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CAUCHY-RIEMANN ORBIFOLDS

By

Sorin DrRaGOMIR and Jun MASAMUNE*

Abstract. For any CR orbifold! B, of CR dimension n, we build a
vector bundle (in the sense of J. Girbau & M. Nicolau, [13]) T} ¢(B)
over B, so that Tj(B), ~ C"/G, at any singular point p = ¢(x) € B
(and the portion of Tj ¢(B) over the regular part of B is an ordinary
CR structure), hence study the tangential Cauchy-Riemann equations
on orbifolds. As an application, we build a two-sided parametrix for
the Kohn-Rossi laplacian [Jg (on the domain Q of a local uni-
formizing system {Q, G, ¢} of B) inverting [Jg over the G-invariant
(0,¢9)-forms (1 <g<n-—1) up to (smoothing) operators of type 1
(in the sense’* of G. B. Folland & E. M. Stein, [12]).

1. Introduction

An N-dimensional orbifold (or F-manifold, cf. 1. Satake, [20], to whom
the notion is due) is a Hausdorff space B looking locally like a quotient of
(an open set in) the Euclidean space, by the action of some finite group of C*
diffeomorphisms (cf. [1]-[3], [7], [19]-[22]). That is, each point p € B admits a
neighborhood U which is uniformized by a domain Q < R"Y and a continuous
map ¢:Q — U, in the sense that there is a finite subgroup G < Diff “(Q) so
that ¢ is G-invariant and factors to a homeomorphism Q/G ~ U. Such (local)
uniformizing systems {Q, G, ¢} (shortly l.u.s.’s) play the role of local coordinate
charts in manifold theory, and as well as for ordinary manifolds, are required to
agree smoothly on overlaps: if pe U'NV and {Q',G’,¢'}, {D, H,y} uniformize
U’, V respectively, then there is a neighborhood U = U’ NV of p uniformized by
some {Q, G,¢}, and an injection 1:Q — Q' i.e. a smooth map which is a C*
diffeomorphism on some open subset of Q' and satisfies ¢’ o 2 = ¢. This being the
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case, various G-structures of current use in differential geometry, such as Rie-
mannian metrics, complex structures, etc., may be prescribed on orbifolds, by
merely assigning an ordinary G-structure to Q, for each lus. {Q, G, ¢}, and
requiring that injections preserve these (local) G-structures (cf. [5], [8], [16], [23]).
For instance, if B is a (2n + k)-dimensional orbifold, whose V-manifold structure
is described by some fixed family of l.u.s.’s o7, then a CR structure on B is a set

{TI,O(Q) : {Qa G7 (ﬁ} € ‘Q{} (1)

where T7)0(Q) is a CR structure (of type (n,k)) on Q and each injection
2:Q— Q" is a CR map (ie. (dv2)T10(Q), S T1,0(Q");), ¥€Q). A CR struc-
ture (1) on B is easily seen to be a vector bundle over B, in the sense of W. L.

Baily, [3], p. 863, i.e. there is a group monomorphism
hq : G — Hom(T1,0(R2), T1,0(€2))
for each Lus. {Q,G,p} € o/, and a bundle map
A" T1o(Q) ) — T0(Q)

for each injection 4:Q — Q' so that 1) hg(0)7T1,0(Q), = T1,0(),-1(y), X€Q, 2)
hao(a)o A" =2 ohg(n(s)), ce G, and 3) (uoA)" = A" ou*, for any pair of
injections A:Q — Q" and u: Q' — Q", where #: G — G' is a natural group
monomorphism associated with A4 (cf. our section 3). Indeed, hq(o), :=do7!,
o€ G, xeQ, respectively 1*(v') = (dygu)v’, v' € TLO(Q’)W), x e Q, where u:=
(A:Q— AQ))"", satisfy the requirements (1) to (3) (each o € G is in particular
an injection, hence G = Autcr(Q)). One may proceed to define CR functions as
continuous functions f : B— C for which each fo := fop:Q — C is smooth
and

dofa =0 (2)

in Q, where Jq is the tangential Cauchy-Riemann operator on (Q, T} o(Q)).
The equations (2) may then be referred to as the tangential Cauchy-Riemann
equations on (the CR orbifold) B and it appears that a satisfactory scheme for
recovering CR geometry and analysis, on F-manifolds, has been devised.

The weakness of this approach consists in the lack of relationship between
the G-structure (here CR structure) so assigned to B and its singular locus. A
point p € B is singular if it admits a neighborhood U, uniformized by some l.u.s.
{Q,G,p} for which a point x € Q with nontrivial isotropy group (ie. G, :=
{o€G:0(x) =x} #{la}) and lying over p (i.e. ¢(x) =p) may be found. If X
is the set of all singular points of B (its singular locus) then B, := B\Z is an



Cauchy-Riemann Orbifolds 353

ordinary CR manifold. Although ¥ has a quite simple local structure (locally, it
is a finite union of real algebraic CR submanifolds) there is no obvious rela-
tionship between 7 () and S :={xeQ: G, # {la}}, and generally speaking,
expressions such as the behaviour of the CR structure Tj (B,,) (a bundle over
B\X), or of a CR function f € CR*(B,), near X, lack a precise meaning. To
ask a more concrete question, given a CR orbifold B, can one construct a
‘bundle’ Tj (B) over the whole of B so that T ((B) By = T1,0(Bry) and the
fibres T o(B), reflect the nature of p (i.e. whether p is singular or regular)? In
other words, can one write a set of equations on B reducing to the ordinary

Cauchy-Riemann equations égm f =0 on the regular part of B, and exhibiting
at X a feature related to the nature of X?

The scope of the present paper is to answer some fundamental questions
of this sort, i.e. regarding (the Cauchy-Riemann equations on) CR orbifolds.
Precisely, for each CR orbifold B, we build a bundle T} ¢(B) — B in the sense
of J. Girbau & M. Nicolau, [13], p. 257-259, so that

Ti0(B)~ C"/Gy, p=g(x)eB, (3)

a bijection (hence when peZX, T)(B), is not even a vector space) and

TLO(B)[) = Tl,o(Bn,g)p for any pe B\X. IC/[oreover, by adapting (from real to
complex geometry) an ideea of I. Satake, [22], p. 473, who observed that
G-invariant tangent vectors at x € Q give rise, in our context, to a subset of
T1,0(B), depending only on p = ¢(x) and possessing a C-linear space structure,
we are led to the equations

n

> L), =0, (4)
=1
feC?(Q), xeQ, (= ....("e ﬂaer Ker[g,(x) — I,,], where {L,} is a frame
of T1,(Q), which may be thought of w.l.o.g. as being defined on the whole of
Q, and g,(x) € GL(n,C) is given by

(dv0) Loy = go(X)P Ly 50y, x Q.

Clearly (4) reduces to (2) in Q\S; we show that for each singular point x € S
there is a neighborhood D of x in Q and an algebraic CR submanifold Fy <
SN D so that each smooth solution f of (4) is a CR function on F,.

Any (smooth) function f:B — C gives rise to a G-invariant function
fo:=fop on Q. In general, a (geometric) object prescribed on (each) Q must
be preserved by injections, hence by each &€ G, hence it is G-invariant.
Therefore, another fundamental feature of any attempt to recover known facts
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from CR geometry (on CR orbifolds) is, locally, to prove G-invariant analogues
of the facts of interest. In view of [3] (which uses a G-average of a funda-
mental solution of an elliptic operator to prove a Kodaira-Hodge-de Rham
decomposition theorem on FV-manifolds) this part of the task is rather well
understood. To illustrate this line of thought, given a domain Q in R**! carrying
a G-invariant strictly pseudoconvex CR structure 77 ¢(Q) and a pseudohermi-
tian structure 0 so that G consists of pseudohermitian transformations of (Q,0),
we build a two-sided parametrix inverting the Kohn-Rossi operator [Jo on
the G-invariant forms of degree 0 < ¢ <n— 1, up to operators of type 1, cf.
[12]; these are smoothing, in the sense that they are bounded operators
S/ (Q) — 87, ,(Q) of Folland-Stein spaces. Our methods in section 6 resemble
closely those in [3], p. 870-874, and [13], p. 71-74.

The paper is organized as follows. In section 2 we recall the material we need
as to CR manifolds and pseudohermitian geometry. In section 3 we discuss the
case of complex orbifolds (CR codimension k = 0), the local structure of their
singular locus, and V-holomorphic functions. Sections 4 and 5 are devoted to CR
orbifolds of CR codimension 1 (certain local aspects are examined in section 4).
In section 6 we prove our main result (inverting the Kohn-Rossi operator over
the G-invariant forms).

The Authors are grateful to the Referee whose suggestions improved the
original form of the manuscript.

2. CR Geometry

In this section we discuss basic notions such as pseudohermitian struc-
tures, the Levi form (of a CR manifold of hypersurface type), and pseudo-
hermitian transformations. The main tool is the Tanaka-Webster connection (of
a nondegenerate CR manifold endowed with a contact form) and the corre-
sponding parabolic exponential map (leading to a choice of pseudohermitian
normal coordinates at each point of the given CR manifold). The notion is due
to D. Jerison & J. M. Lee, [15]; Lemma 1 is however new.

