s�1
i Zsj, t A s�1

j Zsk. Then, st A s�1
i Zsk and Psjt ¼ Psk . Thus, we get

the transitivity

ast 1 bt 1 g ðmod Psk Þ:

An isomorphism between KðqiÞ or their subfields will be called a weak con-

jugating isomorphism, if it maps each residue class to a weakly conjugate one.

Proposition 1. Every element of GðqiÞ in (3) is a weak conjugating iso-

morphism of KðqiÞ onto itself.

Proof. By definition, a weak conjugating isomorphism of KðqiÞ is an

automorphism of KðqiÞ=KðpÞ induced by an element of s�1
i Zsi. Put here

KðPsiÞ ¼ oL=P
si . Then, s�1

i Zsi is the Galois group of KðPsiÞ=KðpÞ, and KðqiÞ
is a subfield of KðPsiÞ=KðpÞ. Therefore, every element of GðqiÞ is induced by an

element of s�1
i Zsi, and is a weak conjugating isomorphism. (q.e.d.)

Proposition 2. If two elements x A KðqiÞ and y A KðqjÞ are weakly conju-

gate, then x belongs to KðqiÞd and y belongs to KðqjÞd , where d is the g.c.d. of

fi ¼ ðKðqiÞ : KðpÞÞ and fj ¼ ðKðqjÞ : KðpÞÞ.
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Proof. The fields generated by x and y over KðpÞ have a common degree

d 0 over KðpÞ. So, d 0jd, and the both fields must be contained in KðqiÞd and

KðqjÞd , respectively, because a finite field has a unique extension field with a

given degree. (q.e.d.)

Proposition 3. Notation being as in Prop. 2, there exists a weak conjugating

isomorphism from KðqiÞd onto KðqjÞd , and the number of di¤erent such isomor-

phism is d.

Proof. The element s�1
i sj of G maps KðPsiÞ ¼ oL=P

si onto KðPsj Þ ¼
oL=P

sj . The image by s�1
i sj of the subfield KðqiÞd of KðPiÞ must coincide with

KðqjÞd , because a finite field has a unique extension field with a given degree.

This proves the first assertion. The second assertion follows now from Prop. 1.

(q.e.d.)

Under the equivalence relation determined by the weak conjugation, the

union 6g

i¼1
KðqiÞ as well as the union 6g

i¼1
CðqiÞ is divided into equivalence

classes, which will be called weak conjugate classes.

Proposition 4. The weak conjugate classes of CðqiÞ are same as classes in
~CCðqiÞ.

Proof. This follows immediately from Prop. 1. (q.e.d.)

If I is a maximal subset of indices f1; 2; . . . ; gg in (2) such that fi ¼ fj for

every i; j A I , then we write fI instead of fi for i A I , and will denote by gI the

number of indices in I. We call I a component of indices. Clearly,
P

I gI ¼ g.

Proposition 5. Let I be a component of indices. Then, the number of

weak conjugate classes in the union 6
i A I CðqiÞ is given by cðIÞ=fI ¼

ð1=fI Þ
P

dj fI mð fI=dÞNpd , which is equal to the number of elements in ~CCðqiÞ; ði A IÞ.

Proof. This follows from Prop. 3, Prop. 4, and (4).

§ 4. Application of the Local Theory

To prove our main theorem, it is convenient to apply some properties of

local fields.
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Notation being as in 3 of § 2, we denote by KðiÞ the qi-completion of K, by

LðiÞ the Psi -completion of L, and by Fp the p-completion of F. Moreover, we

denote by oðiÞ, OðiÞ, and op the rings of integers of KðiÞ, LðiÞ, and Fp, respectively.

Since no confusion is possible, the maximal ideal of oðiÞ will be denoted by qi.

Similarly, Psi and p will stand for maximal ideals of OðiÞ and op, respectively.

