CAUCHY-RIEMANN ORBIFOLDS

By

Sorin Dragomir and Jun Masamune*

Abstract

For any $C R$ orbifold ${ }^{1} B$, of $C R$ dimension n, we build a vector bundle (in the sense of J. Girbau \& M. Nicolau, [13]) $T_{1,0}(B)$ over B, so that $T_{1,0}(B)_{p} \approx C^{n} / G_{x}$ at any singular point $p=\varphi(x) \in B$ (and the portion of $T_{1,0}(B)$ over the regular part of B is an ordinary $C R$ structure), hence study the tangential Cauchy-Riemann equations on orbifolds. As an application, we build a two-sided parametrix for the Kohn-Rossi laplacian \square_{Ω} (on the domain Ω of a local uniformizing system $\{\Omega, G, \varphi\}$ of B) inverting $\square \Omega$ over the G-invariant $(0, q)$-forms $(1 \leq q \leq n-1)$ up to (smoothing) operators of type 1 (in the sense ${ }^{2}$ of G. B. Folland \& E. M. Stein, [12]).

1. Introduction

An N-dimensional orbifold (or V-manifold, cf. I. Satake, [20], to whom the notion is due) is a Hausdorff space B looking locally like a quotient of (an open set in) the Euclidean space, by the action of some finite group of C^{∞} diffeomorphisms (cf. [1]-[3], [7], [19]-[22]). That is, each point $p \in B$ admits a neighborhood U which is uniformized by a domain $\Omega \subset \boldsymbol{R}^{N}$ and a continuous map $\varphi: \Omega \rightarrow U$, in the sense that there is a finite subgroup $G \subset \operatorname{Diff}^{\infty}(\Omega)$ so that φ is G-invariant and factors to a homeomorphism $\Omega / G \approx U$. Such (local) uniformizing systems $\{\Omega, G, \varphi\}$ (shortly l.u.s.'s) play the role of local coordinate charts in manifold theory, and as well as for ordinary manifolds, are required to agree smoothly on overlaps: if $p \in U^{\prime} \cap V$ and $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\},\{D, H, \psi\}$ uniformize U^{\prime}, V respectively, then there is a neighborhood $U \subset U^{\prime} \cap V$ of p uniformized by some $\{\Omega, G, \varphi\}$, and an injection $\lambda: \Omega \rightarrow \Omega^{\prime}$, i.e. a smooth map which is a C^{∞} diffeomorphism on some open subset of Ω^{\prime} and satisfies $\varphi^{\prime} \circ \lambda=\varphi$. This being the

[^0]case, various G-structures of current use in differential geometry, such as Riemannian metrics, complex structures, etc., may be prescribed on orbifolds, by merely assigning an ordinary G-structure to Ω, for each l.u.s. $\{\Omega, G, \varphi\}$, and requiring that injections preserve these (local) G-structures (cf. [5], [8], [16], [23]). For instance, if B is a $(2 n+k)$-dimensional orbifold, whose V-manifold structure is described by some fixed family of l.u.s.'s \mathscr{A}, then a $C R$ structure on B is a set
\[

$$
\begin{equation*}
\left\{T_{1,0}(\Omega):\{\Omega, G, \varphi\} \in \mathscr{A}\right\} \tag{1}
\end{equation*}
$$

\]

where $T_{1,0}(\Omega)$ is a $C R$ structure (of type (n, k)) on Ω and each injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ is a $C R$ map (i.e. $\left.\left(d_{x} \lambda\right) T_{1,0}(\Omega)_{x} \subseteq T_{1,0}\left(\Omega^{\prime}\right)_{\lambda(x)}, x \in \Omega\right)$. A $C R$ structure (1) on B is easily seen to be a vector bundle over B, in the sense of W. L. Baily, [3], p. 863, i.e. there is a group monomorphism

$$
h_{\Omega}: G \rightarrow \operatorname{Hom}\left(T_{1,0}(\Omega), T_{1,0}(\Omega)\right)
$$

for each l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{A}$, and a bundle map

$$
\lambda^{*}:\left.T_{1,0}\left(\Omega^{\prime}\right)\right|_{\lambda(\Omega)} \rightarrow T_{1,0}(\Omega)
$$

for each injection $\lambda: \Omega \rightarrow \Omega^{\prime}$, so that 1) $\left.h_{\Omega}(\sigma) T_{1,0}(\Omega)_{x} \subseteq T_{1,0}(\Omega)_{\sigma^{-1}(x)}, x \in \Omega, 2\right)$ $h_{\Omega}(\sigma) \circ \lambda^{*}=\lambda^{*} \circ h_{\Omega^{\prime}}(\eta(\sigma)), \quad \sigma \in G$, and 3) $(\mu \circ \lambda)^{*}=\lambda^{*} \circ \mu^{*}$, for any pair of injections $\lambda: \Omega \rightarrow \Omega^{\prime}$ and $\mu: \Omega^{\prime} \rightarrow \Omega^{\prime \prime}$, where $\eta: G \rightarrow G^{\prime}$ is a natural group monomorphism associated with λ (cf. our section 3). Indeed, $h_{\Omega}(\sigma)_{x}:=d_{x} \sigma^{-1}$, $\sigma \in G, x \in \Omega$, respectively $\lambda^{*}\left(v^{\prime}\right)=\left(d_{\lambda(x)} \mu\right) v^{\prime}, v^{\prime} \in T_{1,0}\left(\Omega^{\prime}\right)_{\lambda(x)}, x \in \Omega$, where $\mu:=$ $(\lambda: \Omega \rightarrow \lambda(\Omega))^{-1}$, satisfy the requirements (1) to (3) (each $\sigma \in G$ is in particular an injection, hence $G \subset A u t_{C R}(\Omega)$). One may proceed to define $C R$ functions as continuous functions $f: B \rightarrow \boldsymbol{C}$ for which each $f_{\Omega}:=f \circ \varphi: \Omega \rightarrow \boldsymbol{C}$ is smooth and

$$
\begin{equation*}
\bar{\partial}_{\Omega} f_{\Omega}=0 \tag{2}
\end{equation*}
$$

in Ω, where $\bar{\partial}_{\Omega}$ is the tangential Cauchy-Riemann operator on $\left(\Omega, T_{1,0}(\Omega)\right)$. The equations (2) may then be referred to as the tangential Cauchy-Riemann equations on (the $C R$ orbifold) B and it appears that a satisfactory scheme for recovering $C R$ geometry and analysis, on V-manifolds, has been devised.

The weakness of this approach consists in the lack of relationship between the G-structure (here $C R$ structure) so assigned to B and its singular locus. A point $p \in B$ is singular if it admits a neighborhood U, uniformized by some l.u.s. $\{\Omega, G, \varphi\}$ for which a point $x \in \Omega$ with nontrivial isotropy group (i.e. $G_{x}:=$ $\{\sigma \in G: \sigma(x)=x\} \neq\left\{1_{\Omega}\right\}$) and lying over p (i.e. $\varphi(x)=p$) may be found. If Σ is the set of all singular points of B (its singular locus) then $B_{\text {reg }}:=B \backslash \Sigma$ is an
ordinary $C R$ manifold. Although Σ has a quite simple local structure (locally, it is a finite union of real algebraic $C R$ submanifolds) there is no obvious relationship between $T_{1,0}(\Omega)$ and $S:=\left\{x \in \Omega: G_{x} \neq\left\{1_{\Omega}\right\}\right\}$, and generally speaking, expressions such as the behaviour of the $C R$ structure $T_{1,0}\left(B_{\text {reg }}\right)$ (a bundle over $B \backslash \Sigma$), or of a $C R$ function $f \in C R^{\infty}\left(B_{\text {reg }}\right)$, near Σ, lack a precise meaning. To ask a more concrete question, given a $C R$ orbifold B, can one construct a 'bundle' $T_{1,0}(B)$ over the whole of B so that $\left.T_{1,0}(B)\right|_{B_{\text {reg }}}=T_{1,0}\left(B_{\text {reg }}\right)$ and the fibres $T_{1,0}(B)_{p}$ reflect the nature of p (i.e. whether p is singular or regular)? In other words, can one write a set of equations on B reducing to the ordinary Cauchy-Riemann equations $\bar{\partial}_{B_{\text {reg }}} f=0$ on the regular part of B, and exhibiting at Σ a feature related to the nature of Σ ?

The scope of the present paper is to answer some fundamental questions of this sort, i.e. regarding (the Cauchy-Riemann equations on) $C R$ orbifolds. Precisely, for each $C R$ orbifold B, we build a bundle $T_{1,0}(B) \rightarrow B$ in the sense of J. Girbau \& M. Nicolau, [13], p. 257-259, so that

$$
\begin{equation*}
T_{1,0}(B) \approx C^{n} / G_{x}, \quad p=\varphi(x) \in B \tag{3}
\end{equation*}
$$

a bijection (hence when $p \in \Sigma, T_{1,0}(B)_{p}$ is not even a vector space) and $T_{1,0}(B)_{p}=T_{1,0}\left(B_{\text {reg }}\right)_{p}$ for any $p \in B \backslash \Sigma$. Moreover, by adapting (from real to complex geometry) an ideea of I. Satake, [22], p. 473, who observed that G_{x}-invariant tangent vectors at $x \in \Omega$ give rise, in our context, to a subset of $T_{1,0}(B)_{p}$ depending only on $p=\varphi(x)$ and possessing a \boldsymbol{C}-linear space structure, we are led to the equations

$$
\begin{equation*}
\sum_{\alpha=1}^{n} \bar{\zeta}^{\alpha} L_{\bar{\alpha} \cdot}(f)_{x}=0 \tag{4}
\end{equation*}
$$

$f \in C^{\infty}(\Omega), x \in \Omega, \zeta=\left(\zeta^{1}, \ldots, \zeta^{n}\right) \in \bigcap_{\sigma \in G_{x}} \operatorname{Ker}\left[g_{\sigma}(x)-I_{n}\right]$, where $\left\{L_{\alpha}\right\}$ is a frame of $T_{1,0}(\Omega)$, which may be thought of w.l.o.g. as being defined on the whole of Ω, and $g_{\sigma}(x) \in G L(n, \boldsymbol{C})$ is given by

$$
\left(d_{x} \sigma\right) L_{\alpha, x}=g_{\sigma}(x)_{\alpha}^{\beta} L_{\beta, \sigma(x)}, \quad x \in \Omega .
$$

Clearly (4) reduces to (2) in $\Omega \backslash S$; we show that for each singular point $x \in S$ there is a neighborhood D of x in Ω and an algebraic $C R$ submanifold $F_{x} \subset$ $S \cap D$ so that each smooth solution f of (4) is a $C R$ function on F_{x}.

Any (smooth) function $f: B \rightarrow C$ gives rise to a G-invariant function $f_{\Omega}:=f \circ \varphi$ on Ω. In general, a (geometric) object prescribed on (each) Ω must be preserved by injections, hence by each $\sigma \in G$, hence it is G-invariant. Therefore, another fundamental feature of any attempt to recover known facts
from $C R$ geometry (on $C R$ orbifolds) is, locally, to prove G-invariant analogues of the facts of interest. In view of [3] (which uses a G-average of a fundamental solution of an elliptic operator to prove a Kodaira-Hodge-de Rham decomposition theorem on V-manifolds) this part of the task is rather well understood. To illustrate this line of thought, given a domain Ω in $\boldsymbol{R}^{2 n+1}$ carrying a G-invariant strictly pseudoconvex $C R$ structure $T_{1,0}(\Omega)$ and a pseudohermitian structure θ so that G consists of pseudohermitian transformations of (Ω, θ), we build a two-sided parametrix inverting the Kohn-Rossi operator $\square \Omega$ on the G-invariant forms of degree $0<q<n-1$, up to operators of type 1 , cf. [12]; these are smoothing, in the sense that they are bounded operators $S_{k}^{p}(\Omega) \rightarrow S_{k+1}^{p}(\Omega)$ of Folland-Stein spaces. Our methods in section 6 resemble closely those in [3], p. 870-874, and [13], p. 71-74.

The paper is organized as follows. In section 2 we recall the material we need as to $C R$ manifolds and pseudohermitian geometry. In section 3 we discuss the case of complex orbifolds ($C R$ codimension $k=0$), the local structure of their singular locus, and V-holomorphic functions. Sections 4 and 5 are devoted to $C R$ orbifolds of $C R$ codimension 1 (certain local aspects are examined in section 4). In section 6 we prove our main result (inverting the Kohn-Rossi operator over the G-invariant forms).

The Authors are grateful to the Referee whose suggestions improved the original form of the manuscript.

2. $C R$ Geometry

In this section we discuss basic notions such as pseudohermitian structures, the Levi form (of a $C R$ manifold of hypersurface type), and pseudohermitian transformations. The main tool is the Tanaka-Webster connection (of a nondegenerate $C R$ manifold endowed with a contact form) and the corresponding parabolic exponential map (leading to a choice of pseudohermitian normal coordinates at each point of the given $C R$ manifold). The notion is due to D. Jerison \& J. M. Lee, [15]; Lemma 1 is however new.

Let $\left(M, T_{1,0}(M)\right)$ be a $C R$ manifold, of type $(n, 1)$, i.e. of $C R$ dimension n and $C R$ codimension 1 (cf. e.g. [4], p. 120). The maximally complex (or Levi) distribution of M

$$
H(M)=\operatorname{Re}\left\{T_{1,0}(M) \oplus T_{0,1}(M)\right\}
$$

carries the complex structure

$$
J(Z+\bar{Z})=i(Z-\bar{Z}), \quad Z \in T_{1,0}(M)
$$

where $i=\sqrt{-1}$. Here $T_{0,1}(M)=\overline{T_{1,0}(M)}$ and an overbar denotes complex conjugation. If M is oriented then the conormal bundle $H(M)^{\perp}:=\left\{\omega \in T^{*}(M)\right.$: $\operatorname{Ker}(\omega) \supset H(M)\} \quad($ a line bundle over $M)$ is trivial, and each global nowhere zero section $\theta \in \Gamma^{\infty}\left(H(M)^{\perp}\right)$ is a pseudohermitian structure on M. Given two pseudohermitian structures θ and $\hat{\theta}$ there is a unique C^{∞} function $u: M \rightarrow \boldsymbol{R} \backslash\{0\}$ so that $\hat{\theta}=u \theta$. The Levi form is

$$
L_{\theta}(Z, \bar{W})=-i(d \theta)(Z, \bar{W}), \quad Z, W \in T_{1,0}(M)
$$

A $C R$ manifold is nondegenerate (respectively strictly pseudoconvex) if L_{θ} is nondegenerate (respectively positive-definite) for some θ.

A $C^{\infty} \operatorname{map} f: M \rightarrow N$ of $C R$ manifolds is a $C R$ map if $\left(d_{x} f\right) T_{1,0}(M)_{x} \subseteq$ $T_{1,0}(N)_{f(x)}$, for any $x \in M$. A $C R$ isomorphism is a C^{∞} diffeomorphism and a $C R$ map, and $A u t_{C R}(M)$ is the group of all $C R$ isomorphisms of M in itself. A pseudohermitian transformation is a $C R$ isomorphism between two $C R$ manifolds M, N on which pseudohermitian structures θ, θ_{N} have been fixed, so that $f^{*} \theta_{N}=$ $a(f) \theta$, for some $a(f) \in \boldsymbol{R} \backslash\{0\}$. If $a(f) \equiv 1$ then f is isopseudohermitian.

Let M be a nondegenerate $C R$ manifold. Then any pseudohermitian structure θ is a contact form on M, i.e. $\theta \wedge(d \theta)^{n}$ is a volume form on M. Once a contact form θ has been fixed, there is a globally defined nowhere zero vector field T on M, transverse to $H(M)$, determined by $\theta(T)=1$ and $T\rfloor d \theta=$ 0 (the characteristic direction of (M, θ)). Let $\pi_{H}: T(M) \rightarrow H(M)$ be the projection associated with the direct sum decomposition $T(M)=H(M) \oplus \boldsymbol{R} T$, i.e. $\pi_{H}(X):=X-\theta(X) T$. The Webster metric is the semi-Riemannian (i.e. nondegenerate, of constant index) metric

$$
g_{\theta}(X, Y)=(d \theta)\left(\pi_{H} X, J \pi_{H} Y\right)+\theta(X) \theta(Y), \quad X, Y \in T(M)
$$

If (r, s) is the signature of the Levi form $(r+s=n)$ then g_{θ} has signature $(2 r+1,2 s)$.

By a result of N. Tanaka, [24], and S. Webster, [25], for any nondegenerate $C R$ manifold, on which a contact form θ has been fixed, there is a unique linear connection ∇ (the Tanaka-Webster connection of (M, θ)) so that 1) $H(M)$ is parallel with respect to ∇, 2) $\nabla J=0$ and $\nabla g_{\theta}=0$, 3) $T_{\nabla}(Z, W)=0$ and $T_{\nabla}(Z, \bar{W})=2 i L_{\theta}(Z, \bar{W}) T$, for any $Z, W \in T_{1,0}(M)$, and 4) $\tau \circ J+J \circ \tau=0$. Here T_{∇} is the torsion tensor field of ∇ and $\tau(X):=T_{\nabla}(T, X), X \in T(M)$ (the pseudohermitian torsion of ∇).

If $\Omega \subset C^{n+1}$ is a domain with smooth boundary, i.e. there is a \boldsymbol{R}-valued function $\rho \in C^{\infty}(U)$, for some open set $U \subseteq C^{n+1}$ with $U \supset \bar{\Omega}$, so that $\Omega=$ $\{z \in U: \rho(z)>0\}, \partial \Omega=\{z \in U: \rho(z)=0\}$, and $\nabla \rho(z) \neq 0$ for any $z \in \partial \Omega$, then
$\partial \Omega$ admits a natural $C R$ structure, recalled in some detail in section 4. The pullback θ of $\frac{i}{2}(\bar{\partial}-\partial) \rho$, via $j: \partial \Omega \subset \boldsymbol{C}^{n+1}$, is a pseudohermitian structure on $\partial \Omega$. The bundle-theoretic recast of (13)-(14) in section 4 consists in observing that

$$
T_{1,0}(M)=T_{1,0}\left(\boldsymbol{C}^{n+1}\right) \cap[T(M) \otimes \boldsymbol{C}], \quad M=\partial \Omega
$$

and any $C R$ manifold obtained this way is said to be embedded. Here $T_{1,0}\left(\boldsymbol{C}^{n+1}\right)$ is the holomorphic tangent bundle over C^{n+1}. A $C R$ manifold is (locally) embeddable if there is a $C R$ isomorphism of M (respectively of a neighborhood of each point of M) onto some embedded $C R$ manifold.

