CAUCHY-RIEMANN ORBIFOLDS

By

Sorin DRAGOMIR and Jun MASAMUNE*

Abstract. For any *CR* orbifold¹ *B*, of *CR* dimension *n*, we build a vector bundle (in the sense of J. Girbau & M. Nicolau, [13]) $T_{1,0}(B)$ over *B*, so that $T_{1,0}(B)_p \approx C^n/G_x$ at any singular point $p = \varphi(x) \in B$ (and the portion of $T_{1,0}(B)$ over the regular part of *B* is an ordinary *CR* structure), hence study the tangential Cauchy-Riemann equations on orbifolds. As an application, we build a two-sided parametrix for the Kohn-Rossi laplacian \Box_{Ω} (on the domain Ω of a local uniformizing system $\{\Omega, G, \varphi\}$ of *B*) inverting \Box_{Ω} over the *G*-invariant (0, q)-forms $(1 \le q \le n - 1)$ up to (smoothing) operators of type 1 (in the sense² of G. B. Folland & E. M. Stein, [12]).

1. Introduction

An N-dimensional orbifold (or V-manifold, cf. I. Satake, [20], to whom the notion is due) is a Hausdorff space B looking locally like a quotient of (an open set in) the Euclidean space, by the action of some finite group of C^{∞} diffeomorphisms (cf. [1]–[3], [7], [19]–[22]). That is, each point $p \in B$ admits a neighborhood U which is uniformized by a domain $\Omega \subset \mathbb{R}^N$ and a continuous map $\varphi : \Omega \to U$, in the sense that there is a finite subgroup $G \subset Diff^{\infty}(\Omega)$ so that φ is G-invariant and factors to a homeomorphism $\Omega/G \approx U$. Such (local) uniformizing systems { Ω, G, φ } (shortly l.u.s.'s) play the role of local coordinate charts in manifold theory, and as well as for ordinary manifolds, are required to agree smoothly on overlaps: if $p \in U' \cap V$ and { Ω', G', φ' }, { D, H, ψ } uniformize U', V respectively, then there is a neighborhood $U \subset U' \cap V$ of p uniformized by some { Ω, G, φ }, and an *injection* $\lambda : \Omega \to \Omega'$, i.e. a smooth map which is a C^{∞} diffeomorphism on some open subset of Ω' and satisfies $\varphi' \circ \lambda = \varphi$. This being the

^{*}Assegno biennale di ricerca-Università degli Studi della Basilicata, Potenza, Italy.

¹Key words: *complex orbifold, V-holomorphic function, CR orbifold, Kohn-Rossi operator, parametrix.* ²AMS Subject classification: 32V20, 53C56, 58A99.

Received March 21, 2001.

Revised August 9, 2001.

case, various G-structures of current use in differential geometry, such as Riemannian metrics, complex structures, etc., may be prescribed on orbifolds, by merely assigning an ordinary G-structure to Ω , for each l.u.s. { Ω, G, φ }, and requiring that injections preserve these (local) G-structures (cf. [5], [8], [16], [23]). For instance, if B is a (2n + k)-dimensional orbifold, whose V-manifold structure is described by some fixed family of l.u.s.'s \mathscr{A} , then a CR structure on B is a set

$$\{T_{1,0}(\Omega): \{\Omega, G, \varphi\} \in \mathscr{A}\}$$
(1)

where $T_{1,0}(\Omega)$ is a *CR* structure (of type (n,k)) on Ω and each injection $\lambda: \Omega \to \Omega'$ is a *CR* map (i.e. $(d_x \lambda) T_{1,0}(\Omega)_x \subseteq T_{1,0}(\Omega')_{\lambda(x)}, x \in \Omega$). A *CR* structure (1) on *B* is easily seen to be a vector bundle over *B*, in the sense of W. L. Baily, [3], p. 863, i.e. there is a group monomorphism

$$h_{\Omega}: G \rightarrow Hom(T_{1,0}(\Omega), T_{1,0}(\Omega))$$

for each l.u.s. $\{\Omega, G, \varphi\} \in \mathcal{A}$, and a bundle map

$$\lambda^*: \left.T_{1,0}(\Omega')
ight|_{\lambda(\Omega)} o T_{1,0}(\Omega)$$

for each injection $\lambda: \Omega \to \Omega'$, so that 1) $h_{\Omega}(\sigma)T_{1,0}(\Omega)_x \subseteq T_{1,0}(\Omega)_{\sigma^{-1}(x)}, x \in \Omega, 2)$ $h_{\Omega}(\sigma) \circ \lambda^* = \lambda^* \circ h_{\Omega'}(\eta(\sigma)), \sigma \in G, \text{ and } 3) (\mu \circ \lambda)^* = \lambda^* \circ \mu^*$, for any pair of injections $\lambda: \Omega \to \Omega'$ and $\mu: \Omega' \to \Omega''$, where $\eta: G \to G'$ is a natural group monomorphism associated with λ (cf. our section 3). Indeed, $h_{\Omega}(\sigma)_x := d_x \sigma^{-1}, \sigma \in G, x \in \Omega$, respectively $\lambda^*(v') = (d_{\lambda(x)}\mu)v', v' \in T_{1,0}(\Omega')_{\lambda(x)}, x \in \Omega$, where $\mu := (\lambda: \Omega \to \lambda(\Omega))^{-1}$, satisfy the requirements (1) to (3) (each $\sigma \in G$ is in particular an injection, hence $G \subset Aut_{CR}(\Omega)$). One may proceed to define *CR functions* as continuous functions $f: B \to C$ for which each $f_{\Omega} := f \circ \varphi : \Omega \to C$ is smooth and

$$\bar{\partial}_{\Omega} f_{\Omega} = 0 \tag{2}$$

in Ω , where $\bar{\partial}_{\Omega}$ is the tangential Cauchy-Riemann operator on $(\Omega, T_{1,0}(\Omega))$. The equations (2) may then be referred to as the tangential Cauchy-Riemann equations on (the *CR* orbifold) *B* and it appears that a satisfactory scheme for recovering *CR* geometry and analysis, on *V*-manifolds, has been devised.

The weakness of this approach consists in the lack of relationship between the *G*-structure (here *CR* structure) so assigned to *B* and its singular locus. A point $p \in B$ is *singular* if it admits a neighborhood *U*, uniformized by some l.u.s. $\{\Omega, G, \varphi\}$ for which a point $x \in \Omega$ with nontrivial isotropy group (i.e. $G_x :=$ $\{\sigma \in G : \sigma(x) = x\} \neq \{1_{\Omega}\}$) and lying over *p* (i.e. $\varphi(x) = p$) may be found. If Σ is the set of all singular points of *B* (its *singular locus*) then $B_{reg} := B \setminus \Sigma$ is an ordinary *CR* manifold. Although Σ has a quite simple local structure (locally, it is a finite union of real algebraic *CR* submanifolds) there is no obvious relationship between $T_{1,0}(\Omega)$ and $S := \{x \in \Omega : G_x \neq \{1_\Omega\}\}$, and generally speaking, expressions such as the behaviour of the *CR* structure $T_{1,0}(B_{reg})$ (a bundle over $B \setminus \Sigma$), or of a *CR* function $f \in CR^{\infty}(B_{reg})$, near Σ , lack a precise meaning. To ask a more concrete question, given a *CR* orbifold *B*, can one construct a 'bundle' $T_{1,0}(B)$ over the whole of *B* so that $T_{1,0}(B)|_{B_{reg}} = T_{1,0}(B_{reg})$ and the fibres $T_{1,0}(B)_p$ reflect the nature of *p* (i.e. whether *p* is singular or regular)? In other words, can one write a set of equations on *B* reducing to the ordinary Cauchy-Riemann equations $\overline{\partial}_{B_{reg}}f = 0$ on the regular part of *B*, and exhibiting at Σ a feature related to the nature of Σ ?

The scope of the present paper is to answer some fundamental questions of this sort, i.e. regarding (the Cauchy-Riemann equations on) CR orbifolds. Precisely, for each CR orbifold B, we build a bundle $T_{1,0}(B) \rightarrow B$ in the sense of J. Girbau & M. Nicolau, [13], p. 257–259, so that

$$T_{1,0}(B) \approx C^n/G_x, \quad p = \varphi(x) \in B,$$
(3)

a bijection (hence when $p \in \Sigma$, $T_{1,0}(B)_p$ is not even a vector space) and $T_{1,0}(B)_p = T_{1,0}(B_{reg})_p$ for any $p \in B \setminus \Sigma$. Moreover, by adapting (from real to complex geometry) an ideea of I. Satake, [22], p. 473, who observed that G_x -invariant tangent vectors at $x \in \Omega$ give rise, in our context, to a subset of $T_{1,0}(B)_p$ depending only on $p = \varphi(x)$ and *possessing* a *C*-linear space structure, we are led to the equations

$$\sum_{\alpha=1}^{n} \bar{\zeta}^{\alpha} L_{\bar{\alpha}}(f)_{x} = 0, \tag{4}$$

 $f \in C^{\infty}(\Omega), x \in \Omega, \zeta = (\zeta^1, \dots, \zeta^n) \in \bigcap_{\sigma \in G_x} Ker[g_{\sigma}(x) - I_n]$, where $\{L_{\alpha}\}$ is a frame of $T_{1,0}(\Omega)$, which may be thought of w.l.o.g. as being defined on the whole of Ω , and $g_{\sigma}(x) \in GL(n, \mathbb{C})$ is given by

$$(d_x\sigma)L_{\alpha,x} = g_\sigma(x)^\beta_\alpha L_{\beta,\sigma(x)}, \quad x \in \Omega.$$

Clearly (4) reduces to (2) in $\Omega \setminus S$; we show that for each singular point $x \in S$ there is a neighborhood D of x in Ω and an algebraic CR submanifold $F_x \subset S \cap D$ so that each smooth solution f of (4) is a CR function on F_x .

Any (smooth) function $f: B \to C$ gives rise to a *G*-invariant function $f_{\Omega} := f \circ \varphi$ on Ω . In general, a (geometric) object prescribed on (each) Ω must be preserved by injections, hence by each $\sigma \in G$, hence it is *G*-invariant. Therefore, another fundamental feature of any attempt to recover known facts

from *CR* geometry (on *CR* orbifolds) is, locally, to prove *G*-invariant analogues of the facts of interest. In view of [3] (which uses a *G*-average of a fundamental solution of an elliptic operator to prove a Kodaira-Hodge-de Rham decomposition theorem on *V*-manifolds) this part of the task is rather well understood. To illustrate this line of thought, given a domain Ω in \mathbb{R}^{2n+1} carrying a *G*-invariant strictly pseudoconvex *CR* structure $T_{1,0}(\Omega)$ and a pseudohermitian structure θ so that *G* consists of pseudohermitian transformations of (Ω, θ) , we build a two-sided parametrix inverting the Kohn-Rossi operator \Box_{Ω} on the *G*-invariant forms of degree 0 < q < n - 1, up to operators of type 1, cf. [12]; these are smoothing, in the sense that they are bounded operators $S_k^p(\Omega) \to S_{k+1}^p(\Omega)$ of Folland-Stein spaces. Our methods in section 6 resemble closely those in [3], p. 870–874, and [13], p. 71–74.

The paper is organized as follows. In section 2 we recall the material we need as to CR manifolds and pseudohermitian geometry. In section 3 we discuss the case of complex orbifolds (CR codimension k = 0), the local structure of their singular locus, and V-holomorphic functions. Sections 4 and 5 are devoted to CRorbifolds of CR codimension 1 (certain local aspects are examined in section 4). In section 6 we prove our main result (inverting the Kohn-Rossi operator over the G-invariant forms).

The Authors are grateful to the Referee whose suggestions improved the original form of the manuscript.

2. CR Geometry

In this section we discuss basic notions such as pseudohermitian structures, the Levi form (of a CR manifold of hypersurface type), and pseudohermitian transformations. The main tool is the Tanaka-Webster connection (of a nondegenerate CR manifold endowed with a contact form) and the corresponding parabolic exponential map (leading to a choice of pseudohermitian normal coordinates at each point of the given CR manifold). The notion is due to D. Jerison & J. M. Lee, [15]; Lemma 1 is however new.

Let $(M, T_{1,0}(M))$ be a *CR* manifold, of type (n, 1), i.e. of *CR* dimension *n* and *CR* codimension 1 (cf. e.g. [4], p. 120). The maximally complex (or Levi) distribution of *M*

$$H(M) = Re\{T_{1,0}(M) \oplus T_{0,1}(M)\}$$

carries the complex structure

$$J(Z+\overline{Z})=i(Z-\overline{Z}),\quad Z\in T_{1,0}(M),$$

where $i = \sqrt{-1}$. Here $T_{0,1}(M) = \overline{T_{1,0}(M)}$ and an overbar denotes complex conjugation. If M is oriented then the conormal bundle $H(M)^{\perp} := \{\omega \in T^*(M) :$ $Ker(\omega) \supset H(M)\}$ (a line bundle over M) is trivial, and each global nowhere zero section $\theta \in \Gamma^{\infty}(H(M)^{\perp})$ is a *pseudohermitian structure* on M. Given two pseudohermitian structures θ and $\hat{\theta}$ there is a unique C^{∞} function $u : M \to \mathbb{R} \setminus \{0\}$ so that $\hat{\theta} = u\theta$. The Levi form is

$$L_{\theta}(Z, \overline{W}) = -i(d\theta)(Z, \overline{W}), \quad Z, W \in T_{1,0}(M).$$

A CR manifold is nondegenerate (respectively strictly pseudoconvex) if L_{θ} is nondegenerate (respectively positive-definite) for some θ .

A C^{∞} map $f: M \to N$ of *CR* manifolds is a *CR* map if $(d_x f)T_{1,0}(M)_x \subseteq T_{1,0}(N)_{f(x)}$, for any $x \in M$. A *CR* isomorphism is a C^{∞} diffeomorphism and a *CR* map, and $Aut_{CR}(M)$ is the group of all *CR* isomorphisms of *M* in itself. A pseudohermitian transformation is a *CR* isomorphism between two *CR* manifolds M, N on which pseudohermitian structures θ, θ_N have been fixed, so that $f^*\theta_N = a(f)\theta$, for some $a(f) \in \mathbf{R} \setminus \{0\}$. If $a(f) \equiv 1$ then f is isopseudohermitian.

Let M be a nondegenerate CR manifold. Then any pseudohermitian structure θ is a contact form on M, i.e. $\theta \wedge (d\theta)^n$ is a volume form on M. Once a contact form θ has been fixed, there is a globally defined nowhere zero vector field T on M, transverse to H(M), determined by $\theta(T) = 1$ and $T \rfloor d\theta =$ 0 (the *characteristic direction* of (M, θ)). Let $\pi_H : T(M) \to H(M)$ be the projection associated with the direct sum decomposition $T(M) = H(M) \oplus RT$, i.e. $\pi_H(X) := X - \theta(X)T$. The Webster metric is the semi-Riemannian (i.e. nondegenerate, of constant index) metric

$$g_{\theta}(X, Y) = (d\theta)(\pi_H X, J\pi_H Y) + \theta(X)\theta(Y), \quad X, Y \in T(M).$$

If (r,s) is the signature of the Levi form (r+s=n) then g_{θ} has signature (2r+1,2s).

By a result of N. Tanaka, [24], and S. Webster, [25], for any nondegenerate *CR* manifold, on which a contact form θ has been fixed, there is a unique linear connection ∇ (the *Tanaka-Webster connection* of (M, θ)) so that 1) H(M) is parallel with respect to ∇ , 2) $\nabla J = 0$ and $\nabla g_{\theta} = 0$, 3) $T_{\nabla}(Z, W) = 0$ and $T_{\nabla}(Z, \overline{W}) = 2iL_{\theta}(Z, \overline{W})T$, for any $Z, W \in T_{1,0}(M)$, and 4) $\tau \circ J + J \circ \tau = 0$. Here T_{∇} is the torsion tensor field of ∇ and $\tau(X) := T_{\nabla}(T, X), X \in T(M)$ (the *pseudohermitian torsion* of ∇).

If $\Omega \subset C^{n+1}$ is a domain with smooth boundary, i.e. there is a *R*-valued function $\rho \in C^{\infty}(U)$, for some open set $U \subseteq C^{n+1}$ with $U \supset \overline{\Omega}$, so that $\Omega = \{z \in U : \rho(z) > 0\}, \ \partial\Omega = \{z \in U : \rho(z) = 0\}$, and $\nabla \rho(z) \neq 0$ for any $z \in \partial\Omega$, then

 $\partial \Omega$ admits a natural *CR* structure, recalled in some detail in section 4. The pullback θ of $\frac{i}{2}(\bar{\partial} - \partial)\rho$, via $j : \partial \Omega \subset C^{n+1}$, is a pseudohermitian structure on $\partial \Omega$. The bundle-theoretic recast of (13)–(14) in section 4 consists in observing that

$$T_{1,0}(M) = T_{1,0}(\boldsymbol{C}^{n+1}) \cap [T(M) \otimes \boldsymbol{C}], \quad M = \partial \Omega,$$

and any *CR* manifold obtained this way is said to be *embedded*. Here $T_{1,0}(C^{n+1})$ is the holomorphic tangent bundle over C^{n+1} . A *CR* manifold is (locally) *embeddable* if there is a *CR* isomorphism of *M* (respectively of a neighborhood of each point of *M*) onto some embedded *CR* manifold.

