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CAUCHY-RIEMANN ORBIFOLDS

By

Sorin Dragomir and Jun Masamune*

Abstract. For any CR orbifold1 B, of CR dimension n, we build a

vector bundle (in the sense of J. Girbau & M. Nicolau, [13]) T1;0ðBÞ
over B, so that T1;0ðBÞpAC n=Gx at any singular point p ¼ jðxÞ A B

(and the portion of T1;0ðBÞ over the regular part of B is an ordinary

CR structure), hence study the tangential Cauchy-Riemann equations

on orbifolds. As an application, we build a two-sided parametrix for

the Kohn-Rossi laplacian rW (on the domain W of a local uni-

formizing system fW;G; jg of B) inverting rW over the G-invariant

ð0; qÞ-forms ð1a qa n � 1Þ up to (smoothing) operators of type 1

(in the sense2 of G. B. Folland & E. M. Stein, [12]).

1. Introduction

An N-dimensional orbifold (or V-manifold, cf. I. Satake, [20], to whom

the notion is due) is a Hausdor¤ space B looking locally like a quotient of

(an open set in) the Euclidean space, by the action of some finite group of Cy

di¤eomorphisms (cf. [1]–[3], [7], [19]–[22]). That is, each point p A B admits a

neighborhood U which is uniformized by a domain WHRN and a continuous

map j : W ! U , in the sense that there is a finite subgroup G HDi¤ yðWÞ so

that j is G-invariant and factors to a homeomorphism W=GAU . Such (local)

uniformizing systems fW;G; jg (shortly l.u.s.’s) play the role of local coordinate

charts in manifold theory, and as well as for ordinary manifolds, are required to

agree smoothly on overlaps: if p A U 0 VV and fW 0;G 0; j 0g, fD;H;cg uniformize

U 0;V respectively, then there is a neighborhood U HU 0 VV of p uniformized by

some fW;G; jg, and an injection l : W ! W 0, i.e. a smooth map which is a Cy

di¤eomorphism on some open subset of W 0 and satisfies j 0 � l ¼ j. This being the
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case, various G-structures of current use in di¤erential geometry, such as Rie-

mannian metrics, complex structures, etc., may be prescribed on orbifolds, by

merely assigning an ordinary G-structure to W, for each l.u.s. fW;G; jg, and

requiring that injections preserve these (local) G-structures (cf. [5], [8], [16], [23]).

For instance, if B is a ð2n þ kÞ-dimensional orbifold, whose V-manifold structure

is described by some fixed family of l.u.s.’s A, then a CR structure on B is a set

fT1;0ðWÞ : fW;G; jg A Ag ð1Þ

where T1;0ðWÞ is a CR structure (of type ðn; kÞ) on W and each injection

l : W ! W 0 is a CR map (i.e. ðdxlÞT1;0ðWÞx JT1;0ðW 0ÞlðxÞ, x A W). A CR struc-

ture (1) on B is easily seen to be a vector bundle over B, in the sense of W. L.

Baily, [3], p. 863, i.e. there is a group monomorphism

hW : G ! HomðT1;0ðWÞ;T1;0ðWÞÞ

for each l.u.s. fW;G; jg A A, and a bundle map

l� : T1;0ðW 0ÞjlðWÞ ! T1;0ðWÞ

for each injection l : W ! W 0, so that 1) hWðsÞT1;0ðWÞx JT1;0ðWÞs�1ðxÞ, x A W, 2)

hWðsÞ � l� ¼ l� � hW 0 ðhðsÞÞ, s A G, and 3) ðm � lÞ� ¼ l� � m�, for any pair of

injections l : W ! W 0 and m : W 0 ! W 00, where h : G ! G 0 is a natural group

monomorphism associated with l (cf. our section 3). Indeed, hWðsÞx :¼ dxs
�1,

s A G, x A W, respectively l�ðv 0Þ ¼ ðdlðxÞmÞv 0, v 0 A T1;0ðW 0ÞlðxÞ, x A W, where m :¼
ðl : W ! lðWÞÞ�1, satisfy the requirements (1) to (3) (each s A G is in particular

an injection, hence G HAutCRðWÞ). One may proceed to define CR functions as

continuous functions f : B ! C for which each fW :¼ f � j : W ! C is smooth

and

qW fW ¼ 0 ð2Þ

in W, where qW is the tangential Cauchy-Riemann operator on ðW;T1;0ðWÞÞ.
The equations (2) may then be referred to as the tangential Cauchy-Riemann

equations on (the CR orbifold) B and it appears that a satisfactory scheme for

recovering CR geometry and analysis, on V-manifolds, has been devised.

The weakness of this approach consists in the lack of relationship between

the G-structure (here CR structure) so assigned to B and its singular locus. A

point p A B is singular if it admits a neighborhood U, uniformized by some l.u.s.

fW;G; jg for which a point x A W with nontrivial isotropy group (i.e. Gx :¼
fs A G : sðxÞ ¼ xg0 f1Wg) and lying over p (i.e. jðxÞ ¼ p) may be found. If S

is the set of all singular points of B (its singular locus) then Breg :¼ BnS is an
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ordinary CR manifold. Although S has a quite simple local structure (locally, it

is a finite union of real algebraic CR submanifolds) there is no obvious rela-

tionship between T1;0ðWÞ and S :¼ fx A W : Gx 0 f1Wgg, and generally speaking,

expressions such as the behaviour of the CR structure T1;0ðBregÞ (a bundle over

BnS), or of a CR function f A CRyðBregÞ, near S, lack a precise meaning. To

ask a more concrete question, given a CR orbifold B, can one construct a

‘bundle’ T1;0ðBÞ over the whole of B so that T1;0ðBÞjBreg
¼ T1;0ðBregÞ and the

fibres T1;0ðBÞp reflect the nature of p (i.e. whether p is singular or regular)? In

other words, can one write a set of equations on B reducing to the ordinary

Cauchy-Riemann equations qBreg
f ¼ 0 on the regular part of B, and exhibiting

at S a feature related to the nature of S?

The scope of the present paper is to answer some fundamental questions

of this sort, i.e. regarding (the Cauchy-Riemann equations on) CR orbifolds.

Precisely, for each CR orbifold B, we build a bundle T1;0ðBÞ ! B in the sense

of J. Girbau & M. Nicolau, [13], p. 257–259, so that

T1;0ðBÞAC n=Gx; p ¼ jðxÞ A B; ð3Þ

a bijection (hence when p A S, T1;0ðBÞp is not even a vector space) and

T1;0ðBÞp ¼ T1;0ðBregÞp for any p A BnS. Moreover, by adapting (from real to

complex geometry) an ideea of I. Satake, [22], p. 473, who observed that

Gx-invariant tangent vectors at x A W give rise, in our context, to a subset of

T1;0ðBÞp depending only on p ¼ jðxÞ and possessing a C-linear space structure,

we are led to the equations

Xn

a¼1

zaLað f Þx ¼ 0; ð4Þ

f A CyðWÞ, x A W, z ¼ ðz1; . . . ; znÞ A 7
s AGx

Ker½gsðxÞ � In�, where fLag is a frame

of T1;0ðWÞ, which may be thought of w.l.o.g. as being defined on the whole of

W, and gsðxÞ A GLðn;CÞ is given by

ðdxsÞLa;x ¼ gsðxÞbaLb;sðxÞ; x A W:

Clearly (4) reduces to (2) in WnS; we show that for each singular point x A S

there is a neighborhood D of x in W and an algebraic CR submanifold Fx H
S VD so that each smooth solution f of (4) is a CR function on Fx.

Any (smooth) function f : B ! C gives rise to a G-invariant function

fW :¼ f � j on W. In general, a (geometric) object prescribed on (each) W must

be preserved by injections, hence by each s A G, hence it is G-invariant.

Therefore, another fundamental feature of any attempt to recover known facts
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from CR geometry (on CR orbifolds) is, locally, to prove G-invariant analogues

of the facts of interest. In view of [3] (which uses a G-average of a funda-

mental solution of an elliptic operator to prove a Kodaira-Hodge-de Rham

decomposition theorem on V-manifolds) this part of the task is rather well

understood. To illustrate this line of thought, given a domain W in R2nþ1 carrying

a G-invariant strictly pseudoconvex CR structure T1;0ðWÞ and a pseudohermi-

tian structure y so that G consists of pseudohermitian transformations of ðW; yÞ,
we build a two-sided parametrix inverting the Kohn-Rossi operator rW on

the G-invariant forms of degree 0 < q < n � 1, up to operators of type 1, cf.

[12]; these are smoothing, in the sense that they are bounded operators

S
p
k ðWÞ ! S

p
kþ1ðWÞ of Folland-Stein spaces. Our methods in section 6 resemble

closely those in [3], p. 870–874, and [13], p. 71–74.

The paper is organized as follows. In section 2 we recall the material we need

as to CR manifolds and pseudohermitian geometry. In section 3 we discuss the

case of complex orbifolds (CR codimension k ¼ 0), the local structure of their

singular locus, and V-holomorphic functions. Sections 4 and 5 are devoted to CR

orbifolds of CR codimension 1 (certain local aspects are examined in section 4).

In section 6 we prove our main result (inverting the Kohn-Rossi operator over

the G-invariant forms).

The Authors are grateful to the Referee whose suggestions improved the

original form of the manuscript.

2. CR Geometry

In this section we discuss basic notions such as pseudohermitian struc-

tures, the Levi form (of a CR manifold of hypersurface type), and pseudo-

hermitian transformations. The main tool is the Tanaka-Webster connection (of

a nondegenerate CR manifold endowed with a contact form) and the corre-

sponding parabolic exponential map (leading to a choice of pseudohermitian

normal coordinates at each point of the given CR manifold). The notion is due

to D. Jerison & J. M. Lee, [15]; Lemma 1 is however new.

Let ðM;T1;0ðMÞÞ be a CR manifold, of type ðn; 1Þ, i.e. of CR dimension

n and CR codimension 1 (cf. e.g. [4], p. 120). The maximally complex (or Levi)

distribution of M

HðMÞ ¼ RefT1;0ðMÞlT0;1ðMÞg

carries the complex structure

JðZ þ ZÞ ¼ iðZ � ZÞ; Z A T1;0ðMÞ;
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where i ¼
ffiffiffiffiffiffiffi
�1

p
. Here T0;1ðMÞ ¼ T1;0ðMÞ and an overbar denotes complex

conjugation. If M is oriented then the conormal bundle HðMÞ? :¼ fo A T �ðMÞ :
KerðoÞIHðMÞg (a line bundle over M ) is trivial, and each global nowhere

zero section y A GyðHðMÞ?Þ is a pseudohermitian structure on M. Given two

pseudohermitian structures y and ŷy there is a unique Cy function u : M ! Rnf0g
so that ŷy ¼ uy. The Levi form is

LyðZ;WÞ ¼ �iðdyÞðZ;WÞ; Z;W A T1;0ðMÞ:

A CR manifold is nondegenerate (respectively strictly pseudoconvex) if Ly is

nondegenerate (respectively positive-definite) for some y.

A Cy map f : M ! N of CR manifolds is a CR map if ðdx f ÞT1;0ðMÞx J
T1;0ðNÞf ðxÞ, for any x A M. A CR isomorphism is a Cy di¤eomorphism and a

CR map, and AutCRðMÞ is the group of all CR isomorphisms of M in itself. A

pseudohermitian transformation is a CR isomorphism between two CR manifolds

M;N on which pseudohermitian structures y; yN have been fixed, so that f �yN ¼
að f Þy, for some að f Þ A Rnf0g. If að f Þ1 1 then f is isopseudohermitian.