Let $\left(M, T_{1,0}(M)\right)$ be a nondegenerate $C R$ manifold and θ a contact form on M. A $(0, q)$-form on M is a complex q-form η so that $\left.T_{1,0}(M)\right\rfloor \eta=0$ and $T\rfloor \eta=0$. Let $\Lambda^{0, q}(M) \rightarrow M$ be the bundle of all $(0, q)$-forms on M. The tangential Cauchy-Riemann operator is the first order differential operator

$$
\bar{\partial}_{M}: \Gamma^{\infty}\left(\Lambda^{0, q}(M)\right) \rightarrow \Gamma^{\infty}\left(\Lambda^{0, q+1}(M)\right), \quad q \geq 0
$$

defined as follows. If η is a $(0, q)$-form then $\bar{\partial}_{M} \eta$ is the unique $(0, q+1)$-form on M coinciding with $d \eta$ on $T_{0,1}(M) \otimes \cdots \otimes T_{0,1}(M)(q+1$ terms $)$. Let $\bar{\partial}_{M}^{*}$ be the (formal) adjoint of $\bar{\partial}_{M}$ with respect to the L^{2} inner product

$$
(\varphi, \psi)=\int_{M} L_{\theta}^{*}(\varphi, \bar{\psi}) \theta \wedge(d \theta)^{n}
$$

for any $\varphi, \psi \in \Omega^{0, q}(M)$ (at least one of compact support). The Kohn-Rossi laplacian is

$$
\square_{M}=\bar{\partial}_{M} \bar{\partial}_{M}^{*}+\bar{\partial}_{M}^{*} \bar{\partial}_{M}
$$

If $f: M \rightarrow N$ is an isopseudohermitian transformation then

$$
\begin{equation*}
\square_{M}^{f} v=\square_{N} v, \quad v \in C^{\infty}(N) \tag{5}
\end{equation*}
$$

where $\square_{M}^{f} v:=\left(\square_{M} v^{f^{-1}}\right)^{f}$ and $u^{f}:=u \circ f^{-1}, u \in C^{\infty}(M)$.
Let M be a strictly pseudoconvex $C R$ manifold and θ a contact form with L_{θ} positive definite. A smooth curve $\gamma(t)$ in M satisfying the ODE

$$
\begin{equation*}
\left(\nabla_{d \gamma / d t} \frac{d \gamma}{d t}\right)_{\gamma(t)}=2 c T_{\gamma(t)} \tag{6}
\end{equation*}
$$

for some $c \in \boldsymbol{R}$ and any value of the parameter t is a parabolic geodesic on M. Let $x \in M$ and $W \in H(M)_{x}$. By standard theorems on ODEs, there is $\delta>0$ so that whenever $g_{\theta, x}(W, W)^{1 / 2}<\delta$ the unique solution $\gamma_{W, c}(t)$ to (6) of
initial data (x, W) may be uniquely continued to an interval containing $t=1$ and the map $\Psi_{x}: B(0, \delta) \subset T_{x}(M) \rightarrow M$ given by $\Psi_{x}\left(W+c T_{x}\right):=\gamma_{W, c}(1)$ (the parabolic exponential map) is a diffeomorphism of a sufficiently small neighborhood of $0 \in T_{x}(M)$ onto a neighborhood of $x \in M$. The terminology is justified by the fact that Ψ_{x} maps any parabola $t \mapsto t W+t^{2} c T_{x}$ in the tangent space onto $\gamma_{W, c}$.

Let now $\left\{T_{\alpha}\right\}$ be a local orthonormal frame of $T_{1,0}(M)$, defined on a neighborhood U of x in M. It determines an isomorphism $\lambda_{x}: T_{x}(M) \rightarrow \boldsymbol{H}_{n}$ given by

$$
\lambda_{x}(v)=\left(\theta_{x}^{\alpha}(v) e_{\alpha}, \theta_{x}(v)\right)
$$

for any $v \in T_{x}(M)$. Here $\boldsymbol{H}_{n}=\boldsymbol{C}^{n} \times \boldsymbol{R}$ is the Heisenberg group (cf. e.g. [12], p. 434-435) and $\left\{\theta^{\alpha}\right\}$ is the frame of $T_{1,0}(M)^{*}$ determined by

$$
\theta^{\alpha}\left(T_{\beta}\right)=\delta_{\beta}^{\alpha}, \quad \theta^{\alpha}\left(T_{\bar{\beta}}\right)=\theta^{\alpha}(T)=0 .
$$

The resulting local coordinates $(z, t):=\lambda_{x} \circ \Psi_{x}^{-1}$, defined in some neighborhood of x, are the pseudohermitian normal coordinates at x, determined by $\left\{T_{\alpha}\right\}$. By Prop. 2.5 in [15], p. 313, these coordinates are also normal coordinates at x in the sense of G. B. Folland \& E. M. Stein (cf. [12], p. 471-472). We shall need the following

Lemma 1. Let M be a nondegenerate $C R$ manifold and θ a contact form on M. Let $\sigma: M \rightarrow M$ be a CR automorphism so that $\sigma^{*} \theta=a(\sigma) \theta$ for some $a(\sigma) \in$ $\boldsymbol{R} \backslash\{0\}$. Let $\gamma_{W, c}(s)$ be the solution to $\nabla_{d \gamma / d t}(d \gamma / d t)=2 c T \circ \gamma$ of initial data (η, W), $\eta \in M, W \in H(M)_{\eta}$. Then $\sigma \circ \gamma_{W, c}=\gamma_{W_{\sigma,(\sigma) c}}$, where $W_{\sigma}:=\left(d_{\eta} \sigma\right) W \in H(M)_{\sigma(\eta)}$, i.e. $\sigma \circ \gamma_{W, c}$ is the solution to $\nabla_{d \gamma / d t}(d \gamma / d t)=2 c a(\sigma) T \circ \gamma$ of initial data $\left(\sigma(\eta), W_{\sigma}\right)$.

Proof. For each $y \in M$ and $X \in \mathscr{X}(M)$ consider

$$
\left(\sigma_{*} X\right)_{y}:=\left(d_{\sigma^{-1}(y)} \sigma\right) X_{\sigma^{-1}(y)}
$$

(hence $\sigma_{*}: \mathscr{X}(M) \approx \mathscr{X}(M)$, an isomorphism) and set

$$
\nabla_{X}^{\sigma} Y:=\left(\sigma_{*}\right)^{-1} \nabla_{\sigma_{*} X} \sigma_{*} Y
$$

Then $\nabla^{\sigma} \theta=0$. Using $\sigma^{*} g_{\theta}=a(\sigma) g_{\theta}+\left[a(\sigma)^{2}-a(\sigma)\right] \theta \otimes \theta$ one may show that $\nabla^{\sigma} g_{\theta}=0$. Also, it is easy to check that $\nabla^{\sigma} J=0$. Next $\sigma_{*} T=a(\sigma) T$ so that $T_{\nabla^{\sigma}}(Z, W)=0, \quad T_{\nabla^{\sigma}}(Z, \bar{W})=2 i L_{\theta}(Z, \bar{W}) T \quad$ and $\quad T_{\nabla^{\sigma}}(T, J X)+J T_{\nabla^{\sigma}}(T, X)=0$, for any $Z, W \in T_{1,0}(M)$ and $X \in T(M)$. We may conclude that $\nabla^{\sigma}=\nabla$, the

Tanaka-Webster connection of (M, θ). Set $\gamma:=\gamma_{W, c}$ and $\gamma_{\sigma}:=\sigma \circ \gamma$. Then $\gamma_{\sigma}(0)=\sigma(\eta)$ and $\left(d \gamma_{\sigma} / d s\right)(0)=W_{\sigma}$. Finally

$$
\nabla_{d \gamma_{\sigma} / d s} \frac{d \gamma_{\sigma}}{d s}=\sigma_{*} \nabla_{d \gamma / d s}^{\sigma} \frac{d \gamma}{d s}=\sigma_{*} \nabla_{d \gamma / d s} \frac{d \gamma}{d s}=\sigma_{*}(2 c T \circ \gamma)=2 c a(\sigma) T \circ \gamma_{\sigma},
$$

hence $\gamma_{\sigma}=\gamma_{W_{\sigma}, a(\sigma) c}$, that is a pseudohermitian transformation σ maps the parabolic geodesic $\gamma_{W, c}$ into the parabolic geodesic $\gamma_{W_{\sigma}, a(\sigma) c}$.
Q.e.d..

We have specified the behaviour (5) of the Kohn-Rossi laplacian on functions, with respect to isopseudohermitian transformations. In general, if φ is a $(0, q)$-form and $\sigma: M \rightarrow M$ a pseudohermitian transformation of a nondegenerate $C R$ manifold then

$$
\begin{equation*}
\square_{M}\left(\sigma^{*} \varphi\right)=a(\sigma) \sigma^{*} \square_{M} \varphi \tag{7}
\end{equation*}
$$

Indeed, on one hand $\sigma^{*} \bar{\partial}_{M} \varphi=\bar{\partial}_{M} \sigma^{*} \varphi$, as it easily follows from the axioms defining $\bar{\partial}_{M}$. On the other hand,

$$
\bar{\partial}_{M}^{*} \psi=(-1)^{q+1}(q+1) h^{\lambda \bar{\mu}}\left(\nabla_{\lambda} \psi_{\bar{\alpha}_{1} \cdots \bar{\alpha}_{q} \bar{\mu}} \theta^{\bar{\alpha}_{1}} \wedge \cdots \wedge \theta^{\bar{\alpha}_{q}}\right.
$$

for any $(0, q+1)$-form ψ on M, where covariant derivatives are meant with respect to the Tanaka-Webster connection of (M, θ). For instance, if φ is a $(0,1)$ form

$$
\bar{\partial}_{M}^{*} \varphi=-h^{\lambda \bar{\mu}} \nabla_{\lambda} \varphi_{\bar{\mu}}
$$

hence

$$
\bar{\partial}_{M}^{*}\left(\sigma^{*} \varphi\right)=-h^{\lambda \bar{\mu}}\left\{T_{\lambda}\left(\left(g_{\sigma}\right)_{\bar{\mu}}^{\bar{v}}\right)\left(\varphi_{\bar{v}} \circ \sigma\right)+\left(g_{\sigma}\right)_{\bar{\mu}}^{\bar{v}}\left(g_{\sigma}\right)_{\lambda}^{\rho}\left[T_{\rho}\left(\varphi_{\bar{v}}\right) \circ \sigma\right]-\Gamma_{\lambda \bar{\mu}}^{\bar{v}}\left(g_{\sigma}\right)_{\bar{v}}^{\bar{p}}\left(\varphi_{\bar{\rho}} \circ \sigma\right)\right\}
$$

and the identity

$$
\Gamma_{\alpha \bar{\beta}}^{\bar{\mu}}\left(g_{\sigma}\right)_{\bar{\mu}}^{\bar{v}}=T_{\alpha}\left(\left(g_{\sigma}\right)_{\bar{\beta}}^{\overline{\bar{\beta}}}\right)+\left(g_{\sigma}\right)_{\alpha}^{\mu}\left(g_{\sigma}\right)_{\bar{\beta}}^{\bar{\rho}}\left(\Gamma_{\mu \bar{\rho}}^{\bar{p}} \circ \sigma\right)
$$

(a consequence of $\nabla=\nabla^{\sigma}$) lead to

$$
\bar{\partial}_{M}^{*}\left(\sigma^{*} \varphi\right)=a(\sigma)\left(\bar{\partial}_{M}^{*} \varphi\right) \circ \sigma
$$

Q.e.d.. Here $\Gamma_{B C}^{A}$ denote the Christoffel symbols (of ∇ with respect to $\left\{T_{\alpha}\right\}$) and $\sigma_{*} T_{\alpha}=\left(g_{\sigma}\right)_{\alpha}^{\beta} T_{\beta}$.

3. Complex Orbifolds

In this section we review the notion of complex orbifold (complex analytic V-manifold) and, given a complex orbifold X, we build an analogue of the
holomorphic tangent bundle (of a complex manifold) which turns out to be a complex vector bundle $T_{1,0}(X)$ in the sense of J. Girbau \& M. Nicolau, [13]. In particular (cf. Step 2 below) each fibre $\pi^{-1}(p)$ of the projection $\pi: T_{1,0}(X) \rightarrow X$ is shown to contain a natural vector space $T_{1,0}(X)_{p}$ [coinciding with $\pi^{-1}(p)$ when p is a regular point]. We show that the smooth functions $f: X \rightarrow \boldsymbol{C}$ satisfying $Z(\bar{f})=0$ for any section Z in $T_{1,0}(X)$ are precisely those whose local expressions $f \circ \varphi$ are holomorphic in Ω, for each l.u.s. $\{\Omega, G, \varphi\}$ of X (cf. 3) in Theorem 1). The weaker requirement that $Z(\bar{f})=0$ only for those sections Z with $Z_{p} \in$ $T_{1,0}(X)_{p}, p \in X$, leads to the notion of a V-holomorphic function. Locally, i.e. on a fixed l.u.s. $\{\Omega, G, \varphi\}$, one deals with G-invariant C^{1} functions satisfying (11). V-holomorphic functions are holomorphic except along the singular locus and exhibit a particular behaviour at singular points $x \in S$ (such that the isotropy group G_{x} acts on C^{n} with fixed points): each V-holomorphic function in Ω is holomorphic on a certain complex submanifold F_{x} passing through x (and there are complex local coordinates at x with respect to which F_{x} is an affine set in C^{n}), cf. b) in Theorem 2.

Let X be a Hausdorff space and $U \subseteq X$ an open subset. A local uniformizing system (l.u.s.) of dimension n of X over U is a synthetic object $\{\Omega, G, \varphi\}$ consisting of a domain $\Omega \subseteq C^{n}$, a finite subgroup $G \subset \operatorname{Aut}(\Omega)$ of biholomorphisms of Ω in itself, and a continuous map $\varphi: \Omega \rightarrow U$ so that the induced map $\varphi_{G}: \Omega / G \rightarrow U$ is a homeomorphism. An injection of $\{\Omega, G, \varphi\}$ into $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$ is a C^{∞} map $\lambda: \Omega \rightarrow \Omega^{\prime}$ so that λ is a biholomorphism of Ω onto some open subset of Ω^{\prime} and $\varphi^{\prime} \circ \lambda=\varphi$. The set $U=\varphi(\Omega)$ is the support of the l.u.s. $\{\Omega, G, \varphi\}$.

Given a family \mathscr{F} of l.u.s.'s of dimension n of X, let \mathscr{H} be the family of all supports of all l.u.s.'s in \mathscr{F}. Then \mathscr{F} is a defining family for X if 1) for any $\{\Omega, G, \varphi\},\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\} \in \mathscr{F}$ of supports U, U^{\prime}, if $U \subseteq U^{\prime}$ then there is an injection λ of $\{\Omega, G, \varphi\}$ into $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$, and 2) \mathscr{H} is a basis of open sets for the topology of X. Two defining families $\mathscr{F}, \mathscr{F}^{\prime}$ are directly equivalent if there is a third defining family $\mathscr{F}^{\prime \prime}$ so that $\mathscr{F} \cup \mathscr{F}^{\prime} \subseteq \mathscr{F}^{\prime \prime}$. Also, $\mathscr{F}, \mathscr{F}^{\prime}$ are equivalent if there is a set $\left\{\mathscr{F}_{1}, \ldots, \mathscr{F}_{r}\right\}$ of defining families so that $\mathscr{F}_{1}=\mathscr{F}^{\prime}, \mathscr{F}_{r}=\mathscr{F}^{\prime \prime}$, and $\mathscr{F}_{i}, \mathscr{F}_{i+1}$ are directly equivalent for each $1 \leq i \leq r-1$. A n-dimensional complex orbifold is a connected paracompact Hausdorff space X together with an equivalence class of defining families; as in ordinary complex manifold theory, it is customary to choose a defining family \mathscr{F} in the class and refer to (X, \mathscr{F}) as a complex orbifold. Cf. I. Satake, [21], p. 261-262 (where complex orbifolds are referred to as complex analytic V-manifolds). Clearly, any complex orbifold, of complex dimension n as above, is a real $2 n$-dimensional V-manifold (in the sense of [20], p. 359-360, or [3], p. 862-863).

Let (X, \mathscr{F}) be a V-manifold. By a result in [13], given l.u.s.'s $\{\Omega, G, \varphi\}$ and $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$, of supports U, U^{\prime} respectively, and given injections $\lambda, \mu: \Omega \rightarrow \Omega^{\prime}$, if $U \subseteq U^{\prime}$ then there is a unique element $\sigma_{1}^{\prime} \in G^{\prime}$ so that $\mu=\sigma_{1}^{\prime} \circ \lambda$. As a corollary, with any injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ one may associate a group monomorphism $\eta: G \rightarrow G^{\prime}$ so that $\lambda \circ \sigma=\eta(\sigma) \circ \lambda$, for any $\sigma \in G$. It is noteworthy that the existence of the monomorphism η is postulated in both [3] and the more recent [6] (and it is a merit of J. Girbau \& M. Nicolau, [13], to have provided a remedy to this inadequacy). A point $p \in X$ is singular if there is $U \in \mathscr{H}$ with $p \in U$ and there is a l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$ over U, and an element $x \in \Omega$ so that $\varphi(x)=p$ and $G_{x} \neq\{e\}$. Here $G_{x}:=\{\sigma \in G: \sigma(x)=x\}$ is the isotropy group at x and $e=1_{\Omega}$. By Prop. 1.5 in [13], p. 257, if $p \in U^{\prime}$, where $U^{\prime} \in \mathscr{H}$, and $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$ is a l.u.s. of support U^{\prime} then $G_{x} \approx G_{y}^{\prime}$ (a group isomorphism) for any $y \in \Omega^{\prime}$ with $\varphi^{\prime}(y)=p$, hence the notion of singular point of X is unambigously defined. Set $S=\left\{x \in \Omega: G_{x} \neq\{e\}\right\}$ (a closed subset of Ω). Then $\Sigma:=\bigcup_{\{\Omega, G, \varphi\} \in \mathscr{F}} \varphi(S)$ is the singular locus of X and $X_{\text {reg }}:=X \backslash \Sigma$ its regular part. $X_{\text {reg }}$ is an ordinary C^{∞} manifold.