Let (M, T 0(M)) be a CR manifold, of type (n,1), i.e. of CR dimension
n and CR codimension 1 (cf. e.g. [4], p. 120). The maximally complex (or Levi)
distribution of M

H(M) = Re{TLO(M) @ To,l(M)}
carries the complex structure

J(Z—FZ):i(Z—Z), Z e TL’()(M),
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where i =+/—1. Here Ty (M) =T;o(M) and an overbar denotes complex
conjugation. If M is oriented then the conormal bundle H(M)" :={we T*(M):
Ker(w) > H(M)} (a line bundle over M) is trivial, and each global nowhere
zero section 0 e T*(H(M)") is a pseudohermitian structure on M. Given two
pseudohermitian structures @ and @ there is a unique C* function u : M — R\{0}
so that = u0. The Levi form is

Ly(Z, W) = —i(d0)(Z, W), Z,W e T o(M).

A CR manifold is nondegenerate (respectively strictly pseudoconvex) if Ly is
nondegenerate (respectively positive-definite) for some 6.

A C* map f: M — N of CR manifolds is a CR map if (d.f)T10(M), =
T1,0(N)y(y), for any xe M. A CR isomorphism is a C* diffeomorphism and a
CR map, and Autcgr(M) is the group of all CR isomorphisms of M in itself. A
pseudohermitian transformation is a CR isomorphism between two CR manifolds
M, N on which pseudohermitian structures 0, 0y have been fixed, so that f*0y =
a(f)0, for some a(f)e R\{0}. If a(f) =1 then f is isopseudohermitian.

Let M be a nondegenerate CR manifold. Then any pseudohermitian
structure 0 is a contact form on M, ie. O A (df)" is a volume form on M.
Once a contact form 6 has been fixed, there is a globally defined nowhere zero
vector field 7 on M, transverse to H(M), determined by 6(7) =1 and T | d6 =
0 (the characteristic direction of (M,0)). Let ny : T(M) — H(M) be the pro-
jection associated with the direct sum decomposition T(M) = H(M) ® RT, i..
np(X): =X —0(X)T. The Webster metric is the semi-Riemannian (i.e. non-
degenerate, of constant index) metric

go(X,Y) = (dO)(zu X, ngY) + 0(X)0(Y), X,YeT(M).

If (r,s) is the signature of the Levi form (r+s=mn) then gy has signature
(2r+1,2s).

By a result of N. Tanaka, [24], and S. Webster, [25], for any non-
degenerate CR manifold, on which a contact form 6 has been fixed, there is
a unique linear connection V (the Tanaka-Webster connection of (M,0)) so that
1) H(M) is parallel with respect to V, 2) VJ =0 and Vgy =0, 3) Ty(Z, W) =0
and Ty(Z, W) = 2iLy(Z, W)T, for any Z, W € T} o(M), and 4) toJ +J ot = 0.
Here Ty is the torsion tensor field of V and 7(X) := Ty(T,X), X € T(M) (the
pseudohermitian torsion of V).

If Q< C"! is a domain with smooth boundary, i.e. there is a R-valued
function p e C*(U), for some open set U = C""!' with U >Q, so that Q =
{zeU:p(z) >0}, 0Q={ze U:p(z) =0}, and Vp(z) #0 for any z € 0Q, then
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0Q admits a natural CR structure, recalled in some detail in section 4. The
pullback 0 of £ (0 — 0)p, via j: 0Q = C "1 'is a pseudohermitian structure on dQ.
The bundle-theoretic recast of (13)—(14) in section 4 consists in observing that

Tio(M) = T1,o(C")N[T(M)® C], M =dQ,

and any CR manifold obtained this way is said to be embedded. Here T} o(C"™")
is the holomorphic tangent bundle over C"*!. A CR manifold is (locally)
embeddable if there is a CR isomorphism of M (respectively of a neighborhood
of each point of M) onto some embedded CR manifold.

Let (M, T,0(M)) be a nondegenerate CR manifold and 6 a contact form
on M. A (0,q)-form on M is a complex g-form # so that T (M) | # =0 and
T |n=0. Let A%/ (M) — M be the bundle of all (0,q)-forms on M. The
tangential Cauchy-Riemann operator is the first order differential operator

O : T2(AM(M)) — T*(A*(M), =0,

defined as follows. If 7 is a (0, g)-form then 0,7 is the unique (0, + 1)-form on
M coinciding with dn on Ty (M) ® --- ® To.1(M) (g+ 1 terms). Let 0}, be the
(formal) adjoint of 0, with respect to the L? inner product

) = | Lifw0 A (0",
for any ¢, € Q“9(M) (at least one of compact support). The Kohn-Rossi
laplacian is
Clat = BBy + %, 8us.
If f: M — N is an isopseudohermitian transformation then
O4v=Onv, ve C*(N), (5)

where Dj@v = (Opv'™) and u/ :=uof', ue C*(M).
Let M be a strictly pseudoconvex CR manifold and 6 a contact form with
Ly positive definite. A smooth curve y(7) in M satisfying the ODE

d
(de/dt ?};) ( >: 2CT"/<I)7 (6)
y(t

for some ce R and any value of the parameter ¢ is a parabolic geodesic
on M. Let xe M and W e H(M),. By standard theorems on ODEs, there is

0 > 0 so that whenever gy (W, W)'* < § the unique solution Yw.(t) to (6) of
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initial data (x, W) may be uniquely continued to an interval containing ¢ =1
and the map ¥, : B(0,0) =« Ty(M) — M given by W.(W + cTy) :=yy (1) (the
parabolic exponential map) is a diffeomorphism of a sufficiently small neighbor-
hood of 0 e T,(M) onto a neighborhood of x € M. The terminology is justified
by the fact that ¥, maps any parabola ¢ — tW + t*>cT, in the tangent space onto
Ywe

Let now {7,} be a local orthonormal frame of T) (M), defined on a
neighborhood U of x in M. It determines an isomorphism A, : 7Ty(M) — H,
given by

Ax(v) = (07(v)es, 0x(v)),
for any ve T (M). Here H, = C" x R is the Heisenberg group (cf. e.g. [12],
p. 434-435) and {0"} is the frame of T} ¢(M)" determined by

0%(Tp) =35, 0°(T;) = 0*(T) = 0.

The resulting local coordinates (z,¢) := 4,0 ¥_', defined in some neighborhood
of x, are the pseudohermitian normal coordinates at x, determined by {T,}. By
Prop. 2.5 in [15], p. 313, these coordinates are also normal coordinates at x in
the sense of G. B. Folland & E. M. Stein (cf. [12], p. 471-472). We shall need
the following

Lemma 1. Let M be a nondegenerate CR manifold and 6 a contact form on
M. Let 6: M — M be a CR automorphism so that ¢*0 = a(a)0 for some a(o) €
R\{0}. Let yy .(s) be the solution to Vg, 4 (dy/dt) = 2¢T oy of initial data (n, W),
neM, WeH(M),. Then goyy .=vyy,, . where Ws:= (dyo)W e H(M),,.
ie. goyy . is the solution to Vg, q(dy/dt) = 2ca(a)T oy of initial data (a(n), Wy).

Proor. For each ye M and X € (M) consider
(), = (d51()0) Xo1()
(hence o, : (M)~ % (M), an isomorphism) and set
VZY = (0.) 'V, xo.Y.

Then V°0=0. Using o*gy = a(c)gy + [a(0)* — a(0)]0 ® 0 one may show that
V9 =0. Also, it is easy to check that V°J =0. Next 0.7 =a(0)T so that
Tye(Z, W) =0, Tye(Z,W)=2iLy(Z, W)T and Ty+(T,JX)+JTy+(T,X) =0,
for any Z, W e T o(M) and X € T(M). We may conclude that V* =V, the
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Tanaka-Webster connection of (M,6). Set y:=y, . and y,:=coy. Then
7,(0) =a(n) and (dy,/ds)(0) = W,. Finally

d dy d
Vi s 2 = 0.V S = 0V S = 02T 07) = 20a(0) T o7,

hence y, = yy, 4 that is a pseudohermitian transformation ¢ maps the par-
abolic geodesic yW7c into the parabolic geodesic Yy, 4y, Q.e.d..

We have specified the behaviour (5) of the Kohn-Rossi laplacian on func-
tions, with respect to isopseudohermitian transformations. In general, if ¢ is a
(0,¢9)-form and ¢ : M — M a pseudohermitian transformation of a nondegenerate
CR manifold then

Ou(a’p) = a(o)a" Tue. (7)

Indeed, on one hand ¢*0yp = dyc*p, as it easily follows from the axioms
defining ;. On the other hand,

g;] = ( 1)‘1+1(q+ 1)hAIu(V l//m O(q,ll) dl JASMRIAN 6&‘/

for any (0,9 + 1)-form ¥ on M, where covariant derivatives are meant with
respect to the Tanaka-Webster connection of (M, 0). For instance, if ¢ is a (0, 1)-
form

EL(P = —h”ﬂ”’“_‘V;,goﬂ—

hence
03(079) = —h""{T;((9);) (95 0 0) + (90)1(90) 5 [T)(05) © 0] — T2(95)?

and the identity

TR

(pso00)}

rﬂ (QU)V =T, ((ga)}_}) + (ga) (go) (r 5 © O')
(a consequence of V=V?) lead to
y(o'p) = a(o)(0yp) o0
Q.e.d.. Here T4 denote the Christoffel symbols (of V with respect to {7,}) and
0. T, = (9,)) Tp.
3. Complex Orbifolds

In this section we review the notion of complex orbifold (complex analytic
V-manifold) and, given a complex orbifold X, we build an analogue of the
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holomorphic tangent bundle (of a complex manifold) which turns out to be a
complex vector bundle Tj ¢(X) in the sense of J. Girbau & M. Nicolau, [13]. In
particular (cf. Step 2 below) each fibre 7~!(p) of the projection 7 : Ty o(X) — X
is shown to contain a natural vector space T7,0(X), [coinciding with 7~ !(p) when
p is a regular point]. We show that the smooth functions f : X — C satisfying
Z(f) = 0 for any section Z in Ty o(X) are precisely those whose local expressions
f o are holomorphic in Q, for each Luss. {Q,G,¢} of X (cf. 3) in Theorem
1). The weaker requirement that Z(f) =0 only for those sections Z with Z, €
Tio(X )p, p € X, leads to the notion of a V-holomorphic function. Locally, i.e.
on a fixed Lu.s. {Q, G, ¢}, one deals with G-invariant C' functions satisfying (11).
V-holomorphic functions are holomorphic except along the singular locus and
exhibit a particular behaviour at singular points x € S (such that the isotropy
group G, acts on C" with fixed points): each V-holomorphic function in Q is
holomorphic on a certain complex submanifold F, passing through x (and there
are complex local coordinates at x with respect to which F, is an affine set in
C"), cf. b) in Theorem 2.