Let M be a nondegenerate CR manifold. Then any pseudohermitian

structure y is a contact form on M, i.e. y5ðdyÞn is a volume form on M.

Once a contact form y has been fixed, there is a globally defined nowhere zero

vector field T on M, transverse to HðMÞ, determined by yðTÞ ¼ 1 and T c dy ¼
0 (the characteristic direction of ðM; yÞ). Let pH : TðMÞ ! HðMÞ be the pro-

jection associated with the direct sum decomposition TðMÞ ¼ HðMÞlRT , i.e.

pHðXÞ :¼ X � yðXÞT . The Webster metric is the semi-Riemannian (i.e. non-

degenerate, of constant index) metric

gyðX ;Y Þ ¼ ðdyÞðpHX ; JpHYÞ þ yðXÞyðYÞ; X ;Y A TðMÞ:

If ðr; sÞ is the signature of the Levi form ðr þ s ¼ nÞ then gy has signature

ð2r þ 1; 2sÞ.
By a result of N. Tanaka, [24], and S. Webster, [25], for any non-

degenerate CR manifold, on which a contact form y has been fixed, there is

a unique linear connection ‘ (the Tanaka-Webster connection of ðM; yÞ) so that

1) HðMÞ is parallel with respect to ‘, 2) ‘J ¼ 0 and ‘gy ¼ 0, 3) T‘ðZ;WÞ ¼ 0

and T‘ðZ;WÞ ¼ 2iLyðZ;WÞT , for any Z;W A T1;0ðMÞ, and 4) t � J þ J � t ¼ 0.

Here T‘ is the torsion tensor field of ‘ and tðXÞ :¼ T‘ðT ;XÞ, X A TðMÞ (the

pseudohermitian torsion of ‘).

If WHC nþ1 is a domain with smooth boundary, i.e. there is a R-valued

function r A CyðUÞ, for some open set U JC nþ1 with U IW, so that W ¼
fz A U : rðzÞ > 0g, qW ¼ fz A U : rðzÞ ¼ 0g, and ‘rðzÞ0 0 for any z A qW, then
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qW admits a natural CR structure, recalled in some detail in section 4. The

pullback y of i
2 ðq� qÞr, via j : qWHC nþ1, is a pseudohermitian structure on qW.

The bundle-theoretic recast of (13)–(14) in section 4 consists in observing that

T1;0ðMÞ ¼ T1;0ðC nþ1ÞV ½TðMÞnC �; M ¼ qW;

and any CR manifold obtained this way is said to be embedded. Here T1;0ðC nþ1Þ
is the holomorphic tangent bundle over C nþ1. A CR manifold is (locally)

embeddable if there is a CR isomorphism of M (respectively of a neighborhood

of each point of M ) onto some embedded CR manifold.

Let ðM;T1;0ðMÞÞ be a nondegenerate CR manifold and y a contact form

on M. A ð0; qÞ-form on M is a complex q-form h so that T1;0ðMÞ c h ¼ 0 and

T c h ¼ 0. Let L0;qðMÞ ! M be the bundle of all ð0; qÞ-forms on M. The

tangential Cauchy-Riemann operator is the first order di¤erential operator

qM : GyðL0;qðMÞÞ ! GyðL0;qþ1ðMÞÞ; qb 0;

defined as follows. If h is a ð0; qÞ-form then qMh is the unique ð0; q þ 1Þ-form on

M coinciding with dh on T0;1ðMÞn � � �nT0;1ðMÞ (q þ 1 terms). Let q�
M be the

(formal) adjoint of qM with respect to the L2 inner product

ðj;cÞ ¼
ð

M

L�
y ðj;cÞy5ðdyÞn;

for any j;c A W0;qðMÞ (at least one of compact support). The Kohn-Rossi

laplacian is

rM ¼ qMq�
M þ q�

MqM :

If f : M ! N is an isopseudohermitian transformation then

r f
Mv ¼ rNv; v A CyðNÞ; ð5Þ

where r f
Mv :¼ ðrMv f �1Þ f and u f :¼ u � f �1, u A CyðMÞ.

Let M be a strictly pseudoconvex CR manifold and y a contact form with

Ly positive definite. A smooth curve gðtÞ in M satisfying the ODE

‘dg=dt

dg

dt

� �
gðtÞ

¼ 2cTgðtÞ; ð6Þ

for some c A R and any value of the parameter t is a parabolic geodesic

on M. Let x A M and W A HðMÞx. By standard theorems on ODEs, there is

d > 0 so that whenever gy;xðW ;WÞ1=2 < d the unique solution gW ; cðtÞ to (6) of
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initial data ðx;WÞ may be uniquely continued to an interval containing t ¼ 1

and the map Cx : Bð0; dÞHTxðMÞ ! M given by CxðW þ cTxÞ :¼ gW ; c(1) (the

parabolic exponential map) is a di¤eomorphism of a su‰ciently small neighbor-

hood of 0 A TxðMÞ onto a neighborhood of x A M. The terminology is justified

by the fact that Cx maps any parabola t 7! tW þ t2cTx in the tangent space onto

gW ; c.

Let now fTag be a local orthonormal frame of T1;0ðMÞ, defined on a

neighborhood U of x in M. It determines an isomorphism lx : TxðMÞ ! Hn

given by

lxðvÞ ¼ ðya
x ðvÞea; yxðvÞÞ;

for any v A TxðMÞ. Here Hn ¼ C n � R is the Heisenberg group (cf. e.g. [12],

p. 434–435) and fyag is the frame of T1;0ðMÞ� determined by

yaðTbÞ ¼ dab ; yaðT
b
Þ ¼ yaðTÞ ¼ 0:

The resulting local coordinates ðz; tÞ :¼ lx �C�1
x , defined in some neighborhood

of x, are the pseudohermitian normal coordinates at x, determined by fTag. By

Prop. 2.5 in [15], p. 313, these coordinates are also normal coordinates at x in

the sense of G. B. Folland & E. M. Stein (cf. [12], p. 471–472). We shall need

the following

Lemma 1. Let M be a nondegenerate CR manifold and y a contact form on

M. Let s : M ! M be a CR automorphism so that s�y ¼ aðsÞy for some aðsÞ A
Rnf0g. Let gW ; cðsÞ be the solution to ‘dg=dtðdg=dtÞ ¼ 2cT � g of initial data ðh;WÞ,
h A M, W A HðMÞh. Then s � gW ; c ¼ gWs;aðsÞc

, where Ws :¼ ðdhsÞW A HðMÞsðhÞ,
i.e. s � gW ; c is the solution to ‘dg=dtðdg=dtÞ ¼ 2caðsÞT � g of initial data ðsðhÞ;WsÞ.

Proof. For each y A M and X A XðMÞ consider

ðs�XÞy :¼ ðds�1ðyÞsÞXs�1ðyÞ

(hence s� : XðMÞAXðMÞ, an isomorphism) and set

‘s
X Y :¼ ðs�Þ�1‘s�Xs�Y :

Then ‘sy ¼ 0. Using s�gy ¼ aðsÞgy þ ½aðsÞ2 � aðsÞ�yn y one may show that

‘sgy ¼ 0. Also, it is easy to check that ‘sJ ¼ 0. Next s�T ¼ aðsÞT so that

T‘sðZ;WÞ ¼ 0, T‘sðZ;WÞ ¼ 2iLyðZ;WÞT and T‘sðT ; JX Þ þ JT‘sðT ;XÞ ¼ 0,

for any Z;W A T1;0ðMÞ and X A TðMÞ. We may conclude that ‘s ¼ ‘, the
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Tanaka-Webster connection of ðM; yÞ. Set g :¼ gW ; c and gs :¼ s � g. Then

gsð0Þ ¼ sðhÞ and ðdgs=dsÞð0Þ ¼ Ws. Finally

‘dgs=ds

dgs
ds

¼ s�‘
s

dg=ds

dg

ds
¼ s�‘dg=ds

dg

ds
¼ s�ð2cT � gÞ ¼ 2caðsÞT � gs;

hence gs ¼ gWs;aðsÞc, that is a pseudohermitian transformation s maps the par-

abolic geodesic gW ; c into the parabolic geodesic gWs;aðsÞc. Q.e.d..

We have specified the behaviour (5) of the Kohn-Rossi laplacian on func-

tions, with respect to isopseudohermitian transformations. In general, if j is a

ð0; qÞ-form and s : M ! M a pseudohermitian transformation of a nondegenerate

CR manifold then

rMðs�jÞ ¼ aðsÞs�rMj: ð7Þ

Indeed, on one hand s�qMj ¼ qMs�j, as it easily follows from the axioms

defining qM . On the other hand,

q�
Mc ¼ ð�1Þqþ1ðq þ 1Þhlmð‘lca1���aqm

Þya1 5 � � �5yaq

for any ð0; q þ 1Þ-form c on M, where covariant derivatives are meant with

respect to the Tanaka-Webster connection of ðM; yÞ. For instance, if j is a ð0; 1Þ-
form

q�
Mj ¼ �hlm‘ljm

hence

q�
Mðs�jÞ ¼ �hlmfTlððgsÞnmÞðjn � sÞ þ ðgsÞnmðgsÞrl ½TrðjnÞ � s� � Gn

lmðgsÞrn ðjr � sÞg

and the identity

G
m

ab
ðgsÞnm ¼ TaððgsÞnbÞ þ ðgsÞma ðgsÞr

b
ðGn

mr � sÞ

(a consequence of ‘ ¼ ‘s) lead to

q�
Mðs�jÞ ¼ aðsÞðq�

MjÞ � s:

Q.e.d.. Here GA
BC denote the Christo¤el symbols (of ‘ with respect to fTag) and

s�Ta ¼ ðgsÞbaTb.

3. Complex Orbifolds

In this section we review the notion of complex orbifold (complex analytic

V-manifold) and, given a complex orbifold X, we build an analogue of the
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holomorphic tangent bundle (of a complex manifold) which turns out to be a

complex vector bundle T1;0ðXÞ in the sense of J. Girbau & M. Nicolau, [13]. In

particular (cf. Step 2 below) each fibre p�1ðpÞ of the projection p : T1;0ðXÞ ! X

is shown to contain a natural vector space T1;0ðX Þp [coinciding with p�1ðpÞ when

p is a regular point]. We show that the smooth functions f : X ! C satisfying

Zð f Þ ¼ 0 for any section Z in T1;0ðXÞ are precisely those whose local expressions

f � j are holomorphic in W, for each l.u.s. fW;G; jg of X (cf. 3) in Theorem

1). The weaker requirement that Zð f Þ ¼ 0 only for those sections Z with Zp A

T1;0ðXÞp, p A X , leads to the notion of a V-holomorphic function. Locally, i.e.

on a fixed l.u.s. fW;G; jg, one deals with G-invariant C1 functions satisfying (11).

V-holomorphic functions are holomorphic except along the singular locus and

exhibit a particular behaviour at singular points x A S (such that the isotropy

group Gx acts on C n with fixed points): each V-holomorphic function in W is

holomorphic on a certain complex submanifold Fx passing through x (and there

are complex local coordinates at x with respect to which Fx is an a‰ne set in

C n), cf. b) in Theorem 2.