Let E be a connected paracompact Hausdorff space and $\pi: E \rightarrow X$ a continuous surjective map. Then (E, π, X) is a vector bundle, of standard fibre K^{m}, $K \in\{\boldsymbol{R}, \boldsymbol{C}\}$, if the following requirements are fulfilled

1) for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$ there is a continuous map $\varphi_{*}: \Omega \times K^{m} \rightarrow E$ such that $\pi \circ \varphi_{*}=\varphi \circ \pi_{\Omega}$, where $\pi_{\Omega}(x, \zeta)=x$ for any $(x, \zeta) \in \Omega \times K^{m}$. Moreover
2) for any injection λ of $\{\Omega, G, \varphi\}$ into $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$ there is a C^{∞} map g_{λ} : $\Omega \rightarrow G L(m, K)$ such that $g_{e}(x)=I_{m}$, the unit $m \times m$ matrix, for any $x \in \Omega$ and
i) $\left\{\Omega \times K^{m}, G_{*}, \varphi_{*}\right\}$ is a l.u.s. of dimension $d(K) m+N$ of E over $\pi^{-1}(U)$ (an open subset of E), where $G_{*}=\left\{\sigma_{*}: \sigma \in G\right\}$, with $\sigma_{*}(x, \zeta):=\left(\sigma(x), g_{\sigma}(x) \zeta\right)$ for any $(x, \zeta) \in \Omega \times K^{m}$, and $d(K)=\operatorname{dim}_{R} K, N=\operatorname{dim}(X)$,
ii) the family of l.u.s.'s $\left\{\Omega \times K^{m}, G_{*}, \varphi_{*}\right\}$, obtained as $\{\Omega, G, \varphi\}$ ranges over \mathscr{F}, is a defining family for E, thus organizing E as a $(d(K) m+N)$-dimensional V-manifold of class C^{∞},
iii) the map $\lambda_{*}: \Omega \times K^{m} \rightarrow \Omega^{\prime} \times K^{m}$ given by $\lambda_{*}(x, \zeta)=\left(\lambda(x), g_{\lambda}(x) \zeta\right)$, is an injection of $\left\{\Omega \times K^{m}, G_{*}, \varphi_{*}\right\}$ into $\left\{\Omega^{\prime} \times K^{m}, G_{*}^{\prime}, \varphi_{*}^{\prime}\right\}$. Finally
3) for any pair of injections $\Omega \xrightarrow{\lambda} \Omega^{\prime} \xrightarrow{\mu} \Omega^{\prime \prime}$ one requests that

$$
g_{\mu}(\lambda(x)) g_{\lambda}(x)=g_{\mu \circ \lambda}(x)
$$

for any $x \in \Omega$. Cf. [13], p. 258. We underline the slight discrepancy in terminology: for a vector bundle of standard fibre K^{m} the fibre $\pi^{-1}(p)$ over a point $p \in X$ is (isomorphic to) K^{m} if and only if $p \in X_{\text {reg }}$ (and if $p \in \Sigma$ then $\pi^{-1}(p)$ has no natural vector space structure), cf. [13], p. 259.

A function $f: X \rightarrow \boldsymbol{C}$ on a V-manifold (X, \mathscr{F}) is smooth (of class C^{∞}) if $f_{\Omega}:=f \circ \varphi$ is C^{∞} for any $\{\Omega, G, \varphi\} \in \mathscr{F}$, and $\mathscr{E}(X)$ is the ring of all complex valued smooth functions on X. We shall prove the following

Theorem 1. For any complex orbifold (X, \mathscr{F}), of complex dimension n, there is a vector bundle $\left(T_{1,0}(X), \pi, X\right)$ so that

1) for any $p \in X$, if $p \in U \in \mathscr{H}$ and $\{\Omega, G, \varphi\} \in \mathscr{F}$ is a l.u.s. over U then $\pi^{-1}(x) \approx C^{n} / G_{x}$ (a bijection) for any $x \in \Omega$ with $\varphi(x)=p$.
2) $X_{\text {reg }}$ is a complex manifold and $\left.T_{1,0}(X)\right|_{X_{\text {reg }}}$ its holomorphic tangent bundle. The singular locus of $T_{1,0}(X)$ (as a 4n-dimensional V-manifold) is contained in $\pi^{-1}(\Sigma)$.
3) For any section Z in $T_{1,0}(X)$ (i.e. any continuous map $Z: X \rightarrow T_{1,0}(X)$ so that $Z(p) \in \pi^{-1}(p)$ for any $\left.p \in X\right)$ and any $f \in \mathscr{E}(X)$ there is a (naturally defined) function $Z(f): X \rightarrow \boldsymbol{C}$; if $Z(\bar{f})=0$ for all sections Z then f_{Ω} is holomorphic in Ω for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$, and conversely.

We organize the proof in several steps, as follows.
Step 1. The construction of $T_{1,0}(X)$.
Define $g_{\lambda}: \Omega \rightarrow G L(n, C)$ by setting

$$
g_{\lambda}(x) \zeta=\zeta^{k} \frac{\partial\left(z^{j} \circ \lambda\right)}{\partial z^{k}}(x) e_{j},
$$

where $\left(z^{j}\right)$ are the natural complex coordinates on \boldsymbol{C}^{n}, and $\left\{e_{j}\right\}$ its canonical linear basis. Then $G_{*}=\left\{\sigma_{*}: \sigma \in G\right\}$ acts on $\Omega \times \boldsymbol{C}^{n}$ as a (finite) group of biholomorphisms. Set

$$
\hat{T}_{1,0}(X):=\bigcup_{\{\Omega, G, \varphi\} \in \mathscr{F}}\left(\Omega \times C^{n}\right) / G_{*}
$$

(disjoint union). Then $\hat{T}_{1,0}(X)$ is a Hausdorff space, in a natural manner. We define an equivalence relation \sim on $\hat{T}_{1,0}(X)$ as follows. Let $\hat{x}, \hat{y} \in \hat{T}_{1,0}(X)$. If \hat{x} is the G_{*}-orbit $\operatorname{orb}_{G_{*}}(x, \zeta)$ of some $(x, \zeta) \in \Omega \times C^{n}$, for some l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$, then we say that $\hat{x} \sim \hat{y}$ if there is an injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ to that

$$
\hat{y}=\operatorname{orb}_{G_{z}^{\prime}}\left(\lambda(x), g_{\lambda}(x) \zeta\right) .
$$

If $\left(\sigma(x), g_{\sigma}(x) \zeta\right) \in \hat{x}$ is another representative of \hat{x} then

$$
\begin{aligned}
\operatorname{orb}_{G_{*}^{\prime}}\left(\lambda(\sigma(x)), g_{\lambda}(\sigma(x)) g_{\sigma}(x) \zeta\right) & =\operatorname{orb}_{G_{*}^{\prime}}\left(\eta(\sigma) \lambda(x), g_{\lambda \circ \sigma}(x) \zeta\right) \\
& =\operatorname{orb}_{G_{*}^{\prime}}\left[\eta(\sigma)_{*}\left(\lambda(x), g_{\lambda}(x) \zeta\right)\right]=\operatorname{orb}_{G_{*}^{\prime}}\left(\lambda(x), g_{\lambda}(x) \zeta\right)
\end{aligned}
$$

(where $\eta: G \rightarrow G^{\prime}$ is the group monomorphism associated with λ) hence $\hat{x} \sim \hat{y}$ is well defined. Clearly \sim is refexive and transitive. The only issue which needs a bit of care is the symmetry property. Note that, for any injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ the synthetic object $\{\lambda(\Omega), \eta(G), \psi\}$, where $\psi=\left.\varphi^{\prime}\right|_{\lambda(\Omega)}$, is a l.u.s. of support $U=\varphi(\boldsymbol{\Omega})$. Indeed $\eta(G)$ acts on $\lambda(\boldsymbol{\Omega})$ as a group of complex analytic transformations and ψ is $\eta(G)$-invariant. Moreover λ is equivariant hence it induces a homeomorphism $\lambda_{G}: \Omega / G \approx \lambda(\Omega) / \eta(G)$. The map $\psi_{G}: \lambda(\Omega) / \eta(G) \rightarrow U^{\prime}$ (induced by ψ) correstricts to U and $\psi_{G} \circ \lambda_{G}=\varphi_{G}$ hence $\psi_{G}: \lambda(\Omega) / \eta(G) \approx U$ (a homeomorphism). Then $\hat{x} \sim \hat{y}$ yields $\hat{y} \sim \hat{x}$, as we may think of $\left(\lambda(x), g_{\lambda}(x) \zeta\right)$ as a representative of \hat{y} with respect to the l.u.s. $\{\lambda(\Omega), \eta(G), \psi\}$ and rewrite \hat{x} as

$$
\hat{x}=\operatorname{orb}_{G_{*}}\left(\mu(\lambda(x)), g_{\mu}(\lambda(x)) g_{\lambda}(x) \zeta\right)
$$

where μ is the injection $(\lambda: \Omega \rightarrow \lambda(\Omega))^{-1}$.
Next $T_{1,0}(X):=\hat{T}_{1,0}(X) / \sim$ carries the quotient topology and

$$
\pi: T_{1,0}(X) \rightarrow X, \quad \pi\left(\left[\operatorname{orb}_{G_{*}}(x, \zeta)\right]\right):=\varphi(x)
$$

is continuous (square brackets indicate classes mod \sim, i.e. $T_{1,0}(X)=$ $\left.\left\{[\hat{x}]: \hat{x} \in \hat{T}_{1,0}(X)\right\}\right)$. The definition doesn't depend upon the choice of representatives; indeed, if $\hat{x}=\operatorname{orb}_{G_{*}}(x, \zeta)$ and $\hat{y} \in[\hat{x}]$ then $\hat{y}=\operatorname{orb}_{G_{*}^{\prime}}\left(\lambda(x), g_{\lambda}(x) \zeta\right)$ for some injection $\lambda: \Omega \rightarrow \Omega^{\prime}$, and $\varphi^{\prime}(\lambda(x))=\varphi(x)$.

We wish to show that $\left(T_{1,0}(X), \pi, X\right)$ is a vector bundle of standard fibre \boldsymbol{C}^{n}. To this end, let $\varphi_{*}: \Omega \times \boldsymbol{C}^{n} \rightarrow T_{1,0}(X)$ be the (continuous) map given by $\varphi_{*}(x, \zeta)=\left[\operatorname{orb}_{G_{*}}(x, \zeta)\right]$. Then $\pi \circ \varphi_{*}=\varphi \circ \pi_{\Omega}$. Also φ_{*} is G_{*}-invariant and the induced map $\left(\varphi_{*}\right)_{G_{*}}:\left(\Omega \times C^{n}\right) / G_{*} \rightarrow T_{1,0}(X)$ is injective. Finally, it is straightforward that $\lambda_{*}(x, \zeta)=\left(\lambda(x), g_{\lambda}(x) \zeta\right)$ is an injection of $\left\{\boldsymbol{\Omega} \times \boldsymbol{C}^{n}, G_{*}, \varphi_{*}\right\}$ into $\left\{\Omega^{\prime} \times \boldsymbol{C}^{n}, G_{*}^{\prime}, \varphi_{*}^{\prime}\right\}$.

Let $p \in X$ be an arbitrary point (eventually singular) and $U \in \mathscr{H}$ so that $p \in U$. Let $\{\Omega, G, \varphi\} \in \mathscr{F}$ be a l.u.s. of support U and $x \in \Omega$ so that $\varphi(x)=p$. Let $\left\{\Omega_{*}, G_{*}, \varphi_{*}\right\}$ be a l.u.s. of $T_{1,0}(X)$ corresponding to $\{\Omega, G, \varphi\}$ as above, where $\Omega_{*}=\Omega \times \boldsymbol{C}^{n}$. Then $\pi\left(\varphi_{*}(x, \zeta)\right)=\varphi(x)=p$ hence $\varphi_{*}(x, \zeta) \in \pi^{-1}(p)$ for any $\zeta \in \boldsymbol{C}^{n}$. There is a natural action of G_{x} on C^{n} given by $(\sigma, \zeta) \mapsto g_{\sigma}(x) \zeta$. We may consider the map

$$
\begin{equation*}
\boldsymbol{C}^{n} / G_{x} \rightarrow \pi^{-1}(p), \quad[\zeta] \mapsto \varphi_{*}(x, \zeta) \tag{8}
\end{equation*}
$$

where [ζ] is the G_{x}-orbit of ζ. If $[\zeta]=[\xi]$ then $\xi=g_{\sigma}(x) \zeta$ for some $\sigma \in G$ and

$$
\varphi_{*}(x, \xi)=\varphi_{*}\left(\sigma(x), g_{\sigma}(x) \zeta\right)=\varphi_{*}\left(\sigma_{*}(x, \zeta)\right)=\varphi_{*}(x, \zeta)
$$

i.e. (8) is well defined. To see that (8) is injective, let $\varphi_{*}(x, \xi)=\varphi_{*}(x, \zeta)$. As $\left\{\Omega_{*}, G_{*}, \varphi_{*}\right\}$ is a l.u.s., there is $\sigma \in G$ so that $(x, \zeta)=\sigma_{*}(x, \xi)$ hence $\sigma \in G_{x}$ and $g_{\sigma}(x) \xi=\zeta$, i.e. ξ, ζ are G_{x}-equivalent. To see that (8) is surjective, let $f \in \pi^{-1}(p)$. As φ_{*} induces a bijection $\Omega_{*} / G_{*} \approx \pi^{-1}(U)$ there is $\tilde{f}=(y, \xi) \in \Omega_{*}$ so that $\varphi_{*}(\tilde{f})=f$. Then

$$
\varphi(x)=p=\pi(f)=\pi\left(\varphi_{*}(\tilde{f})\right)=\varphi\left(\pi_{\Omega}(\tilde{f})\right)=\varphi(y)
$$

hence there is $\sigma \in G$ so that $y=\sigma(x)$. At this point, set $\tilde{f}_{*}:=\left(\sigma^{-1}\right)_{*} \tilde{f} \in \Omega_{*}$. Then $\varphi_{*}\left(\tilde{f}_{*}\right)=f$ and \tilde{f}_{*} is an element of the form (x, ζ) with $\zeta=g_{\sigma^{-1}}(\sigma(x)) \xi \in[\xi]$, so we are done.

STEP 2. The image $T_{1,0}(X)_{p}$ of $T_{1,0}(\Omega)_{G_{x}}:=\left\{v \in T_{1,0}(\Omega)_{x}:\left(d_{x} \sigma\right) v=v\right.$, $\left.\forall \sigma \in G_{x}\right\}$ via the map $T_{1,0}(\Omega) \approx \Omega \times C^{n} \xrightarrow{\varphi_{*}} T_{1,0}(X)$ depends only on p (i.e. doesn't depend upon the choice of $\{\Omega, G, \varphi\} \in \mathscr{F}$ and $x \in \Omega$ with $\varphi(x)=p)$ and $T_{1,0}(X)_{p}$ has a natural \boldsymbol{C}-vector space structure so that

$$
\begin{equation*}
\operatorname{dim}_{C} T_{1,0}(X)_{p}=\operatorname{dim}_{C} \bigcap_{\sigma \in G_{x}} \operatorname{Ker}\left[g_{\sigma}(x)-I_{n}\right] \tag{9}
\end{equation*}
$$

Let $p \in U^{\prime} \in \mathscr{H}$ and $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\} \in \mathscr{F}$ over U^{\prime}, and consider $x^{\prime} \in \Omega^{\prime}$ so that $\varphi^{\prime}\left(x^{\prime}\right)=p$. As \mathscr{H} is a basis of open sets for the topology of X, let $V \subseteq U \cap U^{\prime}$ with $p \in V \in \mathscr{H}$ and let $\{D, H, \psi\} \in \mathscr{F}$ be a l.u.s. over V. Then there exist injections $\lambda: D \rightarrow \boldsymbol{\Omega}$ and $\lambda^{\prime}: D \rightarrow \boldsymbol{\Omega}^{\prime}$. Let $y \in D$ so that $\psi(y)=p$. We wish to show that $\left\{\varphi_{*}(x, \zeta): \zeta \in\left(\boldsymbol{C}^{n}\right)_{G_{x}}\right\}$ depends only on p, where

$$
\left(\boldsymbol{C}^{n}\right)_{G_{x}}:=\left\{\zeta \in \boldsymbol{C}^{n}: g_{\sigma}(x) \zeta=\zeta, \quad \forall \sigma \in G_{x}\right\}
$$

As $\varphi(\lambda(y))=\varphi(x)$, there is $\sigma \in G$ with $\lambda(y)=\sigma(x)$ hence

$$
\left(\sigma(x), g_{\lambda}(y) \xi\right)=\sigma_{*}\left(x, g_{\sigma^{-1} \circ \lambda}(y) \xi\right)
$$

and we have

$$
\begin{aligned}
\left\{\psi_{*}(y, \xi): \xi \in\left(\boldsymbol{C}^{n}\right)_{H_{y}}\right\} & =\left\{\varphi_{*}\left(\lambda(y), g_{\lambda}(y) \xi\right): \xi \in\left(\boldsymbol{C}^{n}\right)_{H_{y}}\right\} \\
& =\left\{\varphi_{*}\left(x, g_{\sigma^{-1} \circ \lambda}(y) \xi\right): \xi \in\left(\boldsymbol{C}^{n}\right)_{H_{y}}\right\}
\end{aligned}
$$

At this point, it suffices to show that the map

$$
\begin{equation*}
\left(\boldsymbol{C}^{n}\right)_{H_{y}} \rightarrow\left(\boldsymbol{C}^{n}\right)_{G_{x}}, \quad \xi \mapsto g_{\sigma^{-1} \circ \lambda}(y) \xi \tag{10}
\end{equation*}
$$

is a well defined bijection. $\sigma^{-1} \circ \lambda: D \rightarrow \Omega$ is an injection. Let $\eta_{\sigma}: H \rightarrow G$ be the
corresponding group monomorphism. As $\varphi(x)=p=\psi(y), \eta_{\sigma}: H_{y} \rightarrow G_{x}$ is an isomorphism (cf. Prop. 1.5 in [13], p. 257). Given $\tau \in G_{x}$ let $\rho \in H_{y}$ so that $\eta_{\sigma}(\rho)=\tau$. Then

$$
\begin{aligned}
g_{\tau}(x) g_{\sigma^{-1} \circ \lambda}(y) \xi & =g_{\tau \circ \sigma^{-1} \circ \lambda}(y) \xi=g_{\eta_{\sigma}(\rho) \circ \sigma^{-1} \circ \lambda}(y) \xi \\
& =g_{\left(\sigma^{-1} \circ \lambda\right) \rho \rho}(y) \xi=g_{\sigma^{-1} \circ \lambda}(y) g_{\rho}(y) \xi=g_{\sigma^{-1} \circ \lambda}(y) \xi
\end{aligned}
$$

hence (10) is well defined. Also, a similar computation shows that

$$
g_{\sigma^{-1} \circ \lambda}(y)\left(\boldsymbol{C}^{n}\right)_{H_{y}}=\left(\boldsymbol{C}^{n}\right)_{G_{x}}
$$