Let X be a Hausdorff space and U < X an open subset. A local uniformizing
system (l.u.s.) of dimension n of X over U is a synthetic object {Q, G, ¢} consisting
of a domain Q = C”, a finite subgroup G < Aut(Q) of biholomorphisms of Q in
itself, and a continuous map ¢ : Q — U so that the induced map ¢, : Q/G — U
is a homeomorphism. An injection of {Q,G, ¢} into {Q',G',¢'} is a C* map
A:Q — Q' so that 4 is a biholomorphism of Q onto some open subset of Q' and
@' ol =p. The set U = p(Q) is the support of the Lus. {Q, G, ¢}.

Given a family Z of lu.s.’s of dimension n of X, let # be the family of
all supports of all lLu.s.’s in &#. Then F is a defining family for X if 1) for
any {Q, G, 9}, {Q',G",¢'} € F of supports U,U’, if U< U’ then there is an
injection A of {Q, G, ¢} into {Q', G', ¢}, and 2) # is a basis of open sets for the
topology of X. Two defining families &, %' are directly equivalent if there is
a third defining family " so that #F UF' < #". Also, #,%' are equivalent
if there is a set {#1,...,Z,} of defining families so that #; = #, %, = #", and
Fi, Fiyq are directly equivalent for each 1 <i <r— 1. A n-dimensional complex
orbifold is a connected paracompact Hausdorff space X together with an equiv-
alence class of defining families; as in ordinary complex manifold theory, it is
customary to choose a defining family # in the class and refer to (X, %) as
a complex orbifold. Cf. I. Satake, [21], p. 261-262 (where complex orbifolds
are referred to as complex analytic F-manifolds). Clearly, any complex orbifold,
of complex dimension n as above, is a real 2n-dimensional V-manifold (in the
sense of [20], p. 359-360, or [3], p. 862-863).
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Let (X, %) be a V-manifold. By a result in [13], given lLu.s.’s {Q, G, ¢} and
{Q',G',¢'}, of supports U, U’ respectively, and given injections A,u: Q — Q'
if U < U’ then there is a unique element ¢; € G’ so that y = g{ o 1. As a corol-
lary, with any injection A:Q — Q’ one may associate a group monomorphism
n:G— G’ so that log=y(g)ol, for any o€ G. It is noteworthy that the
existence of the monomorphism # is postulated in both [3] and the more recent
[6] (and it is a merit of J. Girbau & M. Nicolau, [13], to have provided a remedy
to this inadequacy). A point p € X is singular if there is U € # with p e U and
there is a luss. {Q,G,¢} € # over U, and an element x € Q so that ¢(x) =p
and G, # {e}. Here G, :={oe G:0(x)=x} is the isotropy group at x and
e = lg. By Prop. 1.5 in [13], p. 257, if pe U’, where U’ € #, and {Q' G, ¢'} is
a Lus. of support U’ then Gy~ G (a group isomorphism) for any y e Q' with
¢'(y) = p, hence the notion of singular point of X is unambigously defined. Set
S={xeQ:G, # {e}} (a closed subset of Q). Then X := U{Q’G'W}GF o(S) is the
singular locus of X and X, := X\Z its regular part. X, is an ordinary C*
manifold.

Let E be a connected paracompact Hausdorff space and n: E — X a con-
tinuous surjective map. Then (E, 7, X) is a vector bundle, of standard fibre K™,
K e {R,C}, if the following requirements are fulfilled

1) for any Lus. {Q,G,p} € F there is a continuous map ¢, : Q x K" — E
such that mo ¢, = ¢ o g, where ng(x,{) = x for any (x,{) € Q x K™. Moreover

2) for any injection 4 of {Q, G, ¢} into {Q',G', ¢’} there is a C* map g; :
Q — GL(m,K) such that g.(x) = I,, the unit m x m matrix, for any x € Q and

i) {Qx K™ G.,p,} is a Lus. of dimension d(K)m+ N of E over n~!(U)
(an open subset of E), where G, = {0, : 0 € G}, with a.(x,{) := (a(x), g5(x){) for
any (x,{) e Qx K", and d(K) =dimg K, N = dim(X),

ii) the family of lLu.s.’s {Q x K™, G,,¢,}, obtained as {Q, G, ¢} ranges over
Z, is a defining family for E, thus organizing E as a (d(K)m + N)-dimensional
V-manifold of class C*,

iii) the map 4. : Q x K™ — Q' x K™ given by A.(x,{) = (A(x),g,(x){), is an
injection of {Q x K", G.,¢,} into {Q' x K™ G/, ¢'}. Finally

3) for any pair of injections Q 40" % Q" one requests that

9u(A(x))g:(x) = gpoi(x),

for any x e Q. Cf. [13], p. 258. We underline the slight discrepancy in termi-
nology: for a vector bundle of standard fibre K™ the fibre z~'(p) over a point
p € X is (isomorphic to) K™ if and only if p € X, (and if p € £ then 7~ !(p) has
no natural vector space structure), cf. [13], p. 259.
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A function f: X — C on a V-manifold (X, %) is smooth (of class C*) if
fo:=fopis C* for any {Q, G, ¢} € #, and &(X) is the ring of all complex
valued smooth functions on X. We shall prove the following

THEOREM 1. For any complex orbifold (X, F), of complex dimension n, there
is a vector bundle (T (X),n,X) so that

1) for any peX, if peUe H and {Q,G,p} € F is a Lus. over U then
n'(x) = C"/G, (a bijection) for any x € Q with p(x) = p.

2) X,y is a complex manifold and Ty o(X)| X,, 1ts holomorphic tangent bundle.
The singular locus of T\ o(X) (as a 4n-dimensional V-manifold) is contained in
H(Z).

3) For any section Z in Ty ,0(X) (i.e. any continuous map Z : X — Ty 0(X) so
that Z(p) e =" (p) for any p € X) and any f € 6(X) there is a (naturally defined)

Sfunction Z(f): X — C; if Z(f) =0 for all sections Z then fo is holomorphic in
Q for any Lus. {Q,G,p} e F, and conversely.

We organize the proof in several steps, as follows.
SteP 1. The construction of T o(X).
Define ¢, : Q — GL(n,C) by setting

o(z/ ol
gi(x) = (Zazk )(X)ei,

where (z/) are the natural complex coordinates on C”, and {¢;} its canon-
ical linear basis. Then G, = {o.:0€ G} acts on Q x C" as a (finite) group of
biholomorphisms. Set

Tio(X):= |J (QxC"/G.
{Q,G,p}es

(disjoint union). Then 77 o(X) is a Hausdorff space, in a natural manner. We
define an equivalence relation ~ on 77,o(X) as follows. Let %, y € T o(X). If %
is the G,-orbit orbg, (x,{) of some (x,{) € Q x C", for some Lus. {Q,G,¢p} € F,
then we say that £ ~  if there is an injection /:Q — Q' to that

V= orbg(4(x), g,(x)0).

If (6(x),g,(x){) € x is another representative of x then
orbg:(4(a(x)), 9:(0(x))gs(x)E) = 0rbe; ((a)A(x), G100 (X))
= orbg;[n(0),(A(x), 9:(x)0)] = orbg;(A(x), g,(x){),
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(where #: G — G’ is the group monomorphism associated with 1) hence % ~
is well defined. Clearly ~ is refexive and transitive. The only issue which needs
a bit of care is the symmetry property. Note that, for any injection A: Q — Q'
the synthetic object {A(Q),7(G), ¢}, where Y =¢'[;q), is a Lus. of support
U = ¢(Q). Indeed n(G) acts on A(Q) as a group of complex analytic transfor-
mations and { is #(G)-invariant. Moreover A is equivariant hence it induces a
homeomorphism Ag : Q/G ~ A(Q)/5#(G). The map Y : A(Q)/#(G) — U’ (induced
by ) correstricts to U and ¥ 0 A¢ = ¢ hence Y : A(Q)/n(G) ~ U (a homeo-
morphism). Then x ~ p yields p ~ %, as we may think of (A(x),g,(x){) as a
representative of p with respect to the Lu.s. {1(Q),7(G),y¥} and rewrite X as

X = orbg, ((A(x)), gu(A(x))g:(x)0),

where x is the injection (1:Q — A(Q))".
Next Ty o(X) := Tj,9(X)/~ carries the quotient topology and

T T]ﬁ()(X) — X, n([OVbG*(X, C)]) = §0(X),

is continuous (square brackets indicate classes mod ~, ie. Tj(X) =
{[%] : x € T1,0(X)}). The definition doesn’t depend upon the choice of repre-
sentatives; indeed, if X = orbg, (x,{) and p € [X] then p = orbg/(A(x),g,(x){) for
some injection 4:Q — Q', and ¢'(A(x)) = p(x).