We have isomorphisms

oðiÞ=qi G oK=qi ¼ KðqiÞ; op=pG oF=p ¼ KðpÞ

and

OðiÞ=P
si G oL=P

si ¼ KðPsiÞ;

where the meanings of KðqiÞ, KðpÞ, and KðPsiÞ are same as in § 3. Accord-

ingly, every terminology concerning a mod qi; ða A oKÞ, a mod p; ða A oF Þ, or

a mod Psi ; ða A oLÞ can be used for a mod qi; ða A oðiÞÞ, a mod p; ða A opÞ,
or a mod Psi ; ða A OðiÞÞ, without change. In particular, the notion of weak

conjugation introduced in § 3 makes sense also for residue classes ai mod qi;

ðai A oðiÞÞ and aj mod qj; ðaj A oð jÞÞ.
As is known in the theory of local fields, KðiÞ=Fp has a unique unramified

maximal intermediate field, which we will denote by KðiÞ;0. The extension

KðiÞ;0=Fp is cyclic, cyclotomic, and KðiÞ=KðiÞ;0 is fully ramified, so that

ðKðiÞ : KðiÞ;0Þ ¼ ei; ðKðiÞ;0 : FpÞ ¼ fi:

Denoting by oðiÞ;0 the ring of integers of KðiÞ;0, we have furthermore

oðiÞ=qi G oðiÞ;0=qi V oðiÞ;0 G oðiÞ;0=p:

To go forward, we quote here a basic theorem in the theory of local fields

without proof. We state it in the form of next proposition fitting to the present

situation.

Proposition 6. Notation being as above and as in 3 of § 2, let pi be a prime

element of qi in oðiÞ. Then, the qi-exponent of the di¤erent OðK=FÞ of K=F is equal

to the qi-exponent of

Y
s
ðpi � ps

i Þ; s A s�1
i Tsi VHns�1

i Tsi; ps
i 0 pi:

Proposition 7. Notation being as in Prop. 6 and in § 3, let an element ai;0 of

oðiÞ;0 be given for each i; ði ¼ 1; 2; . . . ; gÞ, such that

a) ai;0 mod qi belongs to CðqiÞ,
and that
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b) ai;0 mod qi and aj;0 mod qj; ði0 jÞ, are not weakly conjugate.

Put

ai ¼ ai;0 þ pi;

and let s be an element of G which does not belong to the union 6
i
H � s�1

i Tsi.

Then, a conguruence of the form

as
i 1 aj ðmod Psj Þð6Þ

can not hold for any i, j.

Proof. Fix one arbitrary i, and assume first s A s�1
i Zsi. Then,

pi � ps
i 1 0 ðmod PsiÞ. On the other hand, we see by the local theory

that s�1
i Zsi=s

�1
i Tsi is the Galois group of KðiÞ;0=Fp. This means that s induces

a non-trivial automorphism of KðqiÞ unless it belongs s�1
i Tsi. So,

as
i;0 � ai;0 1 0 ðmod PsiÞ can not hold by the assumption. Hence, (6) can not

hold.

Assume next s B s�1
i Zsi. Then, Psis ¼ Psjh with some sj and h A H. In this

case, ps
i � p

h
j 1 0 ðmod PsjhÞ, and s 0 ¼ sh�1 A s�1

i Zsj; ðsh�1 0 1Þ. Accordingly,

ps 0

i � pj 1 0 ðmod Psj Þ, and therefore (6) would imply as 0

i;0 � aj;0 1 0 ðmod Psj Þ.
But, this is impossible by the definition of the weak conjugation and by the

assumption of the proposition. (q.e.d.)

The converse statement of Prop. 7 is also valid. For the sake of convenience,

we state it separately.

Proposition 8. Notation being as in Prop. 7, assume either that

a 0) ai;0 mod qi does not belongs to CðqiÞ,
or

b 0) ai;0 mod qi and aj;0 mod qj ; ði0 jÞ, are weakly conjugate. Then, (6) holds

with some s A s�1
i Zsj, and, if a 0) is the cases, with i ¼ j and s B H � s�1

i Tsi.