and (10) is clearly injective. The same proof applies to λ^{\prime}, so we are done.
Note that $T_{1,0}(X)_{p}$ is a C-linear space [with $\alpha \varphi_{*}(x, \zeta)+\beta \varphi_{*}(x, \xi):=$ $\varphi_{*}(x, \alpha \zeta+\beta \xi)$ (while the same operation on the image of the whole C^{n} / G_{x} is not well defined)]. To see that $X_{\text {reg }}$ is a complex manifold we need to review the differentiable structure of $X_{\text {reg }}$ in some detail. Let $\{D, H, \psi\} \in \mathscr{F}$ be a l.u.s. of X over $V \in \mathscr{H}$. Set $\Omega=\psi^{-1}(U)$ where $U:=V \cap X_{\text {reg }}$. Then $\sigma \in H \Rightarrow \sigma(\Omega)=\Omega$. [Indeed, let $x \in \Omega$ and $p:=\psi(x)$. Then $p \in U$ and $U \subseteq X \backslash \Sigma$ hence each point of $\psi^{-1}(p)$ has a trivial isotropy group. Yet $\sigma(x) \in \psi^{-1}(p)$ hence $G_{\sigma(x)}=\{e\}$. It follows that $\psi(\sigma(x)) \in X \backslash \Sigma$ and $\psi(\sigma(x))=\psi(x)=p \in U$, i.e. $\sigma(x) \in \Omega$, q.e.d.]. Set $G:=\left\{\left.\sigma\right|_{\Omega}: \sigma \in H\right\}$ and $\varphi:=\left.\psi\right|_{\Omega}$. Then $\{\Omega, G, \varphi\}$ is a l.u.s. of $X_{\text {reg }}$ over U. As $\{D, H, \psi\}$ runs over \mathscr{F}, the l.u.s.'s $\{\Omega, G, \varphi\}$ form a defining family of $X_{\text {reg }}$, hence $X_{\text {reg }}$ is a $2 n$-dimensional V-manifold. To see that it actually possesses a C^{∞} manifold structure note first that G acts freely on Ω, as a mere consequence of definitions. Let $y \in \Omega$. Then $\sigma(y) \neq y$ for any $\sigma \in G \backslash\{e\}$ (as $G_{y}=\{e\}$) hence there is an open neighborhood Ω_{σ} of y in Ω so that $\sigma\left(\Omega_{\sigma}\right) \cap \Omega_{\sigma}=\varnothing$. Set $D_{y}:=$ $\bigcap_{\sigma \in G \backslash\{e\}} \Omega_{\sigma}$. As G is finite D_{y} is open, $y \in D_{y} \subseteq \Omega$, and $\sigma\left(D_{y}\right) \cap D_{y}=\varnothing$ for any $\sigma \in G \backslash\{e\}$, hence G acts on Ω as a properly discontinuous group of C^{∞} diffeomorphisms. Thus Ω / G is a real $2 n$-dimensional C^{∞} manifold, and each $U \in$ $\mathscr{H}_{\text {reg }}:=\{V \cap(X \backslash \Sigma): V \in \mathscr{H}\}$ inherits a manifold structure via φ_{G}. Once Ω / G is organized as a manifold, the projection $\Omega \rightarrow \Omega / G$ is a local diffeomorphism and its local inverses form a C^{∞} atlas \mathscr{F}_{Ω}. Then $\mathscr{F}_{U}:=\left\{\chi \circ \varphi_{G}^{-1}: \chi \in \mathscr{F}_{\Omega}\right\}$ is an atlas on U and $\mathscr{F}_{\text {reg }}:=\bigcup_{U \in \mathscr{H}_{\text {reg }}} \mathscr{F}_{U}$ an atlas on $X_{\text {reg }}$. Also $\varphi: \Omega \rightarrow U$ is differentiable (and φ_{G} a diffeomorphism). As Ω and U are locally diffeomorphic there is a unique complex structure on U so that $T_{1,0}(U)_{\varphi(x)}=\left(d_{x} \varphi\right) T_{1,0}(\Omega)_{x}$, for any $x \in \Omega$. Let $p \in X_{\text {reg }}$ and $U, U^{\prime} \in \mathscr{H}_{\text {reg }}$ so that $p \in U \cap U^{\prime}$. We need to show that $T_{1,0}(U)_{p}=T_{1,0}\left(U^{\prime}\right)_{p}$, i.e. the complex structures $\left\{T_{1,0}(U): U \in \mathscr{H}_{\text {reg }}\right\}$ glue up to a globally defined complex structure on $X_{\text {reg }}$. To this end let $V \in \mathscr{H}_{\text {reg }}$ so that $p \in V \subseteq U \cap U^{\prime}$ and $\{D, H, \psi\}$ a l.u.s. of $X_{\text {reg }}$ over V. Let $\lambda: D \rightarrow \Omega$ and
$\lambda^{\prime}: D \rightarrow \Omega^{\prime}$ be injections and let $y \in D$ so that $\psi(y)=p$. Set $x:=\lambda(y) \in \Omega$ and $x^{\prime}:=\lambda^{\prime}(y) \in \boldsymbol{\Omega}^{\prime}$. Then

$$
T_{1,0}(U)_{p}=\left(d_{y} \psi\right) T_{1,0}(D)_{y}=T_{1,0}\left(U^{\prime}\right)_{p}
$$

as both $\lambda, \lambda^{\prime}$ are holomorphic maps and $\varphi \circ \lambda=\psi=\varphi^{\prime} \circ \lambda^{\prime}$. So $X_{\text {reg }}$ is a complex manifold, in a natural way. Next $\pi^{-1}\left(X_{\text {reg }}\right)=T_{1,0}\left(X_{\text {reg }}\right)$ because of the isomorphism

$$
T_{1,0}(X)_{p} \rightarrow T_{1,0}\left(X_{\text {reg }}\right)_{p},\left.\quad \varphi_{*}(x, \zeta) \mapsto\left(d_{x} \varphi\right) \zeta^{j} \frac{\partial}{\partial z^{j}}\right|_{x}, \quad p \in U \in \mathscr{H}_{\text {reg }} .
$$

If v is a singular point of $T_{1,0}(X)$ with $p:=\pi(v)$, there is $U \in \mathscr{H}$ with $p \in U$, and there is a l.u.s. $\{\Omega, G, \varphi\}$ over U so that $\left(G_{*}\right)_{(x, \zeta)} \neq\left\{e_{*}\right\}$, for some $(x, \zeta) \in \Omega \times \boldsymbol{C}^{n}$. That is $\sigma_{*}(x, \zeta)=(x, \zeta)$ for some $\sigma \in G \backslash\{e\}$, hence $\sigma(x)=x$, i.e. $G_{x} \neq\{e\}$. It follows that $p \in \Sigma$, i.e. the singular locus of $T_{1,0}(X)$ projects on Σ. Statement 2 in Theorem 1 is proved.

It remains that we prove 3 . Let $Z: X \rightarrow T_{1,0}(X)$ be a continuous map so that $\pi \circ Z=1_{X}$. Let $f \in \mathscr{E}(X)$ and $p \in X$. Let $U \in \mathscr{H}$ so that $p \in U$ and let $\{\Omega, G, \varphi\} \in \mathscr{F}$ over U. Let $x \in \Omega$ so that $\varphi(x)=p$ and set

$$
Z(f)_{p}:=\sum_{j=1}^{n} \zeta^{j} \frac{\partial f_{\Omega}}{\partial z^{j}}(x)
$$

where $[\zeta] \in C^{n} / G_{x}$ corresponds to $Z_{p} \in \pi^{-1}(p)$ under the bijection $C^{n} / G_{x} \approx$ $\pi^{-1}(p)$.

Step 3. $Z(f)_{p}$ is well defined.
If $[\xi]=[\zeta]$ then $\xi=g_{\sigma}(x) \zeta$ for some $\sigma \in G_{x}$ and then

$$
\xi^{j} \frac{\partial f_{\Omega}}{\partial z^{j}}(x)=g_{\sigma}(x)_{k}^{j} \zeta^{k} \frac{\partial f_{\Omega}}{\partial z^{j}}(x)=\zeta^{k} \frac{\partial\left(f_{\Omega} \circ \sigma\right)}{\partial z^{k}}(x)
$$

If another open neighborhood $U^{\prime} \in \mathscr{H}$ of p is used, let $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$ over U^{\prime} and $x^{\prime} \in \Omega^{\prime}$ with $\varphi^{\prime}\left(x^{\prime}\right)=p$. Then, consider $p \in V \subseteq U \cap U^{\prime}$ and $\{D, H, \psi\}$ over V, and two injections $\lambda: D \rightarrow \Omega, \lambda^{\prime}: D \rightarrow \Omega^{\prime}$. Let $y \in D$ with $\psi(y)=p$. Let $[\zeta] \in \boldsymbol{C}^{n} / G_{x}$ and $\left[\zeta^{\prime}\right] \in \boldsymbol{C}^{n} / G_{x^{\prime}}^{\prime}$ correspond to Z_{p}. If $[\xi] \in \boldsymbol{C}^{n} / H_{y}$ corresponds to Z_{p} then

$$
\begin{aligned}
\varphi_{*}(x, \zeta) & =Z_{p}=\psi_{*}(y, \xi)=\left[\operatorname{orb}_{H_{*}}(y, \xi)\right] \\
& =\left[\operatorname{orb}_{G_{*}}\left(\lambda(y), g_{\lambda}(y) \xi\right)\right]=\varphi_{*}\left(\lambda(y), g_{\lambda}(y) \xi\right)
\end{aligned}
$$

hence there is $\tau \in G$ so that

$$
\tau_{*}(x, \zeta)=\left(\lambda(y), g_{\lambda}(y) \xi\right)
$$

i.e. $\tau(x)=\lambda(y)$ and $\zeta=g_{\tau^{-1}}(\tau(x)) g_{\lambda}(y) \xi$. As $f_{\Omega} \circ \lambda=f_{D}$

$$
\zeta^{j} \frac{\partial f_{\Omega}}{\partial z^{j}}(x)=g_{\tau^{-1}}(\tau(x))_{k}^{j} g_{\lambda}(y)_{\ell}^{k} \xi^{\ell} \frac{\partial f_{\Omega}}{\partial z^{j}}(x)=\frac{\partial\left(f_{\Omega} \circ \tau^{-1}\right)}{\partial z^{k}}(\tau(x)) g_{\lambda}(y)_{\ell}^{k} \xi^{\ell}=
$$

(as f_{Ω} is G-invariant and $\tau(x)=\lambda(y)$)

$$
=\frac{\partial\left(f_{\Omega} \circ \lambda\right)}{\partial z^{\ell}}(y) \xi^{\ell}=\xi^{\ell} \frac{\partial f_{D}}{\partial z^{\ell}}(y) .
$$

The same argument holds for λ^{\prime}, hence

$$
\zeta^{\prime j} \frac{\partial f_{\Omega^{\prime}}}{\partial z^{j}}\left(x^{\prime}\right)=\zeta^{j} \frac{\partial f_{\Omega}}{\partial z^{j}}(x)
$$

and Step 3 is proved. Let $Z_{p} \in \pi^{-1}(p)$ correspond to $\left[e_{j}\right] \in \boldsymbol{C}^{n} / G_{x}$, with $\varphi(x)=p$. Then $Z(\bar{f})_{p}=0$ yields $\left(\partial f_{\Omega} / \partial \bar{z}^{j}\right)(x)=0$, i.e. $f \in \mathcal{O}(\Omega)$. Theorem 1 is completely proved.

Throughout, if Y is a complex manifold, $\mathcal{O}(Y)$ denotes the space of all holomorphic functions on Y. The last statement in Theorem 1 shows that the requirement $Z(\bar{f})=0$ for all sections Z in $T_{1,0}(X)$ is too restrictive for our purposes. In the sequel, we restrict ourselves to sections Z such that $Z_{p} \in$ $T_{1,0}(X)_{p}=\left\{\varphi_{*}(x, \zeta): \zeta \in\left(C^{n}\right)_{G_{x}}\right\}$, as mentioned in the Introduction. Locally, we are led to a new notion, termed V-holomorphic function. Let $\Omega \subseteq \boldsymbol{C}^{n}$ be a domain and $G \subset \operatorname{Aut}(\Omega)$ a finite group of biholomorphisms. A C^{1} function $f: \Omega \rightarrow C$ is called V-holomorphic if it is G-invariant and

$$
\begin{equation*}
\sum_{j=1}^{n} \bar{\zeta}^{j} \frac{\partial f}{\partial \bar{z}^{j}}(x)=0 \tag{11}
\end{equation*}
$$

for any $x \in \Omega$ and any $\zeta \in\left(C^{n}\right)_{G_{x}}$. Let $\mathcal{O}_{V}(\Omega)$ be the space of all V holomorphic functions in Ω. Let $\mathcal{O}_{G}(\Omega)$ consist of all G-invariant functions $f \in \mathcal{O}(\Omega)$. Then $\mathcal{O}_{G}(\Omega) \subseteq \mathcal{O}_{V}(\Omega) \subseteq \mathcal{O}_{G}(\Omega \backslash S)$. Note that the requirement (11) is empty at the points of $C:=\left\{x \in \Omega:\left(\boldsymbol{C}^{n}\right)_{G_{x}}=(0)\right\} \subseteq S$. When $n=1, \mathcal{O}_{V}(\Omega) \subseteq$ $\mathcal{O}_{G}(\Omega \backslash C)$.

The following result describes the local structure of S and the behaviour of V-holomorphic functions at the points of $S \backslash C$.

Theorem 2. For any $x \in S$ there is a neighborhood D of x in Ω so that

1) $D \cap S$ is a finite union of complex submanifolds of Ω of dimension $<n$.
2) For any $y \in D, G_{y}$ is a subgroup of G_{x}. 3) If $x \in S \backslash C$ there is a complex submanifold $F_{x} \subset D$ passing through x so that a) for each G-invariant function $f: \Omega \rightarrow \boldsymbol{C}, f$ satisfies (11) at x if and only if the trace of f on F_{x} is holomorphic at x. Moreover b) $F_{x} \subset \Omega \backslash C$ and if $f \in \mathcal{O}_{V}(\Omega)$ then $\left.f\right|_{F_{x}} \in \mathcal{O}\left(F_{x}\right)$.

Proof. Let $x \in S$ and set

$$
w^{j}:=\frac{1}{\left|G_{x}\right|} \sum_{\sigma \in G_{x}} g_{\sigma^{-1}}(x)_{k}^{j}\left(z^{k} \circ \sigma\right)
$$

(for a set $A,|A|$ denotes its cardinality). Then $\left(\partial w^{j} / \partial z^{k}\right)(x)=\delta_{k}^{j}$ hence there is an open neighborhood V of x in Ω so that $\Phi:=\left(w^{1}, \ldots, w^{n}\right): V \rightarrow \boldsymbol{C}^{n}$ is a biholomorphism on its image. Let $\sigma \in G \backslash G_{x}$. Then $\sigma(x) \neq x$ hence there is an open neighborhood Ω_{σ} of x in V so that $\sigma\left(\Omega_{\sigma}\right) \cap \Omega_{\sigma}=\varnothing$. Set $D_{0}:=\bigcap_{\sigma \in G \backslash G_{x}} \Omega_{\sigma}$ and $D:=\bigcap_{\sigma \in G_{x}} \sigma\left(D_{0}\right)$. As G is finite D_{0}, and then D, are open. What we just built is an open neighborhood D of x in V so that i) $\sigma(D) \subseteq D$ for any $\sigma \in G_{x}$ and ii) $\sigma(D) \cap D=\varnothing$ for any $\sigma \in G \backslash G_{x}$. The first statement in Theorem 2 is a complex analogue of Prop. 1.1 in [13], p. 251-252. For each $\tau \in G_{x}$ set

$$
F_{\tau}=\{y \in D: \tau(y)=y\} .
$$

Note that $w^{j} \circ \tau=g_{\tau}(x)_{k}^{j} \circ w^{k}$. Consequently

$$
\Phi\left(F_{\tau}\right)=\Phi(D) \cap \operatorname{Ker}\left[g_{\tau}(x)-I_{n}\right]
$$

hence F_{τ} is a complex submanifold of D, of complex dimension $<n$. Next $S \cap D=Y_{x}$, where

$$
Y_{x}:=\bigcup_{\tau \in G_{x} \backslash\{e\}} F_{\tau} .
$$

To prove the third statement note that $\bar{\zeta}^{j}\left(\partial / \partial \bar{z}^{j}\right)_{x} \in T_{x}\left(F_{\tau}\right) \otimes_{R} C$ if and only if $\zeta \in \operatorname{Ker}\left[g_{\tau}(x)-I_{n}\right]$. Indeed, if $\rho_{\sigma}^{j}(z):=g_{\sigma}(x)_{k}^{j} w^{k}-w^{j}, \sigma \in G_{x}$, then

$$
\left(\left.\zeta^{k} \frac{\partial}{\partial z^{k}}\right|_{x}\right)\left(\rho_{\sigma}^{j}\right)=\zeta^{k}\left[g_{\sigma}(x)_{\ell}^{j}-\delta_{\ell}^{j}\right] \frac{\partial w^{\ell}}{\partial z^{k}}(x)=\zeta^{k} g_{\sigma}(x)_{k}^{j}-\zeta^{j} .
$$

Set

$$
F_{x}:=\bigcap_{\tau \in G_{x} \backslash\{e\}} F_{\tau} .
$$

If $x \in S \backslash C$ then F_{x} is a complex manifold of dimension $\operatorname{dim}_{C}\left(C^{n}\right)_{G_{x}}$. Let us prove (b). To this end, let $y \in F_{x}$ and $D^{\prime} \subset V^{\prime}$ as in the first part of the proof (got by replacing x by y). Then $F_{\sigma}^{\prime} \supseteq D^{\prime} \cap F_{x} \ni y$ for any $\sigma \in G_{y} \backslash\{e\}$ hence (by a dimension argument)

$$
\begin{equation*}
T_{1,0}\left(F_{y}^{\prime}\right)_{y}=T_{1,0}\left(F_{x}\right)_{y} \approx\left(\boldsymbol{C}^{n}\right)_{G_{x}} \neq(0) \tag{12}
\end{equation*}
$$

Thus $\left(\boldsymbol{C}^{n}\right)_{G_{y}} \approx T_{1,0}\left(F_{y}^{\prime}\right)_{y} \neq(0)$, a fact which yields $y \in \Omega \backslash C$, i.e. $F_{x} \subset \Omega \backslash C$. Finally, let $f \in \mathcal{O}_{V}(\Omega)$. Then $\left.f\right|_{F_{y}^{\prime}}$ is holomorphic in y hence (by (12)) $\left.f\right|_{F_{x}}$ is holomorphic in y. Q.e.d..

If (X, \mathscr{F}) is a complex orbifold, a function $f \in C^{1}(X)$ (i.e. a continuous function $f: X \rightarrow C$ so that $f_{\Omega} \in C^{1}(\Omega)$ for each l.u.s. $\left.\{\Omega, G, \varphi\} \in \mathscr{F}\right)$ is V-holomorphic if each f_{Ω} is V-holomorphic in Ω. In the sequel, we shall study traces of such functions on smooth real hypersurfaces.

4. Real Hypersurfaces

The purpose of this section is to discuss traces of V-holomorphic functions on real hypersurfaces $M \subset \Omega$ preserved by G. This situation is realizable (by a result of B. Coupet \& A. Sukhov, [9], as detailed below) when M is the boundary of a C^{ω} bounded pseudoconvex domain. We are led to a generalization of the notion of $C R$ function, i.e. the solutions to (16). These are $C R$ everywhere except at singular points and exhibit, at a singular point x, the behaviour mentioned in the Introduction (i.e. are $C R$ functions along a $C R$ submanifold passing through x, of smaller $C R$ dimension).