We wish to show that (7),o(X), 7, X) is a vector bundle of standard fibre
C". To this end, let ¢, : Q x C" — T} o(X) be the (continuous) map given by
0,(x,0) = [orbg,(x,{)]. Then mogp, =gpomng. Also ¢, is G.-invariant and the
induced map (¢,)q : (Q x C")/G. — Ty,0(X) is injective. Finally, it is straight-
forward that A.(x,{) = (A(x),g,(x)¢{) is an injection of {Q x C",G,,¢,} into
{Q' < C", G}

Let pe X be an arbitrary point (eventually singular) and U € # so that
peU. Let {Q,G,¢p} € F be a l.us. of support U and x € Q so that ¢(x) = p. Let
{Q,,G.,p.} be a Lus. of T} o(X) corresponding to {Q, G, ¢} as above, where
Q, =Q x C". Then 7(p,(x,{)) = ¢(x) = p hence ¢,(x,{) e n~!(p) for any { € C".
There is a natural action of G, on C”" given by (a,{) — ¢,(x){. We may consider
the map

C"/G—n(p), [+ 9.(x,0), (8)

where [{] is the Gy-orbit of (. If [{] =[] then ¢ = g,(x){ for some o € G and

9.(x,€) = 9.(0(x), g5 (X)0) = 9.(0:(x,0)) = 9, (x, ),
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ie. (8) is well defined. To see that (8) is injective, let ¢,(x,¢&) = ¢,(x,{). As
{Q,,G.,p.} is a lus., there is 0 € G so that (x,{) = g.(x,&) hence o € G, and
gdo(x)E =, i.e. &  are Gy-equivalent. To see that (8) is surjective, let f € n~!(p).
As ¢, induces a bijection Q,/G, ~n '(U) there is f = (y,&) Q. so that

¢.(f) = /. Then
o(x) = p = a(f) = n(0.(f)) = p(ra(f)) = o(»),

hence there is o € G so that y = a(x). At this point, set f, := (¢7'), f € Q,. Then
0.(f.) = f and £, is an element of the form (x,{) with ¢ = g,-1(a(x))¢ € [£], so
we are done.

Step 2. The image T o(X), of Ti0(Q)g, :={ve T oQ),: (d0o)v=0,
Vo € G} via the map T, ,0(Q) ~Q x C" it T1,0(X) depends only on p (i.e. doesn’t
depend upon the choice of {Q,G, ¢} e F and x € Q with ¢(x) =p) and Ty,0(X),
has a natural C-vector space structure so that

dime T1,0(X), =dimc () Ker[go(x) — 1] 9)

ge Gy

Let peU' e # and {Q',G',¢'} € F over U’, and consider x’ € Q' so that
¢'(x") =p. As A is a basis of open sets for the topology of X, let V< UNU’
with pe Ve # and let {D,H,y} € # be a l.us. over V. Then there exist injec-
tions 1: D — Qand A': D — Q. Let ye D so that (y) = p. We wish to show
that {¢,(x,{): { € (C"); } depends only on p, where

(C")g, =1{leC": g, (x){=(, Voe G}
As p(A(y)) = p(x), there is g € G with A(y) = o(x) hence

(O(X)v q}(y)é) = O'*(X, ga"o}n(y)f)

and we have
{V.(5,8) : e (€} = {9.(4(5),9:(¥)S) : £ € (C")p }
={0.(x,g5100(y)) : £ € (C")y }
At this point, it suffices to show that the map
(€, = (CMg,s € gorar(V)S, (10)

is a well defined bijection. ¢! o 4: D — Q is an injection. Let 5, : H — G be the
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corresponding group monomorphism. As ¢(x) =p =¥(y), n,: H, — G is an
isomorphism (cf. Prop. 1.5 in [13], p. 257). Given 7€ G, let pe H, so that
n,(p) = 7. Then

gr(x)go*IOZ(y)é = groa*‘o/l(y)i = gna(p)oa*‘oi(y)f
= g(J*‘o/l)op(y)f = go*'ol(y)g/)(y)é = ga*‘oi(y)fa

hence (10) is well defined. Also, a similar computation shows that

ga"o}L(y)(Cn)H}. - (Cn)Gx

and (10) is clearly injective. The same proof applies to A, so we are done.
Note that 7 0(X), is a C-linear space [with o (x,)+fp.(x,¢) =
0. (x,0 + BE) (while the same operation on the image of the whole C”/G, is
not well defined)]. To see that X, is a complex manifold we need to review
the differentiable structure of X,., in some detail. Let {D,H,y} € # be a Lu.s. of
X over Ve #. Set Q =y~ ' (U) where U:= VN X,y Then o e H= o(Q) = Q.
[Indeed, let x € Q and p:=y(x). Then pe U and U < X\X hence each point
of Y~ '(p) has a trivial isotropy group. Yet a(x) ey '(p) hence Gyx) = {e}. It
follows that Y (o(x)) e X\X and y(a(x)) =y(x) =pe U, ie. o(x)eQ, qe.d.].
Set G:={o|p:0€ H} and ¢ :=|y. Then {Q, G, ¢} is a Lus. of X,,, over U.
As {D,H,y} runs over Z, the Lus.’s {Q, G,¢} form a defining family of X,
hence X,., is a 2n-dimensional V-manifold. To see that it actually possesses a C*
manifold structure note first that G acts freely on Q, as a mere consequence of
definitions. Let y e Q. Then o(y) # y for any e G\{e} (as G, = {e}) hence
there is an open neighborhood Q, of y in Q so that ¢(Q,)NQ, = . Set D, :=
ﬂo‘eG\{e} Q,. As G is finite D, is open, ye D, = Q, and o(D,)ND, = for
any o € G\{e}, hence G acts on Q as a properly discontinuous group of C®
diffeomorphisms. Thus Q/G is a real 2n-dimensional C* manifold, and each U €
Hreg = {VN(X\Z): Ve A} inherits a manifold structure via ¢,. Once Q/G
is organized as a manifold, the projection Q — Q/G is a local diffcomorphism
and its local inverses form a C* atlas Zq. Then Zy := {yo ng;l i X € Fq} is an
atlas on U and Z, = UUE%W Fy an atlas on X,y Also ¢:Q — U is dif-
ferentiable (and ¢, a diffeomorphism). As Q and U are locally diffeomorphic
there is a unique complex structure on U so that T1,0(U), ) = (dxp)T1,0(Q),, for
any x€ Q. Let pe X,,, and U, U’ € #,, so that pe UNU’. We need to show
that Tl,o(U)p = TL()(U’)p, i.e. the complex structures {7} 0(U) : U € #,} glue
up to a globally defined complex structure on X,.,. To this end let V € #,, so
that pe V< UNU' and {D,H,y} a lus. of X, over V. Let 1: D — Q and
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/D — Q' be injections and let y € D so that y(y) = p. Set x:= i(y) € Q and
=1 (y) eQ’. Then

T1,0(U), = (d)T10(D), = Tro(U'),,

as both 1,1 are holomorphic maps and gpol=y =¢ 0l. So X, is a
complex manifold, in a natural way. Next 77! (X,oy) = T1.0(X,e) because of the
isomorphism

0
T],O(X)p - T],O(ch’g)pv ¢*(x C) ( x(/’)C a il P E Ue ‘#“’g'

If v is a singular point of T o(X) with p:==(v), there is U e # with
pe U, and there is a lLus. {Q, G, ¢} over U so that (Gy), ) # {e.}, for some
(x,{) eQ x C". That is o.(x,{) = (x,{) for some o € G\{e}, hence o(x) = x, i.e.
G, # {e}. It follows that p € Z, i.e. the singular locus of T} ¢(X) projects on X.
Statement 2 in Theorem 1 is proved.

It remains that we prove 3. Let Z: X — T} 0(X) be a continuous map so
that o Z=1y. Let fed(X) and pe X. Let Ue # so that pe U and let
{Q,G,p} € F over U. Let xeQ so that ¢(x) =p and set

o
ZC’ (%),

where [{] e C"/G, corresponds to Z,en '(p) under the bijection C"/G, =~
7' (p).

Step 3. Z(f), is well defined.

If [¢] =[] then & = g,(x){ for some o€ G, and then

Ifa

0z/

() = g 2 () = (020D

0zJ ozk

é/

If another open neighborhood U’ e # of p is used, let {Q',G',¢'} over U’
and x’ € Q' with ¢'(x’) = p. Then, consider pe V < UNU' and {D, H,y} over
V, and two injections Z:D — Q, A':D — Q' Let ye D with y(y) =p. Let
[(] € C"/Gy and [{'] € C"/GY, correspond to Z,. If [¢] € C"/H,, corresponds to Z,
then

(ﬂ*(x, é’) = Zp = l//*(ya é) - [Ol’bH* (ya f)]
= [orbe. (A(¥), 9:(»)Q)] = 0.(4(), 92(»)E),
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hence there is 7€ G so that

7.(x,0) = (4(»),92(»)9),
Le. 7(x) = A(y) and { = g.1(2(x))g:(»)E. As faold= fp

) ; 0 o(faot!
L0 (0) = g (2o (S L2 () = V2T (g, (ke =
(as fo is G-invariant and 7(x) = A(y))
_0(faol) /b
0 (¥ )é =< 62/( y)-
The same argument holds for A’, hence
j Yo fa
I () = 2 (w),

and Step 3 is proved. Let Z, e n~!(p) correspond to [¢;] € C"/G,, with ¢(x) = p.
Then Z(f)p =0 yields (9fa/0z/)(x) =0, i.e. f € O(Q). Theorem 1 is completely
proved.