Let $(M, T_{1,0}(M))$ be a nondegenerate *CR* manifold and θ a contact form on *M*. A (0,q)-form on *M* is a complex *q*-form η so that $T_{1,0}(M) \rfloor \eta = 0$ and $T \rfloor \eta = 0$. Let $\Lambda^{0,q}(M) \to M$ be the bundle of all (0,q)-forms on *M*. The tangential Cauchy-Riemann operator is the first order differential operator

$$\overline{\partial}_M : \Gamma^{\infty}(\Lambda^{0,q}(M)) \to \Gamma^{\infty}(\Lambda^{0,q+1}(M)), \quad q \ge 0,$$

defined as follows. If η is a (0,q)-form then $\overline{\partial}_M \eta$ is the unique (0,q+1)-form on M coinciding with $d\eta$ on $T_{0,1}(M) \otimes \cdots \otimes T_{0,1}(M)$ (q+1 terms). Let $\overline{\partial}_M^*$ be the (formal) adjoint of $\overline{\partial}_M$ with respect to the L^2 inner product

$$(\varphi,\psi) = \int_M L^*_{\theta}(\varphi,\overline{\psi})\theta \wedge (d\theta)^n,$$

for any $\varphi, \psi \in \Omega^{0,q}(M)$ (at least one of compact support). The Kohn-Rossi laplacian is

$$\Box_M = \overline{\partial}_M \overline{\partial}_M^* + \overline{\partial}_M^* \overline{\partial}_M.$$

If $f: M \to N$ is an isopseudohermitian transformation then

$$\Box_M^f v = \Box_N v, \quad v \in C^\infty(N), \tag{5}$$

where $\Box_M^f v := (\Box_M v^{f^{-1}})^f$ and $u^f := u \circ f^{-1}, \ u \in C^{\infty}(M).$

Let *M* be a strictly pseudoconvex *CR* manifold and θ a contact form with L_{θ} positive definite. A smooth curve $\gamma(t)$ in *M* satisfying the ODE

$$\left(\nabla_{d\gamma/dt}\frac{d\gamma}{dt}\right)_{\gamma(t)} = 2cT_{\gamma(t)},\tag{6}$$

for some $c \in \mathbf{R}$ and any value of the parameter t is a *parabolic geodesic* on M. Let $x \in M$ and $W \in H(M)_x$. By standard theorems on ODEs, there is $\delta > 0$ so that whenever $g_{\theta,x}(W, W)^{1/2} < \delta$ the unique solution $\gamma_{W,c}(t)$ to (6) of initial data (x, W) may be uniquely continued to an interval containing t = 1and the map $\Psi_x : B(0,\delta) \subset T_x(M) \to M$ given by $\Psi_x(W + cT_x) := \gamma_{W,c}(1)$ (the *parabolic exponential map*) is a diffeomorphism of a sufficiently small neighborhood of $0 \in T_x(M)$ onto a neighborhood of $x \in M$. The terminology is justified by the fact that Ψ_x maps any parabola $t \mapsto tW + t^2 cT_x$ in the tangent space onto $\gamma_{W,c}$.

Let now $\{T_{\alpha}\}$ be a local orthonormal frame of $T_{1,0}(M)$, defined on a neighborhood U of x in M. It determines an isomorphism $\lambda_x : T_x(M) \to H_n$ given by

$$\lambda_x(v) = (\theta_x^{\alpha}(v)e_{\alpha}, \theta_x(v)),$$

for any $v \in T_x(M)$. Here $H_n = C^n \times R$ is the *Heisenberg group* (cf. e.g. [12], p. 434–435) and $\{\theta^{\alpha}\}$ is the frame of $T_{1,0}(M)^*$ determined by

$$\theta^{\alpha}(T_{\beta}) = \delta^{\alpha}_{\beta}, \quad \theta^{\alpha}(T_{\overline{\beta}}) = \theta^{\alpha}(T) = 0.$$

The resulting local coordinates $(z,t) := \lambda_x \circ \Psi_x^{-1}$, defined in some neighborhood of x, are the *pseudohermitian normal coordinates* at x, determined by $\{T_{\alpha}\}$. By Prop. 2.5 in [15], p. 313, these coordinates are also normal coordinates at x in the sense of G. B. Folland & E. M. Stein (cf. [12], p. 471–472). We shall need the following

LEMMA 1. Let M be a nondegenerate CR manifold and θ a contact form on M. Let $\sigma : M \to M$ be a CR automorphism so that $\sigma^* \theta = a(\sigma)\theta$ for some $a(\sigma) \in \mathbb{R} \setminus \{0\}$. Let $\gamma_{W,c}(s)$ be the solution to $\nabla_{d\gamma/dt}(d\gamma/dt) = 2cT \circ \gamma$ of initial data (η, W) , $\eta \in M$, $W \in H(M)_{\eta}$. Then $\sigma \circ \gamma_{W,c} = \gamma_{W_{\sigma,d}(\sigma)c}$, where $W_{\sigma} := (d_{\eta}\sigma)W \in H(M)_{\sigma(\eta)}$, i.e. $\sigma \circ \gamma_{W,c}$ is the solution to $\nabla_{d\gamma/dt}(d\gamma/dt) = 2ca(\sigma)T \circ \gamma$ of initial data $(\sigma(\eta), W_{\sigma})$.

PROOF. For each $y \in M$ and $X \in \mathscr{X}(M)$ consider

$$(\sigma_*X)_v := (d_{\sigma^{-1}(v)}\sigma)X_{\sigma^{-1}(v)}$$

(hence $\sigma_* : \mathscr{X}(M) \approx \mathscr{X}(M)$, an isomorphism) and set

$$\nabla_X^{\sigma} Y := (\sigma_*)^{-1} \nabla_{\sigma_* X} \sigma_* Y.$$

Then $\nabla^{\sigma}\theta = 0$. Using $\sigma^*g_{\theta} = a(\sigma)g_{\theta} + [a(\sigma)^2 - a(\sigma)]\theta \otimes \theta$ one may show that $\nabla^{\sigma}g_{\theta} = 0$. Also, it is easy to check that $\nabla^{\sigma}J = 0$. Next $\sigma_*T = a(\sigma)T$ so that $T_{\nabla^{\sigma}}(Z, W) = 0$, $T_{\nabla^{\sigma}}(Z, \overline{W}) = 2iL_{\theta}(Z, \overline{W})T$ and $T_{\nabla^{\sigma}}(T, JX) + JT_{\nabla^{\sigma}}(T, X) = 0$, for any $Z, W \in T_{1,0}(M)$ and $X \in T(M)$. We may conclude that $\nabla^{\sigma} = \nabla$, the

Tanaka-Webster connection of (M, θ) . Set $\gamma := \gamma_{W,c}$ and $\gamma_{\sigma} := \sigma \circ \gamma$. Then $\gamma_{\sigma}(0) = \sigma(\eta)$ and $(d\gamma_{\sigma}/ds)(0) = W_{\sigma}$. Finally

$$\nabla_{d\gamma_{\sigma}/ds}\frac{d\gamma_{\sigma}}{ds} = \sigma_*\nabla_{d\gamma/ds}^{\sigma}\frac{d\gamma}{ds} = \sigma_*\nabla_{d\gamma/ds}\frac{d\gamma}{ds} = \sigma_*(2cT\circ\gamma) = 2ca(\sigma)T\circ\gamma_{\sigma},$$

hence $\gamma_{\sigma} = \gamma_{W_{\sigma}, a(\sigma)c}$, that is a pseudohermitian transformation σ maps the parabolic geodesic $\gamma_{W_{\sigma}, a(\sigma)c}$. Q.e.d..

We have specified the behaviour (5) of the Kohn-Rossi laplacian on functions, with respect to isopseudohermitian transformations. In general, if φ is a (0,q)-form and $\sigma: M \to M$ a pseudohermitian transformation of a nondegenerate *CR* manifold then

$$\Box_M(\sigma^*\varphi) = a(\sigma)\sigma^*\Box_M\varphi. \tag{7}$$

Indeed, on one hand $\sigma^* \bar{\partial}_M \varphi = \bar{\partial}_M \sigma^* \varphi$, as it easily follows from the axioms defining $\bar{\partial}_M$. On the other hand,

$$\bar{\partial}_{M}^{*}\psi = (-1)^{q+1}(q+1)h^{\lambda\bar{\mu}}(\nabla_{\lambda}\psi_{\bar{\alpha}_{1}\cdots\bar{\alpha}_{q}\bar{\mu}})\theta^{\bar{\alpha}_{1}}\wedge\cdots\wedge\theta^{\bar{\alpha}_{q}}$$

for any (0, q + 1)-form ψ on M, where covariant derivatives are meant with respect to the Tanaka-Webster connection of (M, θ) . For instance, if φ is a (0, 1)-form

$$\overline{\partial}_M^* arphi = -h^{\lambda \overline{\mu}}
abla_\lambda arphi_{\overline{\mu}}$$

hence

$$\bar{\partial}_{M}^{*}(\sigma^{*}\varphi) = -h^{\lambda\bar{\mu}} \{ T_{\lambda}((g_{\sigma})_{\bar{\mu}}^{\bar{\nu}})(\varphi_{\bar{\nu}}\circ\sigma) + (g_{\sigma})_{\bar{\mu}}^{\bar{\nu}}(g_{\sigma})_{\lambda}^{\rho} [T_{\rho}(\varphi_{\bar{\nu}})\circ\sigma] - \Gamma_{\lambda\bar{\mu}}^{\bar{\nu}}(g_{\sigma})_{\bar{\nu}}^{\bar{\rho}}(\varphi_{\bar{\rho}}\circ\sigma) \}$$

and the identity

$$\Gamma^{\bar{\mu}}_{\alpha\bar{\beta}}(g_{\sigma})^{\bar{\nu}}_{\bar{\mu}} = T_{\alpha}((g_{\sigma})^{\bar{\nu}}_{\bar{\beta}}) + (g_{\sigma})^{\mu}_{\alpha}(g_{\sigma})^{\bar{\rho}}_{\bar{\beta}}(\Gamma^{\bar{\nu}}_{\mu\bar{\rho}} \circ \sigma)$$

(a consequence of $\nabla = \nabla^{\sigma}$) lead to

$$\overline{\partial}_M^*(\sigma^*\varphi) = a(\sigma)(\overline{\partial}_M^*\varphi) \circ \sigma.$$

Q.e.d.. Here Γ_{BC}^{A} denote the Christoffel symbols (of ∇ with respect to $\{T_{\alpha}\}$) and $\sigma_{*}T_{\alpha} = (g_{\sigma})_{\alpha}^{\beta}T_{\beta}$.

3. Complex Orbifolds

In this section we review the notion of complex orbifold (complex analytic V-manifold) and, given a complex orbifold X, we build an analogue of the

holomorphic tangent bundle (of a complex manifold) which turns out to be a complex vector bundle $T_{1,0}(X)$ in the sense of J. Girbau & M. Nicolau, [13]. In particular (cf. Step 2 below) each fibre $\pi^{-1}(p)$ of the projection $\pi: T_{1,0}(X) \to X$ is shown to contain a natural vector space $T_{1,0}(X)_p$ [coinciding with $\pi^{-1}(p)$ when p is a regular point]. We show that the smooth functions $f: X \to C$ satisfying $Z(\bar{f}) = 0$ for any section Z in $T_{1,0}(X)$ are precisely those whose local expressions $f \circ \varphi$ are holomorphic in Ω , for each l.u.s. $\{\Omega, G, \varphi\}$ of X (cf. 3) in Theorem 1). The weaker requirement that $Z(\overline{f}) = 0$ only for those sections Z with $Z_p \in$ $T_{1,0}(X)_p$, $p \in X$, leads to the notion of a V-holomorphic function. Locally, i.e. on a fixed l.u.s. $\{\Omega, G, \varphi\}$, one deals with G-invariant C^1 functions satisfying (11). V-holomorphic functions are holomorphic except along the singular locus and exhibit a particular behaviour at singular points $x \in S$ (such that the isotropy group G_x acts on C^n with fixed points): each V-holomorphic function in Ω is holomorphic on a certain complex submanifold F_x passing through x (and there are complex local coordinates at x with respect to which F_x is an affine set in C^n , cf. b) in Theorem 2.

Let X be a Hausdorff space and $U \subseteq X$ an open subset. A local uniformizing system (l.u.s.) of dimension n of X over U is a synthetic object $\{\Omega, G, \varphi\}$ consisting of a domain $\Omega \subseteq C^n$, a finite subgroup $G \subset Aut(\Omega)$ of biholomorphisms of Ω in itself, and a continuous map $\varphi : \Omega \to U$ so that the induced map $\varphi_G : \Omega/G \to U$ is a homeomorphism. An *injection* of $\{\Omega, G, \varphi\}$ into $\{\Omega', G', \varphi'\}$ is a C^{∞} map $\lambda : \Omega \to \Omega'$ so that λ is a biholomorphism of Ω onto some open subset of Ω' and $\varphi' \circ \lambda = \varphi$. The set $U = \varphi(\Omega)$ is the support of the l.u.s. $\{\Omega, G, \varphi\}$.

Given a family \mathscr{F} of l.u.s.'s of dimension n of X, let \mathscr{H} be the family of all supports of all l.u.s.'s in \mathscr{F} . Then \mathscr{F} is a *defining family* for X if 1) for any $\{\Omega, G, \varphi\}, \{\Omega', G', \varphi'\} \in \mathscr{F}$ of supports U, U', if $U \subseteq U'$ then there is an injection λ of $\{\Omega, G, \varphi\}$ into $\{\Omega', G', \varphi'\}$, and 2) \mathscr{H} is a basis of open sets for the topology of X. Two defining families $\mathscr{F}, \mathscr{F}'$ are *directly equivalent* if there is a third defining family \mathscr{F}'' so that $\mathscr{F} \cup \mathscr{F}' \subseteq \mathscr{F}''$. Also, $\mathscr{F}, \mathscr{F}'$ are *equivalent* if there is a set $\{\mathscr{F}_1, \ldots, \mathscr{F}_r\}$ of defining families so that $\mathscr{F}_1 = \mathscr{F}, \mathscr{F}_r = \mathscr{F}''$, and $\mathscr{F}_i, \mathscr{F}_{i+1}$ are directly equivalent for each $1 \leq i \leq r - 1$. A *n*-dimensional *complex orbifold* is a connected paracompact Hausdorff space X together with an equivalence class of defining families; as in ordinary complex manifold theory, it is customary to choose a defining family \mathscr{F} in the class and refer to (X, \mathscr{F}) as a complex orbifold. Cf. I. Satake, [21], p. 261–262 (where complex orbifolds are referred to as complex analytic V-manifolds). Clearly, any complex orbifold, of complex dimension n as above, is a real 2n-dimensional V-manifold (in the sense of [20], p. 359–360, or [3], p. 862–863).

Let (X, \mathcal{F}) be a V-manifold. By a result in [13], given l.u.s.'s $\{\Omega, G, \varphi\}$ and $\{\Omega', G', \varphi'\}$, of supports U, U' respectively, and given injections $\lambda, \mu : \Omega \to \Omega'$, if $U \subseteq U'$ then there is a unique element $\sigma'_1 \in G'$ so that $\mu = \sigma'_1 \circ \lambda$. As a corollary, with any injection $\lambda: \Omega \to \Omega'$ one may associate a group monomorphism $\eta: G \to G'$ so that $\lambda \circ \sigma = \eta(\sigma) \circ \lambda$, for any $\sigma \in G$. It is noteworthy that the existence of the monomorphism η is postulated in both [3] and the more recent [6] (and it is a merit of J. Girbau & M. Nicolau, [13], to have provided a remedy to this inadequacy). A point $p \in X$ is singular if there is $U \in \mathcal{H}$ with $p \in U$ and there is a l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$ over U, and an element $x \in \Omega$ so that $\varphi(x) = p$ and $G_x \neq \{e\}$. Here $G_x := \{\sigma \in G : \sigma(x) = x\}$ is the isotropy group at x and $e = 1_{\Omega}$. By Prop. 1.5 in [13], p. 257, if $p \in U'$, where $U' \in \mathcal{H}$, and $\{\Omega', G', \varphi'\}$ is a l.u.s. of support U' then $G_x \approx G'_y$ (a group isomorphism) for any $y \in \Omega'$ with $\varphi'(y) = p$, hence the notion of singular point of X is unambigously defined. Set $S = \{x \in \Omega : G_x \neq \{e\}\}$ (a closed subset of Ω). Then $\Sigma := \bigcup_{\{\Omega, G, \emptyset\} \in \mathscr{F}} \varphi(S)$ is the singular locus of X and $X_{reg} := X \setminus \Sigma$ its regular part. X_{reg} is an ordinary C^{∞} manifold.