Let X be a Hausdor¤ space and U JX an open subset. A local uniformizing

system (l.u.s.) of dimension n of X over U is a synthetic object fW;G; jg consisting

of a domain WJC n, a finite subgroup G HAutðWÞ of biholomorphisms of W in

itself, and a continuous map j : W ! U so that the induced map jG : W=G ! U

is a homeomorphism. An injection of fW;G; jg into fW 0;G 0; j 0g is a Cy map

l : W ! W 0 so that l is a biholomorphism of W onto some open subset of W 0 and

j 0 � l ¼ j. The set U ¼ jðWÞ is the support of the l.u.s. fW;G; jg.

Given a family F of l.u.s.’s of dimension n of X, let H be the family of

all supports of all l.u.s.’s in F. Then F is a defining family for X if 1) for

any fW;G; jg, fW 0;G 0; j 0g A F of supports U ;U 0, if U JU 0 then there is an

injection l of fW;G; jg into fW 0;G 0; j 0g, and 2) H is a basis of open sets for the

topology of X. Two defining families F;F 0 are directly equivalent if there is

a third defining family F 00 so that FUF 0 JF 00. Also, F;F 0 are equivalent

if there is a set fF1; . . . ;Frg of defining families so that F1 ¼ F;Fr ¼ F 00, and

Fi;Fiþ1 are directly equivalent for each 1a i a r � 1. A n-dimensional complex

orbifold is a connected paracompact Hausdor¤ space X together with an equiv-

alence class of defining families; as in ordinary complex manifold theory, it is

customary to choose a defining family F in the class and refer to ðX ;FÞ as

a complex orbifold. Cf. I. Satake, [21], p. 261–262 (where complex orbifolds

are referred to as complex analytic V-manifolds). Clearly, any complex orbifold,

of complex dimension n as above, is a real 2n-dimensional V-manifold (in the

sense of [20], p. 359–360, or [3], p. 862–863).
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Let ðX ;FÞ be a V-manifold. By a result in [13], given l.u.s.’s fW;G; jg and

fW 0;G 0; j 0g, of supports U ;U 0 respectively, and given injections l; m : W ! W 0,

if U JU 0 then there is a unique element s 0
1 A G 0 so that m ¼ s 0

1 � l. As a corol-

lary, with any injection l : W ! W 0 one may associate a group monomorphism

h : G ! G 0 so that l � s ¼ hðsÞ � l, for any s A G. It is noteworthy that the

existence of the monomorphism h is postulated in both [3] and the more recent

[6] (and it is a merit of J. Girbau & M. Nicolau, [13], to have provided a remedy

to this inadequacy). A point p A X is singular if there is U A H with p A U and

there is a l.u.s. fW;G; jg A F over U, and an element x A W so that jðxÞ ¼ p

and Gx 0 feg. Here Gx :¼ fs A G : sðxÞ ¼ xg is the isotropy group at x and

e ¼ 1W. By Prop. 1.5 in [13], p. 257, if p A U 0, where U 0 A H, and fW 0;G 0; j 0g is

a l.u.s. of support U 0 then GxAG 0
y (a group isomorphism) for any y A W 0 with

j 0ðyÞ ¼ p, hence the notion of singular point of X is unambigously defined. Set

S ¼ fx A W : Gx 0 fegg (a closed subset of W). Then S :¼ 6fW;G;jg AF jðSÞ is the

singular locus of X and Xreg :¼ XnS its regular part. Xreg is an ordinary Cy

manifold.

Let E be a connected paracompact Hausdor¤ space and p : E ! X a con-

tinuous surjective map. Then ðE; p;X Þ is a vector bundle, of standard fibre K m,

K A fR;Cg, if the following requirements are fulfilled

1) for any l.u.s. fW;G; jg A F there is a continuous map j� : W� K m ! E

such that p � j� ¼ j � pW, where pWðx; zÞ ¼ x for any ðx; zÞ A W� K m. Moreover

2) for any injection l of fW;G; jg into fW 0;G 0; j 0g there is a Cy map gl :

W ! GLðm;KÞ such that geðxÞ ¼ Im, the unit m � m matrix, for any x A W and

i) fW� K m;G�; j�g is a l.u.s. of dimension dðKÞm þ N of E over p�1ðUÞ
(an open subset of E ), where G� ¼ fs� : s A Gg, with s�ðx; zÞ :¼ ðsðxÞ; gsðxÞzÞ for

any ðx; zÞ A W� K m, and dðKÞ ¼ dimR K, N ¼ dimðX Þ,
ii) the family of l.u.s.’s fW� K m;G�; j�g, obtained as fW;G; jg ranges over

F, is a defining family for E, thus organizing E as a ðdðKÞm þ NÞ-dimensional

V-manifold of class Cy,

iii) the map l� : W� K m ! W 0 � K m given by l�ðx; zÞ ¼ ðlðxÞ; glðxÞzÞ, is an

injection of fW� K m;G�; j�g into fW 0 � K m;G 0
�; j

0
�g. Finally

3) for any pair of injections W !l W 0 !m W 00 one requests that

gmðlðxÞÞglðxÞ ¼ gm�lðxÞ;

for any x A W. Cf. [13], p. 258. We underline the slight discrepancy in termi-

nology: for a vector bundle of standard fibre K m the fibre p�1ðpÞ over a point

p A X is (isomorphic to) K m if and only if p A Xreg (and if p A S then p�1ðpÞ has

no natural vector space structure), cf. [13], p. 259.
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A function f : X ! C on a V-manifold ðX ;FÞ is smooth (of class Cy) if

fW :¼ f � j is Cy for any fW;G; jg A F, and EðXÞ is the ring of all complex

valued smooth functions on X. We shall prove the following

Theorem 1. For any complex orbifold ðX ;FÞ, of complex dimension n, there

is a vector bundle ðT1;0ðXÞ; p;XÞ so that

1) for any p A X , if p A U A H and fW;G; jg A F is a l.u.s. over U then

p�1ðxÞAC n=Gx (a bijection) for any x A W with jðxÞ ¼ p.

2) Xreg is a complex manifold and T1;0ðX ÞjXreg
its holomorphic tangent bundle.

The singular locus of T1;0ðXÞ (as a 4n-dimensional V-manifold ) is contained in

p�1ðSÞ.
3) For any section Z in T1;0ðX Þ (i.e. any continuous map Z : X ! T1;0ðXÞ so

that ZðpÞ A p�1ðpÞ for any p A X ) and any f A EðX Þ there is a (naturally defined )

function Zð f Þ : X ! C ; if Zð f Þ ¼ 0 for all sections Z then fW is holomorphic in

W for any l.u.s. fW;G; jg A F, and conversely.

We organize the proof in several steps, as follows.

Step 1. The construction of T1;0ðXÞ.

Define gl : W ! GLðn;CÞ by setting

glðxÞz ¼ zk qðz j � lÞ
qzk

ðxÞej ;

where ðz jÞ are the natural complex coordinates on C n, and fejg its canon-

ical linear basis. Then G� ¼ fs� : s A Gg acts on W� C n as a (finite) group of

biholomorphisms. Set

T̂T1;0ðX Þ :¼ 6
fW;G;jg AF

ðW� C nÞ=G�

(disjoint union). Then T̂T1;0ðX Þ is a Hausdor¤ space, in a natural manner. We

define an equivalence relation @ on T̂T1;0ðXÞ as follows. Let x̂x; ŷy A T̂T1;0ðXÞ. If x̂x

is the G�-orbit orbG� ðx; zÞ of some ðx; zÞ A W� C n, for some l.u.s. fW;G; jg A F,

then we say that x̂x@ ŷy if there is an injection l : W ! W 0 to that

ŷy ¼ orbG 0
� ðlðxÞ; glðxÞzÞ:

If ðsðxÞ; gsðxÞzÞ A x̂x is another representative of x̂x then

orbG 0
� ðlðsðxÞÞ; glðsðxÞÞgsðxÞzÞ ¼ orbG 0

� ðhðsÞlðxÞ; gl�sðxÞzÞ

¼ orbG 0
� ½hðsÞ�ðlðxÞ; glðxÞzÞ� ¼ orbG 0

� ðlðxÞ; glðxÞzÞ;
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(where h : G ! G 0 is the group monomorphism associated with l) hence x̂x@ ŷy

is well defined. Clearly @ is refexive and transitive. The only issue which needs

a bit of care is the symmetry property. Note that, for any injection l : W ! W 0

the synthetic object flðWÞ; hðGÞ;cg, where c ¼ j 0jlðWÞ, is a l.u.s. of support

U ¼ jðWÞ. Indeed hðGÞ acts on lðWÞ as a group of complex analytic transfor-

mations and c is hðGÞ-invariant. Moreover l is equivariant hence it induces a

homeomorphism lG : W=GAlðWÞ=hðGÞ. The map cG : lðWÞ=hðGÞ ! U 0 (induced

by c) correstricts to U and cG � lG ¼ jG hence cG : lðWÞ=hðGÞAU (a homeo-

morphism). Then x̂x@ ŷy yields ŷy@ x̂x, as we may think of ðlðxÞ; glðxÞzÞ as a

representative of ŷy with respect to the l.u.s. flðWÞ; hðGÞ;cg and rewrite x̂x as

x̂x ¼ orbG� ðmðlðxÞÞ; gmðlðxÞÞglðxÞzÞ;

where m is the injection ðl : W ! lðWÞÞ�1.

Next T1;0ðXÞ :¼ T̂T1;0ðXÞ=@ carries the quotient topology and

p : T1;0ðX Þ ! X ; pð½orbG� ðx; zÞ�Þ :¼ jðxÞ;

is continuous (square brackets indicate classes mod @, i.e. T1;0ðX Þ ¼
f½x̂x� : x̂x A T̂T1;0ðXÞg). The definition doesn’t depend upon the choice of repre-

sentatives; indeed, if x̂x ¼ orbG� ðx; zÞ and ŷy A ½x̂x� then ŷy ¼ orbG 0
� ðlðxÞ; glðxÞzÞ for

some injection l : W ! W 0, and j 0ðlðxÞÞ ¼ jðxÞ.
We wish to show that ðT1;0ðX Þ; p;XÞ is a vector bundle of standard fibre

C n. To this end, let j� : W� C n ! T1;0ðXÞ be the (continuous) map given by

j�ðx; zÞ ¼ ½orbG� ðx; zÞ�. Then p � j� ¼ j � pW. Also j� is G�-invariant and the

induced map ðj�ÞG�
: ðW� C nÞ=G� ! T1;0ðX Þ is injective. Finally, it is straight-

forward that l�ðx; zÞ ¼ ðlðxÞ; glðxÞzÞ is an injection of fW� C n;G�; j�g into

fW 0 � C n;G 0
�; j

0
�g.

Let p A X be an arbitrary point (eventually singular) and U A H so that

p A U . Let fW;G; jg A F be a l.u.s. of support U and x A W so that jðxÞ ¼ p. Let

fW�;G�; j�g be a l.u.s. of T1;0ðXÞ corresponding to fW;G; jg as above, where

W� ¼ W� C n. Then pðj�ðx; zÞÞ ¼ jðxÞ ¼ p hence j�ðx; zÞ A p�1ðpÞ for any z A C n.