Let $D \subset C^{n}$ be a bounded pseudoconvex domain with real analytic boundary ∂D and $H \subset \operatorname{Aut}(D)$ a finite (hence compact) group of automorphisms of D. By a result of B. Coupet \& A. Sukhov, [9], there is a domain Ω so that $\bar{D} \subset \Omega$ and each $\tau \in H$ extends holomorphically on Ω as antomorphism of Ω. Let $G_{\partial D}$ consist of all $\left.\tilde{\tau}\right|_{\partial D}$ for $\tau \in H$ and some holomorphic extension $\tilde{\tau} \in \operatorname{Aut}(\Omega)$ of τ. By the identity principle for holomorphic functions $G_{\partial D}$ is a well defined finite group of $C R$ automorphisms of ∂D. In general, let $\Omega \subseteq C^{n}$ be a domain, $G \subset$ $\operatorname{Aut}(\Omega)$ a finite group of biholomorphims, and $M \subset \Omega$ an embedded real hypersurface such that $\sigma(M)=M$ for each $\sigma \in G$. Set $G_{M}:=\left\{\left.\sigma\right|_{M}: \sigma \in G\right\}$ and $S_{M}:=$ $\left\{x \in M:\left(G_{M}\right)_{x} \neq\left\{1_{M}\right\}\right\}$. Then $S_{M}=M \cap S$. For any $x \in M$ there is a neighborhood U of x in C^{n} and a function $\rho \in C^{\infty}(U)$ such that $M \cap U=\{z \in U$: $\rho(z)=0\}$ and $\nabla \rho(z) \neq 0$ for any $z \in M$. The Cauchy-Riemann equations in C^{n}
induce on M an overdetermined system of PDEs with smooth complex valued coefficients

$$
\begin{equation*}
\bar{L}_{\alpha} u(z) \equiv \sum_{j=1}^{n} a_{\alpha}^{j}(z) \frac{\partial u}{\partial \bar{z}^{j}}=0, \quad 1 \leq \alpha \leq n-1, \tag{13}
\end{equation*}
$$

(the tangential Cauchy-Riemann equations) $z \in V$, with $V \subseteq M \cap U$ open. Here

$$
\begin{equation*}
\sum_{j=1}^{n} \bar{a}_{\alpha}^{j}(z) \frac{\partial \rho}{\partial z^{j}}=0, \quad 1 \leq \alpha \leq n-1 \tag{14}
\end{equation*}
$$

for any $z \in V$, i.e. L_{α} are purely tangential first order differential operators (tangent vector fields on M). Also

$$
\begin{equation*}
\left[L_{\alpha}, L_{\beta}\right]=C_{\alpha \beta}^{\gamma}(z) L_{\gamma} \tag{15}
\end{equation*}
$$

for some complex valued C^{∞} functions $C_{\alpha \beta}^{\gamma}$ on V. At each point $z \in V$ the $L_{\alpha, z}$'s span a complex $(n-1)$-dimensional subspace $T_{1,0}(M)_{z}$ of the complexified tangent space $T_{z}(M) \otimes_{R} C$. The bundle $T_{1,0}(M) \rightarrow M$ is the $C R$ structure of M. A C^{1} function $u: M \rightarrow C$ is a $C R$ function if $\bar{Z}(u)=0$ for any $Z \in T_{1,0}(M)$. Locally, a $C R$ function is a solution of (13). $G \subset A u t(\Omega)$ yields $G_{M} \subset A u t_{C R}(M)$ hence

$$
\left(d_{x} \tau\right) L_{\alpha, x}=\sum_{\beta=1}^{n-1} \tau_{\alpha}^{\beta}(x) L_{\beta, \tau(x)}, \quad x \in V
$$

for each $\tau \in G_{M}$ and some (unique) system of C^{∞} functions $\tau_{\alpha}^{\beta}: V \rightarrow C$. For each $\tau \in G_{M}$ let $g_{M, \tau}: V \rightarrow G L(n-1, C)$ be given by $g_{M, \tau}(x) \zeta=\tau_{\beta}^{\alpha}(x) \zeta^{\beta} e_{\alpha}$ for any $\zeta \in \boldsymbol{C}^{n-1}$. Set

$$
\left(\boldsymbol{C}^{n-1}\right)_{\left(G_{M}\right)_{x}}=\operatorname{Ker}\left[g_{M, \tau}(x)-I_{n-1}\right]
$$

and $C_{M}=\left\{x \in M:\left(\boldsymbol{C}^{n-1}\right)_{\left(G_{M}\right)_{x}}=(0)\right\} \subseteq S_{M}$. We need the following
Lemma 2. The trace $u=\left.f\right|_{M}$ of any V-holomorphic function $f \in \mathcal{O}_{V}(\Omega)$ satisfies

$$
\begin{equation*}
\sum_{\alpha=1}^{n-1} \bar{\xi}^{\alpha} L_{\bar{\alpha}, x} u=0 \tag{16}
\end{equation*}
$$

for any $x \in V$ and any $\xi \in\left(C^{n-1}\right)_{\left(G_{M}\right)_{x}}$. In particular u is a $C R$ function on $M \backslash S_{M}$ (and if $n=2$ then u is $C R$ on $M \backslash C_{M}$).

Proof. Let $\zeta \in\left(\boldsymbol{C}^{n-1}\right)_{\left(G_{M}\right)_{x}}, x \in V$, and set $\zeta^{j}=a_{\alpha}^{j}(x) \xi^{\alpha}$. Then

$$
a_{\alpha}^{j}(x) g_{\sigma}(x)_{j}^{k}=\tau_{\alpha}^{\beta}(x) a_{\beta}^{k}(x)
$$

yields $\zeta \in\left(\boldsymbol{C}^{n}\right)_{G_{x}}$ hence

$$
0=\bar{\zeta}^{j} \frac{\partial f}{\partial \bar{z}^{j}}(x)=\bar{\xi}^{\alpha} L_{\bar{\alpha}, x} u
$$

In view of the result in [18], it is an open problem whether the real analytic solutions to (16) extend to V-holomorphic functions on a neighborhood of M in Ω (provided $\left.M \in C^{\omega}\right)$.

Theorem 3. For any $x \in S_{M}$ there is an open neighborhood D of x in Ω such that $S_{M} \cap D$ is a finite union of $C R$ manifolds of $C R$ dimension $<n-1$. For any $y \in V:=M \cap D,\left(G_{M}\right)_{y}$ is a subgroup of $\left(G_{M}\right)_{x}$. If $x \in S_{M} \backslash C_{M}$ there is a $C R$ manifold $F_{M, x}$ such that a C^{1} function $u: V \rightarrow C$ satisfies (16) for any $\xi \in$ $\left(C^{n-1}\right)_{\left(G_{M}\right)_{x}}$ if and only if the trace of u on $F_{M, x}$ is $C R$ at x.

The proof of Theorem 3 is similar to that of Theorem 2, so we only emphasize on the main steps. As $x \in S_{M} \subseteq S$, let D be a neighborhood of x in Ω as in (the proof of) Theorem 2. By eventually shrinking D let $\left(u^{a}\right)$ be local coordinates on $V=M \cap D$ and set

$$
v^{a}=\frac{1}{\left|G_{x}\right|} \sum_{\tau \in\left(G_{M}\right)_{x}} h_{\tau^{-1}}(x)_{b}^{a}\left(u^{b} \circ \tau\right), \quad 1 \leq a \leq 2 n-1
$$

where $\quad h_{\tau}(x)=\left[\left(\partial\left(u^{a} \circ \tau\right) / \partial u^{b}\right)(x)\right]$. Then $\quad\left(\partial v^{a} / \partial u^{b}\right)(x)=\delta_{b}^{a} \quad$ hence $\quad \phi=$ $\left(v^{1}, \ldots, v^{2 n-1}\right)$ is a C^{∞} diffeomorphism of (a perhaps smaller open neighborhood of x in) V onto its image. Given $\tau \in\left(G_{M}\right)_{x} \backslash\left\{1_{M}\right\}$ set $F_{M, \tau}=\{y \in V: \tau(y)=y\}$. Then $\phi\left(F_{M, \tau}\right)=\phi(V) \cap \operatorname{Ker}\left[h_{\tau}(x)-I_{2 n-1}\right]$ hence $F_{M, \tau}$ is a manifold (of dimension $\operatorname{dim}_{R} \operatorname{Ker}\left[h_{\tau}(x)-I_{2 n-1}\right]<2 n-1$ if $\left.\tau \neq 1_{M}\right)$ and $S_{M} \cap V=\bigcup_{\tau \in\left(G_{M}\right)_{x} \backslash\left\{1_{M}\right\}} F_{M, \tau}$. Note that $F_{M, \tau}=M \cap F_{\sigma}$ for any $\sigma \in G_{x}$ with $\left.\sigma\right|_{M}=\tau$. Hence $F_{M, \tau}$ is a $C R$ submanifold of (the complex manifold) F_{σ}. If $x \in S_{M} \backslash C_{M} \subseteq S \backslash C$ then set $F_{M, x}=$ $\bigcap_{\tau \in\left(G_{M}\right)_{x} \backslash\left\{1_{M}\right\}} F_{M, \tau}$. Then $F_{M, x}=M \cap F_{x}$ hence $F_{M, x}$ is a $C R$ submanifold of F_{x}. Let $T_{1,0}\left(F_{M, x}\right)$ be the $C R$ structure induced from (the complex structure of) F_{x}. The inclusion $F_{M, x} \subset M$ is a $C R$ immersion (i.e. an immersion and a $C R$ map) and $\bar{\zeta}^{\alpha} L_{\bar{\alpha}, x} \in T_{1,0}\left(F_{M, x}\right)_{x}$ if and only if $\zeta \in\left(C^{n-1}\right)_{\left(G_{M}\right)_{x}}$. Q.e.d..

5. $C R$ Orbifolds

The scope of this section is to introduce the class of $C R$ orbifolds of arbitrary type (n, k) (containing the class of complex orbifolds, $k=0$). The $C R$ structure of
a $C R$ orbifold B and $C R$ functions on B are discussed in Theorem 4. We consider an analogue \square_{B} of the Kohn-Rossi laplacian and state the problem of building a parametrix for \square_{B}, the local approach to which is dealt with in section 6 (the solution to the global problem is delegated to a further paper).

Let (B, \mathscr{A}) be a $(2 n+k)$-dimensional V-manifold, of class C^{∞}. A $C R$ structure on B is a family

$$
T_{1,0}(B)=\left\{T_{1,0}(\Omega):\{\Omega, G, \varphi\} \in \mathscr{A}\right\}
$$

where each $\left(\Omega, T_{1,0}(\Omega)\right)$ is a $C R$ manifold, of type (n, k), i.e. of $C R$ dimension n and $C R$ codimension k, and each injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ is a $C R$ map. In particular, $G \subset \operatorname{Aut}_{C R}(\Omega)$ for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{A}$. A pair $\left(B, T_{1,0}(B)\right)$ is a $C R$ orbifold (of type (n, k)). When $k=0, B$ is a complex orbifold (of complex dimension n). We shall deal mainly with $C R$ orbifolds of $C R$ codimension $k=1$.

Let (B, \mathscr{A}) be an N-dimensional V-manifold. A continuous map $\Psi: B \rightarrow M$ into a C^{∞} manifold M is an immersion if, for any $\{\Omega, G, \varphi\} \in \mathscr{A}$, the map $\Psi_{\Omega}:=$ $\Psi \circ \varphi: \Omega \rightarrow M$ is a C^{∞} immersion (i.e. $\left.\operatorname{rank}\left[d_{x} \Psi_{\Omega}\right]=N \leq \operatorname{dim}(M), x \in \Omega\right)$. To give an example of $C R$ orbifold, assume that $N=2 n+1$ and let $\Psi: B \rightarrow \boldsymbol{C}^{n+1}$ be an immersion. Let $T_{1,0}(\Omega)$ be the $C R$ structure on Ω given by

$$
\begin{equation*}
\left(d_{x} \Psi_{\Omega}\right) T_{1,0}(\Omega)_{x}=T_{1,0}\left(\boldsymbol{C}^{n+1}\right)_{\Psi(\varphi(x))} \cap\left[\left(d_{x} \Psi_{\Omega}\right) T_{x}(\Omega) \otimes_{R} \boldsymbol{C}\right], \quad x \in \Omega \tag{17}
\end{equation*}
$$

Note that $\Psi_{\Omega^{\prime}} \circ \lambda=\Psi_{\Omega}$, for any injection $\lambda: \Omega \rightarrow \Omega^{\prime}$; as a consequence, it is easy to see that λ must be a $C R$ map, hence B together with the family of $C R$ structures (17) is a $C R$ orbifold.

Let $\left(B, \mathscr{A}, T_{1,0}(B)\right)$ be a $C R$ orbifold, of $C R$ codimension 1 . A family $\theta=$ $\left\{\theta_{\Omega}:\{\Omega, G, \varphi\} \in \mathscr{A}\right\}$ is a pseudohermitian structure on B if each θ_{Ω} is a pseudohermitian structure on Ω and $\lambda^{*} \theta_{\Omega^{\prime}}=a(\lambda) \theta_{\Omega}$ for any injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ and some constant $a(\lambda) \in \boldsymbol{R} \backslash\{0\}$, i.e. injections are pseudohermitian maps. We shall need

Lemma 3. Let $\left(B, \mathscr{A}, T_{1,0}(B)\right)$ be a $C R$ orbifold and two pseudohermitian structures θ, $\hat{\theta}$ on B. If each injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ is isopseudohermitian, i.e. $a(\lambda) \equiv 1$, there is a unique C^{∞} function $u: B \rightarrow \boldsymbol{R} \backslash\{0\}$ so that $\hat{\theta}_{\Omega}=u_{\Omega} \theta_{\Omega}$, for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{A}$.

Proof. Let $u_{\Omega}: \Omega \rightarrow \boldsymbol{R} \backslash\{0\}$ be a C^{∞} function satisfying $\hat{\theta}_{\Omega}=u_{\Omega} \theta_{\Omega}$. Next, consider an injection $\lambda: \Omega \rightarrow \Omega^{\prime}$. The identities $\lambda^{*} \theta_{\Omega^{\prime}}=\theta_{\Omega}$ and $\lambda^{*} \hat{\theta}_{\Omega^{\prime}}=\hat{\theta}_{\Omega}$ lead to

$$
\begin{equation*}
u_{\Omega^{\prime}} \circ \lambda=u_{\Omega} \tag{18}
\end{equation*}
$$

In particular u_{Ω} is G-invariant. Define $u: B \rightarrow \boldsymbol{R} \backslash\{0\}$ as follows. Let $p \in B$ and $U \in \mathscr{H}$ so that $p \in U$. Let $\{\Omega, G, \varphi\} \in \mathscr{A}$ be a l.u.s. of support U. Let $x \in \Omega$ so that $\varphi(x)=p$. Finally, set $u(p):=u_{\Omega}(x)$. One needs to check that the definition of $u(p)$ doesn't depend upon the various choices involved. Let $U^{\prime} \in \mathscr{H}$ so that $p \in U^{\prime}$. Then there is $V \in \mathscr{H}$ so that $p \in V \subseteq U \cap U^{\prime}$. Let $\left\{\Omega^{\prime}, G^{\prime}, \varphi^{\prime}\right\}$ over U^{\prime} and $x^{\prime} \in \Omega^{\prime}$ so that $\varphi^{\prime}\left(x^{\prime}\right)=p$. Let $\{D, H, \psi\}$ be a l.u.s. of support V and consider two injections $\lambda: D \rightarrow \Omega$ and $\lambda^{\prime}: D \rightarrow \Omega^{\prime}$. Let $y \in D$ so that $\psi(y)=p$. From $\varphi(x)=\psi(y)=\varphi(\lambda(y))$, there is $\sigma \in G$ so that

$$
\begin{equation*}
\lambda(y)=\sigma(x) \tag{19}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\lambda^{\prime}(y)=\sigma^{\prime}\left(x^{\prime}\right) \tag{20}
\end{equation*}
$$

for some $\sigma^{\prime} \in G^{\prime}$. Finally, using (18)-(20), one may conduct the following calculation

$$
\begin{aligned}
u_{\Omega^{\prime}}\left(x^{\prime}\right) & =u_{\Omega^{\prime}}\left(\left(\sigma^{\prime}\right)^{-1} \lambda^{\prime}(y)\right)=u_{\Omega^{\prime}}\left(\lambda^{\prime}(y)\right) \\
& =u_{D}(y)=u_{\Omega}(\lambda(y))=u_{\Omega}(\sigma(x))=u_{\Omega}(x)
\end{aligned} \quad \text { Q.e.d.. } .
$$

A Riemannian orbifold is a V-manifold B together with a family $g=$ $\left\{g_{\Omega}:\{\Omega, G, \varphi\} \in \mathscr{A}\right\}$, where g_{Ω} is a Riemannian metric on Ω, so that each injection $\lambda: \Omega \rightarrow \Omega^{\prime}$ is an isometry $\left(\lambda^{*} g_{\Omega^{\prime}}=g_{\Omega}\right)$. Let $\left(B, \mathscr{A}, T_{1,0}(B)\right)$ be a strictly pseudoconvex $C R$ orbifold, i.e. each $\left(\Omega, T_{1,0}(\Omega)\right)$ is a strictly pseudoconvex $C R$ manifold. Let θ be a pseudohermitian structure on B. Then each θ_{Ω} is a contact 1 -form on Ω. Let g_{Ω} be the Webster metric of $\left(\Omega, \theta_{\Omega}\right)$ and set $g:=\left\{g_{\Omega}\right.$: $\{\Omega, G, \varphi\} \in \mathscr{A}\}$. If each injection λ is isopseudohermitian then λ preserves the Webster metrics, hence (B, g) is a Riemannian orbifold. The following result is similar to Theorem 1.

Theorem 4. For any $C R$ orbifold $\left(B, \mathscr{A}, T_{1,0}(B)\right)$, of type $(n, 1)$, there is a vector bundle $\left(E_{1,0}, \pi, B\right)$ so that for any $p \in B$, if $p \in U \in \mathscr{H}$ and $\{\Omega, G, \varphi\} \in \mathscr{A}$ is a l.u.s. over U then $\pi^{-1}(p) \approx C^{n} / G_{x}$ for any $x \in \Omega$ with $\varphi(x)=p$. $B_{\text {reg }}$ is a $C R$ manifold (of type $(n, 1))$ and $\left.E_{1,0}\right|_{B_{\text {reg }}}$ is its $C R$ structure. $T_{1,0}\left(B_{\text {reg }}\right)$ is contained in $\left(E_{1,0}\right)_{\text {reg }}$, the regular part of $E_{1,0}$ as a V-manifold. The image $T_{1,0}(B)_{p} \subseteq \pi^{-1}(p)$ of $T_{1,0}(\Omega)_{G_{x}}$ via the map $T_{1,0}(\Omega) \approx \Omega \times C^{n} \rightarrow E_{1,0}$ depends only on $p=\varphi(x)$. $T_{1,0}(B)_{p}$ is a \boldsymbol{C}-vector space of dimension $\operatorname{dim}_{C}\left(\boldsymbol{C}^{n}\right)_{G_{x}}$. If Z is a section in $E_{1,0}$ and $f \in \mathscr{E}(B)$ there is a (naturally defined) function $Z(f): B \rightarrow C$. If $Z(\bar{f})=0$ for any Z then $f_{\Omega}=f \circ \varphi$ is a $C R$ function on Ω, for any $\{\Omega, G, \varphi\} \in \mathscr{A}$, and conversely.

The bundle $E_{1,0}$ is recovered from the transition functions $g_{\lambda}(x)=\left[\lambda_{\beta}^{\alpha}(x)\right]$, where $\left(d_{x} \lambda\right) L_{\alpha, x}=\lambda_{\alpha}^{\beta}(x) L_{\beta, \lambda(x)}^{\prime}, x \in \Omega$ (we assume w.l.o.g. that a frame $\left\{L_{\alpha}\right\}$ of $T_{1,0}(\Omega)$, defined on the whole of Ω, is prescribed on each Ω). We omit the details.