Throughout, if Y is a complex manifold, ¢(Y) denotes the space of
all holomorphic functions on Y. The last statement in Theorem 1 shows that
the requirement Z(f) = 0 for all sections Z in Tj (X) is too restrictive for our
purposes. In the sequel, we restrict ourselves to sections Z such that Z, e
T1,0(X), ={g.(x,0) : {€(C")g,}, as mentioned in the Introduction. Locally, we
are led to a new notion, termed V-holomorphic function. Let Q = C" be a domain
and G < Aut(Q) a finite group of biholomorphisms. A C! function f : Q — C is
called V-holomorphic if it is G-invariant and

Z&’ 5 (x (11)

for any xeQ and any (e (C");. Let Op(Q) be the space of all V-
holomorphic functions in Q. Let @VG(Q) consist of all G-invariant functions
fe0(Q). Then O0g(Q) = Op(Q) = Oc(Q\S). Note that the requirement (11) is
empty at the points of C:={xeQ:(C"); =(0)} =S. When n=1, Oy(Q) <
0g(Q\C).

The following result describes the local structure of S and the behaviour of
V-holomorphic functions at the points of S\C.
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THEOREM 2. For any x € S there is a neighborhood D of x in Q so that

1) DNS is a finite union of complex submanifolds of Q of dimension < n.

2) For any y e D, G, is a subgroup of G.. 3) If x € S\C there is a complex
submanifold F, = D passing through x so that a) for each G-invariant function
f:Q — C, f satisfies (11) at x if and only if the trace of f on Fy is holomorphic
at x. Moreover b) F, = Q\C and if f € Oy(Q) then f|z € O(Fy).

Proor. Let xe .S and set

w/ = ! Z ggfl(x)-,{(zk 0 0)
|GX| oe Gy
(for a set A, |A| denotes its cardinality). Then (dw//dz%)(x) :5,£ hence there is
an open neighborhood ¥V of x in Q so that ®:= (w!,... . w"): ¥V — C" is a
biholomorphism on its image. Let o € G\G,. Then o(x) # x hence there is an
open neighborhood Q, of x in V so that a(Q,) NQ, = . Set Dy := ﬂaeG\Gx Q,
and D := ﬂaec\_ a(Dy). As G is finite Dy, and then D, are open. What we just
built is an open neighborhood D of x in V so that i) (D) < D for any o € G,
and i) o(D)ND = ¢ for any o € G\G,. The first statement in Theorem 2 is a
complex analogue of Prop. 1.1 in [13], p. 251-252. For each 7 € G, set

Fo={yeD:z(y) =y}
Note that w/or = gf(x),{ o wk. Consequently
O(F;) = (D) N Kerlge(x) — L],

hence F; is a complex submanifold of D, of complex dimension < n. Next
SND=Y,, where

Y, := U F;.
1eG\{e}

To prove the third statement note that /(3/0z/) € T\(F;) ® C if and only if

{ € Kerlg.(x) — I]. Indeed, if p/(z) := go(x)jw* —w/, o€ Gy, then

0
k —_—

ow’

) = EHlaso)] = )5 () = ] = U

Set

F, := ﬂ F,.
7€ Gy\{e}
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If xeS\C then Fy is a complex manifold of dimension dimc(C"); . Let us
prove (b). To this end, let y € F, and D' = V' as in the first part of the proof
(got by replacing x by y). Then F) =2 D'NF, >y for any ¢ € G,\{e} hence (by a
dimension argument)

T1,0(Fy), = T1,0(Fy), = (C")g, # (0). (12)

Thus (C")g, =~ Ti,0(F)), # (0), a fact which yields yeQ\C, ie. F.<=Q\C.
Finally, let f € Oy(Q). Then f|g is holomorphic in y hence (by (12)) f|r is
holomorphic in y. Q.ed..

If (X,#) is a complex orbifold, a function fe C'(X) (ie. a con-
tinuous function f: X — C so that fo e C'(Q) for each lLus. {Q, G, ¢} e %) is
V-holomorphic if each fq is V-holomorphic in Q. In the sequel, we shall study
traces of such functions on smooth real hypersurfaces.

4. Real Hypersurfaces

The purpose of this section is to discuss traces of V-holomorphic functions on
real hypersurfaces M < Q preserved by G. This situation is realizable (by a result
of B. Coupet & A. Sukhov, [9], as detailed below) when M is the boundary of a
C® bounded pseudoconvex domain. We are led to a generalization of the notion
of CR function, i.e. the solutions to (16). These are CR everywhere except at
singular points and exhibit, at a singular point x, the behaviour mentioned in the
Introduction (i.e. are CR functions along a CR submanifold passing through x, of
smaller CR dimension).

Let D = C" be a bounded pseudoconvex domain with real analytic bound-
ary 0D and H < Aut(D) a finite (hence compact) group of automorphisms of D.
By a result of B. Coupet & A. Sukhov, [9], there is a domain Q so that D = Q
and each 7€ H extends holomorphically on Q as an automorphism of Q. Let
G;p consist of all 7|,, for t € H and some holomorphic extension 7 € Aut(Q) of
7. By the identity principle for holomorphic functions G;p is a well defined finite
group of CR automorphisms of ¢D. In general, let Q = C” be a domain, G =
Aut(Q) a finite group of biholomorphims, and M < Q an embedded real hyper-
surface such that o(M) = M for each g € G. Set Gy :={0|,, : 0 € G} and Sy :=
{xeM:(Gu), # {lu}}. Then Sy = MNS. For any x e M there is a neigh-
borhood U of x in C" and a function pe C*(U) such that MNU ={ze U :
p(z) =0} and Vp(z) #0 for any ze M. The Cauchy-Riemann equations in C”"
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induce on M an overdetermined system of PDEs with smooth complex valued
coeflicients

_ n . ou
Lou(z) = ;a;(z)@:o, l<a<n-—1, (13)
(the tangential Cauchy-Riemann equations) z€ V, with V= M N U open. Here

S aj(z) P 0, 1=a<n—1, (14)

AT

for any ze V, i.e. L, are purely tangential first order differential operators
(tangent vector fields on M). Also

L, Lg) = Coy(2)L, (15)

o

for some complex valued C* functions Czﬁ on V. At each point ze V' the
L, :’s span a complex (n — 1)-dimensional subspace 7' (M), of the complexified
tangent space 7-(M) ®p C. The bundle T o(M) — M is the CR structure of M.
A C! function u: M — C is a CR function if Z(u) =0 for any Z e T} o(M).
Locally, a CR function is a solution of (13). G = Aut(Q) yields Gy = Autcr(M)
hence

n—1

(de)La,x = Z Tg(x)L[f.,r(x)a xeVl,
5=1

for each 7€ Gy and some (unique) system of C* functions t¥:V — C. For
each te Gy let gy .V — GL(n—1,C) be given by gy .(x){ = r;;‘(x)cﬁe,’(x for
any (e C"!. Set

(Cn_l)(GM)A = Ker[gum,«(x) — I-1]

and Cyy ={xe M : (C”‘l)(Gw) =(0)} = Sy. We need the following

x

Lemma 2. The trace u= f|,, of any V-holomorphic function f e Oy(Q)
satisfies

3
|

&Ly u=0 (16)

o=1

for any x eV and any & € (C”_l)(c .- In particular u is a CR function on M\Sy

M

(and if n =72 then u is CR on M\Cy).
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Proor. Let (e (C”*1)<GM) , xeV, and set ¢/ = aJ(x)&”. Then

a)(xX)go (X)) = T4 (x)af(x)
yields { e (C");. hence
of

oz

0=

(x) = &Ly u. Qed..

In view of the result in [18], it is an open problem whether the real analytic
solutions to (16) extend to V-holomorphic functions on a neighborhood of M in
Q (provided M € C?).

THEOREM 3. For any x € Sy there is an open neighborhood D of x in Q
such that Sy N D is a finite union of CR manifolds of CR dimension < n — 1. For
any yeV:=MND, (Gy), is a subgroup of (Gu),. If x € Su\Cy there is a
CR manifold Fy , such that a C' function u:V — C satisfies (16) for any & e
(Cn_l)(GM)\» if and only if the trace of u on Fy . is CR at x.

The proof of Theorem 3 is similar to that of Theorem 2, so we only emphasize
on the main steps. As x € Sy = S, let D be a neighborhood of x in Q as in (the
proof of ) Theorem 2. By eventually shrinking D let (u%) be local coordinates on
V=MND and set

w= Y it en, 1<as2-1,

|Gx| 'L'G(GM)X

where  h.(x) = [(d(u® o 7)/0ub)(x)]. Then (0v*/ou’)(x) =0, hence ¢=
(v',...,0*" 1) is a C* diffeomorphism of (a perhaps smaller open neighborhood
of x in) V onto its image. Given 7 € (Gy) \{lum} set Fyr. ={yeV:1(y) =y}
Then ¢(Fu,.) = ¢(V) N Ker[h.(x) — Ly,—1] hence Fy . is a manifold (of dimension
dimg Ker[h.(x) — Ly—1] <2n—1 if ©# 1) and Sy NV = Ure(GM)Y\{lM} Fye.
Note that Fy, . = M NF, for any ¢ € G, with a|,, = 7. Hence Fj . is a CR sub-
manifold of (the complex manifold) F,. If x € Sy \Cy = S\C then set Fy , =
ﬂTE(GMM{IM}FM_T. Then Fy . = M NF, hence Fy , is a CR submanifold of F.
Let T1,0(Fu, ) be the CR structure induced from (the complex structure of) Fi.
The inclusion Fj y € M is a CR immersion (i.e. an immersion and a CR map)
and ("L . € T1 o(Fu,), if and only if {e (C" "), - Qed..