Let *E* be a connected paracompact Hausdorff space and $\pi : E \to X$ a continuous surjective map. Then (E, π, X) is a *vector bundle*, of standard fibre K^m , $K \in \{\mathbf{R}, \mathbf{C}\}$, if the following requirements are fulfilled

1) for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$ there is a continuous map $\varphi_* : \Omega \times K^m \to E$ such that $\pi \circ \varphi_* = \varphi \circ \pi_{\Omega}$, where $\pi_{\Omega}(x, \zeta) = x$ for any $(x, \zeta) \in \Omega \times K^m$. Moreover

2) for any injection λ of $\{\Omega, G, \varphi\}$ into $\{\Omega', G', \varphi'\}$ there is a C^{∞} map $g_{\lambda} : \Omega \to GL(m, K)$ such that $g_e(x) = I_m$, the unit $m \times m$ matrix, for any $x \in \Omega$ and

i) $\{\Omega \times K^m, G_*, \varphi_*\}$ is a l.u.s. of dimension d(K)m + N of E over $\pi^{-1}(U)$ (an open subset of E), where $G_* = \{\sigma_* : \sigma \in G\}$, with $\sigma_*(x, \zeta) := (\sigma(x), g_\sigma(x)\zeta)$ for any $(x, \zeta) \in \Omega \times K^m$, and $d(K) = \dim_R K$, $N = \dim(X)$,

ii) the family of l.u.s.'s $\{\Omega \times K^m, G_*, \varphi_*\}$, obtained as $\{\Omega, G, \varphi\}$ ranges over \mathscr{F} , is a defining family for E, thus organizing E as a (d(K)m + N)-dimensional V-manifold of class C^{∞} ,

iii) the map $\lambda_* : \Omega \times K^m \to \Omega' \times K^m$ given by $\lambda_*(x,\zeta) = (\lambda(x), g_\lambda(x)\zeta)$, is an injection of $\{\Omega \times K^m, G_*, \varphi_*\}$ into $\{\Omega' \times K^m, G'_*, \varphi'_*\}$. Finally

3) for any pair of injections $\Omega \xrightarrow{\lambda} \Omega' \xrightarrow{\mu} \Omega''$ one requests that

$$g_{\mu}(\lambda(x))g_{\lambda}(x) = g_{\mu\circ\lambda}(x),$$

for any $x \in \Omega$. Cf. [13], p. 258. We underline the slight discrepancy in terminology: for a vector bundle of standard fibre K^m the fibre $\pi^{-1}(p)$ over a point $p \in X$ is (isomorphic to) K^m if and only if $p \in X_{reg}$ (and if $p \in \Sigma$ then $\pi^{-1}(p)$ has no natural vector space structure), cf. [13], p. 259. A function $f: X \to C$ on a V-manifold (X, \mathscr{F}) is *smooth* (of class C^{∞}) if $f_{\Omega} := f \circ \varphi$ is C^{∞} for any $\{\Omega, G, \varphi\} \in \mathscr{F}$, and $\mathscr{E}(X)$ is the ring of all complex valued smooth functions on X. We shall prove the following

THEOREM 1. For any complex orbifold (X, \mathcal{F}) , of complex dimension *n*, there is a vector bundle $(T_{1,0}(X), \pi, X)$ so that

1) for any $p \in X$, if $p \in U \in \mathscr{H}$ and $\{\Omega, G, \varphi\} \in \mathscr{F}$ is a l.u.s. over U then $\pi^{-1}(x) \approx \mathbb{C}^n/G_x$ (a bijection) for any $x \in \Omega$ with $\varphi(x) = p$.

2) X_{reg} is a complex manifold and $T_{1,0}(X)|_{X_{reg}}$ its holomorphic tangent bundle. The singular locus of $T_{1,0}(X)$ (as a 4n-dimensional V-manifold) is contained in $\pi^{-1}(\Sigma)$.

3) For any section Z in $T_{1,0}(X)$ (i.e. any continuous map $Z : X \to T_{1,0}(X)$ so that $Z(p) \in \pi^{-1}(p)$ for any $p \in X$) and any $f \in \mathscr{E}(X)$ there is a (naturally defined) function $Z(f) : X \to C$; if $Z(\overline{f}) = 0$ for all sections Z then f_{Ω} is holomorphic in Ω for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$, and conversely.

We organize the proof in several steps, as follows.

STEP 1. The construction of $T_{1,0}(X)$.

Define $g_{\lambda} : \Omega \to GL(n, \mathbb{C})$ by setting

$$g_{\lambda}(x)\zeta = \zeta^k \frac{\partial(z^j \circ \lambda)}{\partial z^k}(x)e_j,$$

where (z^j) are the natural complex coordinates on \mathbb{C}^n , and $\{e_j\}$ its canonical linear basis. Then $G_* = \{\sigma_* : \sigma \in G\}$ acts on $\Omega \times \mathbb{C}^n$ as a (finite) group of biholomorphisms. Set

$$\hat{T}_{1,0}(X) := igcup_{\{\Omega,\,G,\,arphi\}\,\in\,\mathscr{F}}(\Omega imes\,m{C}^n)/G_*$$

(disjoint union). Then $\hat{T}_{1,0}(X)$ is a Hausdorff space, in a natural manner. We define an equivalence relation \sim on $\hat{T}_{1,0}(X)$ as follows. Let $\hat{x}, \hat{y} \in \hat{T}_{1,0}(X)$. If \hat{x} is the G_* -orbit $orb_{G_*}(x,\zeta)$ of some $(x,\zeta) \in \Omega \times \mathbb{C}^n$, for some l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$, then we say that $\hat{x} \sim \hat{y}$ if there is an injection $\lambda : \Omega \to \Omega'$ to that

$$\hat{y} = orb_{G'_*}(\lambda(x), g_\lambda(x)\zeta)$$

If $(\sigma(x), g_{\sigma}(x)\zeta) \in \hat{x}$ is another representative of \hat{x} then

$$orb_{G'_{*}}(\lambda(\sigma(x)), g_{\lambda}(\sigma(x))g_{\sigma}(x)\zeta) = orb_{G'_{*}}(\eta(\sigma)\lambda(x), g_{\lambda\circ\sigma}(x)\zeta)$$
$$= orb_{G'_{*}}[\eta(\sigma)_{*}(\lambda(x), g_{\lambda}(x)\zeta)] = orb_{G'_{*}}(\lambda(x), g_{\lambda}(x)\zeta),$$

(where $\eta: G \to G'$ is the group monomorphism associated with λ) hence $\hat{x} \sim \hat{y}$ is well defined. Clearly \sim is refexive and transitive. The only issue which needs a bit of care is the symmetry property. Note that, for any injection $\lambda: \Omega \to \Omega'$ the synthetic object $\{\lambda(\Omega), \eta(G), \psi\}$, where $\psi = \varphi'|_{\lambda(\Omega)}$, is a l.u.s. of support $U = \varphi(\Omega)$. Indeed $\eta(G)$ acts on $\lambda(\Omega)$ as a group of complex analytic transformations and ψ is $\eta(G)$ -invariant. Moreover λ is equivariant hence it induces a homeomorphism $\lambda_G: \Omega/G \approx \lambda(\Omega)/\eta(G)$. The map $\psi_G: \lambda(\Omega)/\eta(G) \to U'$ (induced by ψ) correstricts to U and $\psi_G \circ \lambda_G = \varphi_G$ hence $\psi_G: \lambda(\Omega)/\eta(G) \approx U$ (a homeomorphism). Then $\hat{x} \sim \hat{y}$ yields $\hat{y} \sim \hat{x}$, as we may think of $(\lambda(x), g_\lambda(x)\zeta)$ as a representative of \hat{y} with respect to the l.u.s. $\{\lambda(\Omega), \eta(G), \psi\}$ and rewrite \hat{x} as

$$\hat{x} = orb_{G_*}(\mu(\lambda(x)), g_{\mu}(\lambda(x))g_{\lambda}(x)\zeta),$$

where μ is the injection $(\lambda : \Omega \to \lambda(\Omega))^{-1}$.

Next $T_{1,0}(X) := \hat{T}_{1,0}(X)/\sim$ carries the quotient topology and

$$\pi: T_{1,0}(X) \to X, \quad \pi([orb_{G_*}(x,\zeta)]) := \varphi(x),$$

is continuous (square brackets indicate classes mod \sim , i.e. $T_{1,0}(X) = \{ [\hat{x}] : \hat{x} \in \hat{T}_{1,0}(X) \}$). The definition doesn't depend upon the choice of representatives; indeed, if $\hat{x} = orb_{G_*}(x,\zeta)$ and $\hat{y} \in [\hat{x}]$ then $\hat{y} = orb_{G'_*}(\lambda(x), g_{\lambda}(x)\zeta)$ for some injection $\lambda : \Omega \to \Omega'$, and $\varphi'(\lambda(x)) = \varphi(x)$.

We wish to show that $(T_{1,0}(X), \pi, X)$ is a vector bundle of standard fibre C^n . To this end, let $\varphi_* : \Omega \times C^n \to T_{1,0}(X)$ be the (continuous) map given by $\varphi_*(x,\zeta) = [orb_{G_*}(x,\zeta)]$. Then $\pi \circ \varphi_* = \varphi \circ \pi_{\Omega}$. Also φ_* is G_* -invariant and the induced map $(\varphi_*)_{G_*} : (\Omega \times C^n)/G_* \to T_{1,0}(X)$ is injective. Finally, it is straightforward that $\lambda_*(x,\zeta) = (\lambda(x), g_\lambda(x)\zeta)$ is an injection of $\{\Omega \times C^n, G_*, \varphi_*\}$ into $\{\Omega' \times C^n, G'_*, \varphi'_*\}$.

Let $p \in X$ be an arbitrary point (eventually singular) and $U \in \mathcal{H}$ so that $p \in U$. Let $\{\Omega, G, \varphi\} \in \mathcal{F}$ be a l.u.s. of support U and $x \in \Omega$ so that $\varphi(x) = p$. Let $\{\Omega_*, G_*, \varphi_*\}$ be a l.u.s. of $T_{1,0}(X)$ corresponding to $\{\Omega, G, \varphi\}$ as above, where $\Omega_* = \Omega \times \mathbb{C}^n$. Then $\pi(\varphi_*(x, \zeta)) = \varphi(x) = p$ hence $\varphi_*(x, \zeta) \in \pi^{-1}(p)$ for any $\zeta \in \mathbb{C}^n$. There is a natural action of G_x on \mathbb{C}^n given by $(\sigma, \zeta) \mapsto g_\sigma(x)\zeta$. We may consider the map

$$C^n/G_x \to \pi^{-1}(p), \quad [\zeta] \mapsto \varphi_*(x,\zeta),$$
(8)

where $[\zeta]$ is the G_x -orbit of ζ . If $[\zeta] = [\zeta]$ then $\zeta = g_{\sigma}(x)\zeta$ for some $\sigma \in G$ and

$$\varphi_*(x,\xi) = \varphi_*(\sigma(x), g_\sigma(x)\xi) = \varphi_*(\sigma_*(x,\xi)) = \varphi_*(x,\xi),$$

i.e. (8) is well defined. To see that (8) is injective, let $\varphi_*(x,\xi) = \varphi_*(x,\zeta)$. As $\{\Omega_*, G_*, \varphi_*\}$ is a l.u.s., there is $\sigma \in G$ so that $(x,\zeta) = \sigma_*(x,\xi)$ hence $\sigma \in G_x$ and $g_{\sigma}(x)\xi = \zeta$, i.e. ξ , ζ are G_x -equivalent. To see that (8) is surjective, let $f \in \pi^{-1}(p)$. As φ_* induces a bijection $\Omega_*/G_* \approx \pi^{-1}(U)$ there is $\tilde{f} = (y,\xi) \in \Omega_*$ so that $\varphi_*(\tilde{f}) = f$. Then

$$\varphi(x) = p = \pi(f) = \pi(\varphi_*(\tilde{f})) = \varphi(\pi_{\Omega}(\tilde{f})) = \varphi(y),$$

hence there is $\sigma \in G$ so that $y = \sigma(x)$. At this point, set $\tilde{f}_* := (\sigma^{-1})_* \tilde{f} \in \Omega_*$. Then $\varphi_*(\tilde{f}_*) = f$ and \tilde{f}_* is an element of the form (x,ζ) with $\zeta = g_{\sigma^{-1}}(\sigma(x))\xi \in [\xi]$, so we are done.

STEP 2. The image $T_{1,0}(X)_p$ of $T_{1,0}(\Omega)_{G_x} := \{v \in T_{1,0}(\Omega)_x : (d_x\sigma)v = v, \forall \sigma \in G_x\}$ via the map $T_{1,0}(\Omega) \approx \Omega \times \mathbb{C}^n \xrightarrow{\varphi_*} T_{1,0}(X)$ depends only on p (i.e. doesn't depend upon the choice of $\{\Omega, G, \varphi\} \in \mathcal{F}$ and $x \in \Omega$ with $\varphi(x) = p$) and $T_{1,0}(X)_p$ has a natural \mathbb{C} -vector space structure so that

$$\dim_{\mathbb{C}} T_{1,0}(X)_p = \dim_{\mathbb{C}} \bigcap_{\sigma \in G_x} Ker[g_{\sigma}(x) - I_n]$$
(9)

Let $p \in U' \in \mathscr{H}$ and $\{\Omega', G', \varphi'\} \in \mathscr{F}$ over U', and consider $x' \in \Omega'$ so that $\varphi'(x') = p$. As \mathscr{H} is a basis of open sets for the topology of X, let $V \subseteq U \cap U'$ with $p \in V \in \mathscr{H}$ and let $\{D, H, \psi\} \in \mathscr{F}$ be a l.u.s. over V. Then there exist injections $\lambda : D \to \Omega$ and $\lambda' : D \to \Omega'$. Let $y \in D$ so that $\psi(y) = p$. We wish to show that $\{\varphi_*(x,\zeta) : \zeta \in (\mathbb{C}^n)_{G_*}\}$ depends only on p, where

$$(\boldsymbol{C}^n)_{G_x} := \{ \zeta \in \boldsymbol{C}^n : g_\sigma(x)\zeta = \zeta, \ \forall \sigma \in G_x \}.$$

As $\varphi(\lambda(y)) = \varphi(x)$, there is $\sigma \in G$ with $\lambda(y) = \sigma(x)$ hence

$$(\sigma(x), g_{\lambda}(y)\xi) = \sigma_*(x, g_{\sigma^{-1}\circ\lambda}(y)\xi)$$

and we have

$$\begin{aligned} \{\psi_*(y,\xi):\xi\in(\boldsymbol{C}^n)_{H_y}\} &= \{\varphi_*(\lambda(y),g_\lambda(y)\xi):\xi\in(\boldsymbol{C}^n)_{H_y}\} \\ &= \{\varphi_*(x,g_{\sigma^{-1}\circ\lambda}(y)\xi):\xi\in(\boldsymbol{C}^n)_{H_y}\} \end{aligned}$$

At this point, it suffices to show that the map

$$(\boldsymbol{C}^n)_{H_y} \to (\boldsymbol{C}^n)_{G_x}, \quad \boldsymbol{\xi} \mapsto g_{\sigma^{-1} \circ \boldsymbol{\lambda}}(\boldsymbol{y})\boldsymbol{\xi},$$
 (10)

is a well defined bijection. $\sigma^{-1} \circ \lambda : D \to \Omega$ is an injection. Let $\eta_{\sigma} : H \to G$ be the

corresponding group monomorphism. As $\varphi(x) = p = \psi(y)$, $\eta_{\sigma} : H_y \to G_x$ is an isomorphism (cf. Prop. 1.5 in [13], p. 257). Given $\tau \in G_x$ let $\rho \in H_y$ so that $\eta_{\sigma}(\rho) = \tau$. Then

$$g_{\tau}(x)g_{\sigma^{-1}\circ\lambda}(y)\xi = g_{\tau\circ\sigma^{-1}\circ\lambda}(y)\xi = g_{\eta_{\sigma}(\rho)\circ\sigma^{-1}\circ\lambda}(y)\xi$$
$$= g_{(\sigma^{-1}\circ\lambda)\circ\rho}(y)\xi = g_{\sigma^{-1}\circ\lambda}(y)g_{\rho}(y)\xi = g_{\sigma^{-1}\circ\lambda}(y)\xi,$$

hence (10) is well defined. Also, a similar computation shows that

$$g_{\sigma^{-1}\circ\lambda}(y)(\boldsymbol{C}^n)_{H_v} = (\boldsymbol{C}^n)_{G_\lambda}$$

and (10) is clearly injective. The same proof applies to λ' , so we are done.