Let B be a V-manifold. A linear map $D: \mathscr{E}(B) \rightarrow \mathscr{E}(B)$ is a differential operator (of order k) if for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{A}$ there is a differential operator D_{Ω} of order k on Ω so that $(D u)_{\Omega}=D_{\Omega} u_{\Omega}$ for any $u \in \mathscr{E}(B)$. We say D is elliptic (respectively subelliptic (of order ε)) if D_{Ω} is elliptic (respectively subelliptic of order ε, (cf. [11], p. 373)) for each l.u.s. $\{\Omega, G, \varphi\}$.

Let $\left(B, T_{1,0}(B)\right)$ be a nondegenerate $C R$ orbifold, $\theta=\left\{\theta_{\Omega}\right\}$ a fixed pseudohermitian structure on B, and \square_{Ω} the Kohn-Rossi laplacian of $\left(\Omega, \theta_{\Omega}\right)$, cf. section 2. If each injection is isopseudohermitian, we may build a differential operator $\square_{B}: \mathscr{E}(B) \rightarrow \mathscr{E}(B)$ by setting

$$
\left(\square_{B} u\right)_{\Omega}=\square_{\Omega} u_{\Omega}
$$

for any $u \in \mathscr{E}(B)$. Then $\square_{B} u$ is a well defined element of $\mathscr{E}(B)$ if the functions $f_{\Omega}=\square_{\Omega} u_{\Omega}$ satisfy $f_{\Omega^{\prime}} \circ \lambda=f_{\Omega}$ for any injection $\lambda: \Omega \rightarrow \Omega^{\prime}$. This may be seen as follows. By applying (5) we get $\square_{\Omega}^{\lambda}=\square_{\lambda(\Omega)}$ or

$$
\left(\square_{\Omega}(v \circ \lambda)\right) \circ \lambda^{-1}=\square_{\lambda(\Omega)} v,
$$

for any $v \in C^{\infty}(\lambda(\Omega))$. In particular, let us consider the functions

$$
v=\left.u_{\Omega^{\prime}}\right|_{\lambda(\Omega)} \in C^{\infty}(\lambda(\Omega))
$$

Then

$$
\left.\square_{\Omega}\left(\left.u_{\Omega}\right|_{\lambda(\Omega)}\right) \circ \lambda\right) \circ \lambda^{-1}=\square_{\lambda(\Omega)}\left(\left.u_{\Omega^{\prime}}\right|_{\lambda(\Omega)}\right)
$$

may be written as

$$
\square_{\Omega} u_{\Omega}=\left(\square_{\Omega^{\prime}} u_{\Omega^{\prime}}\right) \circ \lambda .
$$

Q.e.d.. Let T_{Ω} be the characteristic direction of $\left(\Omega, \theta_{\Omega}\right)$. We define a differential operator $T: \mathscr{E}(B) \rightarrow \mathscr{E}(B)$ by setting $(T u)_{\Omega}=T_{\Omega} u_{\Omega}$ for any $u \in \mathscr{E}(\Omega)$. Again, the functions $T_{\Omega} u_{\Omega}$ give rise to a well defined element $T u$ of $\mathscr{E}(B)$ provided that each injection λ is isopseudohermitian; indeed, if this is the case then $\left(d_{x} \lambda\right) T_{\Omega, x}=$ $T_{\Omega^{\prime}, \lambda(x)}$ for any $x \in \Omega$, and one may perform the calculation

$$
T_{\Omega^{\prime}, \lambda(x)}\left(u_{\Omega^{\prime}}\right)=\left[\left(d_{x} \lambda\right) T_{\Omega, x}\right]\left(u_{\Omega^{\prime}}\right)=T_{\Omega, x}\left(u_{\Omega^{\prime}} \circ \lambda\right)=T_{\Omega, x}\left(u_{\Omega}\right)
$$

Q.e.d.. Finally, let $\left(B, T_{1,0}(B)\right)$ be a strictly pseudoconvex $C R$ orbifold and $\theta=\left\{\theta_{\Omega}\right\}$ a pseudohermitian structure on B so that each Levi form $L_{\theta_{\Omega}}$ is positive definite, and each injection is isopseudohermitian. Consider the second
order differential operator $\Delta_{B}: \mathscr{E}(B) \rightarrow \mathscr{E}(B)$ given by $\Delta_{B} u=\square_{B} u-i n T(u)$ for any $u \in B$. Then Δ_{B} is a subelliptic operator of order $1 / 2$ on B. J. Girbau \& M. Nicolau have developed (cf. [13]) a pseudo-differential calculus on V-manifolds (inverting a given elliptic differential operator up to infinitely smoothing operators). The same problem for subelliptic operators on V-manifolds, e.g. for Δ_{B} on a $C R$ orbifold, is not solved (presumably, one needs to adapt the methods in [17]). Also, see [12], p. 493-498, for a parametrix and the regularity of \square_{M} for an ordinary strictly pseudoconvex $C R$ manifold M. The problem of building a parametrix for \square_{B} on a strictly pseudoconvex $C R$ orbifold B is open. In the next section we solve the local problem.

6. A Parametrix for \square_{Ω}

Let $\Omega \subset \boldsymbol{R}^{2 n+1}$ be a domain and $T_{1,0}(\Omega)$ a G-invariant strictly pseudoconvex $C R$ structure on Ω, for some finite group of $C R$ automorphisms $G \subset$ $A^{\prime} t_{C R}(\Omega)$. Let θ be a pseudohermitian structure on Ω so that the corresponding Levi form L_{θ} be positive definite and $\sigma^{*} \theta=a(\sigma) \theta$, for any $\sigma \in G$ and some $a(\sigma) \in(0,+\infty)$. Let $\left\{T_{\alpha}\right\}$ be an orthonormal $\left(L_{\theta}\left(T_{\alpha}, T_{\bar{\beta}}\right)=\delta_{\alpha \beta}\right)$ frame of $T_{1,0}(\Omega)$, defined everywhere in Ω. Let $(z, t)=\Theta_{x}: V_{x} \rightarrow \boldsymbol{H}_{n}$ be the pseudohermitian normal coordinates at $x \in \Omega$, determined by $\left\{T_{\alpha}\right\}$ as in section 2 , and set

$$
D:=\bigcup_{x \in \Omega}\{x\} \times V_{x}
$$

a neighborhood of the diagonal in $\Omega \times \Omega$. Next, we set $\Theta(x, y):=\Theta_{x}(y)$ and $\rho(x, y):=|\Theta(x, y)|$, for any $(x, y) \in D$. Here $|(z, t)|=\left(\|z\|^{4}+t^{2}\right)^{1 / 4}$ is the Heisenberg norm of $(z, t) \in \boldsymbol{H}_{n}$.

A function $K(x, y)$ on $\Omega \times \Omega$ is a kernel of type $\lambda(\lambda>0)$ if for any $m \in \boldsymbol{Z}$, $m>0$, one may write $K(x, y)$ as

$$
\begin{equation*}
K(x, y)=\sum_{i=1}^{N} a_{i}(x) K_{i}(x, y) b_{i}(y)+E_{m}(x, y) \tag{21}
\end{equation*}
$$

where $N \geq 1$ and 1) $E_{m} \in C_{0}^{m}(\Omega \times \Omega)$, 2) $a_{i}, b_{i} \in C_{0}^{\infty}(\Omega), 1 \leq i \leq N$, and 3$) K_{i}$ is C^{∞} away from the diagonal and is supported in $\{(x, y) \in D: \rho(x, y) \leq 1\}$ and $K_{i}(x, y)=k_{i}(\Theta(y, x))$ for $\rho(x, y)$ sufficiently small, where k_{i} is homogeneous of degree $\lambda_{i}:=\lambda-2 n-2+\mu_{i}$, i.e.

$$
k_{i}\left(\delta_{r}(z, t)\right)=r^{\lambda_{i}} k_{i}(z, t), \quad r>0,(z, t) \in \boldsymbol{H}_{n}
$$

for some $\mu_{i} \geq 0$. Also $\delta_{r}(z, t)=\left(r z, r^{2} t\right)$ is the (parabolic) dilation of factor $r>0$. Next

$$
(A f)(x)=\int_{\Omega} K(x, y) f(y) d y
$$

is an operator of type $\lambda(\lambda>0)$ if $K(x, y)$ is a kernel of type λ. Here $d y$ is short for $\omega(y):=\left(\theta \wedge(d \theta)^{n}\right)(y)$.

Set $X_{\alpha}:=T_{\alpha}+T_{\bar{\alpha}}$ and $Y_{\alpha}:=i\left(T_{\bar{\alpha}}-T_{\alpha}\right)$ and $\left\{X_{j}: 1 \leq j \leq 2 n\right\}:=\left\{X_{\alpha}, Y_{\alpha}\right\}$, where $X_{\alpha+n}=Y_{\alpha}$. Also, set

$$
\mathscr{B}_{k}=\left\{X_{j_{1}} \cdots X_{j \ell}: 1 \leq j_{s} \leq 2 n, 1 \leq s \leq \ell, 1 \leq \ell \leq k\right\}
$$

and let \mathscr{A}_{k} be the span over C of $\mathscr{B}_{k} \cup\{I\}$, where I is the identity. The Folland-Stein spaces are $S_{k}^{p}(\boldsymbol{\Omega})=\left\{f \in L^{p}(\Omega): L f \in L^{p}(\Omega), \forall L \in \mathscr{A}_{k}\right\}$ where $L f$ is intended in distributional sense. The Folland-Stein spaces are Banach spaces under the norms $\|f\|_{p, k}=\|f\|_{p}+\sum_{L \in \mathscr{B}_{k}}\|L f\|_{p}$. An important feature of the operators of type $\lambda=m \in\{1,2, \ldots\}$ is that they are bounded operators from $S_{k}^{p}(\Omega)$ to $S_{k+m}^{p}(\Omega)$ (and in this sense smoothing) for $k \in\{0,1,2, \ldots\}$ and $1<$ $p<\infty$ (cf. Theor. 15.19 in [12], p. 491). We shall prove the following result

Theorem 5. Let W_{0} be a G-invariant compact subset of Ω. For each $0<$ $q<n$ there is an operator $A_{q, \Omega}: \Gamma_{0}^{\infty}\left(\Lambda^{0, q}(\Omega)\right) \rightarrow \Gamma_{0}^{\infty}\left(\Lambda^{0, q}(\Omega)\right)$, of type 2 , so that 1) $A_{q, \Omega} \circ \square \Omega-I$ and $\square \Omega \circ A_{q, \Omega}-I$ are operators of type 1 on the G-invariant C^{∞} forms of support contained in W_{0}, and 2) $A_{q, \Omega}$ maps G-invariant forms in G-invariant forms.

A $(0, q)$-form φ on Ω may be written locally $\varphi=\varphi_{\bar{I}} \theta^{\bar{I}}$ where $I=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a multi-index and $\theta^{\bar{I}}=\theta^{\bar{\alpha}_{1}} \wedge \cdots \wedge \theta^{\bar{\alpha}_{n}}$. Since

$$
\left(\sigma^{*} \theta^{\alpha}\right)_{x}=g_{\sigma}(x)_{\beta}^{\alpha} \theta_{x}^{\beta}, \quad x \in \Omega,
$$

if φ is G-invariant (i.e. $\sigma^{*} \varphi=\varphi$ for any $\sigma \in G$) then

$$
\begin{gathered}
\varphi_{\bar{I}}(x)=g_{\sigma}(x)_{\bar{I}}^{\bar{J}} \varphi_{\bar{J}}(\sigma(x)), \quad x \in \Omega, \sigma \in G, \\
g_{\sigma}(x)_{\bar{I}}^{\bar{J}}:=g_{\sigma}(x)_{\bar{\alpha}_{1}}^{\bar{\beta}_{1}} \cdots g_{\sigma}(x)_{\bar{\alpha}_{n}}^{\bar{\beta}_{n}}, \quad J=\left(\beta_{1}, \ldots, \beta_{n}\right) .
\end{gathered}
$$

By Prop. 16.5 in [12], p. 496, for any $1 \leq q \leq n-1$ we may build an operator A_{q} of type 2 so that $I-\square \Omega A_{q}$ and $I-A_{q} \square_{\Omega}$ are operators of type 1 on forms $\varphi \in \Gamma_{0}^{\infty}\left(\Lambda^{0, q}(\Omega)\right)$ of support $\subset W_{0}$. Assuming this is done, set

$$
A_{q, \sigma} \varphi:=\sigma^{*} A_{q}\left(\sigma^{-1}\right)^{*} \varphi, \quad A_{q, \Omega}:=\frac{1}{|G|} \sum_{\sigma \in G} A_{q, \sigma} .
$$

From now on, for the sake of simplicity, we drop the index q. If φ is G-invariant then

$$
\tau^{*} A_{\sigma} \varphi=(\sigma \tau)^{*} A\left(\sigma^{-1}\right)^{*} \varphi=(\sigma \tau)^{*} A\left((\sigma \tau)^{-1}\right)^{*} \varphi
$$

i.e.

$$
\tau^{*}\left(A_{\sigma} \varphi\right)=A_{\sigma \tau} \varphi
$$

Therefore

$$
\tau^{*} A_{\Omega} \varphi=\frac{1}{|G|} \sum_{\sigma \in G} \tau^{*} A_{\sigma} \varphi=\frac{1}{|G|} \sum_{\sigma \in G} A_{\sigma \tau} \varphi=A_{\Omega} \varphi
$$

i.e. A_{Ω} maps G-invariant forms in G-invariant forms.

For each $\xi \in \Omega$ let $\delta(\xi)>0$ be fixed so that $\Psi_{\xi}: B(0, \delta(\xi)) \subset T_{\xi}(\Omega) \rightarrow \Omega$ is well defined and a diffeomorphism on its image $V_{\xi}=\Psi_{\xi}(B(0, \delta(\xi))$. Next, fix a number

$$
0<\delta_{G}(\xi) \leq \min \left(\left\{\frac{\delta(\sigma(\xi))}{\sqrt{a(\sigma)^{2}+a(\sigma)}}: \sigma \in G\right\} \cup\{\delta(\xi)\}\right)
$$

and set

$$
V_{G}(\xi):=\Psi_{\xi}\left(B\left(0, \delta_{G}(\xi)\right)\right) \subseteq V_{\xi} \subset \Omega
$$

Lemma 4. $\quad \sigma\left[V_{G}(\xi)\right] \subseteq V_{\sigma(\xi)}$.
Proof. Let $\eta \in V_{G}(\xi) \subset V_{\xi}$, i.e. there is $W+c T_{\xi} \in B\left(0, \delta_{G}(\xi)\right)$ so that $W \in H(\Omega)_{\xi}$ and $\eta=\Psi_{\xi}\left(W+c T_{\xi}\right)=\gamma_{W, c}(1)$. Thus (by Lemma 1 in section 2) $\sigma(\eta)=\left(\sigma \circ \gamma_{W, c}\right)(1)=\gamma_{W_{\sigma}, a(\sigma) c}(1)$. On the other hand

$$
\begin{aligned}
\left\|W_{\sigma}+a(\sigma) c T_{\sigma(\xi)}\right\|^{2} & =\left\|W_{\sigma}\right\|^{2}+a(\sigma)^{2} c^{2} \\
& =a(\sigma)\|W\|^{2}+a(\sigma)^{2} c^{2}<\left[a(\sigma)+a(\sigma)^{2}\right] \delta_{G}(\xi)^{2} \leq \delta(\sigma(\xi))^{2}
\end{aligned}
$$

hence $\gamma_{W_{\sigma}, a(\sigma) c}(1) \in V_{\sigma(\xi)}$.
Q.e.d..

Set

$$
D_{G}:=\bigcup_{\xi \in \Omega}\{\xi\} \times V_{G}(\xi)
$$

Let us go back to the construction of A. Consider

$$
A \varphi(\xi)=\left(\int_{\Omega} K(\xi, \eta) \varphi_{\bar{J}}(\eta) d \eta\right) \theta_{\xi}^{\bar{J}}
$$

where K is the kernel of type 2

$$
K(\xi, \eta)=\psi(\xi, \eta) \Phi_{n-2 q}(\Theta(\eta, \xi))
$$

Here $\psi(\xi, \eta)$ is a C_{0}^{∞} function on $\Omega \times \Omega$, supported in

$$
\left\{(\xi, \eta) \in D_{G}: \rho(\xi, \eta) \leq r\right\}
$$

where

$$
r:=\min \left(\left\{a(\sigma)^{1 / 2}: \sigma \in G\right\} \cup\{1\}\right)
$$

and so that $\psi(\xi, \eta)=\psi(\eta, \xi)$ and $\psi(\xi, \eta)=1$ in a neighborhood \mathcal{N} of the diagonal Δ of $W_{0} \times W_{0}(\Delta \subset \mathscr{N} \subseteq\{(\xi, \eta) \in D: \rho(\xi, \eta)<r\})$. Also Φ_{α} is the fundamental solution $\left(\mathscr{S}_{\alpha} \Phi_{\alpha}=\delta\right)$ to

$$
\begin{equation*}
\mathscr{S}_{\alpha}=-\sum_{j=1}^{n} L_{j} L_{\bar{j}}+i(\alpha-n) \frac{\partial}{\partial t}, \tag{22}
\end{equation*}
$$

(the Folland-Stein operators) where

$$
L_{j}:=\frac{\partial}{\partial z^{j}}+i \bar{z}^{j} \frac{\partial}{\partial t}
$$

(the Lewy operators) i.e.

$$
\begin{equation*}
\Phi_{\alpha}=b_{\alpha}\left(\|z\|^{2}-i t\right)^{-(n+\alpha) / 2}\left(\|z\|^{2}+i t\right)^{-(n-\alpha) / 2} \tag{23}
\end{equation*}
$$

for any $\alpha \in C \backslash\{ \pm n, \pm(n+2), \pm(n+4), \ldots\}$, where

$$
b_{\alpha}=\frac{\Gamma((n+\alpha) / 2) \Gamma((n-\alpha) / 2)}{2^{2-2 n} \pi^{n+1}}
$$

Then

$$
\begin{equation*}
A_{\sigma} \varphi(\xi)=\left(\int K(\sigma(\xi), \eta)\left(\left(\sigma^{-1}\right)^{*} \varphi\right)_{\bar{I}}(\eta) d \eta\right) \theta_{\sigma(\xi)}^{\bar{I}} \circ\left(d_{\xi} \sigma\right) \tag{24}
\end{equation*}
$$

By $\sigma^{*} \omega=a(\sigma)^{2 n+1} \omega$ and a change of coordinates $\eta^{\prime}=\sigma(\eta)$ in (24) we get

$$
A_{\sigma} \varphi(\xi)=a(\sigma)^{2 n+1}\left(\int g_{\sigma}(\xi)_{\bar{J}}^{\bar{I}} K(\sigma(\xi), \sigma(\eta)) g_{\sigma^{-1}}(\sigma(\eta))_{\bar{I}}^{\bar{L}} \varphi_{\bar{L}}(\eta) d \eta\right) \theta_{\xi}^{\bar{J}}
$$

Lemma 5. For any $(\xi, \eta) \in D_{G}$

$$
\Theta(\sigma(\xi), \sigma(\eta))=\left(g_{\sigma}(\xi)_{\alpha}^{\beta} z^{\alpha}(\eta) e_{\beta}, a(\sigma) t(\eta)\right)
$$

where $(z, t)=\Theta_{\xi}=\lambda_{\xi} \circ \Psi_{\xi}^{-1}$ are the pseudohermitian normal coordinates centered at ξ.