There is a natural action of Gx on C n given by ðs; zÞ 7! gsðxÞz. We may consider

the map

C n=Gx ! p�1ðpÞ; ½z� 7! j�ðx; zÞ; ð8Þ

where ½z� is the Gx-orbit of z. If ½z� ¼ ½x� then x ¼ gsðxÞz for some s A G and

j�ðx; xÞ ¼ j�ðsðxÞ; gsðxÞzÞ ¼ j�ðs�ðx; zÞÞ ¼ j�ðx; zÞ;
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i.e. (8) is well defined. To see that (8) is injective, let j�ðx; xÞ ¼ j�ðx; zÞ. As

fW�;G�; j�g is a l.u.s., there is s A G so that ðx; zÞ ¼ s�ðx; xÞ hence s A Gx and

gsðxÞx ¼ z, i.e. x, z are Gx-equivalent. To see that (8) is surjective, let f A p�1ðpÞ.
As j� induces a bijection W�=G�Ap�1ðUÞ there is ~ff ¼ ðy; xÞ A W� so that

j�ð ~ff Þ ¼ f . Then

jðxÞ ¼ p ¼ pð f Þ ¼ pðj�ð ~ff ÞÞ ¼ jðpWð ~ff ÞÞ ¼ jðyÞ;

hence there is s A G so that y ¼ sðxÞ. At this point, set ~ff� :¼ ðs�1Þ� ~ff A W�. Then

j�ð ~ff�Þ ¼ f and ~ff� is an element of the form ðx; zÞ with z ¼ gs�1ðsðxÞÞx A ½x�, so

we are done.

Step 2. The image T1;0ðXÞp of T1;0ðWÞGx
:¼ fv A T1;0ðWÞx : ðdxsÞv ¼ v;

Es A Gxg via the map T1;0ðWÞAW� C n !j� T1;0ðX Þ depends only on p (i.e. doesn’t

depend upon the choice of fW;G; jg A F and x A W with jðxÞ ¼ p) and T1;0ðXÞp

has a natural C-vector space structure so that

dimC T1;0ðX Þp ¼ dimC 7
s AGx

Ker½gsðxÞ � In� ð9Þ

Let p A U 0 A H and fW 0;G 0; j 0g A F over U 0, and consider x 0 A W 0 so that

j 0ðx 0Þ ¼ p. As H is a basis of open sets for the topology of X, let V JU VU 0

with p A V A H and let fD;H;cg A F be a l.u.s. over V. Then there exist injec-

tions l : D ! W and l 0 : D ! W 0. Let y A D so that cðyÞ ¼ p. We wish to show

that fj�ðx; zÞ : z A ðC nÞGx
g depends only on p, where

ðC nÞGx
:¼ fz A C n : gsðxÞz ¼ z; Es A Gxg:

As jðlðyÞÞ ¼ jðxÞ, there is s A G with lðyÞ ¼ sðxÞ hence

ðsðxÞ; glðyÞxÞ ¼ s�ðx; gs�1�lðyÞxÞ

and we have

fc�ðy; xÞ : x A ðC nÞHy
g ¼ fj�ðlðyÞ; glðyÞxÞ : x A ðC nÞHy

g

¼ fj�ðx; gs�1�lðyÞxÞ : x A ðC nÞHy
g

At this point, it su‰ces to show that the map

ðC nÞHy
! ðC nÞGx

; x 7! gs�1�lðyÞx; ð10Þ

is a well defined bijection. s�1 � l : D ! W is an injection. Let hs : H ! G be the
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corresponding group monomorphism. As jðxÞ ¼ p ¼ cðyÞ, hs : Hy ! Gx is an

isomorphism (cf. Prop. 1.5 in [13], p. 257). Given t A Gx let r A Hy so that

hsðrÞ ¼ t. Then

gtðxÞgs�1�lðyÞx ¼ gt�s�1�lðyÞx ¼ ghsðrÞ�s�1�lðyÞx

¼ gðs�1�lÞ�rðyÞx ¼ gs�1�lðyÞgrðyÞx ¼ gs�1�lðyÞx;

hence (10) is well defined. Also, a similar computation shows that

gs�1�lðyÞðC nÞHy
¼ ðC nÞGx

and (10) is clearly injective. The same proof applies to l 0, so we are done.

Note that T1;0ðXÞp is a C-linear space [with aj�ðx; zÞ þ bj�ðx; xÞ :¼
j�ðx; azþ bxÞ (while the same operation on the image of the whole C n=Gx is

not well defined)]. To see that Xreg is a complex manifold we need to review

the di¤erentiable structure of Xreg in some detail. Let fD;H;cg A F be a l.u.s. of

X over V A H. Set W ¼ c�1ðUÞ where U :¼ V VXreg. Then s A H ) sðWÞ ¼ W.

[Indeed, let x A W and p :¼ cðxÞ. Then p A U and U JXnS hence each point

of c�1ðpÞ has a trivial isotropy group. Yet sðxÞ A c�1ðpÞ hence GsðxÞ ¼ feg. It

follows that cðsðxÞÞ A XnS and cðsðxÞÞ ¼ cðxÞ ¼ p A U , i.e. sðxÞ A W, q.e.d.].

Set G :¼ fsjW : s A Hg and j :¼ cjW. Then fW;G; jg is a l.u.s. of Xreg over U.

As fD;H;cg runs over F, the l.u.s.’s fW;G; jg form a defining family of Xreg,

hence Xreg is a 2n-dimensional V-manifold. To see that it actually possesses a Cy

manifold structure note first that G acts freely on W, as a mere consequence of

definitions. Let y A W. Then sðyÞ0 y for any s A Gnfeg (as Gy ¼ feg) hence

there is an open neighborhood Ws of y in W so that sðWsÞVWs ¼ q. Set Dy :¼
7

s AGnfeg Ws. As G is finite Dy is open, y A Dy JW, and sðDyÞVDy ¼ q for

any s A Gnfeg, hence G acts on W as a properly discontinuous group of Cy

di¤eomorphisms. Thus W=G is a real 2n-dimensional Cy manifold, and each U A

Hreg :¼ fV V ðXnSÞ : V A Hg inherits a manifold structure via jG. Once W=G

is organized as a manifold, the projection W ! W=G is a local di¤eomorphism

and its local inverses form a Cy atlas FW. Then FU :¼ fw � j�1
G : w A FWg is an

atlas on U and Freg :¼ 6
U AHreg

FU an atlas on Xreg. Also j : W ! U is dif-

ferentiable (and jG a di¤eomorphism). As W and U are locally di¤eomorphic

there is a unique complex structure on U so that T1;0ðUÞjðxÞ ¼ ðdxjÞT1;0ðWÞx, for

any x A W. Let p A Xreg and U ;U 0 A Hreg so that p A U VU 0. We need to show

that T1;0ðUÞp ¼ T1;0ðU 0Þp, i.e. the complex structures fT1;0ðUÞ : U A Hregg glue

up to a globally defined complex structure on Xreg. To this end let V A Hreg so

that p A V JU VU 0 and fD;H;cg a l.u.s. of Xreg over V. Let l : D ! W and
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l 0 : D ! W 0 be injections and let y A D so that cðyÞ ¼ p. Set x :¼ lðyÞ A W and

x 0 :¼ l 0ðyÞ A W 0. Then

T1;0ðUÞp ¼ ðdycÞT1;0ðDÞy ¼ T1;0ðU 0Þp;

as both l; l 0 are holomorphic maps and j � l ¼ c ¼ j 0 � l 0. So Xreg is a

complex manifold, in a natural way. Next p�1ðXregÞ ¼ T1;0ðXregÞ because of the

isomorphism

T1;0ðXÞp ! T1;0ðXregÞp; j�ðx; zÞ 7! ðdxjÞz j q

qz j

����
x

; p A U A Hreg:

If v is a singular point of T1;0ðXÞ with p :¼ pðvÞ, there is U A H with

p A U , and there is a l.u.s. fW;G; jg over U so that ðG�Þðx; zÞ 0 fe�g, for some

ðx; zÞ A W� C n. That is s�ðx; zÞ ¼ ðx; zÞ for some s A Gnfeg, hence sðxÞ ¼ x, i.e.

Gx 0 feg. It follows that p A S, i.e. the singular locus of T1;0ðXÞ projects on S.

Statement 2 in Theorem 1 is proved.

It remains that we prove 3. Let Z : X ! T1;0ðXÞ be a continuous map so

that p � Z ¼ 1X . Let f A EðXÞ and p A X . Let U A H so that p A U and let

fW;G; jg A F over U. Let x A W so that jðxÞ ¼ p and set

Zð f Þp :¼
Xn

j¼1

z j qfW

qz j
ðxÞ;

where ½z� A C n=Gx corresponds to Zp A p�1ðpÞ under the bijection C n=GxA
p�1ðpÞ.

Step 3. Zð f Þp is well defined.

If ½x� ¼ ½z� then x ¼ gsðxÞz for some s A Gx and then

x j qfW

qz j
ðxÞ ¼ gsðxÞ j

kz
k qfW

qz j
ðxÞ ¼ zk qð fW � sÞ

qzk
ðxÞ:

If another open neighborhood U 0 A H of p is used, let fW 0;G 0; j 0g over U 0

and x 0 A W 0 with j 0ðx 0Þ ¼ p. Then, consider p A V JU VU 0 and fD;H;cg over

V, and two injections l : D ! W, l 0 : D ! W 0. Let y A D with cðyÞ ¼ p. Let

½z� A C n=Gx and ½z 0� A C n=G 0
x 0 correspond to Zp. If ½x� A C n=Hy corresponds to Zp

then

j�ðx; zÞ ¼ Zp ¼ c�ðy; xÞ ¼ ½orbH� ðy; xÞ�

¼ ½orbG� ðlðyÞ; glðyÞxÞ� ¼ j�ðlðyÞ; glðyÞxÞ;
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hence there is t A G so that

t�ðx; zÞ ¼ ðlðyÞ; glðyÞxÞ;

i.e. tðxÞ ¼ lðyÞ and z ¼ gt�1ðtðxÞÞglðyÞx. As fW � l ¼ fD

z j qfW

qz j
ðxÞ ¼ gt�1ðtðxÞÞ j

kglðyÞk
l x

l qfW

qz j
ðxÞ ¼ qð fW � t�1Þ

qzk
ðtðxÞÞglðyÞk

l x
l ¼

(as fW is G-invariant and tðxÞ ¼ lðyÞ)

¼ qð fW � lÞ
qzl

ðyÞxl ¼ xl
qfD

qzl
ðyÞ:

The same argument holds for l 0, hence

z 0j
qfW 0

qz j
ðx 0Þ ¼ z j qfW

qz j
ðxÞ;

and Step 3 is proved. Let Zp A p�1ðpÞ correspond to ½ej� A C n=Gx, with jðxÞ ¼ p.

Then Zð f Þp ¼ 0 yields ðqfW=qz jÞðxÞ ¼ 0, i.e. f A OðWÞ. Theorem 1 is completely

proved.