Note that $T_{1,0}(X)_n$ is a *C*-linear space [with $\alpha \varphi_*(x,\zeta) + \beta \varphi_*(x,\zeta) :=$ $\varphi_*(x, \alpha\zeta + \beta\zeta)$ (while the same operation on the image of the whole C^n/G_x is not well defined)]. To see that X_{reg} is a complex manifold we need to review the differentiable structure of X_{reg} in some detail. Let $\{D, H, \psi\} \in \mathscr{F}$ be a l.u.s. of X over $V \in \mathscr{H}$. Set $\Omega = \psi^{-1}(U)$ where $U := V \cap X_{reg}$. Then $\sigma \in H \Rightarrow \sigma(\Omega) = \Omega$. [Indeed, let $x \in \Omega$ and $p := \psi(x)$. Then $p \in U$ and $U \subseteq X \setminus \Sigma$ hence each point of $\psi^{-1}(p)$ has a trivial isotropy group. Yet $\sigma(x) \in \psi^{-1}(p)$ hence $G_{\sigma(x)} = \{e\}$. It follows that $\psi(\sigma(x)) \in X \setminus \Sigma$ and $\psi(\sigma(x)) = \psi(x) = p \in U$, i.e. $\sigma(x) \in \Omega$, q.e.d.]. Set $G := \{\sigma|_{\Omega} : \sigma \in H\}$ and $\varphi := \psi|_{\Omega}$. Then $\{\Omega, G, \varphi\}$ is a l.u.s. of X_{reg} over U. As $\{D, H, \psi\}$ runs over \mathscr{F} , the l.u.s.'s $\{\Omega, G, \varphi\}$ form a defining family of X_{reg} , hence X_{reg} is a 2*n*-dimensional V-manifold. To see that it actually possesses a C^{∞} manifold structure note first that G acts freely on Ω , as a mere consequence of definitions. Let $y \in \Omega$. Then $\sigma(y) \neq y$ for any $\sigma \in G \setminus \{e\}$ (as $G_y = \{e\}$) hence there is an open neighborhood Ω_{σ} of y in Ω so that $\sigma(\Omega_{\sigma}) \cap \Omega_{\sigma} = \emptyset$. Set $D_y :=$ $\bigcap_{\sigma \in G \setminus \{e\}} \Omega_{\sigma}$. As G is finite D_y is open, $y \in D_y \subseteq \Omega$, and $\sigma(D_y) \cap D_y = \emptyset$ for any $\sigma \in G \setminus \{e\}$, hence G acts on Ω as a properly discontinuous group of C^{∞} diffeomorphisms. Thus Ω/G is a real 2*n*-dimensional C^{∞} manifold, and each $U \in$ $\mathscr{H}_{reg} := \{ V \cap (X \setminus \Sigma) : V \in \mathscr{H} \}$ inherits a manifold structure via φ_G . Once Ω/G is organized as a manifold, the projection $\Omega o \Omega/G$ is a local diffeomorphism and its local inverses form a C^{∞} atlas \mathscr{F}_{Ω} . Then $\mathscr{F}_U := \{\chi \circ \varphi_G^{-1} : \chi \in \mathscr{F}_{\Omega}\}$ is an atlas on U and $\mathscr{F}_{reg} := \bigcup_{U \in \mathscr{H}_{reg}} \mathscr{F}_U$ an atlas on X_{reg} . Also $\varphi : \Omega \to U$ is differentiable (and φ_G a diffeomorphism). As Ω and U are locally diffeomorphic there is a unique complex structure on U so that $T_{1,0}(U)_{\varphi(x)} = (d_x \varphi) T_{1,0}(\Omega)_x$, for any $x \in \Omega$. Let $p \in X_{reg}$ and $U, U' \in \mathscr{H}_{reg}$ so that $p \in U \cap U'$. We need to show that $T_{1,0}(U)_p = T_{1,0}(U')_p$, i.e. the complex structures $\{T_{1,0}(U) : U \in \mathscr{H}_{reg}\}$ glue up to a globally defined complex structure on X_{reg} . To this end let $V \in \mathscr{H}_{reg}$ so that $p \in V \subseteq U \cap U'$ and $\{D, H, \psi\}$ a l.u.s. of X_{reg} over V. Let $\lambda : D \to \Omega$ and

 $\lambda': D \to \Omega'$ be injections and let $y \in D$ so that $\psi(y) = p$. Set $x := \lambda(y) \in \Omega$ and $x' := \lambda'(y) \in \Omega'$. Then

$$T_{1,0}(U)_p = (d_y \psi) T_{1,0}(D)_y = T_{1,0}(U')_p,$$

as both λ, λ' are holomorphic maps and $\varphi \circ \lambda = \psi = \varphi' \circ \lambda'$. So X_{reg} is a complex manifold, in a natural way. Next $\pi^{-1}(X_{reg}) = T_{1,0}(X_{reg})$ because of the isomorphism

$$T_{1,0}(X)_p \to T_{1,0}(X_{reg})_p, \quad \varphi_*(x,\zeta) \mapsto (d_x\varphi)\zeta^j \frac{\partial}{\partial z^j}\Big|_x, \quad p \in U \in \mathscr{H}_{reg}.$$

If v is a singular point of $T_{1,0}(X)$ with $p := \pi(v)$, there is $U \in \mathscr{H}$ with $p \in U$, and there is a l.u.s. $\{\Omega, G, \varphi\}$ over U so that $(G_*)_{(x,\zeta)} \neq \{e_*\}$, for some $(x,\zeta) \in \Omega \times \mathbb{C}^n$. That is $\sigma_*(x,\zeta) = (x,\zeta)$ for some $\sigma \in G \setminus \{e\}$, hence $\sigma(x) = x$, i.e. $G_x \neq \{e\}$. It follows that $p \in \Sigma$, i.e. the singular locus of $T_{1,0}(X)$ projects on Σ . Statement 2 in Theorem 1 is proved.

It remains that we prove 3. Let $Z: X \to T_{1,0}(X)$ be a continuous map so that $\pi \circ Z = 1_X$. Let $f \in \mathscr{E}(X)$ and $p \in X$. Let $U \in \mathscr{H}$ so that $p \in U$ and let $\{\Omega, G, \varphi\} \in \mathscr{F}$ over U. Let $x \in \Omega$ so that $\varphi(x) = p$ and set

$$Z(f)_p := \sum_{j=1}^n \zeta^j \frac{\partial f_\Omega}{\partial z^j}(x),$$

where $[\zeta] \in \mathbb{C}^n/G_x$ corresponds to $Z_p \in \pi^{-1}(p)$ under the bijection $\mathbb{C}^n/G_x \approx \pi^{-1}(p)$.

STEP 3. $Z(f)_p$ is well defined.

If $[\xi] = [\zeta]$ then $\xi = g_{\sigma}(x)\zeta$ for some $\sigma \in G_x$ and then

$$\xi^j \frac{\partial f_\Omega}{\partial z^j}(x) = g_\sigma(x)^j_k \zeta^k \frac{\partial f_\Omega}{\partial z^j}(x) = \zeta^k \frac{\partial (f_\Omega \circ \sigma)}{\partial z^k}(x)$$

If another open neighborhood $U' \in \mathscr{H}$ of p is used, let $\{\Omega', G', \varphi'\}$ over U'and $x' \in \Omega'$ with $\varphi'(x') = p$. Then, consider $p \in V \subseteq U \cap U'$ and $\{D, H, \psi\}$ over V, and two injections $\lambda : D \to \Omega$, $\lambda' : D \to \Omega'$. Let $y \in D$ with $\psi(y) = p$. Let $[\zeta] \in \mathbb{C}^n/G_x$ and $[\zeta'] \in \mathbb{C}^n/G'_{x'}$ correspond to Z_p . If $[\zeta] \in \mathbb{C}^n/H_y$ corresponds to Z_p then

$$arphi_*(x,\zeta) = Z_p = \psi_*(y,\xi) = [orb_{H_*}(y,\xi)]$$

= $[orb_{G_*}(\lambda(y), g_{\lambda}(y)\xi)] = \varphi_*(\lambda(y), g_{\lambda}(y)\xi),$

hence there is $\tau \in G$ so that

$$\tau_*(x,\zeta) = (\lambda(y), g_\lambda(y)\zeta),$$

i.e. $\tau(x) = \lambda(y)$ and $\zeta = g_{\tau^{-1}}(\tau(x))g_{\lambda}(y)\xi$. As $f_{\Omega} \circ \lambda = f_D$

$$\zeta^{j}\frac{\partial f_{\Omega}}{\partial z^{j}}(x) = g_{\tau^{-1}}(\tau(x))_{k}^{j}g_{\lambda}(y)_{\ell}^{k}\zeta^{\ell}\frac{\partial f_{\Omega}}{\partial z^{j}}(x) = \frac{\partial(f_{\Omega}\circ\tau^{-1})}{\partial z^{k}}(\tau(x))g_{\lambda}(y)_{\ell}^{k}\zeta^{\ell} =$$

(as f_{Ω} is *G*-invariant and $\tau(x) = \lambda(y)$)

$$=\frac{\partial(f_{\Omega}\circ\lambda)}{\partial z^{\ell}}(y)\xi^{\ell}=\xi^{\ell}\frac{\partial f_{D}}{\partial z^{\ell}}(y).$$

The same argument holds for λ' , hence

$$\zeta^{\prime j} \frac{\partial f_{\Omega^{\prime}}}{\partial z^{j}}(x^{\prime}) = \zeta^{j} \frac{\partial f_{\Omega}}{\partial z^{j}}(x),$$

and Step 3 is proved. Let $Z_p \in \pi^{-1}(p)$ correspond to $[e_j] \in \mathbb{C}^n/G_x$, with $\varphi(x) = p$. Then $Z(\overline{f})_p = 0$ yields $(\partial f_\Omega / \partial \overline{z}^j)(x) = 0$, i.e. $f \in \mathcal{O}(\Omega)$. Theorem 1 is completely proved.

Throughout, if Y is a complex manifold, $\mathcal{O}(Y)$ denotes the space of all holomorphic functions on Y. The last statement in Theorem 1 shows that the requirement $Z(\overline{f}) = 0$ for all sections Z in $T_{1,0}(X)$ is too restrictive for our purposes. In the sequel, we restrict ourselves to sections Z such that $Z_p \in$ $T_{1,0}(X)_p = \{\varphi_*(x,\zeta) : \zeta \in (\mathbb{C}^n)_{G_x}\}$, as mentioned in the Introduction. Locally, we are led to a new notion, termed V-holomorphic function. Let $\Omega \subseteq \mathbb{C}^n$ be a domain and $G \subset Aut(\Omega)$ a finite group of biholomorphisms. A C^1 function $f : \Omega \to \mathbb{C}$ is called V-holomorphic if it is G-invariant and

$$\sum_{j=1}^{n} \bar{\zeta}^{j} \frac{\partial f}{\partial \bar{z}^{j}}(x) = 0$$
(11)

for any $x \in \Omega$ and any $\zeta \in (\mathbb{C}^n)_{G_x}$. Let $\mathcal{O}_V(\Omega)$ be the space of all *V*-holomorphic functions in Ω . Let $\mathcal{O}_G(\Omega)$ consist of all *G*-invariant functions $f \in \mathcal{O}(\Omega)$. Then $\mathcal{O}_G(\Omega) \subseteq \mathcal{O}_V(\Omega) \subseteq \mathcal{O}_G(\Omega \setminus S)$. Note that the requirement (11) is empty at the points of $C := \{x \in \Omega : (\mathbb{C}^n)_{G_x} = (0)\} \subseteq S$. When n = 1, $\mathcal{O}_V(\Omega) \subseteq \mathcal{O}_G(\Omega \setminus C)$.

The following result describes the local structure of S and the behaviour of V-holomorphic functions at the points of $S \setminus C$.

1) $D \cap S$ is a finite union of complex submanifolds of Ω of dimension < n.

2) For any $y \in D$, G_y is a subgroup of G_x . 3) If $x \in S \setminus C$ there is a complex submanifold $F_x \subset D$ passing through x so that a) for each G-invariant function $f: \Omega \to C$, f satisfies (11) at x if and only if the trace of f on F_x is holomorphic at x. Moreover b) $F_x \subset \Omega \setminus C$ and if $f \in \mathcal{O}_V(\Omega)$ then $f|_{F_x} \in \mathcal{O}(F_x)$.

PROOF. Let $x \in S$ and set

$$w^{j} := \frac{1}{|G_{x}|} \sum_{\sigma \in G_{x}} g_{\sigma^{-1}}(x)_{k}^{j}(z^{k} \circ \sigma)$$

(for a set A, |A| denotes its cardinality). Then $(\partial w^j/\partial z^k)(x) = \delta_k^j$ hence there is an open neighborhood V of x in Ω so that $\Phi := (w^1, \ldots, w^n) : V \to \mathbb{C}^n$ is a biholomorphism on its image. Let $\sigma \in G \setminus G_x$. Then $\sigma(x) \neq x$ hence there is an open neighborhood Ω_{σ} of x in V so that $\sigma(\Omega_{\sigma}) \cap \Omega_{\sigma} = \emptyset$. Set $D_0 := \bigcap_{\sigma \in G \setminus G_x} \Omega_{\sigma}$ and $D := \bigcap_{\sigma \in G_x} \sigma(D_0)$. As G is finite D_0 , and then D, are open. What we just built is an open neighborhood D of x in V so that i) $\sigma(D) \subseteq D$ for any $\sigma \in G_x$ and ii) $\sigma(D) \cap D = \emptyset$ for any $\sigma \in G \setminus G_x$. The first statement in Theorem 2 is a complex analogue of Prop. 1.1 in [13], p. 251–252. For each $\tau \in G_x$ set

$$F_{\tau} = \{ y \in D : \tau(y) = y \}.$$

Note that $w^j \circ \tau = g_\tau(x)^j_k \circ w^k$. Consequently

$$\Phi(F_{\tau}) = \Phi(D) \cap Ker[g_{\tau}(x) - I_n],$$

hence F_{τ} is a complex submanifold of D, of complex dimension < n. Next $S \cap D = Y_x$, where

$$Y_{x}:=\bigcup_{\tau\in G_{x}\setminus\{e\}}F_{\tau}.$$

To prove the third statement note that $\overline{\zeta}^j(\partial/\partial \overline{z}^j)_x \in T_x(F_\tau) \otimes_{\mathbb{R}} \mathbb{C}$ if and only if $\zeta \in Ker[g_\tau(x) - I_n]$. Indeed, if $\rho_\sigma^j(z) := g_\sigma(x)_k^j w^k - w^j$, $\sigma \in G_x$, then

$$\left(\zeta^k \frac{\partial}{\partial z^k}\Big|_x\right)(\rho^j_{\sigma}) = \zeta^k [g_{\sigma}(x)^j_{\ell} - \delta^j_{\ell}] \frac{\partial w^{\ell}}{\partial z^k}(x) = \zeta^k g_{\sigma}(x)^j_k - \zeta^j.$$

Set

$$F_x := igcap_{\tau \in G_x \setminus \{e\}} F_{ au}.$$

If $x \in S \setminus C$ then F_x is a complex manifold of dimension $\dim_C(\mathbb{C}^n)_{G_x}$. Let us prove (b). To this end, let $y \in F_x$ and $D' \subset V'$ as in the first part of the proof (got by replacing x by y). Then $F'_{\sigma} \supseteq D' \cap F_x \ni y$ for any $\sigma \in G_y \setminus \{e\}$ hence (by a dimension argument)

$$T_{1,0}(F_{\nu}')_{\nu} = T_{1,0}(F_{x})_{\nu} \approx (C^{n})_{G_{\nu}} \neq (0).$$
(12)

Thus $(C^n)_{G_y} \approx T_{1,0}(F'_y)_y \neq (0)$, a fact which yields $y \in \Omega \setminus C$, i.e. $F_x \subset \Omega \setminus C$. Finally, let $f \in \mathcal{O}_V(\Omega)$. Then $f|_{F'_y}$ is holomorphic in y hence (by (12)) $f|_{F_x}$ is holomorphic in y. Q.e.d..

If (X, \mathscr{F}) is a complex orbifold, a function $f \in C^1(X)$ (i.e. a continuous function $f: X \to C$ so that $f_{\Omega} \in C^1(\Omega)$ for each l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{F}$) is *V*-holomorphic if each f_{Ω} is *V*-holomorphic in Ω . In the sequel, we shall study traces of such functions on smooth real hypersurfaces.

4. Real Hypersurfaces

The purpose of this section is to discuss traces of V-holomorphic functions on real hypersurfaces $M \subset \Omega$ preserved by G. This situation is realizable (by a result of B. Coupet & A. Sukhov, [9], as detailed below) when M is the boundary of a C^{ω} bounded pseudoconvex domain. We are led to a generalization of the notion of CR function, i.e. the solutions to (16). These are CR everywhere except at singular points and exhibit, at a singular point x, the behaviour mentioned in the Introduction (i.e. are CR functions along a CR submanifold passing through x, of smaller CR dimension).

Let $D \subset \mathbb{C}^n$ be a bounded pseudoconvex domain with real analytic boundary ∂D and $H \subset Aut(D)$ a finite (hence compact) group of automorphisms of D. By a result of B. Coupet & A. Sukhov, [9], there is a domain Ω so that $\overline{D} \subset \Omega$ and each $\tau \in H$ extends holomorphically on Ω as an automorphism of Ω . Let $G_{\partial D}$ consist of all $\tilde{\tau}|_{\partial D}$ for $\tau \in H$ and some holomorphic extension $\tilde{\tau} \in Aut(\Omega)$ of τ . By the identity principle for holomorphic functions $G_{\partial D}$ is a well defined finite group of CR automorphisms of ∂D . In general, let $\Omega \subseteq \mathbb{C}^n$ be a domain, $G \subset$ $Aut(\Omega)$ a finite group of biholomorphims, and $M \subset \Omega$ an embedded real hypersurface such that $\sigma(M) = M$ for each $\sigma \in G$. Set $G_M := \{\sigma|_M : \sigma \in G\}$ and $S_M :=$ $\{x \in M : (G_M)_x \neq \{1_M\}\}$. Then $S_M = M \cap S$. For any $x \in M$ there is a neighborhood U of x in \mathbb{C}^n and a function $\rho \in \mathbb{C}^{\infty}(U)$ such that $M \cap U = \{z \in U :$ $\rho(z) = 0\}$ and $\nabla \rho(z) \neq 0$ for any $z \in M$. The Cauchy-Riemann equations in \mathbb{C}^n induce on M an overdetermined system of PDEs with smooth complex valued coefficients

$$\bar{L}_{\alpha}u(z) \equiv \sum_{j=1}^{n} a_{\alpha}^{j}(z) \frac{\partial u}{\partial \bar{z}^{j}} = 0, \quad 1 \le \alpha \le n-1,$$
(13)

(the tangential Cauchy-Riemann equations) $z \in V$, with $V \subseteq M \cap U$ open. Here

$$\sum_{j=1}^{n} \bar{a}_{\alpha}^{j}(z) \frac{\partial \rho}{\partial z^{j}} = 0, \quad 1 \le \alpha \le n-1,$$
(14)

for any $z \in V$, i.e. L_{α} are purely tangential first order differential operators (tangent vector fields on M). Also

$$[L_{\alpha}, L_{\beta}] = C^{\gamma}_{\alpha\beta}(z)L_{\gamma} \tag{15}$$

for some complex valued C^{∞} functions $C_{\alpha\beta}^{\gamma}$ on V. At each point $z \in V$ the $L_{\alpha,z}$'s span a complex (n-1)-dimensional subspace $T_{1,0}(M)_z$ of the complexified tangent space $T_z(M) \otimes_R C$. The bundle $T_{1,0}(M) \to M$ is the *CR* structure of M. A C^1 function $u: M \to C$ is a *CR* function if $\overline{Z}(u) = 0$ for any $Z \in T_{1,0}(M)$. Locally, a *CR* function is a solution of (13). $G \subset Aut(\Omega)$ yields $G_M \subset Aut_{CR}(M)$ hence

$$(d_x\tau)L_{\alpha,x} = \sum_{\beta=1}^{n-1} \tau_{\alpha}^{\beta}(x)L_{\beta,\tau(x)}, \quad x \in V,$$

for each $\tau \in G_M$ and some (unique) system of C^{∞} functions $\tau_{\alpha}^{\beta}: V \to \mathbb{C}$. For each $\tau \in G_M$ let $g_{M,\tau}: V \to GL(n-1, \mathbb{C})$ be given by $g_{M,\tau}(x)\zeta = \tau_{\beta}^{\alpha}(x)\zeta^{\beta}e_{\alpha}$ for any $\zeta \in \mathbb{C}^{n-1}$. Set

$$(\boldsymbol{C}^{n-1})_{(G_M)_x} = Ker[g_{M,\tau}(x) - I_{n-1}]$$

and $C_M = \{x \in M : (\boldsymbol{C}^{n-1})_{(G_M)_x} = (0)\} \subseteq S_M$. We need the following

LEMMA 2. The trace $u = f|_M$ of any V-holomorphic function $f \in \mathcal{O}_V(\Omega)$ satisfies

$$\sum_{\alpha=1}^{n-1} \bar{\xi}^{\alpha} L_{\bar{\alpha},x} u = 0 \tag{16}$$

for any $x \in V$ and any $\xi \in (\mathbb{C}^{n-1})_{(G_M)_x}$. In particular u is a CR function on $M \setminus S_M$ (and if n = 2 then u is CR on $M \setminus C_M$).