5. CR Orbifolds

The scope of this section is to introduce the class of CR orbifolds of arbitrary
type (n, k) (containing the class of complex orbifolds, k& = 0). The CR structure of
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a CR orbifold B and CR functions on B are discussed in Theorem 4. We consider
an analogue []p of the Kohn-Rossi laplacian and state the problem of building
a parametrix for [Jp, the local approach to which is dealt with in section 6 (the
solution to the global problem is delegated to a further paper).

Let (B,</) be a (2n+ k)-dimensional V-manifold, of class C*. A CR
structure on B is a family

TI,O(B) = {TL()(Q) : {Q, G, (ﬂ} € J?/}

where each (Q,7,0(Q)) is a CR manifold, of type (n,k), i.e. of CR dimension n
and CR codimension k, and each injection 4: Q — Q' is a CR map. In particular,
G < Autcr(Q) for any lLus. {Q, G, ¢} e /. A pair (B,T1,o(B)) is a CR orbifold
(of type (n,k)). When k =0, B is a complex orbifold (of complex dimension 7).
We shall deal mainly with CR orbifolds of CR codimension k = 1.

Let (B, /) be an N-dimensional V-manifold. A continuous map ¥: B — M
into a C* manifold M is an immersion if, for any {Q, G, ¢} € o/, the map ¥q :=
Yop:Q— M is a C* immersion (i.e. rank[d,¥q] = N < dim(M), x € Q). To
give an example of CR orbifold, assume that N =2n+ 1 and let ¥ : B — C"*!
be an immersion. Let 7 ¢(Q) be the CR structure on Q given by

(A ¥0) T1.0(Q), = Th,0(C" Mgy N[ Fa) TH(Q) ®p €], xeQ. (1)

Note that W o 4 = Wq, for any injection A:Q — Q'; as a consequence, it is
easy to see that 4 must be a CR map, hence B together with the family of CR
structures (17) is a CR orbifold.

Let (B,</,T10(B)) be a CR orbifold, of CR codimension 1. A family 0 =
{0 : {Q, G, ¢} € o/} is a pseudohermitian structure on B if each Og is a pseudo-
hermitian structure on Q and 1*0y = a(4)0q for any injection 1:Q — Q' and
some constant a(d) € R\{0}, i.e. injections are pseudohermitian maps. We shall
need

Lemma 3. Let (B, </, T 0(B)) be a CR orbifold and two pseudohermitian
structures 0, 0 on B. If each injection i :Q — Q' is isopseudohermitian, i.e.
a(A) = 1, there is a unique C* function u: B — R\{0} so that 0q = uqlq, for any
Lus. {Q,G, 9} ed.

Proor. Let ug:Q — R\{0} be a C® function satisfying 0o = ualo.
Next, consider an injection 4 : Q — Q. The identities 1*0y = 0o and "0y = Oq
lead to

Ug 0 A =ug (18)
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In particular uq is G-invariant. Define u: B — R\{0} as follows. Let pe B
and U e o so that pe U. Let {Q, G, ¢} € o/ be a Lu.s. of support U. Let x € Q
so that ¢(x) = p. Finally, set u(p) := uq(x). One needs to check that the def-
inition of u(p) doesn’t depend upon the various choices involved. Let U’ € # so
that p e U'. Then there is V € # so that pe V< UNU’. Let {Q',G',¢'} over
U’ and x’' € Q' so that ¢/(x') =p. Let {D,H,} be a lLu.s. of support V and
consider two injections 4: D — Q and A': D — Q'. Let y e D so that y(y) = p.
From ¢(x) = ¥(y) = p(A(y)), there is g € G so that

Ay) = o(x). (19)
Similarly
A(y)=d'(x), (20)

for some ¢’ € G’. Finally, using (18)—(20), one may conduct the following calcu-
lation

gy (x') = gy ((6") ™ 2'(1)) = ey (4'(»)
= up(y) = ua(A(y)) = ua(o(x)) = ua(x). Qed.

A Riemannian orbifold is a V-manifold B together with a family g =
{90 : {Q,G,p} € o/}, where go is a Riemannian metric on €, so that each
injection 4 : Q — Q' is an isometry (1"gy = gq). Let (B,.oZ, T o(B)) be a strictly
pseudoconvex CR orbifold, i.e. each (Q, T (Q)) is a strictly pseudoconvex CR
manifold. Let 0 be a pseudohermitian structure on B. Then each fq is a con-
tact 1-form on Q. Let go be the Webster metric of (Q,0q) and set ¢ := {gq :
{Q, G, ¢} € o/}. If each injection A is isopseudohermitian then A preserves the
Webster metrics, hence (B,g) is a Riemannian orbifold. The following result is
similar to Theorem 1.

THEOREM 4. For any CR orbifold (B,</, T o(B)), of type (n,1), there is
a vector bundle (E o, 7, B) so that for any p € B, if pe U € # and {Q, G, ¢} € o/
is a Lu.s. over U then n~'(p) ~ C"/G, for any x € Q with ¢(x) = p. By, is a CR
manifold (of type (n,1)) and E; o| B, 1S it CR structure. Ty (Byy) is contained
in (E10),,y> the regular part of E\ g as a V-manifold. The image Ti0(B), = = Y(p)
of Th,0(Q)g, via the map T 0(Q)~Q x C" — Ey depends only on p= ¢(x).
Tl,o(B)p is a C-vector space of dimension dimC(C”)Gx. If Z is a section in E;
and f € &(B) there is a (naturally defined) function Z(f):B— C. If Z(f)=0
for any Z then fo = fog is a CR function on Q, for any {Q,G,p} € <o/, and

conversely.
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The bundle Ej o is recovered from the transition functions g;(x) = [45(x)], where
(dyA)L, x = /lf(x)L/;Jv(X), x € Q (we assume w.l.o.g. that a frame {L,} of T} (Q),
defined on the whole of Q, is prescribed on each Q). We omit the details.

Let B be a V-manifold. A linear map D: é&(B) — &(B) is a differential
operator (of order k) if for any Lu.s. {Q, G, ¢} € o/ there is a differential operator
Dq, of order k on Q so that (Du)y = Dqugq for any u € &(B). We say D is elliptic
(respectively subelliptic (of order ¢)) if Dq is elliptic (respectively subelliptic of
order ¢, (cf. [11], p. 373)) for each lLus. {Q, G, ¢}.

Let (B,T)0(B)) be a nondegenerate CR orbifold, 6 = {0o} a fixed pseu-
dohermitian structure on B, and [Jo the Kohn-Rossi laplacian of (Q,6q), cf.
section 2. If each injection is isopseudohermitian, we may build a differential
operator [Jp: &(B) — &(B) by setting

(Osu)q = Oaua

for any u € &(B). Then [Jpu is a well defined element of &(B) if the functions
fa = auq satisfy fo 01 = fo for any injection 4:Q — Q. This may be seen
as follows. By applying (5) we get (4 = Oiq) or

(Oa(vo ) oi™ = Oy,
for any ve C*(A(Q)). In particular, let us consider the functions
v = ug|yq) € C7(A(Q)).
Then
Oa(ual,q)) o 4) o ih= o) (ua |3a)
may be written as
oo = (Ogrug!) © A.

Q.e.d.. Let T be the characteristic direction of (Q,0q). We define a differential
operator T : &(B) — &(B) by setting (Tu)g = Taug for any u € £(Q). Again, the
functions Tquq give rise to a well defined element Tu of &(B) provided that each
injection A is isopseudohermitian; indeed, if this is the case then (dyA)Tq x =
T jx for any xeQ, and one may perform the calculation

To o (ugy) = [(dxA) Ta ] (ug) = Ta,x(ug o 4) = Ta x(ua).

Q.e.d.. Finally, let (B,T)0(B)) be a strictly pseudoconvex CR orbifold
and 0 = {0q} a pseudohermitian structure on B so that each Levi form Ly, is
positive definite, and each injection is isopseudohermitian. Consider the second
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order differential operator Ag: &(B) — &(B) given by Agu = (gu — inT(u) for
any u € B. Then Ap is a subelliptic operator of order 1/2 on B. J. Girbau & M.
Nicolau have developed (cf. [13]) a pseudo-differential calculus on V-manifolds
(inverting a given elliptic differential operator up to infinitely smoothing oper-
ators). The same problem for subelliptic operators on V-manifolds, e.g. for Ag on
a CR orbifold, is not solved (presumably, one needs to adapt the methods in
[17]). Also, see [12], p. 493-498, for a parametrix and the regularity of [, for
an ordinary strictly pseudoconvex CR manifold M. The problem of building a
parametrix for [Jp on a strictly pseudoconvex CR orbifold B is open. In the next
section we solve the local problem.

6. A Parametrix for [

Let Q< R be a domain and T ¢(Q) a G-invariant strictly pseudo-
convex CR structure on , for some finite group of CR automorphisms G <
Autcr(Q). Let 6 be a pseudohermitian structure on Q so that the correspond-
ing Levi form Ly be positive definite and ¢*0 = a(0)0, for any o € G and some
a(o) € (0,4). Let {7} be an orthonormal (Ly(Ty, Tj) = dsp) frame of T1,0(€),
defined everywhere in Q. Let (z,71) =@, :Vy— H, be the pseudohermitian
normal coordinates at x € Q, determined by {7,} as in section 2, and set

D:= ) {x} x V,,
xeQ

a neighborhood of the diagonal in Q x Q. Next, we set O(x,y) := 0,(y) and
p(x,v) :=10O(x,y)|, for any (x, y) e D. Here |(z,7)| = (||z||* + 2)"/* is the Hei-
senberg norm of (z,t) € H,.