Proof. As $(\xi, \eta) \in D_{G}$ we have $\eta \in V_{G}(\xi)$ hence (by Lemma 4) $\sigma(\eta) \in$ $\sigma\left[V_{G}(\xi)\right] \subseteq V_{\sigma(\xi)}$ and then

$$
\Theta(\sigma(\xi), \sigma(\eta))=\Theta_{\sigma(\xi)}(\sigma(\eta))=\lambda_{\sigma(\xi)} \circ \Psi_{\sigma(\xi)}^{-1}(\sigma(\eta))
$$

makes sense. As $\eta \in V_{G}(\xi) \subseteq V_{\xi}$, set $W:=z^{\alpha}(\eta) T_{\alpha, \eta}+z^{\bar{\alpha}}(\eta) T_{\bar{\alpha}, \eta}$ and $c:=t(\eta)$. Then

$$
\begin{gathered}
\Psi_{\sigma(\xi)}\left(W_{\sigma}+c a(\sigma) T_{\sigma(\eta)}\right)=\gamma_{W_{\sigma}, c a(\sigma)}(1) \quad \text { (by Lemma 1) } \\
=\sigma\left(\gamma_{W, c}(1)\right)=\sigma\left(\Psi_{\xi}\left(W+c T_{\eta}\right)\right)=\sigma(\eta),
\end{gathered}
$$

hence

$$
\Theta(\sigma(\xi), \sigma(\eta))=\lambda_{\sigma(\xi)}\left(W_{\sigma}+c a(\sigma) T_{\sigma(\eta)}\right)
$$

Q.e.d..

For any $\sigma \in G, \sigma^{*} L_{\theta}=a(\sigma) L_{\theta}$ hence

$$
\sum_{\mu} g_{\sigma}(\eta)_{\alpha}^{\mu} g_{\sigma}(\eta)_{\bar{\beta}}^{\bar{\mu}}=a(\sigma) \delta_{\alpha \beta},
$$

i.e. $a(\sigma)^{-1 / 2} g_{\sigma}(\eta) \in U(n)$. Consequently $\left\|g_{\sigma}(\eta) z\right\|^{2}=a(\sigma)\|z\|^{2}$ and (by (23) and Lemma 5)

$$
\Phi_{n-2 q}(\boldsymbol{\Theta}(\sigma(\eta), \sigma(\xi)))=a(\sigma)^{-n} \Phi_{n-2 q}(\Theta(\eta, \xi))
$$

and we obtain

$$
\begin{aligned}
& a(\sigma)^{-n-1} A_{\sigma} \varphi(\xi) \\
& \quad=\left(\int g_{\sigma}(\xi)_{\bar{J}}^{\bar{I}} \psi_{\sigma}(\xi, \eta) \Phi_{n-2 q}(\Theta(\eta, \xi)) g_{\sigma^{-1}}(\sigma(\eta))_{\bar{I}}^{\bar{K}} \varphi_{\bar{K}}(\eta) d \eta\right) \theta_{\xi}^{\bar{J}}
\end{aligned}
$$

where $\psi_{\sigma}(\xi, \eta):=\psi(\sigma(\xi), \sigma(\eta))$. Note that $\psi_{\sigma} \in C_{0}^{\infty}$ and $\psi_{\sigma}(\xi, \eta)=\psi_{\sigma}(\eta, \xi)$. Let $\sigma^{2}:=\sigma \times \sigma$ (direct product). Set

$$
\mathscr{N}_{G}:=\bigcap_{\sigma \in G} \sigma^{2}(\mathscr{N}) \subset \mathscr{N} .
$$

As W_{0} is G-invariant $\Delta=\sigma^{2}(\Delta) \subset \sigma^{2}(\mathscr{N})$ for any $\sigma \in G$, hence \mathscr{N}_{G} is an open neighborhood of Δ. Also $\psi(\xi, \eta)=1$ on \mathscr{N} yields $\psi_{\sigma}(\xi, \eta)=1$ on \mathscr{N}_{G}.

Let $(\xi, \eta) \in D_{G}$. Then (by Lemma 5)

$$
\begin{aligned}
|\Theta(\sigma(\xi), \sigma(\eta))| & =\left|\left(g_{\sigma}(\xi) z(\eta), a(\sigma) t(\eta)\right)\right| \\
& =\left(\left\|g_{\sigma}(\xi) z(\eta)\right\|^{4}+a(\sigma)^{2} t(\eta)^{2}\right)^{1 / 4} \\
& =a(\sigma)^{1 / 2}|(z(\eta), t(\eta))|=a(\sigma)^{1 / 2}|\Theta(\xi, \eta)|
\end{aligned}
$$

that is

$$
\begin{equation*}
\rho(\sigma(\xi), \sigma(\eta))=a(\sigma)^{1 / 2} \rho(\xi, \eta) \tag{25}
\end{equation*}
$$

Let Γ and Γ_{σ} be respectively the supports of ψ and ψ_{σ}. Then $\sigma^{2}\left(\Gamma_{\sigma}\right) \subseteq$ $\Gamma \subset\left\{(\xi, \eta) \in D_{G}: \rho(\xi, \eta) \leq r\right\}$. Also (by Lemma 4) $\sigma^{-1}\left(D_{G}\right) \subseteq D$. Thus (by (25)) $\Gamma_{\sigma} \subset\{(\xi, \eta) \in D: \rho(\xi, \eta) \leq 1\}$. Then (as in [12], p. 494) we may conclude that

$$
K_{\sigma}(\xi, \eta)=\psi_{\sigma}(\xi, \eta) \Phi_{n-2 q}(\Theta(\eta, \xi))
$$

is a kernel of type 2. In general, if $K(\xi, \eta)$ is a kernel of type λ then

$$
K_{\bar{J}}^{\bar{I}}(\xi, \eta):=g_{\sigma}(\xi)_{\bar{J}}^{\bar{L}} K(\xi, \eta) g_{\sigma^{-1}}(\sigma(\eta))_{\bar{L}}^{\bar{I}}
$$

is another kernel of type λ, as it easily follows from (21). We have proved that A_{σ}, and therefore A_{Ω}, is an operator of type 2.

Set $a(G):=(1 /|G|) \sum_{\sigma \in G} a(\sigma)>0$. We wish to check that $a(G)^{-1} A_{\Omega}$ inverts \square_{Ω}. Set $B:=I-\square_{\Omega} A$. If φ is a G-invariant $(0, q)$-form then (by (7))

$$
\begin{aligned}
\square_{\Omega} A_{\Omega} \varphi(\xi) & =\frac{1}{|G|} \sum_{\sigma \in G} \square_{\Omega} \sigma^{*} A\left(\sigma^{-1}\right)^{*} \varphi(\xi) \\
& =\frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) \sigma^{*} \square_{\Omega} A \varphi(\xi)=\frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) \sigma^{*}(\varphi-B \varphi)(\xi)
\end{aligned}
$$

that is

$$
\square_{\Omega} A_{\Omega} \varphi(\xi)=a(G) \varphi(\xi)-\frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) B_{\sigma} \varphi(\xi)
$$

where $B_{\sigma}:=\sigma^{*} B\left(\sigma^{-1}\right)^{*}$. We shall prove that

Lemma 6. $\quad B_{\sigma}$ is an operator of type 1.

Proof. Set

$$
\begin{gathered}
A_{\varepsilon} \varphi(\xi):=\left(\int K_{\varepsilon}(\xi, \eta) \varphi_{\bar{J}}(\eta) d \eta\right) \theta_{\xi}^{\bar{J}}, \\
K_{\varepsilon}(\xi, \eta):=\psi(\xi, \eta) \Phi_{n-2 q}^{\varepsilon}(\boldsymbol{\Theta}(\eta, \xi)), \\
\Phi_{\alpha}^{\varepsilon}:=b_{\alpha} \rho_{\varepsilon}^{-(n+\alpha) / 2} \bar{\rho}_{\varepsilon}^{-(n-\alpha) / 2}, \quad \rho_{\varepsilon}(z, t):=\|z\|^{2}+\varepsilon^{2}-i t,
\end{gathered}
$$

for any $\varepsilon>0$. For the sake of simplicity, we only look at the case $q=1$. For any $(0,1)$-form ψ on Ω, the Kohn-Rossi laplacian is expressed by

$$
\square_{\Omega} \psi=\left\{-h^{\lambda \bar{\mu}} \nabla_{\lambda} \nabla_{\bar{\mu}} \psi_{\bar{\alpha}}-2 i \nabla_{0} \psi_{\bar{\alpha}}+\psi_{\bar{\gamma}} R_{\bar{\alpha}}^{\bar{\gamma}}\right\} \theta^{\bar{\alpha}},
$$

where $R_{\lambda \bar{\mu}}$ is the pseudohermitian Ricci tensor (cf. e.g. [10], p. 193). This may be written

$$
\left(\square_{\Omega} \psi\right)_{\bar{\alpha}}=\mathscr{L}_{n-2} \psi_{\bar{\alpha}}+\sum_{\mu=1}^{n}\left\{\Gamma_{\bar{\mu} \bar{\alpha}}^{\bar{\rho}} T_{\mu} \psi_{\bar{\rho}}+\frac{1}{2} \Gamma_{\mu \bar{\mu}}^{\bar{\rho}} T_{\bar{\rho}} \psi_{\bar{\alpha}}+\Gamma_{\mu \bar{\alpha}}^{\bar{\rho}} T_{\bar{\mu}} \psi_{\bar{\rho}}\right\}+F_{\bar{\alpha}}^{\bar{\gamma}} \psi_{\bar{\gamma}}
$$

(compare to (16.1) in [12], p. 494) for some C^{∞} functions $F_{\bar{\alpha}}^{\bar{\gamma}}$ (expressed in termes of the Christoffel symbols and their derivatives, and whose precise form is unimportant). We have (by the proof of Prop. 16.5 in [12])

$$
\sigma^{*} B\left(\sigma^{-1}\right)^{*} \varphi(\xi)=\varphi(\xi)-\sigma^{*} \square_{\Omega} A\left(\sigma^{-1}\right)^{*} \varphi(\xi)=\varphi(\xi)-\sigma^{*} \lim _{\varepsilon \rightarrow 0} \square_{\Omega} A_{\varepsilon}\left(\sigma^{-1}\right)^{*} \varphi(\xi)
$$

that is

$$
B_{\sigma} \varphi(\xi)=\varphi(\xi)-\lim _{\varepsilon \rightarrow 0} \sigma^{*} \square_{\Omega} A_{\varepsilon}\left(\sigma^{-1}\right)^{*} \varphi(\xi)
$$

hence it suffices to show that if we let $\varepsilon \rightarrow 0$ then $\sigma^{*} \square_{\Omega} A_{\varepsilon}\left(\sigma^{-1}\right)^{*} \varphi$ goes to φ plus an operator of order 1 applied to φ. We have

$$
\begin{aligned}
& \sigma^{*} \square_{\Omega} A_{\varepsilon}\left(\sigma^{-1}\right)^{*} \varphi(\xi)=\left[\square_{\Omega}\left(\int K_{\varepsilon}(\cdot, \eta)\left(\left(\sigma^{-1}\right)^{*} \varphi\right)_{\bar{\alpha}}(\eta) d \eta\right) \theta^{\bar{\alpha}}\right]_{\sigma(\xi)} \circ\left(d_{\xi} \sigma\right) \\
& \quad=g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}}\left[\mathscr{L}_{n-2} \psi_{\bar{\alpha}}+\sum_{\mu}\left\{\Gamma_{\bar{\mu} \bar{\alpha}}^{\bar{\rho}} T_{\mu} \psi_{\bar{\rho}}+\frac{1}{2} \Gamma_{\mu \bar{\mu}}^{\bar{\rho}} T_{\bar{\rho}} \psi_{\bar{\alpha}}+\Gamma_{\mu \bar{\alpha}}^{\bar{\rho}} T_{\bar{\mu}} \psi_{\bar{\rho}}\right\}+F_{\bar{\alpha}}^{\bar{\gamma}} \psi_{\bar{\gamma}}\right]_{\sigma(\xi)} \theta_{\bar{\xi}}^{\bar{\beta}}
\end{aligned}
$$

where

$$
\psi_{\bar{\alpha}}(\xi):=\int K_{\varepsilon}(\xi, \eta)\left(\left(\sigma^{-1}\right)^{*} \varphi\right)_{\bar{\alpha}}(\eta) d \eta
$$

and $\mathscr{L}_{n-2}=-\sum_{\alpha} T_{\alpha} T_{\bar{\alpha}}-2 i T$. Therefore, using

$$
\left(T_{\mu} f\right)(\sigma(\xi))=g_{\sigma^{-1}}(\sigma(\xi))_{\mu}^{\lambda} T_{\lambda}(f \circ \sigma)
$$

we get

$$
\begin{align*}
& \sigma^{*} \square_{\Omega} A_{\varepsilon}\left(\sigma^{-1}\right)^{*} \varphi(\xi)=\left\{A_{\varepsilon, \bar{\beta}}^{0} \varphi(\xi)+\sum_{\mu=1}^{n} \sum_{i=1}^{3} A_{\varepsilon, \mu \bar{\beta}}^{i} \varphi(\xi)\right\} \theta_{\xi}^{\bar{\beta}} \\
& \quad+\left(\int g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}}\left[\mathscr{L}_{n-2}^{\zeta} K_{\varepsilon}(\zeta, \eta)\right]_{\zeta=\sigma(\xi)} g_{\sigma^{-1}}(\eta)_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}\left(\sigma^{-1}(\eta)\right) d \eta\right) \theta_{\xi}^{\bar{\beta}} \tag{26}
\end{align*}
$$

where

$$
\begin{gathered}
A_{\varepsilon, \bar{\beta}}^{0} \varphi(\xi)=g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} F_{\bar{\alpha}}^{\bar{\gamma}}(\sigma(\xi)) \int K_{\varepsilon}(\sigma(\xi), \eta) g_{\sigma^{-1}}(\eta)_{\bar{\gamma}}^{\bar{\rho}} \varphi_{\bar{\rho}}\left(\sigma^{-1}(\eta)\right) d \eta, \\
A_{\varepsilon, \mu \bar{\beta}}^{1} \varphi(\xi)=g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \Gamma_{\bar{\mu} \bar{\alpha}}^{\bar{\rho}}(\sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))_{\mu}^{\lambda} \int\left[T_{\lambda}^{\xi} K_{\varepsilon}(\sigma(\xi), \eta)\right] g_{\sigma^{-1}}(\eta)_{\overline{\bar{\gamma}}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}\left(\sigma^{-1}(\eta)\right) d \eta, \\
A_{\varepsilon, \mu \bar{\beta}}^{2} \varphi(\xi)=\frac{1}{2} g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \Gamma_{\mu \bar{\mu}}^{\bar{\rho}}(\sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))_{\overline{\bar{\beta}}}^{\bar{\lambda}} \int\left[T_{\bar{\lambda}}^{\xi} K_{\varepsilon}(\sigma(\xi), \eta)\right] g_{\sigma^{-1}}(\eta)_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}\left(\sigma^{-1}(\eta)\right) d \eta, \\
A_{\varepsilon, \mu \bar{\beta}}^{3} \varphi(\xi)=g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \Gamma_{\mu \bar{\alpha}}^{\bar{\mu}}(\sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))_{\bar{\mu}}^{\bar{\lambda}} \int\left[T_{\bar{\lambda}}^{\xi} K_{\varepsilon}(\sigma(\xi), \eta)\right] g_{\sigma^{-1}}(\eta)_{\bar{\rho}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}\left(\sigma^{-1}(\eta)\right) d \eta .
\end{gathered}
$$

Clearly $A_{\varepsilon, \bar{\beta}}^{0}$ gives, in the limit as $\varepsilon \rightarrow 0$, an operator of type 2 (and hence of type 1). We claim that $A_{\varepsilon, \mu \bar{\beta}}^{i}$ give (as $\varepsilon \rightarrow 0$) operators of type 1 , as well. For instance, let us look at $A_{\varepsilon, \mu \bar{\beta}}^{1}$ (the remaining operators may be treated in a similar manner). Note that

$$
\begin{equation*}
\Phi_{\alpha}^{\varepsilon}(\Theta(\sigma(\eta), \sigma(\xi)))=a(\sigma)^{-n} \Phi_{\alpha}^{\varepsilon / \sqrt{a(\sigma)}}(\Theta(\eta, \xi)) \tag{27}
\end{equation*}
$$

Indeed (by Lemma 5)

$$
\begin{aligned}
\rho_{\varepsilon}\left(g_{\sigma}(\eta) z(\xi), a(\sigma) t(\xi)\right) & =a(\sigma)\|z(\xi)\|^{2}+\varepsilon^{2}-i a(\sigma) t(\xi) \\
& =a(\sigma) \rho_{\varepsilon / \sqrt{a(\sigma)}}(z(\xi), t(\xi))
\end{aligned}
$$

Consequently

$$
K_{\varepsilon}(\sigma(\xi), \sigma(\eta))=a(\sigma)^{-n} \psi_{\sigma}(\xi, \eta) \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}(\Theta(\eta, \xi))
$$

and a change of variables $\eta^{\prime}=\sigma^{-1}(\eta)$ leads to

$$
\begin{aligned}
A_{\varepsilon, \mu \bar{\beta}}^{1} \varphi(\xi)= & \left.a(\sigma)^{n+1} g_{\sigma}(\xi)\right)_{\bar{\beta}}^{\bar{\alpha}} \Gamma_{\bar{\mu} \bar{\alpha}}^{\bar{\rho}}(\sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))_{\mu}^{\lambda} \\
& \cdot \int T_{\lambda}^{\xi}\left[\psi_{\sigma}(\xi, \eta) \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}(\Theta(\eta, \xi))\right] g_{\sigma^{-1}}(\sigma(\eta))_{\bar{\rho}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\eta) d \eta
\end{aligned}
$$

which goes, as $\varepsilon \rightarrow 0$, to

$$
\left.\left.\begin{array}{l}
a(\sigma)^{n+1} g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \Gamma_{\bar{\mu} \bar{\chi}}^{\bar{\rho}}(\sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))_{\mu}^{\lambda} \\
\quad \cdot T_{\lambda}^{\xi}[
\end{array}\right] \int_{\sigma}(\xi, \eta) \Psi_{n-2}(\Theta(\eta, \xi)) g_{\sigma^{-1}}(\sigma(\eta))_{\bar{\rho}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\eta) d \eta\right] .
$$

As previously shown, $\psi_{\sigma}(\xi, \eta) \Phi_{n-2}(\Theta(\eta, \xi))$ is a kernel of type 2 ; yet, by Prop. 15.14 in [12], p. 487, for any operator A of type $2, T_{\lambda} A$ is an operator of type 1 , hence the claim is proved.