Throughout, if Y is a complex manifold, OðY Þ denotes the space of

all holomorphic functions on Y. The last statement in Theorem 1 shows that

the requirement Zð f Þ ¼ 0 for all sections Z in T1;0ðXÞ is too restrictive for our

purposes. In the sequel, we restrict ourselves to sections Z such that Zp A

T1;0ðXÞp ¼ fj�ðx; zÞ : z A ðC nÞGx
g, as mentioned in the Introduction. Locally, we

are led to a new notion, termed V-holomorphic function. Let WJC n be a domain

and G HAutðWÞ a finite group of biholomorphisms. A C1 function f : W ! C is

called V-holomorphic if it is G-invariant and

Xn

j¼1

zj qf

qz j
ðxÞ ¼ 0 ð11Þ

for any x A W and any z A ðC nÞGx
. Let OV ðWÞ be the space of all V-

holomorphic functions in W. Let OGðWÞ consist of all G-invariant functions

f A OðWÞ. Then OGðWÞJOV ðWÞJOGðWnSÞ. Note that the requirement (11) is

empty at the points of C :¼ fx A W : ðC nÞGx
¼ ð0ÞgJS. When n ¼ 1, OV ðWÞJ

OGðWnCÞ.
The following result describes the local structure of S and the behaviour of

V-holomorphic functions at the points of SnC.
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Theorem 2. For any x A S there is a neighborhood D of x in W so that

1) DVS is a finite union of complex submanifolds of W of dimension < n.

2) For any y A D, Gy is a subgroup of Gx. 3) If x A SnC there is a complex

submanifold Fx HD passing through x so that a) for each G-invariant function

f : W ! C , f satisfies (11) at x if and only if the trace of f on Fx is holomorphic

at x. Moreover b) Fx HWnC and if f A OV ðWÞ then f jFx
A OðFxÞ.

Proof. Let x A S and set

w j :¼ 1

jGxj
X
s AGx

gs�1ðxÞ j
kðz

k � sÞ

(for a set A, jAj denotes its cardinality). Then ðqw j=qzkÞðxÞ ¼ d
j
k hence there is

an open neighborhood V of x in W so that F :¼ ðw1; . . . ;wnÞ : V ! C n is a

biholomorphism on its image. Let s A GnGx. Then sðxÞ0 x hence there is an

open neighborhood Ws of x in V so that sðWsÞVWs ¼ q. Set D0 :¼ 7
s AGnGx

Ws

and D :¼ 7
s AGx

sðD0Þ. As G is finite D0, and then D, are open. What we just

built is an open neighborhood D of x in V so that i) sðDÞJD for any s A Gx

and ii) sðDÞVD ¼ q for any s A GnGx. The first statement in Theorem 2 is a

complex analogue of Prop. 1.1 in [13], p. 251–252. For each t A Gx set

Ft ¼ fy A D : tðyÞ ¼ yg:

Note that w j � t ¼ gtðxÞ j
k � wk. Consequently

FðFtÞ ¼ FðDÞVKer½gtðxÞ � In�;

hence Ft is a complex submanifold of D, of complex dimension < n. Next

S VD ¼ Yx, where

Yx :¼ 6
t AGxnfeg

Ft:

To prove the third statement note that zjðq=qz jÞx A TxðFtÞnR C if and only if

z A Ker½gtðxÞ � In�. Indeed, if r j
sðzÞ :¼ gsðxÞ j

kwk � w j , s A Gx, then

zk q

qzk

����
x

� �
ðr j

sÞ ¼ zk½gsðxÞ j
l � d

j
l�
qwl

qzk
ðxÞ ¼ zkgsðxÞ j

k � z j:

Set

Fx :¼ 7
t AGxnfeg

Ft:
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If x A SnC then Fx is a complex manifold of dimension dimCðC nÞGx
. Let us

prove (b). To this end, let y A Fx and D 0 HV 0 as in the first part of the proof

(got by replacing x by y). Then F 0
s KD 0 VFx C y for any s A Gynfeg hence (by a

dimension argument)

T1;0ðF 0
yÞy ¼ T1;0ðFxÞyAðC nÞGx

0 ð0Þ: ð12Þ

Thus ðC nÞGy
AT1;0ðF 0

yÞy 0 ð0Þ, a fact which yields y A WnC, i.e. Fx HWnC.

Finally, let f A OV ðWÞ. Then f jF 0
y

is holomorphic in y hence (by (12)) f jFx
is

holomorphic in y. Q.e.d..

If ðX ;FÞ is a complex orbifold, a function f A C1ðXÞ (i.e. a con-

tinuous function f : X ! C so that fW A C 1ðWÞ for each l.u.s. fW;G; jg A F) is

V-holomorphic if each fW is V-holomorphic in W. In the sequel, we shall study

traces of such functions on smooth real hypersurfaces.

4. Real Hypersurfaces

The purpose of this section is to discuss traces of V-holomorphic functions on

real hypersurfaces M HW preserved by G. This situation is realizable (by a result

of B. Coupet & A. Sukhov, [9], as detailed below) when M is the boundary of a

Co bounded pseudoconvex domain. We are led to a generalization of the notion

of CR function, i.e. the solutions to (16). These are CR everywhere except at

singular points and exhibit, at a singular point x, the behaviour mentioned in the

Introduction (i.e. are CR functions along a CR submanifold passing through x, of

smaller CR dimension).

Let DHC n be a bounded pseudoconvex domain with real analytic bound-

ary qD and H HAutðDÞ a finite (hence compact) group of automorphisms of D.

By a result of B. Coupet & A. Sukhov, [9], there is a domain W so that DHW

and each t A H extends holomorphically on W as an automorphism of W. Let

GqD consist of all ~ttjqD for t A H and some holomorphic extension ~tt A AutðWÞ of

t. By the identity principle for holomorphic functions GqD is a well defined finite

group of CR automorphisms of qD. In general, let WJC n be a domain, G H
AutðWÞ a finite group of biholomorphims, and M HW an embedded real hyper-

surface such that sðMÞ ¼ M for each s A G. Set GM :¼ fsjM : s A Gg and SM :¼
fx A M : ðGMÞx 0 f1Mgg. Then SM ¼ M VS. For any x A M there is a neigh-

borhood U of x in C n and a function r A CyðUÞ such that M VU ¼ fz A U :

rðzÞ ¼ 0g and ‘rðzÞ0 0 for any z A M. The Cauchy-Riemann equations in C n
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induce on M an overdetermined system of PDEs with smooth complex valued

coe‰cients

LauðzÞ1
Xn

j¼1

a j
aðzÞ

qu

qz j
¼ 0; 1a aa n � 1; ð13Þ

(the tangential Cauchy-Riemann equations) z A V , with V JM VU open. Here

Xn

j¼1

a j
aðzÞ

qr

qz j
¼ 0; 1a aa n � 1; ð14Þ

for any z A V , i.e. La are purely tangential first order di¤erential operators

(tangent vector fields on M ). Also

½La;Lb� ¼ C
g
abðzÞLg ð15Þ

for some complex valued Cy functions C
g
ab on V. At each point z A V the

La; z’s span a complex ðn � 1Þ-dimensional subspace T1;0ðMÞz of the complexified

tangent space TzðMÞnR C . The bundle T1;0ðMÞ ! M is the CR structure of M.

A C1 function u : M ! C is a CR function if ZðuÞ ¼ 0 for any Z A T1;0ðMÞ.
Locally, a CR function is a solution of (13). G HAutðWÞ yields GM HAutCRðMÞ
hence

ðdxtÞLa;x ¼
Xn�1

b¼1

tba ðxÞLb; tðxÞ; x A V ;

for each t A GM and some (unique) system of Cy functions tba : V ! C . For

each t A GM let gM; t : V ! GLðn � 1;CÞ be given by gM; tðxÞz ¼ tab ðxÞz
bea for

any z A C n�1. Set

ðC n�1ÞðGM Þx
¼ Ker½gM; tðxÞ � In�1�

and CM ¼ fx A M : ðC n�1ÞðGM Þx
¼ ð0ÞgJSM . We need the following

Lemma 2. The trace u ¼ f jM of any V-holomorphic function f A OV ðWÞ
satisfies

Xn�1

a¼1

xaLa;xu ¼ 0 ð16Þ

for any x A V and any x A ðC n�1ÞðGM Þx
. In particular u is a CR function on MnSM

(and if n ¼ 2 then u is CR on MnCM ).
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Proof. Let z A ðC n�1ÞðGM Þx
, x A V , and set z j ¼ a j

aðxÞx
a. Then

a j
aðxÞgsðxÞk

j ¼ tba ðxÞak
b ðxÞ

yields z A ðC nÞGx
hence

0 ¼ zj qf

qz j
ðxÞ ¼ xaLa;xu: Q:e:d::

In view of the result in [18], it is an open problem whether the real analytic

solutions to (16) extend to V-holomorphic functions on a neighborhood of M in

W (provided M A Co).

Theorem 3. For any x A SM there is an open neighborhood D of x in W

such that SM VD is a finite union of CR manifolds of CR dimension < n � 1. For

any y A V :¼ M VD, ðGMÞy is a subgroup of ðGMÞx. If x A SMnCM there is a

CR manifold FM;x such that a C 1 function u : V ! C satisfies (16) for any x A

ðC n�1ÞðGM Þx
if and only if the trace of u on FM;x is CR at x.

The proof of Theorem 3 is similar to that of Theorem 2, so we only emphasize

on the main steps. As x A SM JS, let D be a neighborhood of x in W as in (the

proof of ) Theorem 2. By eventually shrinking D let ðuaÞ be local coordinates on

V ¼ M VD and set

va ¼ 1

jGxj
X

t A ðGM Þx

ht�1ðxÞa
b ðub � tÞ; 1a aa 2n � 1;

where htðxÞ ¼ ½ðqðua � tÞ=qubÞðxÞ�. Then ðqva=qubÞðxÞ ¼ da
b hence f ¼

ðv1; . . . ; v2n�1Þ is a Cy di¤eomorphism of (a perhaps smaller open neighborhood

of x in) V onto its image. Given t A ðGMÞxnf1Mg set FM; t ¼ fy A V : tðyÞ ¼ yg.

Then fðFM; tÞ ¼ fðVÞVKer½htðxÞ � I2n�1� hence FM; t is a manifold (of dimension

dimR Ker½htðxÞ � I2n�1� < 2n � 1 if t0 1M ) and SM VV ¼ 6
t A ðGM Þxnf1Mg FM; t.

Note that FM; t ¼ M VFs for any s A Gx with sjM ¼ t. Hence FM; t is a CR sub-

manifold of (the complex manifold) Fs. If x A SMnCM JSnC then set FM;x ¼
7

t A ðGM Þxnf1Mg FM; t. Then FM;x ¼ M VFx hence FM;x is a CR submanifold of Fx.

Let T1;0ðFM;xÞ be the CR structure induced from (the complex structure of ) Fx.

The inclusion FM;x HM is a CR immersion (i.e. an immersion and a CR map)

and zaLa;x A T1;0ðFM;xÞx if and only if z A ðC n�1ÞðGM Þx
. Q.e.d..

5. CR Orbifolds

The scope of this section is to introduce the class of CR orbifolds of arbitrary

type ðn; kÞ (containing the class of complex orbifolds, k ¼ 0). The CR structure of
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a CR orbifold B and CR functions on B are discussed in Theorem 4. We consider

an analogue rB of the Kohn-Rossi laplacian and state the problem of building

a parametrix for rB, the local approach to which is dealt with in section 6 (the

solution to the global problem is delegated to a further paper).

Let ðB;AÞ be a ð2n þ kÞ-dimensional V-manifold, of class Cy. A CR

structure on B is a family

T1;0ðBÞ ¼ fT1;0ðWÞ : fW;G; jg A Ag

where each ðW;T1;0ðWÞÞ is a CR manifold, of type ðn; kÞ, i.e. of CR dimension n

and CR codimension k, and each injection l : W ! W 0 is a CR map. In particular,

G HAutCRðWÞ for any l.u.s. fW;G; jg A A. A pair ðB;T1;0ðBÞÞ is a CR orbifold

(of type ðn; kÞ). When k ¼ 0, B is a complex orbifold (of complex dimension n).