PROOF. Let $\zeta \in (\mathbb{C}^{n-1})_{(G_M)_x}$, $x \in V$, and set $\zeta^j = a^j_{\alpha}(x)\xi^{\alpha}$. Then $a^j_{\alpha}(x)g_{\sigma}(x)^k_j = \tau^{\beta}_{\alpha}(x)a^k_{\beta}(x)$

yields $\zeta \in (\boldsymbol{C}^n)_{G_x}$ hence

$$0 = \bar{\zeta}^{j} \frac{\partial f}{\partial \bar{z}^{j}}(x) = \bar{\zeta}^{\alpha} L_{\bar{\alpha}, x} u. \qquad \text{Q.e.d.}$$

In view of the result in [18], it is an open problem whether the real analytic solutions to (16) extend to V-holomorphic functions on a neighborhood of M in Ω (provided $M \in C^{\omega}$).

THEOREM 3. For any $x \in S_M$ there is an open neighborhood D of x in Ω such that $S_M \cap D$ is a finite union of CR manifolds of CR dimension < n - 1. For any $y \in V := M \cap D$, $(G_M)_y$ is a subgroup of $(G_M)_x$. If $x \in S_M \setminus C_M$ there is a CR manifold $F_{M,x}$ such that a C^1 function $u : V \to C$ satisfies (16) for any $\xi \in$ $(C^{n-1})_{(G_M)_x}$ if and only if the trace of u on $F_{M,x}$ is CR at x.

The proof of Theorem 3 is similar to that of Theorem 2, so we only emphasize on the main steps. As $x \in S_M \subseteq S$, let D be a neighborhood of x in Ω as in (the proof of) Theorem 2. By eventually shrinking D let (u^a) be local coordinates on $V = M \cap D$ and set

$$v^{a} = \frac{1}{|G_{x}|} \sum_{\tau \in (G_{M})_{x}} h_{\tau^{-1}}(x)^{a}_{b}(u^{b} \circ \tau), \quad 1 \le a \le 2n - 1,$$

where $h_{\tau}(x) = [(\partial(u^a \circ \tau)/\partial u^b)(x)]$. Then $(\partial v^a/\partial u^b)(x) = \delta_b^a$ hence $\phi = (v^1, \ldots, v^{2n-1})$ is a C^{∞} diffeomorphism of (a perhaps smaller open neighborhood of x in) V onto its image. Given $\tau \in (G_M)_x \setminus \{1_M\}$ set $F_{M,\tau} = \{y \in V : \tau(y) = y\}$. Then $\phi(F_{M,\tau}) = \phi(V) \cap Ker[h_{\tau}(x) - I_{2n-1}]$ hence $F_{M,\tau}$ is a manifold (of dimension $\dim_{\mathbf{R}} Ker[h_{\tau}(x) - I_{2n-1}] < 2n-1$ if $\tau \neq 1_M$) and $S_M \cap V = \bigcup_{\tau \in (G_M)_x \setminus \{1_M\}} F_{M,\tau}$. Note that $F_{M,\tau} = M \cap F_{\sigma}$ for any $\sigma \in G_x$ with $\sigma|_M = \tau$. Hence $F_{M,\tau}$ is a CR submanifold of (the complex manifold) F_{σ} . If $x \in S_M \setminus C_M \subseteq S \setminus C$ then set $F_{M,x} = \bigcap_{\tau \in (G_M)_x \setminus \{1_M\}} F_{M,\tau}$. Then $F_{M,x} = M \cap F_x$ hence $F_{M,x}$ is a CR submanifold of F_x . Let $T_{1,0}(F_{M,x})$ be the CR structure induced from (the complex structure of) F_x . The inclusion $F_{M,x} \subset M$ is a CR immersion (i.e. an immersion and a CR map) and $\bar{\zeta}^{\alpha} L_{\bar{x},x} \in T_{1,0}(F_{M,x})_x$ if and only if $\zeta \in (C^{n-1})_{(G_M)_x}$.

5. CR Orbifolds

The scope of this section is to introduce the class of *CR* orbifolds of arbitrary type (n,k) (containing the class of complex orbifolds, k = 0). The *CR* structure of

a *CR* orbifold *B* and *CR* functions on *B* are discussed in Theorem 4. We consider an analogue \Box_B of the Kohn-Rossi laplacian and state the problem of building a parametrix for \Box_B , the local approach to which is dealt with in section 6 (the solution to the global problem is delegated to a further paper).

Let (B, \mathscr{A}) be a (2n+k)-dimensional V-manifold, of class C^{∞} . A CR structure on B is a family

$$T_{1,0}(B) = \{T_{1,0}(\Omega) : \{\Omega, G, \varphi\} \in \mathscr{A}\}$$

where each $(\Omega, T_{1,0}(\Omega))$ is a *CR* manifold, of type (n,k), i.e. of *CR* dimension *n* and *CR* codimension *k*, and each injection $\lambda : \Omega \to \Omega'$ is a *CR* map. In particular, $G \subset Aut_{CR}(\Omega)$ for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{A}$. A pair $(B, T_{1,0}(B))$ is a *CR* orbifold (of type (n,k)). When k = 0, *B* is a complex orbifold (of complex dimension *n*). We shall deal mainly with *CR* orbifolds of *CR* codimension k = 1.

Let (B, \mathscr{A}) be an *N*-dimensional *V*-manifold. A continuous map $\Psi : B \to M$ into a C^{∞} manifold *M* is an *immersion* if, for any $\{\Omega, G, \varphi\} \in \mathscr{A}$, the map $\Psi_{\Omega} :=$ $\Psi \circ \varphi : \Omega \to M$ is a C^{∞} immersion (i.e. $rank[d_x\Psi_{\Omega}] = N \leq \dim(M), x \in \Omega$). To give an example of *CR* orbifold, assume that N = 2n + 1 and let $\Psi : B \to C^{n+1}$ be an immersion. Let $T_{1,0}(\Omega)$ be the *CR* structure on Ω given by

$$(d_x \Psi_{\Omega}) T_{1,0}(\Omega)_x = T_{1,0}(\boldsymbol{C}^{n+1})_{\Psi(\varphi(x))} \cap [(d_x \Psi_{\Omega}) T_x(\Omega) \otimes_{\boldsymbol{R}} \boldsymbol{C}], \quad x \in \Omega.$$
(17)

Note that $\Psi_{\Omega'} \circ \lambda = \Psi_{\Omega}$, for any injection $\lambda : \Omega \to \Omega'$; as a consequence, it is easy to see that λ must be a *CR* map, hence *B* together with the family of *CR* structures (17) is a *CR* orbifold.

Let $(B, \mathscr{A}, T_{1,0}(B))$ be a *CR* orbifold, of *CR* codimension 1. A family $\theta = \{\theta_{\Omega} : \{\Omega, G, \varphi\} \in \mathscr{A}\}$ is a *pseudohermitian structure* on *B* if each θ_{Ω} is a pseudohermitian structure on Ω and $\lambda^* \theta_{\Omega'} = a(\lambda) \theta_{\Omega}$ for any injection $\lambda : \Omega \to \Omega'$ and some constant $a(\lambda) \in \mathbb{R} \setminus \{0\}$, i.e. injections are pseudohermitian maps. We shall need

LEMMA 3. Let $(B, \mathscr{A}, T_{1,0}(B))$ be a CR orbifold and two pseudohermitian structures θ , $\hat{\theta}$ on B. If each injection $\lambda : \Omega \to \Omega'$ is isopseudohermitian, i.e. $a(\lambda) \equiv 1$, there is a unique C^{∞} function $u : B \to \mathbb{R} \setminus \{0\}$ so that $\hat{\theta}_{\Omega} = u_{\Omega}\theta_{\Omega}$, for any *l.u.s.* $\{\Omega, G, \varphi\} \in \mathscr{A}$.

PROOF. Let $u_{\Omega}: \Omega \to \mathbb{R} \setminus \{0\}$ be a C^{∞} function satisfying $\hat{\theta}_{\Omega} = u_{\Omega} \theta_{\Omega}$. Next, consider an injection $\lambda: \Omega \to \Omega'$. The identities $\lambda^* \theta_{\Omega'} = \theta_{\Omega}$ and $\lambda^* \hat{\theta}_{\Omega'} = \hat{\theta}_{\Omega}$ lead to

$$u_{\Omega'} \circ \lambda = u_{\Omega} \tag{18}$$

In particular u_{Ω} is *G*-invariant. Define $u: B \to \mathbb{R} \setminus \{0\}$ as follows. Let $p \in B$ and $U \in \mathscr{H}$ so that $p \in U$. Let $\{\Omega, G, \varphi\} \in \mathscr{A}$ be a l.u.s. of support *U*. Let $x \in \Omega$ so that $\varphi(x) = p$. Finally, set $u(p) := u_{\Omega}(x)$. One needs to check that the definition of u(p) doesn't depend upon the various choices involved. Let $U' \in \mathscr{H}$ so that $p \in U'$. Then there is $V \in \mathscr{H}$ so that $p \in V \subseteq U \cap U'$. Let $\{\Omega', G', \varphi'\}$ over U' and $x' \in \Omega'$ so that $\varphi'(x') = p$. Let $\{D, H, \psi\}$ be a l.u.s. of support *V* and consider two injections $\lambda: D \to \Omega$ and $\lambda': D \to \Omega'$. Let $y \in D$ so that $\psi(y) = p$. From $\varphi(x) = \psi(y) = \varphi(\lambda(y))$, there is $\sigma \in G$ so that

$$\lambda(y) = \sigma(x). \tag{19}$$

Similarly

$$\lambda'(y) = \sigma'(x'), \tag{20}$$

for some $\sigma' \in G'$. Finally, using (18)–(20), one may conduct the following calculation

$$u_{\Omega'}(x') = u_{\Omega'}((\sigma')^{-1}\lambda'(y)) = u_{\Omega'}(\lambda'(y))$$

= $u_D(y) = u_{\Omega}(\lambda(y)) = u_{\Omega}(\sigma(x)) = u_{\Omega}(x).$ Q.e.d..

A Riemannian orbifold is a V-manifold B together with a family $g = \{g_{\Omega} : \{\Omega, G, \varphi\} \in \mathscr{A}\}$, where g_{Ω} is a Riemannian metric on Ω , so that each injection $\lambda : \Omega \to \Omega'$ is an isometry $(\lambda^* g_{\Omega'} = g_{\Omega})$. Let $(B, \mathscr{A}, T_{1,0}(B))$ be a *strictly* pseudoconvex CR orbifold, i.e. each $(\Omega, T_{1,0}(\Omega))$ is a strictly pseudoconvex CR manifold. Let θ be a pseudohermitian structure on B. Then each θ_{Ω} is a contact 1-form on Ω . Let g_{Ω} be the Webster metric of $(\Omega, \theta_{\Omega})$ and set $g := \{g_{\Omega} : \{\Omega, G, \varphi\} \in \mathscr{A}\}$. If each injection λ is isopseudohermitian then λ preserves the Webster metrics, hence (B, g) is a Riemannian orbifold. The following result is similar to Theorem 1.

THEOREM 4. For any CR orbifold $(B, \mathscr{A}, T_{1,0}(B))$, of type (n, 1), there is a vector bundle $(E_{1,0}, \pi, B)$ so that for any $p \in B$, if $p \in U \in \mathscr{H}$ and $\{\Omega, G, \varphi\} \in \mathscr{A}$ is a l.u.s. over U then $\pi^{-1}(p) \approx \mathbb{C}^n/G_x$ for any $x \in \Omega$ with $\varphi(x) = p$. B_{reg} is a CR manifold (of type (n, 1)) and $E_{1,0}|_{B_{reg}}$ is its CR structure. $T_{1,0}(B_{reg})$ is contained in $(E_{1,0})_{reg}$, the regular part of $E_{1,0}$ as a V-manifold. The image $T_{1,0}(B)_p \subseteq \pi^{-1}(p)$ of $T_{1,0}(\Omega)_{G_x}$ via the map $T_{1,0}(\Omega) \approx \Omega \times \mathbb{C}^n \to E_{1,0}$ depends only on $p = \varphi(x)$. $T_{1,0}(B)_p$ is a C-vector space of dimension $\dim_{\mathbb{C}}(\mathbb{C}^n)_{G_x}$. If Z is a section in $E_{1,0}$ and $f \in \mathscr{E}(B)$ there is a (naturally defined) function $Z(f) : B \to \mathbb{C}$. If $Z(\bar{f}) = 0$ for any Z then $f_{\Omega} = f \circ \varphi$ is a CR function on Ω , for any $\{\Omega, G, \varphi\} \in \mathscr{A}$, and conversely. The bundle $E_{1,0}$ is recovered from the transition functions $g_{\lambda}(x) = [\lambda_{\beta}^{\alpha}(x)]$, where $(d_x\lambda)L_{\alpha,x} = \lambda_{\alpha}^{\beta}(x)L'_{\beta,\lambda(x)}, x \in \Omega$ (we assume w.l.o.g. that a frame $\{L_{\alpha}\}$ of $T_{1,0}(\Omega)$, defined on the whole of Ω , is prescribed on each Ω). We omit the details.

Let *B* be a *V*-manifold. A linear map $D : \mathscr{E}(B) \to \mathscr{E}(B)$ is a *differential* operator (of order k) if for any l.u.s. $\{\Omega, G, \varphi\} \in \mathscr{A}$ there is a differential operator D_{Ω} of order k on Ω so that $(Du)_{\Omega} = D_{\Omega}u_{\Omega}$ for any $u \in \mathscr{E}(B)$. We say *D* is *elliptic* (respectively *subelliptic* (of order ε)) if D_{Ω} is elliptic (respectively subelliptic of order ε , (cf. [11], p. 373)) for each l.u.s. $\{\Omega, G, \varphi\}$.

Let $(B, T_{1,0}(B))$ be a nondegenerate *CR* orbifold, $\theta = \{\theta_{\Omega}\}$ a fixed pseudohermitian structure on *B*, and \Box_{Ω} the Kohn-Rossi laplacian of $(\Omega, \theta_{\Omega})$, cf. section 2. If each injection is isopseudohermitian, we may build a differential operator $\Box_B : \mathscr{E}(B) \to \mathscr{E}(B)$ by setting

$$(\Box_B u)_{\Omega} = \Box_{\Omega} u_{\Omega}$$

for any $u \in \mathscr{E}(B)$. Then $\Box_B u$ is a well defined element of $\mathscr{E}(B)$ if the functions $f_{\Omega} = \Box_{\Omega} u_{\Omega}$ satisfy $f_{\Omega'} \circ \lambda = f_{\Omega}$ for any injection $\lambda : \Omega \to \Omega'$. This may be seen as follows. By applying (5) we get $\Box_{\Omega}^{\lambda} = \Box_{\lambda(\Omega)}$ or

$$(\Box_{\Omega}(v \circ \lambda)) \circ \lambda^{-1} = \Box_{\lambda(\Omega)}v,$$

for any $v \in C^{\infty}(\lambda(\Omega))$. In particular, let us consider the functions

$$v = u_{\Omega'}|_{\lambda(\Omega)} \in C^{\infty}(\lambda(\Omega)).$$

Then

$$\Box_{\Omega}(u_{\Omega}|_{\lambda(\Omega)}) \circ \lambda) \circ \lambda^{-1} = \Box_{\lambda(\Omega)}(u_{\Omega'}|_{\lambda(\Omega)})$$

may be written as

$$\Box_{\Omega} u_{\Omega} = (\Box_{\Omega'} u_{\Omega'}) \circ \lambda.$$

Q.e.d.. Let T_{Ω} be the characteristic direction of $(\Omega, \theta_{\Omega})$. We define a differential operator $T : \mathscr{E}(B) \to \mathscr{E}(B)$ by setting $(Tu)_{\Omega} = T_{\Omega}u_{\Omega}$ for any $u \in \mathscr{E}(\Omega)$. Again, the functions $T_{\Omega}u_{\Omega}$ give rise to a well defined element Tu of $\mathscr{E}(B)$ provided that each injection λ is isopseudohermitian; indeed, if this is the case then $(d_x\lambda)T_{\Omega,x} = T_{\Omega',\lambda(x)}$ for any $x \in \Omega$, and one may perform the calculation

$$T_{\Omega',\lambda(x)}(u_{\Omega'}) = [(d_x\lambda)T_{\Omega,x}](u_{\Omega'}) = T_{\Omega,x}(u_{\Omega'}\circ\lambda) = T_{\Omega,x}(u_{\Omega}).$$

Q.e.d.. Finally, let $(B, T_{1,0}(B))$ be a strictly pseudoconvex *CR* orbifold and $\theta = \{\theta_{\Omega}\}$ a pseudohermitian structure on *B* so that each Levi form $L_{\theta_{\Omega}}$ is positive definite, and each injection is isopseudohermitian. Consider the second order differential operator $\Delta_B : \mathscr{E}(B) \to \mathscr{E}(B)$ given by $\Delta_B u = \Box_B u - inT(u)$ for any $u \in B$. Then Δ_B is a subelliptic operator of order 1/2 on *B*. J. Girbau & M. Nicolau have developed (cf. [13]) a pseudo-differential calculus on *V*-manifolds (inverting a given elliptic differential operator up to infinitely smoothing operators). The same problem for subelliptic operators on *V*-manifolds, e.g. for Δ_B on a *CR* orbifold, is not solved (presumably, one needs to adapt the methods in [17]). Also, see [12], p. 493–498, for a parametrix and the regularity of \Box_M for an ordinary strictly pseudoconvex *CR* manifold *M*. The problem of building a parametrix for \Box_B on a strictly pseudoconvex *CR* orbifold *B* is open. In the next section we solve the local problem.