To deal with the last term in (26) we write

$$
\begin{align*}
\mathscr{L}_{n-2}^{\zeta} K_{\varepsilon}(\zeta, \eta)= & {\left[\mathscr{L}_{n-2}^{\zeta} \psi(\zeta, \eta)\right] \Phi_{n-2}^{\varepsilon}(\Theta(\eta, \zeta))+\psi(\zeta, \eta) \mathscr{L}_{n-2}^{\zeta}\left[\Phi_{n-2}^{\varepsilon}(\Theta(\eta, \zeta))\right] } \\
& -\frac{1}{2} \sum_{\alpha=1}^{n}\left\{\left[T_{\alpha}^{\zeta} \psi(\zeta, \eta)\right] T_{\bar{\alpha}}^{\zeta}\left[\Phi_{n-2}^{\varepsilon}(\Theta(\eta, \zeta))\right]\right. \\
& \left.+\left[T_{\bar{\alpha}}^{\zeta} \psi(\zeta, \eta)\right] T_{\alpha}^{\zeta}\left[\Phi_{n-2}^{\varepsilon}(\Theta(\eta, \zeta))\right]\right\} \tag{28}
\end{align*}
$$

The first term on the right hand side of (28), when substituted into (26), leads (as $\varepsilon \rightarrow 0)$ to an operator of order 1 applied to φ. We need to recall the notion of Heisenberg-type order. A function $f(\xi, y)$ on $\Omega \times \boldsymbol{H}_{n}$ is of order $O^{k}, k=1,2, \ldots$, if $f \in C^{\infty}$ and for any compact set $K \subset \Omega$ there is a constant $C_{K}>0$ so that $|f(\xi, y)| \leq C_{K}|y|^{k}$ (Heisenberg norm). If $(z, t)=\Theta_{\xi}^{-1}$ are pseudohermitian normal coordinates at ξ then (cf. Theor. 4.3 in [14], p. 177, a refinement of Theor. 14.10 and Corollary 14.9 in [12], p. 475)

$$
\left(\Theta_{\xi}^{-1}\right)_{*} T_{\alpha}=\frac{\partial}{\partial z^{\alpha}}+i \bar{z}^{\alpha} \frac{\partial}{\partial t}+O^{1} \mathscr{E}\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}}\right)+O^{2} \mathscr{E}\left(\frac{\partial}{\partial t}\right),
$$

where $O^{k} \mathscr{E}$ denotes an operator involving linear combinations of the indicated derivatives, with O^{k} coefficients. Similarly, $\left(\Theta_{\xi}^{-1}\right)_{*} \mathscr{L}_{n-2}$ is the operator \mathscr{S}_{n-2} (given by (22) with $\alpha=n-2$) plus higher (Heisenberg-type) order terms.

Let $\delta(\xi, \eta)$ be the distribution on $\Omega \times \Omega$ defined by

$$
\int \delta(\xi, \eta) f(\xi) g(\eta) d \xi d \eta=\int f(\xi) g(\xi) d \xi
$$

As to the second term in the right hand side of (28), when substituted into (26), it gives an integral operator applied to φ, which goes to φ for $\varepsilon \rightarrow 0$, as desired. Indeed

$$
\lim _{\varepsilon \rightarrow 0} \int g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \psi(\sigma(\xi), \eta) \mathscr{L}_{n-2}^{\zeta}\left[\Phi_{n-2}^{\varepsilon}(\Theta(\eta, \zeta))\right]_{\zeta=\sigma(\xi)} g_{\sigma^{-1}}(\eta)_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}\left(\sigma^{-1}(\eta)\right) d \eta
$$

is, up to higher order terms [leading to first order operators applied to φ (cf. also [12], p. 495)]

$$
\begin{aligned}
& \int g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \psi(\sigma(\xi), \eta)\left[\mathscr{S}_{n-2} \Phi_{n-2}\right](\Theta(\eta, \sigma(\xi))) g_{\sigma^{-1}}(\eta)_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}\left(\sigma^{-1}(\eta)\right) d \eta \\
& \quad=\int g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \psi(\sigma(\xi), \eta) \delta(\sigma(\xi), \eta) g_{\sigma^{-1}}(\eta)_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}\left(\sigma^{-1}(\eta)\right) d \eta \\
& \quad=g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \psi(\sigma(\xi), \sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\xi)=\delta_{\beta}^{\gamma} \psi_{\sigma}(\xi, \xi) \varphi_{\bar{\gamma}}(\xi)=\varphi_{\bar{\beta}}(\xi)
\end{aligned}
$$

Q.e.d.. Finally, we deal with the third term in the right hand side of (28) (the fourth term may be dealt with in a similar way). It may be written (at $\zeta=\sigma(\xi))$ as

$$
g_{\sigma^{-1}}(\sigma(\xi))_{\alpha}^{\beta} g_{\sigma^{-1}}(\sigma(\xi))_{\bar{\alpha}}^{\bar{\gamma}} T_{\beta}^{\xi}[\psi(\sigma(\xi), \eta)] T_{\bar{\gamma}}^{\xi}\left[\Phi_{n-2}^{\varepsilon}(\Theta(\eta, \sigma(\xi))]\right.
$$

hence the corresponding integral is (after a change of variable)

$$
\begin{gathered}
a(\sigma)^{n+1} \sum_{\rho} \int g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} g_{\sigma^{-1}}(\sigma(\xi))_{\rho}^{\lambda} g_{\sigma^{-1}}(\sigma(\xi))_{\bar{\rho}}^{\bar{\mu}} T_{\lambda}^{\xi}\left[\psi_{\sigma}(\xi, \eta)\right] \\
\cdot T_{\bar{\mu}}^{\xi}\left[\Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}(\Theta(\eta, \xi))\right] g_{\sigma^{-1}}(\sigma(\eta))_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\eta) d \eta
\end{gathered}
$$

Set $\psi_{\lambda, \sigma}(\xi, \eta):=T_{\lambda}^{\xi}\left[\psi_{\sigma}(\xi, \eta)\right]$ and note that $\psi_{\lambda, \sigma} \in C_{0}^{\infty}$ and (as T_{λ} is a differential operator) $\operatorname{Supp}\left(\psi_{\lambda, \sigma}\right) \subset \operatorname{Supp}\left(\psi_{\sigma}\right) \subset\{(\xi, \eta) \in D: \rho(\xi, \eta) \leq 1\}$. The following result completes the proof

Lemma 7

$$
\begin{equation*}
\int \psi_{\lambda, \sigma}(\xi, \eta) T_{\bar{\xi}}^{\xi}\left[\Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}(\Theta(\eta, \xi))\right] g_{\sigma^{-1}}(\sigma(\eta))_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\eta) d \eta \tag{29}
\end{equation*}
$$

goes, as $\varepsilon \rightarrow 0$, to an operator of order 1 applied to φ.
Proof. The kernel of the operator (29) is

$$
\begin{aligned}
T_{\bar{\mu}}^{\xi}\left[\Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}(\Theta(\eta, \xi))\right]= & {\left[\left(d_{\xi} \Theta_{\eta}\right) T_{\bar{\mu}, \xi}\right]\left(\Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}\right) } \\
= & {\left[L_{\bar{\mu}}+O^{1} \mathscr{E}\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \bar{z}}\right)+O^{2} \mathscr{E}\left(\frac{\partial}{\partial t}\right)\right]_{\Theta_{\eta}(\xi)}\left(\Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}\right) } \\
= & -2\left(z^{\mu} \bar{\rho}_{\varepsilon / \sqrt{a(\sigma)}}^{-1} \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}\right)_{\Theta_{\eta}(\xi)}+\sum_{\lambda} O^{1}\left(\bar{z}^{\lambda} f_{\varepsilon} \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}\right)\left(\Theta_{\eta}(\xi)\right) \\
& +\sum_{\lambda} O^{1}\left(z^{\lambda} f_{\varepsilon} \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}\right)\left(\Theta_{\eta}(\xi)\right)+O^{2}\left(i f_{\varepsilon} \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}\right)\left(\Theta_{\eta}(\xi)\right)
\end{aligned}
$$

where

$$
f_{\varepsilon}:=-\bar{\rho}_{\varepsilon / \sqrt{a(\sigma)}}^{-1}-(n-1) \rho_{\varepsilon / \sqrt{a(\sigma)}}^{-1} .
$$

The Heisenberg group carries the contact form

$$
\theta_{0}=d t+2 \sum_{j}\left(x^{j} d y^{j}-y^{j} d x^{j}\right)
$$

$z^{j}=x^{j}+i y^{j}$. Let $d V=\theta_{0} \wedge\left(d \theta_{0}\right)^{n}$ be the natural volume form on \boldsymbol{H}_{n}. Set $h:=\Theta_{\xi}^{-1}$. Note that $\Theta(h(u), \xi)=-\Theta_{\xi}(h(u))=-u$. Also

$$
\left(h^{*} \omega\right)(u)=\left(1+O^{1}\right) d V(u)
$$

(cf. again Theor. 4.3 in [14], p. 177). Then

$$
\begin{aligned}
& \int_{\Omega} \psi_{\lambda, \sigma}(\xi, \eta)\left(z^{\mu} \bar{\rho}_{\varepsilon / \sqrt{a(\sigma)}}^{-1} \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}\right)(\Theta(\eta, \xi)) g_{\sigma^{-1}}(\sigma(\eta))_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\eta) d \eta \\
&= \int_{\boldsymbol{H}_{n}} \psi_{\lambda, \sigma}(\xi, h(u))\left(z^{\mu}(u) \bar{\rho}_{\varepsilon / \sqrt{a(\sigma)}}(u)^{-1} \Phi_{n-2}^{\varepsilon / \sqrt{a(\sigma)}}(u)\right. \\
& \cdot g_{\sigma^{-1}}(\sigma(h(u))) \varphi_{\bar{\gamma}}(h(u))\left(1+O^{1}\right) d V(u) \\
&= \varepsilon^{-2 n-2} \int \psi_{\lambda, \sigma}(\xi, h(u)) z^{\mu}(u) \frac{\Phi_{n-2}^{1}\left(\varepsilon^{-1} u\right)}{\bar{\rho}_{1}\left(\varepsilon^{-1} u\right)} \\
& \quad \cdot g_{\sigma^{-1}}(\sigma(h(u))) \varphi_{\bar{\gamma}}(h(u))\left(1+O^{1}\right) d V(u)
\end{aligned}
$$

where $\varepsilon^{-1} u$ is short for $\delta_{\varepsilon^{-1}} u$. A change of variable $v=\varepsilon^{-1} u$ gives (as $d V(u)=$ $\left.\varepsilon^{2 n+2} d V(v)\right)$

$$
\varepsilon \int \psi_{\lambda, \sigma}(\xi, h(\varepsilon v)) z^{\mu}(v) \frac{\Phi_{n-2}^{1}(v)}{\bar{\rho}_{1}(v)} \cdot g_{\sigma^{-1}}(\sigma(h(\varepsilon v))) \varphi_{\bar{\gamma}}(h(\varepsilon v))\left(1+O^{1}(\varepsilon v)\right) d V(v) .
$$

The absolute value of this integral may be estimated by above by

$$
\varepsilon \sup _{\rho(\xi, \eta) \leq 1}\left[\psi_{\lambda, \sigma}(\xi, \eta) g_{\sigma^{-1}}(\sigma(\eta)) \varphi_{\bar{\gamma}}(\eta)\right] \int_{|v| \leq 1} z^{\mu}(v)\left|\frac{\Phi_{n-2}^{1}(v)}{\bar{\rho}_{1}(v)}\right|(1+\varepsilon|v|) d V(v)
$$

which goes to zero, as $\varepsilon \rightarrow 0$. Moreover, in the limit, the O^{1} and O^{2} terms are

$$
\sum_{\lambda} O^{1}\left(\bar{z}^{\lambda} f \Phi_{n-2}\right)\left(\Theta_{\eta}(\xi)\right)+\sum_{\lambda} O^{1}\left(z^{\lambda} f \Phi_{n-2}\right)\left(\Theta_{\eta}(\xi)\right)+O^{2}\left(f \Phi_{n-2}\right)\left(\Theta_{\eta}(\xi)\right)
$$

where $f(z, t)=-\left[n\|z\|^{2}+(n-2) i t\right] /\left[\|z\|^{4}+t^{2}\right]$. Note that $|f(y)| \leq C_{n}|y|^{-2}$ hence $O^{1} \bar{z}^{\lambda} f, O^{1} z^{\lambda} f$ and $O^{2} f$ are bounded. Now, for instance, let us look at $k(y)=\left(O^{1} \bar{z}^{\lambda} f \Phi_{n-2}\right)(y)$ (the discussion of the remaining terms is similar). First, note that $\bar{z}^{\lambda} f \Phi_{n-2}$ is homogeneous of degree $-2 n-1$, with respect to dilations. The Taylor series expansion (about $0=\Theta_{\eta}(\eta)$) of the O^{1} coefficients is a sum of homogeneous terms of degree at least 1 (with coefficients depending on η) plus a remainder of arbitrarily high order, hence the 'principal part' of $k(y)$ is homogeneous of degree $-2 n$. Therefore $k(\Theta(\eta, \xi))$ is a kernel of type 1. Q.e.d..

To end the proof of Theorem 5, we shall show that $A_{\Omega} \square_{\Omega}-a(G) I$ is an operator of type 1 . First, note that A_{σ}, and then A_{Ω}, is symmetric. Indeed, for any two $(0,1)$-forms φ and ψ

$$
\left(A_{\sigma} \varphi, \psi\right)=a(\sigma)^{2 n+1} \int g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} K(\sigma(\xi), \sigma(\eta)) g_{\sigma^{-1}}(\sigma(\eta))_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\eta) \psi^{\bar{\beta}}(\xi) d \eta d \xi
$$

As $\Phi_{\alpha}(-y)=\overline{\Phi_{\bar{\alpha}}(y)}$, it follows that $\overline{K(\sigma(\xi), \sigma(\eta))}=K(\sigma(\eta), \sigma(\xi))$. Hence

$$
\begin{aligned}
\left(A_{\sigma}^{*} \psi\right)_{\bar{\mu}}(\eta) & =a(\sigma)^{2 n+1} h_{\gamma \bar{\mu}}(\eta) \int g_{\sigma^{-1}}(\sigma(\eta))_{\alpha}^{\gamma} K(\sigma(\eta), \sigma(\xi)) g_{\sigma}(\xi)_{\beta}^{\alpha} \psi^{\beta}(\xi) d \xi \\
& =a(\sigma)^{2 n} \int g_{\sigma}(\eta)_{\bar{\mu}}^{\bar{\lambda}} h_{\alpha \bar{\lambda}}(\eta) K(\sigma(\eta), \sigma(\xi)) g_{\sigma}(\xi)_{\beta}^{\alpha} \psi^{\beta}(\xi) d \xi \\
& =a(\sigma)^{2 n+1} \int g_{\sigma}(\eta)_{\bar{\mu}}^{\bar{\lambda}} h_{\alpha \bar{\lambda}}(\eta) K(\sigma(\eta), \sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))_{\bar{\beta}}^{\bar{\gamma}} h^{\alpha \bar{\beta}}(\xi) \psi_{\bar{\gamma}}(\xi) d \xi
\end{aligned}
$$

Finally (as $\left.h_{\alpha \bar{\beta}}=\delta_{\alpha \beta}\right)$

$$
\left(A_{\sigma}^{*} \psi\right)_{\bar{\mu}}=\left(A_{\sigma} \psi\right)_{\bar{\mu}}
$$

q.e.d.. Moreover, \square_{Ω} is symmetric on compactly supported forms hence

$$
A_{\Omega} \square_{\Omega} \psi=a(G) \psi-\frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) B_{\sigma}^{*} \psi
$$

and the transpose of B_{σ} (an operator of type 1) is again of type 1.

References

[1] W. L. Baily, Jr., On the imbedding of V-manifolds in projective space, American J. Math., 73 (1957), 403-430.
[2] W. L. Baily, Jr., Satake's compactification of V_{n}, American J. Math., 80 (1958), 348-364.
[3] W. L. Baily, Jr., The decomposition theorem for V-manifolds, American J. Math., 76 (1965), 862-888.
[4] A. Boggess, $C R$ manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton-Ann Arbor-Boston-London, 1991.
[5] J. E. Borzellino, Orbifolds of maximal diameter, Indiana Univ. Math. J., (1) 42 (1993), 37-53.
[6] M. Carlotti, Coomologia di de Rham sulle V-varietà Riemanniane complete, Università di Pisa, preprint, 1990.
[7] M. Carlotti, V-manifold maps and the inverse mapping theorem, Rendiconti del Circolo Matem. di Palermo, XLI (1992), 325-341.
[8] Yuan-Jen Chiang, Harmonic maps of V-manifolds, Ann. Global Anal. Geom., (3) 8 (1990), 315-344.
[9] B. Coupet \& A. Sukhov, On the uniform extendibility of proper holomorphic mappings, Complex variables, 28 (1996), 243-248.
[10] S. Dragomir, On pseudohermitian immersions between strictly pseudoconvex $C R$ manifolds, American J. Math., (1) 117 (1995), 169-202.
[11] G. B. Folland, A fundamental solution for a subelliptic operator, Bull. A.M.S., (2) 79 (1973), 373-376.
[12] G. B. Folland \& E. M. Stein, Estimates for the $\bar{\partial}_{b}$-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429-522.
[13] J. Girbau \& M. Nicolau, Pseudo-differential operators on V-manifolds and foliations, I-II, Collectanea Mathem., 30 (1979), 247-265, ibid., 31 (1980), 63-95.
[14] D. Jerison \& J. M. Lee, The Yamabe problem on CR manifolds, J. Diff. Geometry, 25 (1987), 167-197.
[15] D. Jerison \& J. M. Lee, $C R$ normal coordinates and the Yamabe problem, J. Diff. Geometry, 29 (1989), 303-344.
[16] Liang-Khoon Koh, Ricci curvature and ends of Riemannian orbifolds, Mathematika, 45 (1998), 135-144.
[17] A. Nagel \& E. M. Stein, Lectures on pseudo-differential operators, Princeton University Press, Princeton, New Jersey, 1979.
[18] G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 31-43.
[19] I. Satake, On Siegel's modular functions, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo-Nikko, 1955.
[20] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359-363.
[21] I. Satake, On the compactification of the Siegel space, Journal of the Indian Math. Society, 20 (1956), 259-281
[22] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, (4) 9 (1957), 464492.
[23] T. Shioya, Eigenvalues and suspension structure of compact Riemannian orbifolds with positive Ricci curvature, Manuscripta Math., 99 (1999), 509-516.
[24] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book Store Co., Ltd., Kyoto, 1975.
[25] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geometry, 13 (1978), 25-41.

Author's address
Università degli Studi della Basilicata
Dipartimento di Matematica
Contrada Macchia Romana
85100 Potenza, Italia

[^0]: * Assegno biennale di ricerca-Università degli Studi della Basilicata, Potenza, Italy.
 ${ }^{1}$ Key words: complex orbifold, V-holomorphic function, CR orbifold, Kohn-Rossi operator, parametrix.
 ${ }^{2}$ AMS Subject classification: 32V20, 53C56, 58A99.
 Received March 21, 2001.
 Revised August 9, 2001.