We shall deal mainly with CR orbifolds of CR codimension k ¼ 1.

Let ðB;AÞ be an N-dimensional V-manifold. A continuous map C : B ! M

into a Cy manifold M is an immersion if, for any fW;G; jg A A, the map CW :¼
C � j : W ! M is a Cy immersion (i.e. rank½dxCW� ¼ N a dimðMÞ, x A W). To

give an example of CR orbifold, assume that N ¼ 2n þ 1 and let C : B ! C nþ1

be an immersion. Let T1;0ðWÞ be the CR structure on W given by

ðdxCWÞT1;0ðWÞx ¼ T1;0ðC nþ1ÞCðjðxÞÞ V ½ðdxCWÞTxðWÞnR C �; x A W: ð17Þ

Note that CW 0 � l ¼ CW, for any injection l : W ! W 0; as a consequence, it is

easy to see that l must be a CR map, hence B together with the family of CR

structures (17) is a CR orbifold.

Let ðB;A;T1;0ðBÞÞ be a CR orbifold, of CR codimension 1. A family y ¼
fyW : fW;G; jg A Ag is a pseudohermitian structure on B if each yW is a pseudo-

hermitian structure on W and l�yW 0 ¼ aðlÞyW for any injection l : W ! W 0 and

some constant aðlÞ A Rnf0g, i.e. injections are pseudohermitian maps. We shall

need

Lemma 3. Let ðB;A;T1;0ðBÞÞ be a CR orbifold and two pseudohermitian

structures y, ŷy on B. If each injection l : W ! W 0 is isopseudohermitian, i.e.

aðlÞ1 1, there is a unique Cy function u : B ! Rnf0g so that ŷyW ¼ uWyW, for any

l.u.s. fW;G; jg A A.

Proof. Let uW : W ! Rnf0g be a Cy function satisfying ŷyW ¼ uWyW.

Next, consider an injection l : W ! W 0. The identities l�yW 0 ¼ yW and l�ŷyW 0 ¼ ŷyW

lead to

uW 0 � l ¼ uW ð18Þ
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In particular uW is G-invariant. Define u : B ! Rnf0g as follows. Let p A B

and U A H so that p A U . Let fW;G; jg A A be a l.u.s. of support U. Let x A W

so that jðxÞ ¼ p. Finally, set uðpÞ :¼ uWðxÞ. One needs to check that the def-

inition of uðpÞ doesn’t depend upon the various choices involved. Let U 0 A H so

that p A U 0. Then there is V A H so that p A V JU VU 0. Let fW 0;G 0; j 0g over

U 0 and x 0 A W 0 so that j 0ðx 0Þ ¼ p. Let fD;H;cg be a l.u.s. of support V and

consider two injections l : D ! W and l 0 : D ! W 0. Let y A D so that cðyÞ ¼ p.

From jðxÞ ¼ cðyÞ ¼ jðlðyÞÞ, there is s A G so that

lðyÞ ¼ sðxÞ: ð19Þ

Similarly

l 0ðyÞ ¼ s 0ðx 0Þ; ð20Þ

for some s 0 A G 0. Finally, using (18)–(20), one may conduct the following calcu-

lation

uW 0 ðx 0Þ ¼ uW 0 ððs 0Þ�1l 0ðyÞÞ ¼ uW 0 ðl 0ðyÞÞ

¼ uDðyÞ ¼ uWðlðyÞÞ ¼ uWðsðxÞÞ ¼ uWðxÞ: Q.e.d..

A Riemannian orbifold is a V-manifold B together with a family g ¼
fgW : fW;G; jg A Ag, where gW is a Riemannian metric on W, so that each

injection l : W ! W 0 is an isometry ðl�gW 0 ¼ gWÞ. Let ðB;A;T1;0ðBÞÞ be a strictly

pseudoconvex CR orbifold, i.e. each ðW;T1;0ðWÞÞ is a strictly pseudoconvex CR

manifold. Let y be a pseudohermitian structure on B. Then each yW is a con-

tact 1-form on W. Let gW be the Webster metric of ðW; yWÞ and set g :¼ fgW :

fW;G; jg A Ag. If each injection l is isopseudohermitian then l preserves the

Webster metrics, hence ðB; gÞ is a Riemannian orbifold. The following result is

similar to Theorem 1.

Theorem 4. For any CR orbifold ðB;A;T1;0ðBÞÞ, of type ðn; 1Þ, there is

a vector bundle ðE1;0; p;BÞ so that for any p A B, if p A U A H and fW;G; jg A A

is a l.u.s. over U then p�1ðpÞAC n=Gx for any x A W with jðxÞ ¼ p. Breg is a CR

manifold (of type ðn; 1Þ) and E1;0jBreg
is its CR structure. T1;0ðBregÞ is contained

in ðE1;0Þreg, the regular part of E1;0 as a V-manifold. The image T1;0ðBÞp J p�1ðpÞ
of T1;0ðWÞGx

via the map T1;0ðWÞAW� C n ! E1;0 depends only on p ¼ jðxÞ.
T1;0ðBÞp is a C-vector space of dimension dimC ðC nÞGx

. If Z is a section in E1;0

and f A EðBÞ there is a (naturally defined ) function Zð f Þ : B ! C . If Zð f Þ ¼ 0

for any Z then fW ¼ f � j is a CR function on W, for any fW;G; jg A A, and

conversely.
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The bundle E1;0 is recovered from the transition functions glðxÞ ¼ ½la
b ðxÞ�, where

ðdxlÞLa;x ¼ lb
a ðxÞL 0

b;lðxÞ, x A W (we assume w.l.o.g. that a frame fLag of T1;0ðWÞ,
defined on the whole of W, is prescribed on each W). We omit the details.

Let B be a V-manifold. A linear map D : EðBÞ ! EðBÞ is a di¤erential

operator (of order k) if for any l.u.s. fW;G; jg A A there is a di¤erential operator

DW of order k on W so that ðDuÞW ¼ DWuW for any u A EðBÞ. We say D is elliptic

(respectively subelliptic (of order e)) if DW is elliptic (respectively subelliptic of

order e, (cf. [11], p. 373)) for each l.u.s. fW;G; jg.

Let ðB;T1;0ðBÞÞ be a nondegenerate CR orbifold, y ¼ fyWg a fixed pseu-

dohermitian structure on B, and rW the Kohn-Rossi laplacian of ðW; yWÞ, cf.

section 2. If each injection is isopseudohermitian, we may build a di¤erential

operator rB : EðBÞ ! EðBÞ by setting

ðrBuÞW ¼ rWuW

for any u A EðBÞ. Then rBu is a well defined element of EðBÞ if the functions

fW ¼ rWuW satisfy fW 0 � l ¼ fW for any injection l : W ! W 0. This may be seen

as follows. By applying (5) we get rl
W ¼ rlðWÞ or

ðrWðv � lÞÞ � l�1 ¼ rlðWÞv;

for any v A CyðlðWÞÞ. In particular, let us consider the functions

v ¼ uW 0 jlðWÞ A CyðlðWÞÞ:

Then

rWðuWjlðWÞÞ � lÞ � l
�1 ¼ rlðWÞðuW 0 jlðWÞÞ

may be written as

rWuW ¼ ðrW 0uW 0 Þ � l:

Q.e.d.. Let TW be the characteristic direction of ðW; yWÞ. We define a di¤erential

operator T : EðBÞ ! EðBÞ by setting ðTuÞW ¼ TWuW for any u A EðWÞ. Again, the

functions TWuW give rise to a well defined element Tu of EðBÞ provided that each

injection l is isopseudohermitian; indeed, if this is the case then ðdxlÞTW;x ¼
TW 0;lðxÞ for any x A W, and one may perform the calculation

TW 0;lðxÞðuW 0 Þ ¼ ½ðdxlÞTW;x�ðuW 0 Þ ¼ TW;xðuW 0 � lÞ ¼ TW;xðuWÞ:

Q.e.d.. Finally, let ðB;T1;0ðBÞÞ be a strictly pseudoconvex CR orbifold

and y ¼ fyWg a pseudohermitian structure on B so that each Levi form LyW is

positive definite, and each injection is isopseudohermitian. Consider the second
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order di¤erential operator DB : EðBÞ ! EðBÞ given by DBu ¼ rBu � inTðuÞ for

any u A B. Then DB is a subelliptic operator of order 1/2 on B. J. Girbau & M.

Nicolau have developed (cf. [13]) a pseudo-di¤erential calculus on V-manifolds

(inverting a given elliptic di¤erential operator up to infinitely smoothing oper-

ators). The same problem for subelliptic operators on V-manifolds, e.g. for DB on

a CR orbifold, is not solved (presumably, one needs to adapt the methods in

[17]). Also, see [12], p. 493–498, for a parametrix and the regularity of rM for

an ordinary strictly pseudoconvex CR manifold M. The problem of building a

parametrix for rB on a strictly pseudoconvex CR orbifold B is open. In the next

section we solve the local problem.

6. A Parametrix for rW

Let WHR2nþ1 be a domain and T1;0ðWÞ a G-invariant strictly pseudo-

convex CR structure on W, for some finite group of CR automorphisms G H
AutCRðWÞ. Let y be a pseudohermitian structure on W so that the correspond-

ing Levi form Ly be positive definite and s�y ¼ aðsÞy, for any s A G and some

aðsÞ A ð0;þyÞ. Let fTag be an orthonormal ðLyðTa;T
b
Þ ¼ dabÞ frame of T1;0ðWÞ,

defined everywhere in W. Let ðz; tÞ ¼ Yx : Vx ! Hn be the pseudohermitian

normal coordinates at x A W, determined by fTag as in section 2, and set

D :¼ 6
x AW

fxg � Vx;

a neighborhood of the diagonal in W�W. Next, we set Yðx; yÞ :¼ YxðyÞ and

rðx; yÞ :¼ jYðx; yÞj, for any ðx; yÞ A D. Here jðz; tÞj ¼ ðkzk4 þ t2Þ1=4 is the Hei-

senberg norm of ðz; tÞ A Hn.