6. A Parametrix for \Box_{Ω}

Let $\Omega \subset \mathbb{R}^{2n+1}$ be a domain and $T_{1,0}(\Omega)$ a *G*-invariant strictly pseudoconvex *CR* structure on Ω , for some finite group of *CR* automorphisms $G \subset Aut_{CR}(\Omega)$. Let θ be a pseudohermitian structure on Ω so that the corresponding Levi form L_{θ} be positive definite and $\sigma^*\theta = a(\sigma)\theta$, for any $\sigma \in G$ and some $a(\sigma) \in (0, +\infty)$. Let $\{T_{\alpha}\}$ be an orthonormal $(L_{\theta}(T_{\alpha}, T_{\overline{\beta}}) = \delta_{\alpha\beta})$ frame of $T_{1,0}(\Omega)$, defined everywhere in Ω . Let $(z, t) = \Theta_x : V_x \to H_n$ be the pseudohermitian normal coordinates at $x \in \Omega$, determined by $\{T_{\alpha}\}$ as in section 2, and set

$$D:=\bigcup_{x\in\Omega}\{x\}\times V_x,$$

a neighborhood of the diagonal in $\Omega \times \Omega$. Next, we set $\Theta(x, y) := \Theta_x(y)$ and $\rho(x, y) := |\Theta(x, y)|$, for any $(x, y) \in D$. Here $|(z, t)| = (||z||^4 + t^2)^{1/4}$ is the *Heisenberg norm* of $(z, t) \in H_n$.

A function K(x, y) on $\Omega \times \Omega$ is a *kernel of type* λ ($\lambda > 0$) if for any $m \in \mathbb{Z}$, m > 0, one may write K(x, y) as

$$K(x, y) = \sum_{i=1}^{N} a_i(x) K_i(x, y) b_i(y) + E_m(x, y)$$
(21)

where $N \ge 1$ and 1) $E_m \in C_0^m(\Omega \times \Omega)$, 2) $a_i, b_i \in C_0^\infty(\Omega)$, $1 \le i \le N$, and 3) K_i is C^∞ away from the diagonal and is supported in $\{(x, y) \in D : \rho(x, y) \le 1\}$ and $K_i(x, y) = k_i(\Theta(y, x))$ for $\rho(x, y)$ sufficiently small, where k_i is homogeneous of degree $\lambda_i := \lambda - 2n - 2 + \mu_i$, i.e.

$$k_i(\delta_r(z,t)) = r^{\lambda_i} k_i(z,t), \quad r > 0, (z,t) \in \boldsymbol{H}_n,$$

for some $\mu_i \ge 0$. Also $\delta_r(z,t) = (rz, r^2t)$ is the (parabolic) *dilation* of factor r > 0. Next

$$(Af)(x) = \int_{\Omega} K(x, y) f(y) \, dy$$

is an operator of type λ ($\lambda > 0$) if K(x, y) is a kernel of type λ . Here dy is short for $\omega(y) := (\theta \wedge (d\theta)^n)(y)$.

Set $X_{\alpha} := T_{\alpha} + T_{\overline{\alpha}}$ and $Y_{\alpha} := i(T_{\overline{\alpha}} - T_{\alpha})$ and $\{X_j : 1 \le j \le 2n\} := \{X_{\alpha}, Y_{\alpha}\}$, where $X_{\alpha+n} = Y_{\alpha}$. Also, set

$$\mathscr{B}_k = \{X_{j_1} \cdots X_{j_\ell} : 1 \le j_s \le 2n, 1 \le s \le \ell, 1 \le \ell \le k\}$$

and let \mathscr{A}_k be the span over C of $\mathscr{B}_k \cup \{I\}$, where I is the identity. The *Folland-Stein spaces* are $S_k^p(\Omega) = \{f \in L^p(\Omega) : Lf \in L^p(\Omega), \forall L \in \mathscr{A}_k\}$ where Lf is intended in distributional sense. The Folland-Stein spaces are Banach spaces under the norms $||f||_{p,k} = ||f||_p + \sum_{L \in \mathscr{B}_k} ||Lf||_p$. An important feature of the operators of type $\lambda = m \in \{1, 2, \ldots\}$ is that they are bounded operators from $S_k^p(\Omega)$ to $S_{k+m}^p(\Omega)$ (and in this sense smoothing) for $k \in \{0, 1, 2, \ldots\}$ and 1 (cf. Theor. 15.19 in [12], p. 491). We shall prove the following result

THEOREM 5. Let W_0 be a G-invariant compact subset of Ω . For each 0 < q < n there is an operator $A_{q,\Omega} : \Gamma_0^{\infty}(\Lambda^{0,q}(\Omega)) \to \Gamma_0^{\infty}(\Lambda^{0,q}(\Omega))$, of type 2, so that 1) $A_{q,\Omega} \circ \Box_{\Omega} - I$ and $\Box_{\Omega} \circ A_{q,\Omega} - I$ are operators of type 1 on the G-invariant C^{∞} forms of support contained in W_0 , and 2) $A_{q,\Omega}$ maps G-invariant forms in G-invariant forms.

A (0,q)-form φ on Ω may be written locally $\varphi = \varphi_{\overline{I}} \theta^{\overline{I}}$ where $I = (\alpha_1, \ldots, \alpha_n)$ is a multi-index and $\theta^{\overline{I}} = \theta^{\overline{\alpha}_1} \wedge \cdots \wedge \theta^{\overline{\alpha}_n}$. Since

 $(\sigma^*\theta^{\alpha})_x = g_{\sigma}(x)^{\alpha}_{\beta}\theta^{\beta}_x, \quad x \in \Omega,$

if φ is *G*-invariant (i.e. $\sigma^* \varphi = \varphi$ for any $\sigma \in G$) then

$$\varphi_{\overline{I}}(x) = g_{\sigma}(x)_{\overline{I}}^{\overline{J}} \varphi_{\overline{J}}(\sigma(x)), \quad x \in \Omega, \sigma \in G,$$
$$g_{\sigma}(x)_{\overline{I}}^{\overline{J}} := g_{\sigma}(x)_{\overline{a}_{1}}^{\overline{\beta}_{1}} \cdots g_{\sigma}(x)_{\overline{a}_{n}}^{\overline{\beta}_{n}}, \quad J = (\beta_{1}, \dots, \beta_{n})$$

By Prop. 16.5 in [12], p. 496, for any $1 \le q \le n-1$ we may build an operator A_q of type 2 so that $I - \Box_{\Omega} A_q$ and $I - A_q \Box_{\Omega}$ are operators of type 1 on forms $\varphi \in \Gamma_0^{\infty}(\Lambda^{0,q}(\Omega))$ of support $\subset W_0$. Assuming this is done, set

$$A_{q,\sigma} arphi := \sigma^* A_q(\sigma^{-1})^* arphi, \quad A_{q,\Omega} := rac{1}{|G|} \sum_{\sigma \in G} A_{q,\sigma}.$$

From now on, for the sake of simplicity, we drop the index q. If φ is G-invariant then

$$\tau^* A_{\sigma} \varphi = (\sigma \tau)^* A(\sigma^{-1})^* \varphi = (\sigma \tau)^* A((\sigma \tau)^{-1})^* \varphi,$$

i.e.

$$\tau^*(A_{\sigma}\varphi) = A_{\sigma\tau}\varphi.$$

Therefore

$$au^* A_\Omega \varphi = rac{1}{|G|} \sum_{\sigma \in G} au^* A_\sigma \varphi = rac{1}{|G|} \sum_{\sigma \in G} A_{\sigma au} \varphi = A_\Omega \varphi,$$

i.e. A_{Ω} maps G-invariant forms in G-invariant forms.

For each $\xi \in \Omega$ let $\delta(\xi) > 0$ be fixed so that $\Psi_{\xi} : B(0, \delta(\xi)) \subset T_{\xi}(\Omega) \to \Omega$ is well defined and a diffeomorphism on its image $V_{\xi} = \Psi_{\xi}(B(0, \delta(\xi)))$. Next, fix a number

$$0 < \delta_G(\xi) \le \min\left(\left\{\frac{\delta(\sigma(\xi))}{\sqrt{a(\sigma)^2 + a(\sigma)}} : \sigma \in G\right\} \cup \{\delta(\xi)\}\right)$$

and set

$$V_G(\xi) := \Psi_{\xi}(B(0, \delta_G(\xi))) \subseteq V_{\xi} \subset \Omega.$$

Lemma 4. $\sigma[V_G(\xi)] \subseteq V_{\sigma(\xi)}$.

PROOF. Let $\eta \in V_G(\xi) \subset V_{\xi}$, i.e. there is $W + cT_{\xi} \in B(0, \delta_G(\xi))$ so that $W \in H(\Omega)_{\xi}$ and $\eta = \Psi_{\xi}(W + cT_{\xi}) = \gamma_{W,c}(1)$. Thus (by Lemma 1 in section 2) $\sigma(\eta) = (\sigma \circ \gamma_{W,c})(1) = \gamma_{W_{\sigma},a(\sigma)c}(1)$. On the other hand

$$\begin{split} \|W_{\sigma} + a(\sigma)cT_{\sigma(\xi)}\|^2 &= \|W_{\sigma}\|^2 + a(\sigma)^2 c^2 \\ &= a(\sigma)\|W\|^2 + a(\sigma)^2 c^2 < [a(\sigma) + a(\sigma)^2]\delta_G(\xi)^2 \le \delta(\sigma(\xi))^2, \end{split}$$

hence $\gamma_{W_{\sigma},a(\sigma)c}(1) \in V_{\sigma(\xi)}.$ Q.e.d..

Set

$$D_G := \bigcup_{\xi \in \Omega} \{\xi\} imes V_G(\xi)$$

Let us go back to the construction of A. Consider

$$A\varphi(\xi) = \left(\int_{\Omega} K(\xi,\eta)\varphi_{\bar{J}}(\eta) \ d\eta\right)\theta_{\xi}^{\bar{J}},$$

where K is the kernel of type 2

$$K(\xi,\eta) = \psi(\xi,\eta)\Phi_{n-2q}(\Theta(\eta,\xi)).$$

Here $\psi(\xi,\eta)$ is a C_0^{∞} function on $\Omega \times \Omega$, supported in

$$\{(\xi,\eta)\in D_G:\rho(\xi,\eta)\leq r\},\$$

where

$$r := \min(\{a(\sigma)^{1/2} : \sigma \in G\} \cup \{1\}),\$$

and so that $\psi(\xi,\eta) = \psi(\eta,\xi)$ and $\psi(\xi,\eta) = 1$ in a neighborhood \mathcal{N} of the diagonal Δ of $W_0 \times W_0$ ($\Delta \subset \mathcal{N} \subseteq \{(\xi,\eta) \in D : \rho(\xi,\eta) < r\}$). Also Φ_{α} is the fundamental solution ($\mathscr{S}_{\alpha}\Phi_{\alpha} = \delta$) to

$$\mathscr{S}_{\alpha} = -\sum_{j=1}^{n} L_j L_{\bar{j}} + i(\alpha - n) \frac{\partial}{\partial t}, \qquad (22)$$

(the Folland-Stein operators) where

$$L_j := \frac{\partial}{\partial z^j} + i\overline{z}^j \frac{\partial}{\partial t}$$

(the Lewy operators) i.e.

$$\Phi_{\alpha} = b_{\alpha} (||z||^2 - it)^{-(n+\alpha)/2} (||z||^2 + it)^{-(n-\alpha)/2},$$
(23)

for any $\alpha \in \mathbb{C} \setminus \{\pm n, \pm (n+2), \pm (n+4), \ldots\}$, where

$$b_{\alpha} = \frac{\Gamma((n+\alpha)/2)\Gamma((n-\alpha)/2)}{2^{2-2n}\pi^{n+1}}$$

Then

$$A_{\sigma}\varphi(\xi) = \left(\int K(\sigma(\xi),\eta)((\sigma^{-1})^*\varphi)_{\overline{I}}(\eta) \ d\eta\right) \theta^{\overline{I}}_{\sigma(\xi)} \circ (d_{\xi}\sigma).$$
(24)

By $\sigma^*\omega = a(\sigma)^{2n+1}\omega$ and a change of coordinates $\eta' = \sigma(\eta)$ in (24) we get

$$A_{\sigma}\varphi(\xi) = a(\sigma)^{2n+1} \left(\int g_{\sigma}(\xi)_{J}^{\overline{I}} K(\sigma(\xi), \sigma(\eta)) g_{\sigma^{-1}}(\sigma(\eta))_{\overline{I}}^{\underline{L}} \varphi_{\overline{L}}(\eta) \ d\eta \right) \theta_{\xi}^{J}.$$

Lemma 5. For any $(\xi, \eta) \in D_G$

$$\Theta(\sigma(\xi), \sigma(\eta)) = (g_{\sigma}(\xi)_{\alpha}^{\beta} z^{\alpha}(\eta) e_{\beta}, a(\sigma) t(\eta)),$$

where $(z,t) = \Theta_{\xi} = \lambda_{\xi} \circ \Psi_{\xi}^{-1}$ are the pseudohermitian normal coordinates centered at ξ .

PROOF. As $(\xi, \eta) \in D_G$ we have $\eta \in V_G(\xi)$ hence (by Lemma 4) $\sigma(\eta) \in \sigma[V_G(\xi)] \subseteq V_{\sigma(\xi)}$ and then

$$\Theta(\sigma(\xi), \sigma(\eta)) = \Theta_{\sigma(\xi)}(\sigma(\eta)) = \lambda_{\sigma(\xi)} \circ \Psi_{\sigma(\xi)}^{-1}(\sigma(\eta))$$

makes sense. As $\eta \in V_G(\xi) \subseteq V_{\xi}$, set $W := z^{\alpha}(\eta)T_{\alpha,\eta} + z^{\overline{\alpha}}(\eta)T_{\overline{\alpha},\eta}$ and $c := t(\eta)$. Then

$$\begin{split} \Psi_{\sigma(\xi)}(W_{\sigma} + ca(\sigma)T_{\sigma(\eta)}) &= \gamma_{W_{\sigma}, ca(\sigma)}(1) \quad (\text{by Lemma 1}) \\ &= \sigma(\gamma_{W, c}(1)) = \sigma(\Psi_{\xi}(W + cT_{\eta})) = \sigma(\eta), \end{split}$$

hence

$$\Theta(\sigma(\xi), \sigma(\eta)) = \lambda_{\sigma(\xi)}(W_{\sigma} + ca(\sigma)T_{\sigma(\eta)}).$$
 Q.e.d.,

For any $\sigma \in G$, $\sigma^* L_{\theta} = a(\sigma) L_{\theta}$ hence

$$\sum_{\mu}g_{\sigma}(\eta)^{\mu}_{lpha}g_{\sigma}(\eta)^{ar{\mu}}_{ar{eta}}=a(\sigma)\delta_{lphaeta},$$

i.e. $a(\sigma)^{-1/2}g_{\sigma}(\eta) \in U(n)$. Consequently $||g_{\sigma}(\eta)z||^2 = a(\sigma)||z||^2$ and (by (23) and Lemma 5)

$$\Phi_{n-2q}(\Theta(\sigma(\eta),\sigma(\xi))) = a(\sigma)^{-n} \Phi_{n-2q}(\Theta(\eta,\xi)),$$

and we obtain

$$\begin{split} a(\sigma)^{-n-1} A_{\sigma} \varphi(\xi) \\ &= \left(\int g_{\sigma}(\xi)_{J}^{\overline{I}} \psi_{\sigma}(\xi,\eta) \Phi_{n-2q}(\Theta(\eta,\xi)) g_{\sigma^{-1}}(\sigma(\eta))_{\overline{I}}^{\overline{K}} \varphi_{\overline{K}}(\eta) \ d\eta \right) \theta_{\xi}^{J}, \end{split}$$

where $\psi_{\sigma}(\xi,\eta) := \psi(\sigma(\xi), \sigma(\eta))$. Note that $\psi_{\sigma} \in C_0^{\infty}$ and $\psi_{\sigma}(\xi,\eta) = \psi_{\sigma}(\eta,\xi)$. Let $\sigma^2 := \sigma \times \sigma$ (direct product). Set

$$\mathcal{N}_G := \bigcap_{\sigma \in G} \sigma^2(\mathcal{N}) \subset \mathcal{N}.$$

As W_0 is G-invariant $\Delta = \sigma^2(\Delta) \subset \sigma^2(\mathcal{N})$ for any $\sigma \in G$, hence \mathcal{N}_G is an open neighborhood of Δ . Also $\psi(\xi, \eta) = 1$ on \mathcal{N} yields $\psi_{\sigma}(\xi, \eta) = 1$ on \mathcal{N}_G .