A function K(x,y) on Q x Q is a kernel of type A (A > 0) if for any m e Z,
m >0, one may write K(x, y) as

N
K(x,p) =Y ai(x)Ki(x, y)bi(y) + Enm(x, y) (21)
i1
where N > 1 and 1) E,, € C["(Q x Q), 2) a;,b; € C°(Q), 1 <i< N, and 3) K, is
C® away from the diagonal and is supported in {(x,y) e D:p(x,y) <1} and
Ki(x,y) = ki(®(y,x)) for p(x, y) sufficiently small, where k; is homogeneous of
degree A;:=A1—2n—2+u, ie.

ki(0:(z,1)) = ri"k,'(z, t), r>0,(z1te€eH,
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for some g >0. Also 6,(z,t) = (rz,r*¢) is the (parabolic) dilation of factor
r > 0. Next

uﬁmzLmeﬂw@

is an operator of type A (4> 0) if K(x,y) is a kernel of type A. Here dy is short
for w(y) = (0 A (d0)")().

Set X,:=T,+T; and Y, :=i(T; —T,) and {X;:1 < j<2n}:={X,, Y,},
where X,., = Y,. Also, set

B ={X; - Xy 1< j<2n1<s</1</<k}

and let ./, be the span over C of %;U{I}, where I is the identity. The
Folland-Stein spaces are Sj(Q)={feL’(Q):Lf e L’(Q),YL € o} where Lf
is intended in distributional sense. The Folland-Stein spaces are Banach spaces
under the norms || £, , = /|, + X1 c4ILf],- An important feature of the
operators of type A=me {1,2,...} is that they are bounded operators from
SP(Q) to S7.,.(Q) (and in this sense smoothing) for ke {0,1,2,...} and 1<
p < oo (cf. Theor. 15.19 in [12], p. 491). We shall prove the following result

THEOREM 5. Let Wy be a G-invariant compact subset of Q. For each 0 <
q < n there is an operator A, q : T8 (A%1(Q)) — [y (A"4(Q)), of type 2, so that
1) AjooOa —1 and g o Ay — 1 are operators of type 1 on the G-invariant
C* forms of support contained in Wy, and 2) A, o maps G-invariant forms in
G-invariant forms.

A (0,g)-form ¢ on Q may be written locally ¢ = gaI—Hi where I = (ap,...,0,) is
a multi-index and 0’ = 0™ A --- A 0™. Since

(670%), = go(x);;ﬁf, xeQ,
if ¢ is G-invariant (i.e. c*¢p = ¢ for any o € G) then

7 7

9o (0)F = 4o ()P g (), T = (Bre B,

By Prop. 16.5 in [12], p. 496, for any 1 < ¢ <n—1 we may build an operator

p7(x) = go(x)705(a(x)), xeQ,0€G,

A, of type 2 so that I — (g4, and [ — A, are operators of type 1 on forms
9 e TP (A™4(Q)) of support = W,. Assuming this is done, set

* —1y* 1
Ay op =0"Ayo H*p, Ajo=— ZA%U'
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From now on, for the sake of simplicity, we drop the index ¢. If ¢ is G-invariant
then

T Aep = (07) A(c™") 9 = (07)"A((07) ) "p,
ie.
T (Ayp) = Agrp.

Therefore

* 1 . 1
T AQ¢:? ZT A,,(/):F ZAmQ”:AQ%
| |aeG | |aeG

i.e. Ag maps G-invariant forms in G-invariant forms.

For each £ e Q let 6(¢) > 0 be fixed so that W: : B(0,6(¢)) < T:(Q) — Q is
well defined and a diffeomorphism on its image V: = ¥:(B(0,0(&)). Next, fix a
number

0 <06(&) < min M:JGG U{d(&)}
a(0)’ +a(o)
and set
V(&) :i=Ye(B(0,06(8))) = Ve = Q.

LEMMA 4. a[V6(E)] S V.

Proor. Let ne V(&) < Ve, ie. there is W+ cT: e B(0,06(£)) so that
WeH(Q), and n="Y:(W + cT¢) =y (1). Thus (by Lemma 1 in section 2)
a(n) = (@oyw,)(1) = Yw, a(@)c(1). On the other hand

1, + a(o)eToe)|1* = W 1* + o)
= a(a)[|W||* + a(0)’® < [a(0) + a(0)*d6(&)* < (a(¢))?,

hence yy, 40 (1) € Vo) Q.ed..

Set
D¢ = | J{&} x V(&).

ceQ

Let us go back to the construction of 4. Consider

a0©) = (| K@nsosto) an)o.
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where K is the kernel of type 2

K(&n) = (& m)Pu2q(O(7,2)).
Here (&, n) is a Cj° function on Q x Q, supported in

{(&n)eDg:p(&n) <r},
where

r:=min({a(c)"? : 0 € G} U{1}),

and so that Y(&,n) =v(n, &) and Y(&,n) =1 in a neighborhood A4 of the
diagonal A of Wyx Wy (Ac AV ={(&n)eD:p(n)<r}). Also @, is the
fundamental solution (%,®, =) to

n ) 6
ylz—j;Lij—i—z(a—n)a, (22)

(the Folland-Stein operators) where

4 ;0
j @“r iz T
(the Lewy operators) i.e.
@, = (21 — iy "l iy, 3)

for any o e C\{xn,+(n+2),+(n+4),...}, where

T((n+0)/2)T((n = 2)/2)

by = 22 2npgntl

Then

Aap(&) = (ij@),n)((ol)*w,—(n) dn) 0l o (d:o). (24)

)211+1

By o*w = a(o w and a change of coordinates #' = a(z) in (24) we get

400(E) = alo)™! (j 0 (LK ((2), o))+ (o)) oz () dn) 0!,

LemmA 5. For any (&,n) € Dg

©(a(¢),a(m) = (95(£)4="(n)ep, alo)t(n)),

where (z,t) = ®¢ = J: oW ! are the pseudohermitian normal coordinates centered

at &.
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ProOF. As (&) e Dg we have e Vg(€) hence (by Lemma 4) o(n) €
a[Vs(¢)] = Vs and then

O(a(£), (1)) = Op(e) (0(1) = Ao(e) © Wit (0())

makes sense. As 7€ V(&) S Ve, set W i=z*(n)T,,y + 2*(1) Tz, and c:= 1(y).
Then

Ta(é)(Wff + Ca(o-) TO’(U)) = yW,,,Ca(a)(l) (by Lemma 1)

=a(yy.(1) = a(¥:(W + cT;)) = a(n),

hence
0O(a(&), (1)) = 2ae) (W5 + ca(a) Ty)- Q.ed..

For any g€ G, 0*Ly = a(o)Ly hence
Z ga(’]);tga(”)g = a(o-)éocﬁa
n

ie. a(o) *g,(n) € U(n). Consequently ||g,(n)z||> = a(s)||z||* and (by (23) and
Lemma 5)

Dy-24(0(a(n),0(€))) = al0) " Py2y(O (1, ),

and we obtain

a(0) ™" Aep(&)

~ (]t

where ,(¢,77) := ¥(a(<),a(n)). Note that y, € G° and (&, n) = Y, (17, ¢). Let

02 := 0 x ¢ (direct product). Set

S~

U (&) B2y (01, )g -+ (o)) F () dn) 07,

Ng = () a*(N) =N

ogeCG

As W, is G-invariant A = ¢?(A) = ¢*(A") for any o € G, hence A5 is an open
neighborhood of A. Also ¥(&,7) =1 on A yields ¥, (&,7) =1 on A%.
Let (&,7) € Dg. Then (by Lemma 5)

1©(a(&), a(m))] = (95(E)z(n), a(a)1(n))|
= (lgo(&)zm)II* + a(o)*1()*)'"*

= a(0)"|(z(n), t(n))| = a(e)' IO, )],
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that is
p(a(¢),a(n)) = a(@)'*p(¢,n). (25)

Let T and T, be respectively the supports of ¥ and y,. Then o*(T,) <
I < {(&n)eDg:p(En) <r}. Also (by Lemma 4) 6~ !(Dg) < D. Thus (by (25)
I, < {(&n)eD:p(n) <1} Then (as in [12], p. 494) we may conclude that

Kﬂ(éa 77) = lpa(é7 ;7)(1)"*2!{(@(777 é))
is a kernel of type 2. In general, if K(&,7) is a kernel of type A then

K& ) = go(OEK(E ) g (a(n)h
)

is another kernel of type 4, as it easily follows from (21).
Ay, and therefore Ag, is an operator of type 2.

Set a(G) := (1/|G|) >, s a(o) > 0. We wish to check that a(G) ' Aq inverts
(. Set B:=1—[qAd. If ¢ is a G-invariant (0,q)-form then (by (7))

We have proved that

OaAdap(¢ |G| ZDQU (e7) 0(&)

ogeG
1
Z 0)o" Oadp(&) == > ala)o™(p — By)(¢)
aeG |G| oeCG
that is
A =

oce@G

where B, :=c*B(c~')". We shall prove that
LEMMA 6. B, is an operator of type 1.