Proof. The first part of the proposition concerning a 0) is, as the corre-

sponding part of Prop. 7, a consequence of the fact that s induces a non-trivial

autmorphism of KðqiÞ.
To prove the second, it is enough to recall that as

i;0 1 aj;0 ðmod qjÞ,
ðs A s�1

i ZsjÞ, is the definition of the weak conjugation. (q.e.d.)
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§ 5. Main Theorem

Using the terminology ‘‘component of indices’’ introduced in prior to Prop. 5,

our main theorem is stated as follows:

Theorem. Let F be an algebraic number field of a finite degree, and K an

extension over F of a finite degree n. Let p be a prime ideal of F, and let dðK=FÞ
be the discriminant of K=F . Denote on the other hand by dðK=F Þ the greatest

common divisor of discriminants of integers of K with respect to K=F . Then, p

divides dðK=FÞdðK=F Þ�1
if and only if cðIÞ < fI gI , or equivalentry

1

fI

X
dj fI

m
fI

d

� �
ðNpÞd < gI ;

is the case for at least one component I of indices, where m is the Möbius’ function.

Proof. Notation being as in § 4, we investigate an integer a in oK together

with a system a1; a2; . . . ; ag of local integers in oðiÞ;0 satisfying

a1 ai ðmod q
eiðNþ1Þ
i Þ; ði ¼ 1; 2; . . . ; gÞ;ð7Þ

where N is the p-exponent of dðK=FÞ.
Assume first the inequality cðIÞb fI gI holds for every components I of

indices. Then, by Prop. 5, we can choose ai;0 A oðiÞ;0 such that ai mod qi belongs

to CðqiÞ and such that ai;0 mod qi and aj;0 mod qj are not weakly conjugate as far

as i and j belong to the same I. If here i and j belong to di¤erent components of

indices, then ai;0 mod qi and aj;0 mod qj cannot be weakly conjugate because the

field generated by them have di¤erent degree over KðpÞ.
Let pi be, as in Prop. 7, a prime element of qi. Put

ai ¼ ai;0 þ pi;

and let a be as in (7). Then, Prop. 6 implies that the qi-exponent of

Y
s
ða� asÞ; s A HnH � s�1

i Zsi;

is equal to the qi-exponent of OðK=F Þ, and Prop. 7 implies thatQ
sða� asÞ; ðs A HnGÞ, is prime to p whenever s B 6

i
H � s�1

i Tsi. Therefore,

the qi-exponent of Oða;K=FÞ coincides with that of OðK=FÞ for every i. Hence,

the p-components of dða;K=F Þ and dðK=FÞ are same. From this follows that p

does not divide dðK=F Þ.
Assume conversely cðIÞ < fI gI for some I, and denote in general by ai;0
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an element of oðiÞ;0 and by pi a prime element of qi in oðiÞ. Since then

s A s�1
i Zsj ; ði0 jÞ, does not belong to any H � s�1

i Tsi, Prop. 8 implies that there

exists s A G with s B H � s�1
i Tsi at least one i such that (6) holds under any

choice of ai;0. This shows that the p-exponent of dða;K=FÞ exceeds N as far as a

is determined by (7) with ai ¼ ai;0 þ pi.

Thus, there remains only to observe the case where ai is not of this form.

This case occurs merely when ei > 1 and ai ¼ ai;0 þ ri with ri 1 0 ðmod q2
i Þ. But,

in this case, the qi-exponent of

Y
s
ðri � rs

i Þ; s A s�1
i Tsi VHns�1

i Tsi;

exceeds the qi-exponent of OðK=F Þ due to Prop. 6. Consequently, the

p-exponent of dða;K=FÞ exceeds N. Hence, p divides dðK=FÞ whenever

cðIÞ < fIgI .

(q.e.d.)

Remark 1. The statement of the theorem does not concern the ramification.

Remark 2. The arguments in the present paper are based upon the idea

announced in [3] in a very special case.
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