Let $(\xi, \eta) \in D_G$. Then (by Lemma 5)

$$\begin{split} |\Theta(\sigma(\xi), \sigma(\eta))| &= |(g_{\sigma}(\xi)z(\eta), a(\sigma)t(\eta))| \\ &= (||g_{\sigma}(\xi)z(\eta)||^{4} + a(\sigma)^{2}t(\eta)^{2})^{1/4} \\ &= a(\sigma)^{1/2}|(z(\eta), t(\eta))| = a(\sigma)^{1/2}|\Theta(\xi, \eta)|, \end{split}$$

378

that is

$$\rho(\sigma(\xi), \sigma(\eta)) = a(\sigma)^{1/2} \rho(\xi, \eta).$$
⁽²⁵⁾

Let Γ and Γ_{σ} be respectively the supports of ψ and ψ_{σ} . Then $\sigma^{2}(\Gamma_{\sigma}) \subseteq \Gamma \subset \{(\xi,\eta) \in D_{G} : \rho(\xi,\eta) \leq r\}$. Also (by Lemma 4) $\sigma^{-1}(D_{G}) \subseteq D$. Thus (by (25)) $\Gamma_{\sigma} \subset \{(\xi,\eta) \in D : \rho(\xi,\eta) \leq 1\}$. Then (as in [12], p. 494) we may conclude that

$$K_{\sigma}(\xi,\eta) = \psi_{\sigma}(\xi,\eta)\Phi_{n-2q}(\Theta(\eta,\xi))$$

is a kernel of type 2. In general, if $K(\xi,\eta)$ is a kernel of type λ then

$$K^{\overline{I}}_{\overline{J}}(\xi,\eta) := g_{\sigma}(\xi)^{L}_{\overline{J}}K(\xi,\eta)g_{\sigma^{-1}}(\sigma(\eta))^{I}_{L}$$

is another kernel of type λ , as it easily follows from (21). We have proved that A_{σ} , and therefore A_{Ω} , is an operator of type 2.

Set $a(G) := (1/|G|) \sum_{\sigma \in G} a(\sigma) > 0$. We wish to check that $a(G)^{-1}A_{\Omega}$ inverts \Box_{Ω} . Set $B := I - \Box_{\Omega}A$. If φ is a *G*-invariant (0, q)-form then (by (7))

$$\Box_{\Omega} A_{\Omega} \varphi(\xi) = \frac{1}{|G|} \sum_{\sigma \in G} \Box_{\Omega} \sigma^* A(\sigma^{-1})^* \varphi(\xi)$$
$$= \frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) \sigma^* \Box_{\Omega} A \varphi(\xi) = \frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) \sigma^* (\varphi - B\varphi)(\xi)$$

that is

$$\Box_{\Omega} A_{\Omega} \varphi(\xi) = a(G) \varphi(\xi) - \frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) B_{\sigma} \varphi(\xi),$$

where $B_{\sigma} := \sigma^* B(\sigma^{-1})^*$. We shall prove that

LEMMA 6. B_{σ} is an operator of type 1.

PROOF. Set

$$\begin{split} A_{\varepsilon}\varphi(\xi) &:= \left(\int K_{\varepsilon}(\xi,\eta)\varphi_{\overline{j}}(\eta) \ d\eta\right)\theta_{\xi}^{\overline{j}},\\ K_{\varepsilon}(\xi,\eta) &:= \psi(\xi,\eta)\Phi_{n-2q}^{\varepsilon}(\Theta(\eta,\xi)),\\ \Phi_{\alpha}^{\varepsilon} &:= b_{\alpha}\rho_{\varepsilon}^{-(n+\alpha)/2}\bar{\rho}_{\varepsilon}^{-(n-\alpha)/2}, \quad \rho_{\varepsilon}(z,t) := \|z\|^{2} + \varepsilon^{2} - it, \end{split}$$

for any $\varepsilon > 0$. For the sake of simplicity, we only look at the case q = 1. For any (0, 1)-form ψ on Ω , the Kohn-Rossi laplacian is expressed by

$$\Box_{\Omega}\psi = \{-h^{\lambda\bar{\mu}}\nabla_{\lambda}\nabla_{\bar{\mu}}\psi_{\bar{\alpha}} - 2i\nabla_{0}\psi_{\bar{\alpha}} + \psi_{\bar{\gamma}}R^{\bar{\gamma}}_{\bar{\alpha}}\}\theta^{\bar{\alpha}},$$

where $R_{\lambda\bar{\mu}}$ is the *pseudohermitian Ricci tensor* (cf. e.g. [10], p. 193). This may be written

$$(\Box_{\Omega}\psi)_{\bar{\alpha}} = \mathscr{L}_{n-2}\psi_{\bar{\alpha}} + \sum_{\mu=1}^{n} \left\{ \Gamma^{\bar{\rho}}_{\mu\bar{\alpha}}T_{\mu}\psi_{\bar{\rho}} + \frac{1}{2}\Gamma^{\bar{\rho}}_{\mu\bar{\mu}}T_{\bar{\rho}}\psi_{\bar{\alpha}} + \Gamma^{\bar{\rho}}_{\mu\bar{\alpha}}T_{\bar{\mu}}\psi_{\bar{\rho}} \right\} + F^{\bar{\gamma}}_{\bar{\alpha}}\psi_{\bar{\gamma}},$$

(compare to (16.1) in [12], p. 494) for some C^{∞} functions $F_{\overline{\alpha}}^{\overline{\gamma}}$ (expressed in terms of the Christoffel symbols and their derivatives, and whose precise form is unimportant). We have (by the proof of Prop. 16.5 in [12])

$$\sigma^* B(\sigma^{-1})^* \varphi(\xi) = \varphi(\xi) - \sigma^* \Box_{\Omega} A(\sigma^{-1})^* \varphi(\xi) = \varphi(\xi) - \sigma^* \lim_{\varepsilon \to 0} \Box_{\Omega} A_\varepsilon(\sigma^{-1})^* \varphi(\xi)$$

that is

$$B_{\sigma}\varphi(\xi) = \varphi(\xi) - \lim_{\varepsilon \to 0} \sigma^* \Box_{\Omega} A_{\varepsilon}(\sigma^{-1})^* \varphi(\xi)$$

hence it suffices to show that if we let $\varepsilon \to 0$ then $\sigma^* \Box_{\Omega} A_{\varepsilon} (\sigma^{-1})^* \varphi$ goes to φ plus an operator of order 1 applied to φ . We have

$$\begin{aligned} \sigma^* \Box_{\Omega} A_{\varepsilon}(\sigma^{-1})^* \varphi(\xi) &= \left[\Box_{\Omega} \left(\int K_{\varepsilon}(\cdot, \eta) ((\sigma^{-1})^* \varphi)_{\bar{a}}(\eta) \ d\eta \right) \theta^{\bar{a}} \right]_{\sigma(\xi)} \circ (d_{\xi} \sigma) \\ &= g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{a}} \left[\mathscr{L}_{n-2} \psi_{\bar{a}} + \sum_{\mu} \left\{ \Gamma_{\mu\bar{a}}^{\bar{p}} T_{\mu} \psi_{\bar{p}} + \frac{1}{2} \Gamma_{\mu\bar{\mu}}^{\bar{p}} T_{\bar{p}} \psi_{\bar{a}} + \Gamma_{\mu\bar{a}}^{\bar{p}} T_{\bar{\mu}} \psi_{\bar{p}} \right\} + F_{\bar{a}}^{\bar{\gamma}} \psi_{\bar{\gamma}} \right]_{\sigma(\xi)} \theta_{\xi}^{\bar{\beta}} \end{aligned}$$

where

$$\psi_{ar{a}}(\xi) := \int K_{\varepsilon}(\xi,\eta) ((\sigma^{-1})^* \varphi)_{ar{a}}(\eta) \ d\eta.$$

and $\mathscr{L}_{n-2} = -\sum_{\alpha} T_{\alpha} T_{\overline{\alpha}} - 2iT$. Therefore, using

$$(T_{\mu}f)(\sigma(\xi)) = g_{\sigma^{-1}}(\sigma(\xi))^{\lambda}_{\mu}T_{\lambda}(f \circ \sigma)$$

we get

$$\sigma^* \Box_{\Omega} A_{\varepsilon}(\sigma^{-1})^* \varphi(\xi) = \left\{ A^0_{\varepsilon,\vec{\beta}} \varphi(\xi) + \sum_{\mu=1}^n \sum_{i=1}^3 A^i_{\varepsilon,\mu\vec{\beta}} \varphi(\xi) \right\} \theta^{\vec{\beta}}_{\xi} \\ + \left(\int g_{\sigma}(\xi)^{\overline{\alpha}}_{\vec{\beta}} [\mathscr{L}^{\zeta}_{n-2} K_{\varepsilon}(\zeta,\eta)]_{\zeta=\sigma(\xi)} g_{\sigma^{-1}}(\eta)^{\overline{\gamma}}_{\overline{\alpha}} \varphi_{\overline{\gamma}}(\sigma^{-1}(\eta)) \ d\eta \right) \theta^{\vec{\beta}}_{\xi}$$
(26)

where

$$\begin{split} A^{0}_{\varepsilon,\vec{\beta}}\varphi(\xi) &= g_{\sigma}(\xi)^{\vec{\alpha}}_{\vec{\beta}}F^{\vec{\gamma}}_{\vec{\alpha}}(\sigma(\xi))\int K_{\varepsilon}(\sigma(\xi),\eta)g_{\sigma^{-1}}(\eta)^{\vec{p}}_{\vec{\gamma}}\varphi_{\vec{\rho}}(\sigma^{-1}(\eta)) \ d\eta, \\ A^{1}_{\varepsilon,\mu\vec{\beta}}\varphi(\xi) &= g_{\sigma}(\xi)^{\vec{\alpha}}_{\vec{\beta}}\Gamma^{\vec{p}}_{\mu\vec{\alpha}}(\sigma(\xi))g_{\sigma^{-1}}(\sigma(\xi))^{\lambda}_{\mu}\int [T^{\xi}_{\lambda}K_{\varepsilon}(\sigma(\xi),\eta)]g_{\sigma^{-1}}(\eta)^{\vec{\gamma}}_{\vec{\rho}}\varphi_{\vec{\gamma}}(\sigma^{-1}(\eta)) \ d\eta, \\ A^{2}_{\varepsilon,\mu\vec{\beta}}\varphi(\xi) &= \frac{1}{2}g_{\sigma}(\xi)^{\vec{\alpha}}_{\vec{\beta}}\Gamma^{\vec{p}}_{\mu\vec{\alpha}}(\sigma(\xi))g_{\sigma^{-1}}(\sigma(\xi))^{\vec{\lambda}}_{\vec{\rho}}\int [T^{\xi}_{\vec{\lambda}}K_{\varepsilon}(\sigma(\xi),\eta)]g_{\sigma^{-1}}(\eta)^{\vec{\gamma}}_{\vec{\alpha}}\varphi_{\vec{\gamma}}(\sigma^{-1}(\eta)) \ d\eta, \\ A^{3}_{\varepsilon,\mu\vec{\beta}}\varphi(\xi) &= g_{\sigma}(\xi)^{\vec{\alpha}}_{\vec{\beta}}\Gamma^{\vec{p}}_{\mu\vec{\alpha}}(\sigma(\xi))g_{\sigma^{-1}}(\sigma(\xi))^{\vec{\lambda}}_{\vec{\mu}}\int [T^{\xi}_{\vec{\lambda}}K_{\varepsilon}(\sigma(\xi),\eta)]g_{\sigma^{-1}}(\eta)^{\vec{\gamma}}_{\vec{\rho}}\varphi_{\vec{\gamma}}(\sigma^{-1}(\eta)) \ d\eta. \end{split}$$

Clearly $A^0_{\varepsilon,\overline{\beta}}$ gives, in the limit as $\varepsilon \to 0$, an operator of type 2 (and hence of type 1). We claim that $A^i_{\varepsilon,\mu\overline{\beta}}$ give (as $\varepsilon \to 0$) operators of type 1, as well. For instance, let us look at $A^1_{\varepsilon,\mu\overline{\beta}}$ (the remaining operators may be treated in a similar manner). Note that

$$\Phi_{\alpha}^{\varepsilon}(\Theta(\sigma(\eta), \sigma(\xi))) = a(\sigma)^{-n} \Phi_{\alpha}^{\varepsilon/\sqrt{a(\sigma)}}(\Theta(\eta, \xi))$$
(27)

Indeed (by Lemma 5)

$$\rho_{\varepsilon}(g_{\sigma}(\eta)z(\xi), a(\sigma)t(\xi)) = a(\sigma)||z(\xi)||^{2} + \varepsilon^{2} - ia(\sigma)t(\xi)$$
$$= a(\sigma)\rho_{\varepsilon/\sqrt{a(\sigma)}}(z(\xi), t(\xi)).$$

Consequently

$$K_{\varepsilon}(\sigma(\xi), \sigma(\eta)) = a(\sigma)^{-n} \psi_{\sigma}(\xi, \eta) \Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}}(\Theta(\eta, \xi))$$

and a change of variables $\eta' = \sigma^{-1}(\eta)$ leads to

$$\begin{split} A^{1}_{\varepsilon,\mu\bar{\beta}}\varphi(\xi) &= a(\sigma)^{n+1}g_{\sigma}(\xi)^{\overline{2}}_{\bar{\beta}}\Gamma^{\overline{\rho}}_{\mu\overline{z}}(\sigma(\xi))g_{\sigma^{-1}}(\sigma(\xi))^{\lambda}_{\mu} \\ & \cdot \int T^{\xi}_{\lambda}[\psi_{\sigma}(\xi,\eta)\Phi^{\varepsilon/\sqrt{a(\sigma)}}_{n-2}(\Theta(\eta,\xi))]g_{\sigma^{-1}}(\sigma(\eta))^{\overline{\gamma}}_{\bar{\rho}}\varphi_{\overline{\gamma}}(\eta) \ d\eta \end{split}$$

which goes, as $\varepsilon \to 0$, to

$$\begin{aligned} a(\sigma)^{n+1} g_{\sigma}(\xi)^{\frac{\chi}{\beta}} \Gamma^{\overline{\rho}}_{\overline{\mu}\overline{\alpha}}(\sigma(\xi)) g_{\sigma^{-1}}(\sigma(\xi))^{\lambda}_{\mu} \\ & \cdot T^{\xi}_{\lambda} \bigg[\int \psi_{\sigma}(\xi,\eta) \Psi_{n-2}(\Theta(\eta,\xi)) g_{\sigma^{-1}}(\sigma(\eta))^{\overline{\gamma}}_{\overline{\rho}} \varphi_{\overline{\gamma}}(\eta) \ d\eta \bigg] \end{aligned}$$

As previously shown, $\psi_{\sigma}(\xi, \eta)\Phi_{n-2}(\Theta(\eta, \xi))$ is a kernel of type 2; yet, by Prop. 15.14 in [12], p. 487, for any operator A of type 2, $T_{\lambda}A$ is an operator of type 1, hence the claim is proved.

To deal with the last term in (26) we write

$$\begin{aligned} \mathscr{L}_{n-2}^{\zeta} K_{\varepsilon}(\zeta,\eta) &= [\mathscr{L}_{n-2}^{\zeta} \psi(\zeta,\eta)] \Phi_{n-2}^{\varepsilon}(\Theta(\eta,\zeta)) + \psi(\zeta,\eta) \mathscr{L}_{n-2}^{\zeta}[\Phi_{n-2}^{\varepsilon}(\Theta(\eta,\zeta))] \\ &- \frac{1}{2} \sum_{\alpha=1}^{n} \{ [T_{\alpha}^{\zeta} \psi(\zeta,\eta)] T_{\overline{\alpha}}^{\zeta} [\Phi_{n-2}^{\varepsilon}(\Theta(\eta,\zeta))] \\ &+ [T_{\overline{\alpha}}^{\zeta} \psi(\zeta,\eta)] T_{\alpha}^{\zeta} [\Phi_{n-2}^{\varepsilon}(\Theta(\eta,\zeta))] \} \end{aligned}$$
(28)

The first term on the right hand side of (28), when substituted into (26), leads (as $\varepsilon \to 0$) to an operator of order 1 applied to φ . We need to recall the notion of *Heisenberg-type order*. A function $f(\xi, y)$ on $\Omega \times H_n$ is of order O^k , k = 1, 2, ...,if $f \in C^{\infty}$ and for any compact set $K \subset \Omega$ there is a constant $C_K > 0$ so that $|f(\xi, y)| \le C_K |y|^k$ (Heisenberg norm). If $(z, t) = \Theta_{\xi}^{-1}$ are pseudohermitian normal coordinates at ξ then (cf. Theor. 4.3 in [14], p. 177, a refinement of Theor. 14.10 and Corollary 14.9 in [12], p. 475)

$$(\Theta_{\xi}^{-1})_{*}T_{\alpha} = \frac{\partial}{\partial z^{\alpha}} + i\overline{z}^{\alpha}\frac{\partial}{\partial t} + O^{1}\mathscr{E}\left(\frac{\partial}{\partial z}, \frac{\partial}{\partial \overline{z}}\right) + O^{2}\mathscr{E}\left(\frac{\partial}{\partial t}\right),$$

where $O^k \mathscr{E}$ denotes an operator involving linear combinations of the indicated derivatives, with O^k coefficients. Similarly, $(\Theta_{\xi}^{-1})_* \mathscr{L}_{n-2}$ is the operator \mathscr{L}_{n-2} (given by (22) with $\alpha = n-2$) plus higher (Heisenberg-type) order terms.