ProoF. Set
A:p(&) = (J K.(&,mez(n) dn) eg' ,

K;:(é?”) = !//(677/)@;3—21](@(]775)))
—b Py (no /Zp—g(nfx)/Z, px(z’ l) — ||Z||2 +62 — i1,

for any ¢ > 0. For the sake of simplicity, we only look at the case ¢ = 1. For any
(0,1)-form ¥ on Q, the Kohn-Rossi laplacian is expressed by

Oay = {~h""V,Vap; — 2iVol; + Y5 R1}07,
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where R;j; is the pseudohermitian Ricci tensor (cf. e.g. [10], p. 193). This may be
written

(Oa¥); = L 2%+Z{ uwp+2rgﬂT %Jrl"”T‘Pp}JrF’wy,

n=1

(compare to (16.1) in [12], p. 494) for some C® functions F; (expressed in
termes of the Christoffel symbols and their derivatives, and whose precise form is
unimportant). We have (by the proof of Prop. 16.5 in [12])

o' Blo ™) 0(6) = (&) — 0" Dad(e) 0(&) = 9(&) — " lim Dadi(o ™) "0(&)
that is

Bap(&) = p(¢) ~ lim 0" Cadu(o ™) p(&)

hence it suffices to show that if we let ¢ — 0 then ¢*[JqAd,(c')"p goes to ¢
plus an operator of order 1 applied to ¢. We have

7' Oadde™) 0(6) = | Ta ([ K@ o) dn) 7| o e

a(é)
= o.( |: n— 2lp +Z{F——Tl// JrlFﬁ#Tx// +F‘DT!,D }+F;w7:| 05
2 o)
where
05 = [ K& o)slo) dn

and F,_o = —>, T,T; — 2iT. Therefore, using

(T.f)((6)) = go1 (0(&)) 1 Ti(f 0 )

we get

n 3 _
0" Oad:(a7") p(&) = { O+ D Al WS }Héﬁ

=1 i=1

([ el R L Koo ) )0l (29

where
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A10(0) = 0O (010) [ Ku(o(&). )00 ()05t 1) i

41 0(8) = 45T 0(E)) g1 (0(0))] j (T K(o(2).go s ()50 () din,

ASTIENY]

A2 ,3910) =300 (0(E)) a1 (0(E))] | (TEK(AE) g ()]st ) i

A2 1910 = 4T (0O, [ TRl sl 1) .

eup

Clearly AO gives, in the limit as ¢ — 0, an operator of type 2 (and hence of type
1). We clalm that A’ glve (as ¢ — 0) operators of type 1, as well. For instance,

let us look at A'# j (the remaining operators may be treated in a similar manner).
Note that

®:(O(a(n), a(¢))) = a(e) "IV (@(1,¢)) (27)
Indeed (by Lemma 5)

Po(95()2(8), a(0)1(€)) = a(o)|12(&) | + & — ia(a)e(&)

Consequently
Ko(o().0n)) = alo) ", (&.n)@ " ©(.)

and a change of variables #' = ¢~!(5) leads to

Al 70(&) = a(0)" o7 (0(E))go 1 (0()),

| i@ Y O, () o)
which goes, as ¢ — 0, to

a(0)" g0 (O plo(E))go1 (o)),

T { J Vol &) Wa-2(0(1,9))g, 1 (a(n)05(m) |-

As previously shown, Y (&, 7)®,-2(0(n,&)) is a kernel of type 2; yet, by Prop.
15.14 in [12], p. 487, for any operator 4 of type 2, T,A4 is an operator of type 1,
hence the claim is proved.

To deal with the last term in (26) we write
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LA K(Ln) = (L Wm0 (00, 0) +Y(Ln) L, [@ (07, 0))]
Z{ [Tyw T [®;_,(0(1,0))]

+ [T (I T [@;_(©0n, )]} (28)

The first term on the right hand side of (28), when substituted into (26), leads
(as ¢ — 0) to an operator of order 1 applied to . We need to recall the notion of
Heisenberg-type order. A function f(&,y) on Q x H, is of order O, k = 1,2, ...,
if feC® and for any compact set K = Q there is a constant Cx > 0 so that
1/ (&, »)] < Ckly|* (Heisenberg norm). If (z, 1) = @)g1 are pseudohermitian normal
coordinates at ¢ then (cf. Theor. 4.3 in [14], p. 177, a refinement of Theor. 14.10
and Corollary 14.9 in [12], p. 475)

0 0 J 0 0
-1 _ v 7Y — R
(0;).Ty = +iz" 5.+ 0 5(6 a>+0 5(3;)

where OX& denotes an operator involving linear combinations of the indicated
derivatives, with O* coefficients. Similarly, (@f ),&n_2 is the operator &, »
(given by (22) with o =n —2) plus higher (Heisenberg-type) order terms.

Let 6(&,77) be the distribution on Q x Q defined by
[[ocnr@atn dzan = | secra ae
As to the second term in the right hand side of (28), when substituted into (26), it

gives an integral operator applied to ¢, which goes to ¢ for ¢ — 0, as desired.
Indeed

11m J ga(f)/g Y(a(S), 77)%1{2[(1);72(@(’7’ C))]g:a(g')g(rl (77);%(0_] (n)) dn

is, up to higher order terms [leading to first order operators applied to ¢ (cf. also
[12], p. 495)]

| acteruie©. 01520021 O . g, o 1)
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Q.e.d.. Finally, we deal with the third term in the right hand side of (28)
(the fourth term may be dealt with in a similar way). It may be written (at

{=0() as
9o 1 (7)) 961 (0())E T W (0(E), )] T3 (@55 (O, 5(£))]

hence the corresponding integral is (after a change of variable)

Y [ 90(&00 1(01€) 001 TS W 1)
P

T @, E))lg, (o) aos () .

Set ¥, (&) = Tf[xpﬂ(é, n)] and note that ¥, , € Ci° and (as T; is a differential

operator) Supp(Y; ) < Supp(y,) = {(&,n) € D : p(&,57) < 1}. The following result
completes the proof

LeEmMA 7

jmﬂ(é DT (@1, ))lg,+ (o(n) L () diy (29)

goes, as ¢ — 0, to an operator of order 1 applied to ¢.

Proor. The kernel of the operator (29) is

50 Y (0, )] = [(d:0,) T3 (@Y

i
Li+0'¢(L,.2) oL (@Y ")

where

. 1 o o -1
fg T ¢/+/a(o) (n 1)/)&/\/11((;) :

The Heisenberg group carries the contact form

Oo = dt+2 (x/dy/ — y/dx),
J
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2/ =x/+iy/. Let dV =0y A (d0y)" be the natural volume form on H,. Set
h:=@;"'. Note that @(h(u),&) = —O(h(u)) = —u. Also

(h*o)(u) = (1+ 0") dV(u)

(cf. again Theor. 4.3 in [14], p. 177). Then
|, satemes) 0O, )ao (o)) i

B JHH U MW7, 0™ 00

g1 (a(h(u)))ps(h(u))(1 + O) dV (u)

D, 5" 'u)
pi(eu)

g1 (a(h(w))) oy (h()) (1 + O') dV (u)

g2 J Vs 0(E, () =" ()

where ¢~ 'u is short for 6, 1u. A change of variable v = ¢ 'u gives (as dV(u) =

82n+2 dV(U))

! v
¢ J V3,0(& h(ev))z" (v) q)pfl_é;()) g1 (a(h(ev)) g5 (h(e0)) (1 + O' (ev)) dV (v).

The absolute value of this integral may be estimated by above by

@%fz(v)

210

e sup [, ,(&m)go1(a(n))p;(n)] J7|<12M(U) (1 + &fv]) @V (v)

p&m=<1

which goes to zero, as ¢ — 0. Moreover, in the limit, the O' and O? terms are
YO Ff0u2)(0,(E)) + ) O' (2 ©u2)(0,(€)) + O (fPu-2)(© (&)
7 7

where  f(z,7) = =[n|lzl|* + (n = 2)i/[[|2]|* + %] Note that |f(y)| < Culy|”?
hence O'zZ*f, O'z*f and O?f are bounded. Now, for instance, let us look at
k(y) = (0O'Z*f®, ,)(y) (the discussion of the remaining terms is similar). First,
note that z*f®,_, is homogeneous of degree —2n — 1, with respect to dilations.
The Taylor series expansion (about 0 = ©,(r)) of the O! coefficients is a sum of
homogeneous terms of degree at least 1 (with coefficients depending on #) plus a
remainder of arbitrarily high order, hence the ‘principal part’ of k(y) is homo-
geneous of degree —2n. Therefore k(®(n,&)) is a kernel of type 1. Q.ed..
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To end the proof of Theorem 5, we shall show that Ag[o —a(G)I is an
operator of type 1. First, note that 4,, and then Agq, is symmetric. Indeed, for
any two (0, 1)-forms ¢ and ¥

(Ao, ) = a0 [ 4ol 3K 010) o))+ (o) s 0P (&) dnd.
As @,(—y) = @y(y), it follows that K(a(&),a(y)) = K(a(n),a(¢)). Hence

(A30);(n) = a(a)z”“hw—w)j g1 (a(n) K (a(n), 0()go(E) 0 (&) dé

- a(o)z”J 6o (1)l K (0(n), 0(8))ga(E)10H(E) dé

— a0 [ gulmh 0K (o) €)1 (D E(E)

Finally (as h,; = dyp)
(Ag¥)z = (Ae¥)
g.e.d.. Moreover, [o is symmetric on compactly supported forms hence

AaTIah = a(G)i == > alo) B

oceCG

and the transpose of B, (an operator of type 1) is again of type .
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