A function Kðx; yÞ on W�W is a kernel of type l ðl > 0Þ if for any m A Z,

m > 0, one may write Kðx; yÞ as

Kðx; yÞ ¼
XN

i¼1

aiðxÞKiðx; yÞbiðyÞ þ Emðx; yÞ ð21Þ

where N b 1 and 1) Em A C m
0 ðW�WÞ, 2) ai; bi A Cy

0 ðWÞ, 1a i aN, and 3) Ki is

Cy away from the diagonal and is supported in fðx; yÞ A D : rðx; yÞa 1g and

Kiðx; yÞ ¼ kiðYðy; xÞÞ for rðx; yÞ su‰ciently small, where ki is homogeneous of

degree li :¼ l� 2n � 2 þ mi, i.e.

kiðdrðz; tÞÞ ¼ rli kiðz; tÞ; r > 0; ðz; tÞ A Hn;
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for some mi b 0. Also drðz; tÞ ¼ ðrz; r2tÞ is the (parabolic) dilation of factor

r > 0. Next

ðA f ÞðxÞ ¼
ð
W

Kðx; yÞ f ðyÞ dy

is an operator of type l ðl > 0Þ if Kðx; yÞ is a kernel of type l. Here dy is short

for oðyÞ :¼ ðy5ðdyÞnÞðyÞ.
Set Xa :¼ Ta þ Ta and Ya :¼ iðTa � TaÞ and fXj : 1a j a 2ng :¼ fXa;Yag,

where Xaþn ¼ Ya. Also, set

Bk ¼ fXj1 � � �Xjl : 1a js a 2n; 1a sa l; 1a la kg

and let Ak be the span over C of Bk U fIg, where I is the identity. The

Folland-Stein spaces are S
p
k ðWÞ ¼ f f A LpðWÞ : Lf A LpðWÞ; EL A Akg where Lf

is intended in distributional sense. The Folland-Stein spaces are Banach spaces

under the norms k f kp;k ¼ k f kp þ
P

L ABk
kLf kp. An important feature of the

operators of type l ¼ m A f1; 2; . . .g is that they are bounded operators from

S
p
k ðWÞ to S

p
kþmðWÞ (and in this sense smoothing) for k A f0; 1; 2; . . .g and 1 <

p < y (cf. Theor. 15.19 in [12], p. 491). We shall prove the following result

Theorem 5. Let W0 be a G-invariant compact subset of W. For each 0 <

q < n there is an operator Aq;W : Gy
0 ðL0;qðWÞÞ ! Gy

0 ðL0;qðWÞÞ, of type 2, so that

1) Aq;W �rW � I and rW � Aq;W � I are operators of type 1 on the G-invariant

Cy forms of support contained in W0, and 2) Aq;W maps G-invariant forms in

G-invariant forms.

A ð0; qÞ-form j on W may be written locally j ¼ jI y
I where I ¼ ða1; . . . ; anÞ is

a multi-index and y I ¼ ya1 5 � � �5yan . Since

ðs�yaÞx ¼ gsðxÞaby
b
x ; x A W;

if j is G-invariant (i.e. s�j ¼ j for any s A G) then

jI ðxÞ ¼ gsðxÞJ

I
jJðsðxÞÞ; x A W; s A G;

gsðxÞJ

I
:¼ gsðxÞb1

a1
� � � gsðxÞbn

an
; J ¼ ðb1; . . . ; bnÞ:

By Prop. 16.5 in [12], p. 496, for any 1a qa n � 1 we may build an operator

Aq of type 2 so that I �rWAq and I � AqrW are operators of type 1 on forms

j A Gy
0 ðL0;qðWÞÞ of supportHW0. Assuming this is done, set

Aq;sj :¼ s�Aqðs�1Þ�j; Aq;W :¼ 1

jGj
X
s AG

Aq;s:
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From now on, for the sake of simplicity, we drop the index q. If j is G-invariant

then

t�Asj ¼ ðstÞ�Aðs�1Þ�j ¼ ðstÞ�AððstÞ�1Þ�j;
i.e.

t�ðAsjÞ ¼ Astj:

Therefore

t�AWj ¼ 1

jGj
X
s AG

t�Asj ¼ 1

jGj
X
s AG

Astj ¼ AWj;

i.e. AW maps G-invariant forms in G-invariant forms.

For each x A W let dðxÞ > 0 be fixed so that Cx : Bð0; dðxÞÞHTxðWÞ ! W is

well defined and a di¤eomorphism on its image Vx ¼ CxðBð0; dðxÞÞ. Next, fix a

number

0 < dGðxÞamin
dðsðxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðsÞ2 þ aðsÞ
q : s A G

8><
>:

9>=
>;U fdðxÞg

0
B@

1
CA

and set

VGðxÞ :¼ CxðBð0; dGðxÞÞÞJVx HW:

Lemma 4. s½VGðxÞ�JVsðxÞ.

Proof. Let h A VGðxÞHVx, i.e. there is W þ cTx A Bð0; dGðxÞÞ so that

W A HðWÞx and h ¼ CxðW þ cTxÞ ¼ gW ; cð1Þ. Thus (by Lemma 1 in section 2)

sðhÞ ¼ ðs � gW ; cÞð1Þ ¼ gWs;aðsÞcð1Þ. On the other hand

kWs þ aðsÞcTsðxÞk2 ¼ kWsk2 þ aðsÞ2
c2

¼ aðsÞkWk2 þ aðsÞ2
c2 < ½aðsÞ þ aðsÞ2�dGðxÞ2

a dðsðxÞÞ2;

hence gWs;aðsÞcð1Þ A VsðxÞ. Q.e.d..

Set

DG :¼ 6
x AW

fxg � VGðxÞ:

Let us go back to the construction of A. Consider

AjðxÞ ¼
ð
W

Kðx; hÞjJðhÞ dh

� �
yJ
x ;
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where K is the kernel of type 2

Kðx; hÞ ¼ cðx; hÞFn�2qðYðh; xÞÞ:

Here cðx; hÞ is a Cy
0 function on W�W, supported in

fðx; hÞ A DG : rðx; hÞa rg;
where

r :¼ minðfaðsÞ1=2 : s A GgU f1gÞ;

and so that cðx; hÞ ¼ cðh; xÞ and cðx; hÞ ¼ 1 in a neighborhood N of the

diagonal D of W0 �W0 ðDHNJfðx; hÞ A D : rðx; hÞ< rgÞ. Also Fa is the

fundamental solution ðSaFa ¼ dÞ to

Sa ¼ �
Xn

j¼1

LjL�jj þ iða� nÞ q
qt
; ð22Þ

(the Folland-Stein operators) where

Lj :¼
q

qz j
þ iz j q

qt

(the Lewy operators) i.e.

Fa ¼ baðkzk2 � itÞ�ðnþaÞ=2ðkzk2 þ itÞ�ðn�aÞ=2; ð23Þ

for any a A CnfGn;Gðn þ 2Þ;Gðn þ 4Þ; . . .g, where

ba ¼
Gððn þ aÞ=2ÞGððn � aÞ=2Þ

22�2npnþ1
:

Then

AsjðxÞ ¼
ð

KðsðxÞ; hÞððs�1Þ�jÞI ðhÞ dh

� �
y I
sðxÞ � ðdxsÞ: ð24Þ

By s�o ¼ aðsÞ2nþ1
o and a change of coordinates h 0 ¼ sðhÞ in (24) we get

AsjðxÞ ¼ aðsÞ2nþ1

ð
gsðxÞI

J
KðsðxÞ; sðhÞÞgs�1ðsðhÞÞL

I
jLðhÞ dh

� �
yJ
x :

Lemma 5. For any ðx; hÞ A DG

YðsðxÞ; sðhÞÞ ¼ ðgsðxÞba zaðhÞeb; aðsÞtðhÞÞ;

where ðz; tÞ ¼ Yx ¼ lx �C�1
x are the pseudohermitian normal coordinates centered

at x.
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Proof. As ðx; hÞ A DG we have h A VGðxÞ hence (by Lemma 4) sðhÞ A
s½VGðxÞ�JVsðxÞ and then

YðsðxÞ; sðhÞÞ ¼ YsðxÞðsðhÞÞ ¼ lsðxÞ �C�1
sðxÞðsðhÞÞ

makes sense. As h A VGðxÞJVx, set W :¼ zaðhÞTa;h þ zaðhÞTa;h and c :¼ tðhÞ.
Then

CsðxÞðWs þ caðsÞTsðhÞÞ ¼ gWs; caðsÞð1Þ ðby Lemma 1Þ

¼ sðgW ; cð1ÞÞ ¼ sðCxðW þ cThÞÞ ¼ sðhÞ;

hence

YðsðxÞ; sðhÞÞ ¼ lsðxÞðWs þ caðsÞTsðhÞÞ: Q.e.d..

For any s A G, s�Ly ¼ aðsÞLy hence

X
m

gsðhÞma gsðhÞm
b
¼ aðsÞdab;

i.e. aðsÞ�1=2
gsðhÞ A UðnÞ. Consequently kgsðhÞzk2 ¼ aðsÞkzk2 and (by (23) and

Lemma 5)

Fn�2qðYðsðhÞ; sðxÞÞÞ ¼ aðsÞ�nFn�2qðYðh; xÞÞ;

and we obtain

aðsÞ�n�1
AsjðxÞ

¼
ð

gsðxÞI
J
csðx; hÞFn�2qðYðh; xÞÞgs�1ðsðhÞÞK

I
jKðhÞ dh

� �
yJ
x ;

where csðx; hÞ :¼ cðsðxÞ; sðhÞÞ. Note that cs A Cy
0 and csðx; hÞ ¼ csðh; xÞ. Let

s2 :¼ s� s (direct product). Set

NG :¼ 7
s AG

s2ðNÞHN:

As W0 is G-invariant D ¼ s2ðDÞH s2ðNÞ for any s A G, hence NG is an open

neighborhood of D. Also cðx; hÞ ¼ 1 on N yields csðx; hÞ ¼ 1 on NG.

Let ðx; hÞ A DG. Then (by Lemma 5)

jYðsðxÞ; sðhÞÞj ¼ jðgsðxÞzðhÞ; aðsÞtðhÞÞj

¼ ðkgsðxÞzðhÞk4 þ aðsÞ2
tðhÞ2Þ1=4

¼ aðsÞ1=2jðzðhÞ; tðhÞÞj ¼ aðsÞ1=2jYðx; hÞj;
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that is

rðsðxÞ; sðhÞÞ ¼ aðsÞ1=2rðx; hÞ: ð25Þ

Let G and Gs be respectively the supports of c and cs. Then s2ðGsÞJ
GH fðx; hÞ A DG : rðx; hÞa rg. Also (by Lemma 4) s�1ðDGÞJD. Thus (by (25))

Gs H fðx; hÞ A D : rðx; hÞa 1g. Then (as in [12], p. 494) we may conclude that

Ksðx; hÞ ¼ csðx; hÞFn�2qðYðh; xÞÞ

is a kernel of type 2. In general, if Kðx; hÞ is a kernel of type l then

KI
J
ðx; hÞ :¼ gsðxÞL

J
Kðx; hÞgs�1ðsðhÞÞI

L

is another kernel of type l, as it easily follows from (21). We have proved that

As, and therefore AW, is an operator of type 2.

Set aðGÞ :¼ ð1=jGjÞ
P

s AG aðsÞ > 0. We wish to check that aðGÞ�1
AW inverts

rW. Set B :¼ I �rWA. If j is a G-invariant ð0; qÞ-form then (by (7))

rWAWjðxÞ ¼
1

jGj
X
s AG

rWs
�Aðs�1Þ�jðxÞ

¼ 1

jGj
X
s AG

aðsÞs�rWAjðxÞ ¼ 1

jGj
X
s AG

aðsÞs�ðj� BjÞðxÞ

that is

rWAWjðxÞ ¼ aðGÞjðxÞ � 1

jGj
X
s AG

aðsÞBsjðxÞ;

where Bs :¼ s�Bðs�1Þ�. We shall prove that

Lemma 6. Bs is an operator of type 1.