Let $\delta(\xi,\eta)$ be the distribution on $\Omega \times \Omega$ defined by

$$\int \delta(\xi,\eta) f(\xi) g(\eta) \ d\xi d\eta = \int f(\xi) g(\xi) \ d\xi.$$

As to the second term in the right hand side of (28), when substituted into (26), it gives an integral operator applied to φ , which goes to φ for $\varepsilon \to 0$, as desired. Indeed

$$\lim_{\varepsilon \to 0} \int g_{\sigma}(\xi)_{\bar{\beta}}^{\bar{\alpha}} \psi(\sigma(\xi),\eta) \mathscr{L}_{n-2}^{\zeta} [\Phi_{n-2}^{\varepsilon}(\Theta(\eta,\zeta))]_{\zeta=\sigma(\xi)} g_{\sigma^{-1}}(\eta)_{\bar{\alpha}}^{\bar{\gamma}} \varphi_{\bar{\gamma}}(\sigma^{-1}(\eta)) \ d\eta$$

is, up to higher order terms [leading to first order operators applied to φ (cf. also [12], p. 495)]

$$\begin{split} \int g_{\sigma}(\xi)_{\beta}^{\overline{\alpha}}\psi(\sigma(\xi),\eta)[\mathscr{S}_{n-2}\Phi_{n-2}](\Theta(\eta,\sigma(\xi)))g_{\sigma^{-1}}(\eta)_{\overline{\alpha}}^{\overline{\gamma}}\varphi_{\overline{\gamma}}(\sigma^{-1}(\eta)) \ d\eta \\ &= \int g_{\sigma}(\xi)_{\beta}^{\overline{\alpha}}\psi(\sigma(\xi),\eta)\delta(\sigma(\xi),\eta)g_{\sigma^{-1}}(\eta)_{\overline{\alpha}}^{\overline{\gamma}}\varphi_{\overline{\gamma}}(\sigma^{-1}(\eta)) \ d\eta \\ &= g_{\sigma}(\xi)_{\beta}^{\overline{\alpha}}\psi(\sigma(\xi),\sigma(\xi))g_{\sigma^{-1}}(\sigma(\xi))_{\overline{\alpha}}^{\overline{\gamma}}\varphi_{\overline{\gamma}}(\xi) = \delta_{\beta}^{\gamma}\psi_{\sigma}(\xi,\xi)\varphi_{\overline{\gamma}}(\xi) = \varphi_{\overline{\beta}}(\xi). \end{split}$$

382

Q.e.d.. Finally, we deal with the third term in the right hand side of (28) (the fourth term may be dealt with in a similar way). It may be written (at $\zeta = \sigma(\zeta)$) as

$$g_{\sigma^{-1}}(\sigma(\xi))^{\beta}_{\alpha}g_{\sigma^{-1}}(\sigma(\xi))^{\overline{\gamma}}_{\overline{\alpha}}T^{\xi}_{\beta}[\psi(\sigma(\xi),\eta)]T^{\xi}_{\overline{\gamma}}[\Phi^{\varepsilon}_{n-2}(\Theta(\eta,\sigma(\xi))]$$

hence the corresponding integral is (after a change of variable)

$$\begin{split} a(\sigma)^{n+1} \sum_{\rho} \int g_{\sigma}(\xi)^{\overline{\alpha}}_{\overline{\beta}} g_{\sigma^{-1}}(\sigma(\xi))^{\lambda}_{\rho} g_{\sigma^{-1}}(\sigma(\xi))^{\overline{\mu}}_{\overline{\rho}} T^{\xi}_{\lambda} [\psi_{\sigma}(\xi,\eta)] \\ & \cdot T^{\xi}_{\overline{\mu}} [\Phi^{\varepsilon/\sqrt{a(\sigma)}}_{n-2}(\Theta(\eta,\xi))] g_{\sigma^{-1}}(\sigma(\eta))^{\overline{\gamma}}_{\overline{\alpha}} \varphi_{\overline{\gamma}}(\eta) \ d\eta. \end{split}$$

Set $\psi_{\lambda,\sigma}(\xi,\eta) := T_{\lambda}^{\xi}[\psi_{\sigma}(\xi,\eta)]$ and note that $\psi_{\lambda,\sigma} \in C_{0}^{\infty}$ and (as T_{λ} is a differential operator) $Supp(\psi_{\lambda,\sigma}) \subset Supp(\psi_{\sigma}) \subset \{(\xi,\eta) \in D : \rho(\xi,\eta) \leq 1\}$. The following result completes the proof

Lemma 7

$$\int \psi_{\lambda,\sigma}(\xi,\eta) T_{\bar{\mu}}^{\xi}[\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}}(\Theta(\eta,\xi))]g_{\sigma^{-1}}(\sigma(\eta))_{\bar{\alpha}}^{\overline{\gamma}}\varphi_{\overline{\gamma}}(\eta) \, d\eta \tag{29}$$

goes, as $\varepsilon \to 0$, to an operator of order 1 applied to φ .

PROOF. The kernel of the operator (29) is

$$\begin{split} T_{\bar{\mu}}^{\xi}[\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}}(\Theta(\eta,\xi))] &= [(d_{\xi}\Theta_{\eta})T_{\bar{\mu},\xi}](\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}}) \\ &= \left[L_{\bar{\mu}} + O^{1}\mathscr{E}\left(\frac{\partial}{\partial z},\frac{\partial}{\partial \bar{z}}\right) + O^{2}\mathscr{E}\left(\frac{\partial}{\partial t}\right)\right]_{\Theta_{\eta}(\xi)}(\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}}) \\ &= -2(z^{\mu}\bar{\rho}_{\varepsilon/\sqrt{a(\sigma)}}^{-1}\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}})_{\Theta_{\eta}(\xi)} + \sum_{\lambda}O^{1}(\bar{z}^{\lambda}f_{\varepsilon}\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}})(\Theta_{\eta}(\xi)) \\ &+ \sum_{\lambda}O^{1}(z^{\lambda}f_{\varepsilon}\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}})(\Theta_{\eta}(\xi)) + O^{2}(if_{\varepsilon}\Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}})(\Theta_{\eta}(\xi)) \end{split}$$

where

$$f_{\varepsilon} := -\overline{
ho}_{\varepsilon/\sqrt{a(\sigma)}}^{-1} - (n-1)
ho_{\varepsilon/\sqrt{a(\sigma)}}^{-1}$$

The Heisenberg group carries the contact form

$$\theta_0 = dt + 2\sum_j (x^j \, dy^j - y^j \, dx^j),$$

 $z^j = x^j + iy^j$. Let $dV = \theta_0 \wedge (d\theta_0)^n$ be the natural volume form on H_n . Set $h := \Theta_{\xi}^{-1}$. Note that $\Theta(h(u), \xi) = -\Theta_{\xi}(h(u)) = -u$. Also

$$(h^*\omega)(u) = (1+O^1) dV(u)$$

(cf. again Theor. 4.3 in [14], p. 177). Then

$$\begin{split} \int_{\Omega} \psi_{\lambda,\sigma}(\xi,\eta) (z^{\mu} \bar{\rho}_{\varepsilon/\sqrt{a(\sigma)}}^{-1} \Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}}) (\Theta(\eta,\xi)) g_{\sigma^{-1}}(\sigma(\eta))_{\overline{a}}^{\overline{\gamma}} \varphi_{\overline{\gamma}}(\eta) \, d\eta \\ &= \int_{H_n} \psi_{\lambda,\sigma}(\xi,h(u)) (z^{\mu}(u) \bar{\rho}_{\varepsilon/\sqrt{a(\sigma)}}(u)^{-1} \Phi_{n-2}^{\varepsilon/\sqrt{a(\sigma)}}(u) \\ &\cdot g_{\sigma^{-1}}(\sigma(h(u))) \varphi_{\overline{\gamma}}(h(u)) (1+O^1) \, dV(u) \\ &= \varepsilon^{-2n-2} \int \psi_{\lambda,\sigma}(\xi,h(u)) z^{\mu}(u) \frac{\Phi_{n-2}^{1}(\varepsilon^{-1}u)}{\bar{\rho}_{1}(\varepsilon^{-1}u)} \\ &\cdot g_{\sigma^{-1}}(\sigma(h(u))) \varphi_{\overline{\gamma}}(h(u)) (1+O^1) \, dV(u) \end{split}$$

where $\varepsilon^{-1}u$ is short for $\delta_{\varepsilon^{-1}}u$. A change of variable $v = \varepsilon^{-1}u$ gives (as $dV(u) = \varepsilon^{2n+2} dV(v)$)

$$\varepsilon \int \psi_{\lambda,\sigma}(\xi,h(\varepsilon v)) z^{\mu}(v) \frac{\Phi_{n-2}^{1}(v)}{\bar{\rho}_{1}(v)} \cdot g_{\sigma^{-1}}(\sigma(h(\varepsilon v))) \varphi_{\overline{\gamma}}(h(\varepsilon v))(1+O^{1}(\varepsilon v)) \ dV(v).$$

The absolute value of this integral may be estimated by above by

$$\varepsilon \sup_{\rho(\xi,\eta) \le 1} \left[\psi_{\lambda,\sigma}(\xi,\eta) g_{\sigma^{-1}}(\sigma(\eta)) \varphi_{\overline{\gamma}}(\eta) \right] \int_{|v| \le 1} z^{\mu}(v) \left| \frac{\Phi_{n-2}^{1}(v)}{\overline{\rho}_{1}(v)} \right| (1+\varepsilon|v|) \ dV(v)$$

which goes to zero, as $\varepsilon \to 0$. Moreover, in the limit, the O^1 and O^2 terms are

$$\sum_{\lambda} O^1(\bar{z}^{\lambda} f \Phi_{n-2})(\Theta_{\eta}(\xi)) + \sum_{\lambda} O^1(z^{\lambda} f \Phi_{n-2})(\Theta_{\eta}(\xi)) + O^2(f \Phi_{n-2})(\Theta_{\eta}(\xi))$$

where $f(z,t) = -[n||z||^2 + (n-2)it]/[||z||^4 + t^2]$. Note that $|f(y)| \le C_n |y|^{-2}$ hence $O^1 \overline{z}^{\lambda} f$, $O^1 z^{\lambda} f$ and $O^2 f$ are bounded. Now, for instance, let us look at $k(y) = (O^1 \overline{z}^{\lambda} f \Phi_{n-2})(y)$ (the discussion of the remaining terms is similar). First, note that $\overline{z}^{\lambda} f \Phi_{n-2}$ is homogeneous of degree -2n - 1, with respect to dilations. The Taylor series expansion (about $0 = \Theta_{\eta}(\eta)$) of the O^1 coefficients is a sum of homogeneous terms of degree at least 1 (with coefficients depending on η) plus a remainder of arbitrarily high order, hence the 'principal part' of k(y) is homogeneous of degree -2n. Therefore $k(\Theta(\eta, \xi))$ is a kernel of type 1. Q.e.d. To end the proof of Theorem 5, we shall show that $A_{\Omega} \Box_{\Omega} - a(G)I$ is an operator of type 1. First, note that A_{σ} , and then A_{Ω} , is symmetric. Indeed, for any two (0, 1)-forms φ and ψ

$$(A_{\sigma}\varphi,\psi) = a(\sigma)^{2n+1} \int g_{\sigma}(\xi)_{\overline{\beta}}^{\overline{\alpha}} K(\sigma(\xi),\sigma(\eta)) g_{\sigma^{-1}}(\sigma(\eta))_{\overline{\alpha}}^{\overline{\gamma}} \varphi_{\overline{\gamma}}(\eta) \psi^{\overline{\beta}}(\xi) \ d\eta d\xi.$$

As $\Phi_{\alpha}(-y) = \overline{\Phi_{\overline{\alpha}}(y)}$, it follows that $\overline{K(\sigma(\xi), \sigma(\eta))} = K(\sigma(\eta), \sigma(\xi))$. Hence

$$\begin{split} (A^*_{\sigma}\psi)_{\bar{\mu}}(\eta) &= a(\sigma)^{2n+1}h_{\gamma\bar{\mu}}(\eta)\int g_{\sigma^{-1}}(\sigma(\eta))^{\gamma}_{\alpha}K(\sigma(\eta),\sigma(\xi))g_{\sigma}(\xi)^{\alpha}_{\beta}\psi^{\beta}(\xi) \ d\xi \\ &= a(\sigma)^{2n}\int g_{\sigma}(\eta)^{\bar{\lambda}}_{\bar{\mu}}h_{\alpha\bar{\lambda}}(\eta)K(\sigma(\eta),\sigma(\xi))g_{\sigma}(\xi)^{\alpha}_{\beta}\psi^{\beta}(\xi) \ d\xi \\ &= a(\sigma)^{2n+1}\int g_{\sigma}(\eta)^{\bar{\lambda}}_{\bar{\mu}}h_{\alpha\bar{\lambda}}(\eta)K(\sigma(\eta),\sigma(\xi))g_{\sigma^{-1}}(\sigma(\xi))^{\bar{\gamma}}_{\bar{\beta}}h^{\alpha\bar{\beta}}(\xi)\psi_{\bar{\gamma}}(\xi) \ d\xi \end{split}$$

Finally (as $h_{\alpha\beta} = \delta_{\alpha\beta}$)

$$(A^*_{\sigma}\psi)_{\bar{\mu}} = (A_{\sigma}\psi)_{\bar{\mu}},$$

q.e.d.. Moreover, \square_{Ω} is symmetric on compactly supported forms hence

$$A_{\Omega} \square_{\Omega} \psi = a(G) \psi - \frac{1}{|G|} \sum_{\sigma \in G} a(\sigma) B_{\sigma}^* \psi$$

and the transpose of B_{σ} (an operator of type 1) is again of type 1.

References

- W. L. Baily, Jr., On the imbedding of V-manifolds in projective space, American J. Math., 73 (1957), 403–430.
- [2] W. L. Baily, Jr., Satake's compactification of V_n , American J. Math., 80 (1958), 348–364.
- [3] W. L. Baily, Jr., The decomposition theorem for V-manifolds, American J. Math., 76 (1965), 862–888.
- [4] A. Boggess, CR manifolds and the tangential Cauchy-Riemann complex, Studies in Advanced Mathematics, CRC Press, Boca Raton-Ann Arbor-Boston-London, 1991.
- [5] J. E. Borzellino, Orbifolds of maximal diameter, Indiana Univ. Math. J., (1) 42 (1993), 37-53.
- [6] M. Carlotti, Coomologia di de Rham sulle V-varietà Riemanniane complete, Università di Pisa, preprint, 1990.
- [7] M. Carlotti, V-manifold maps and the inverse mapping theorem, Rendiconti del Circolo Matem. di Palermo, XLI (1992), 325–341.
- [8] Yuan-Jen Chiang, Harmonic maps of V-manifolds, Ann. Global Anal. Geom., (3) 8 (1990), 315–344.
- [9] B. Coupet & A. Sukhov, On the uniform extendibility of proper holomorphic mappings, Complex variables, 28 (1996), 243–248.
- [10] S. Dragomir, On pseudohermitian immersions between strictly pseudoconvex CR manifolds, American J. Math., (1) 117 (1995), 169–202.

- [11] G. B. Folland, A fundamental solution for a subelliptic operator, Bull. A.M.S., (2) 79 (1973), 373–376.
- [12] G. B. Folland & E. M. Stein, Estimates for the ∂
 _b-complex and analysis on the Heisenberg group, Comm. Pure Appl. Math., 27 (1974), 429–522.
- [13] J. Girbau & M. Nicolau, Pseudo-differential operators on V-manifolds and foliations, I–II, Collectanea Mathem., 30 (1979), 247–265, ibid., 31 (1980), 63–95.
- [14] D. Jerison & J. M. Lee, The Yamabe problem on CR manifolds, J. Diff. Geometry, 25 (1987), 167–197.
- [15] D. Jerison & J. M. Lee, CR normal coordinates and the Yamabe problem, J. Diff. Geometry, 29 (1989), 303–344.
- [16] Liang-Khoon Koh, Ricci curvature and ends of Riemannian orbifolds, Mathematika, 45 (1998), 135–144.
- [17] A. Nagel & E. M. Stein, Lectures on pseudo-differential operators, Princeton University Press, Princeton, New Jersey, 1979.
- [18] G. Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Sc. Norm. Sup. Pisa, 20 (1966), 31–43.
- [19] I. Satake, On Siegel's modular functions, Proceedings of the International Symposium on Algebraic Number Theory, Tokyo-Nikko, 1955.
- [20] I. Satake, On a generalization of the notion of manifold, Proc. Nat. Acad. Sci. U.S.A., 42 (1956), 359–363.
- [21] I. Satake, On the compactification of the Siegel space, Journal of the Indian Math. Society, 20 (1956), 259–281
- [22] I. Satake, The Gauss-Bonnet theorem for V-manifolds, J. Math. Soc. Japan, (4) 9 (1957), 464–492.
- [23] T. Shioya, Eigenvalues and suspension structure of compact Riemannian orbifolds with positive Ricci curvature, Manuscripta Math., 99 (1999), 509–516.
- [24] N. Tanaka, A differential geometric study on strongly pseudo-convex manifolds, Kinokuniya Book Store Co., Ltd., Kyoto, 1975.
- [25] S. M. Webster, Pseudohermitian structures on a real hypersurface, J. Diff. Geometry, 13 (1978), 25–41.

Author's address Università degli Studi della Basilicata Dipartimento di Matematica Contrada Macchia Romana 85100 Potenza, Italia