Proof. Set

AejðxÞ :¼
ð

K eðx; hÞjJðhÞ dh

� �
yJ
x ;

Keðx; hÞ :¼ cðx; hÞFe
n�2qðYðh; xÞÞ;

Fe
a :¼ ba r

�ðnþaÞ=2
e r�ðn�aÞ=2

e ; reðz; tÞ :¼ kzk2 þ e2 � it;

for any e > 0. For the sake of simplicity, we only look at the case q ¼ 1. For any

ð0; 1Þ-form c on W, the Kohn-Rossi laplacian is expressed by

rWc ¼ f�hlm‘l‘mca � 2i‘0ca þ cgR
g
a
gya;
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where Rlm is the pseudohermitian Ricci tensor (cf. e.g. [10], p. 193). This may be

written

ðrWcÞa ¼ Ln�2ca þ
Xn

m¼1

G
r
ma

Tmcr þ
1

2
G

r
mmTrca þ G

r
ma

Tmcr

� �
þ F

g
a
cg;

(compare to (16.1) in [12], p. 494) for some Cy functions F
g
a

(expressed in

termes of the Christo¤el symbols and their derivatives, and whose precise form is

unimportant). We have (by the proof of Prop. 16.5 in [12])

s�Bðs�1Þ�jðxÞ ¼ jðxÞ � s�rWAðs�1Þ�jðxÞ ¼ jðxÞ � s� lim
e!0

rWAeðs�1Þ�jðxÞ

that is

BsjðxÞ ¼ jðxÞ � lim
e!0

s�rWAeðs�1Þ�jðxÞ

hence it su‰ces to show that if we let e ! 0 then s�rWAeðs�1Þ�j goes to j

plus an operator of order 1 applied to j. We have

s�rWAeðs�1Þ�jðxÞ ¼ rW

ð
Keð� ; hÞððs�1Þ�jÞaðhÞ dh

� �
ya

� �
sðxÞ

� ðdxsÞ

¼ gsðxÞab

�
Ln�2ca þ

X
m

G
r
ma

Tmcr þ
1

2
G

r
mmTrca þ G

r
ma

Tmcr

� �
þ F

g
a
cg

�
sðxÞ

y
b
x

where

caðxÞ :¼
ð

Keðx; hÞððs�1Þ�jÞaðhÞ dh:

and Ln�2 ¼ �
P

a TaTa � 2iT . Therefore, using

ðTm f ÞðsðxÞÞ ¼ gs�1ðsðxÞÞlmTlð f � sÞ

we get

s�rWAeðs�1Þ�jðxÞ ¼ A0
e;b
jðxÞ þ

Xn

m¼1

X3

i¼1

Ai

e;mb
jðxÞ

( )
y
b
x

þ
ð

gsðxÞab½L
z

n�2Keðz; hÞ�z¼sðxÞgs�1ðhÞgajgðs
�1ðhÞÞ dh

� �
y
b
x ð26Þ

where
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A0
e;b

jðxÞ ¼ gsðxÞabF
g
a
ðsðxÞÞ

ð
KeðsðxÞ; hÞgs�1ðhÞrg jrðs

�1ðhÞÞ dh;

A1
e;mb

jðxÞ ¼ gsðxÞabG
r
ma
ðsðxÞÞgs�1ðsðxÞÞlm

ð
½T x

l KeðsðxÞ; hÞ�gs�1ðhÞgrjgðs
�1ðhÞÞ dh;

A2
e;mb

jðxÞ ¼ 1

2
gsðxÞabG

r
mmðsðxÞÞgs�1ðsðxÞÞlr

ð
½T x

l
KeðsðxÞ; hÞ�gs�1ðhÞgajgðs

�1ðhÞÞ dh;

A3
e;mb

jðxÞ ¼ gsðxÞabG
r
ma
ðsðxÞÞgs�1ðsðxÞÞlm

ð
½T x

l
KeðsðxÞ; hÞ�gs�1ðhÞgrjgðs

�1ðhÞÞ dh:

Clearly A0
e;b

gives, in the limit as e ! 0, an operator of type 2 (and hence of type

1). We claim that Ai

e;mb
give (as e ! 0) operators of type 1, as well. For instance,

let us look at A1
e;mb

(the remaining operators may be treated in a similar manner).

Note that

Fe
aðYðsðhÞ; sðxÞÞÞ ¼ aðsÞ�nF

e=
ffiffiffiffiffiffiffi
aðsÞ

p
a ðYðh; xÞÞ ð27Þ

Indeed (by Lemma 5)

reðgsðhÞzðxÞ; aðsÞtðxÞÞ ¼ aðsÞkzðxÞk2 þ e2 � iaðsÞtðxÞ

¼ aðsÞr
e=

ffiffiffiffiffiffiffi
aðsÞ

p ðzðxÞ; tðxÞÞ:

Consequently

KeðsðxÞ; sðhÞÞ ¼ aðsÞ�ncsðx; hÞF
e=

ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ðYðh; xÞÞ

and a change of variables h 0 ¼ s�1ðhÞ leads to

A1
e;mb

jðxÞ ¼ aðsÞnþ1
gsðxÞabG

r
ma
ðsðxÞÞgs�1ðsðxÞÞlm

�
ð

T x
l ½csðx; hÞF

e=
ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ðYðh; xÞÞ�gs�1ðsðhÞÞgrjgðhÞ dh

which goes, as e ! 0, to

aðsÞnþ1
gsðxÞabG

r
ma
ðsðxÞÞgs�1ðsðxÞÞlm

� T x
l

ð
csðx; hÞCn�2ðYðh; xÞÞgs�1ðsðhÞÞgrjgðhÞ dh

� �
:

As previously shown, csðx; hÞFn�2ðYðh; xÞÞ is a kernel of type 2; yet, by Prop.

15.14 in [12], p. 487, for any operator A of type 2, TlA is an operator of type 1,

hence the claim is proved.

To deal with the last term in (26) we write
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Lz
n�2Keðz; hÞ ¼ ½Lz

n�2cðz; hÞ�F
e
n�2ðYðh; zÞÞ þ cðz; hÞLz

n�2½F
e
n�2ðYðh; zÞÞ�

� 1

2

Xn

a¼1

f½T z
a cðz; hÞ�T

z
a
½Fe

n�2ðYðh; zÞÞ�

þ ½T z
a
cðz; hÞ�T z

a ½Fe
n�2ðYðh; zÞÞ�g ð28Þ

The first term on the right hand side of (28), when substituted into (26), leads

(as e ! 0) to an operator of order 1 applied to j. We need to recall the notion of

Heisenberg-type order. A function f ðx; yÞ on W�Hn is of order O k, k ¼ 1; 2; . . . ;

if f A Cy and for any compact set K HW there is a constant CK > 0 so that

j f ðx; yÞjaCK jyjk (Heisenberg norm). If ðz; tÞ ¼ Y�1
x are pseudohermitian normal

coordinates at x then (cf. Theor. 4.3 in [14], p. 177, a refinement of Theor. 14.10

and Corollary 14.9 in [12], p. 475)

ðY�1
x Þ�Ta ¼

q

qza
þ iza q

qt
þ O1E

q

qz
;
q

qz

� �
þ O2E

q

qt

� �
;

where OkE denotes an operator involving linear combinations of the indicated

derivatives, with O k coe‰cients. Similarly, ðY�1
x Þ�Ln�2 is the operator Sn�2

(given by (22) with a ¼ n � 2) plus higher (Heisenberg-type) order terms.

Let dðx; hÞ be the distribution on W�W defined byð
dðx; hÞ f ðxÞgðhÞ dxdh ¼

ð
f ðxÞgðxÞ dx:

As to the second term in the right hand side of (28), when substituted into (26), it

gives an integral operator applied to j, which goes to j for e ! 0, as desired.

Indeed

lim
e!0

ð
gsðxÞabcðsðxÞ; hÞL

z
n�2½F

e
n�2ðYðh; zÞÞ�z¼sðxÞgs�1ðhÞg

a
jgðs�1ðhÞÞ dh

is, up to higher order terms [leading to first order operators applied to j (cf. also

[12], p. 495)]ð
gsðxÞabcðsðxÞ; hÞ½Sn�2Fn�2�ðYðh; sðxÞÞÞgs�1ðhÞg

a
jgðs�1ðhÞÞ dh

¼
ð

gsðxÞabcðsðxÞ; hÞdðsðxÞ; hÞgs�1ðhÞgajgðs
�1ðhÞÞ dh

¼ gsðxÞabcðsðxÞ; sðxÞÞgs�1ðsðxÞÞgajgðxÞ ¼ d
g
bcsðx; xÞjgðxÞ ¼ j

b
ðxÞ:
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Q.e.d.. Finally, we deal with the third term in the right hand side of (28)

(the fourth term may be dealt with in a similar way). It may be written (at

z ¼ sðxÞ) as

gs�1ðsðxÞÞbags�1ðsðxÞÞgaT
x
b ½cðsðxÞ; hÞ�T

x
g ½F

e
n�2ðYðh; sðxÞÞ�

hence the corresponding integral is (after a change of variable)

aðsÞnþ1
X
r

ð
gsðxÞabgs�1ðsðxÞÞlrgs�1ðsðxÞÞmrT x

l ½csðx; hÞ�

� T x
m ½F

e=
ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ðYðh; xÞÞ�gs�1ðsðhÞÞgajgðhÞ dh:

Set cl;sðx; hÞ :¼ T x
l ½csðx; hÞ� and note that cl;s A Cy

0 and (as Tl is a di¤erential

operator) Suppðcl;sÞHSuppðcsÞH fðx; hÞ A D : rðx; hÞa 1g. The following result

completes the proof

Lemma 7 ð
cl;sðx; hÞT x

m ½F
e=

ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ðYðh; xÞÞ�gs�1ðsðhÞÞg

a
jgðhÞ dh ð29Þ

goes, as e ! 0, to an operator of order 1 applied to j.

Proof. The kernel of the operator (29) is

T x
m ½F

e=
ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ðYðh; xÞÞ� ¼ ½ðdxYhÞTm;x�ðF

e=
ffiffiffiffiffiffiffi
aðsÞ

p
n�2 Þ

¼ Lm þ O1E
q

qz
;
q

qz

� �
þ O2E

q

qt

� �� �
YhðxÞ

ðFe=
ffiffiffiffiffiffiffi
aðsÞ

p
n�2 Þ

¼ �2ðzmr�1

e=
ffiffiffiffiffiffiffi
aðsÞ

p F
e=

ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ÞYhðxÞ þ

X
l

O1ðzl feF
e=

ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ÞðYhðxÞÞ

þ
X
l

O1ðzl feF
e=

ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ÞðYhðxÞÞ þ O2ðifeF

e=
ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ÞðYhðxÞÞ

where

fe :¼ �r�1

e=
ffiffiffiffiffiffiffi
aðsÞ

p � ðn � 1Þr�1

e=
ffiffiffiffiffiffiffi
aðsÞ

p :

The Heisenberg group carries the contact form

y0 ¼ dt þ 2
X

j

ðx j dy j � y j dx jÞ;
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z j ¼ x j þ iy j. Let dV ¼ y05ðdy0Þn be the natural volume form on Hn. Set

h :¼ Y�1
x . Note that YðhðuÞ; xÞ ¼ �YxðhðuÞÞ ¼ �u. Also

ðh�oÞðuÞ ¼ ð1 þ O1Þ dVðuÞ

(cf. again Theor. 4.3 in [14], p. 177). Thenð
W

cl;sðx; hÞðzmr�1

e=
ffiffiffiffiffiffiffi
aðsÞ

p F
e=

ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ÞðYðh; xÞÞgs�1ðsðhÞÞgajgðhÞ dh

¼
ð
Hn

cl;sðx; hðuÞÞðzmðuÞr
e=

ffiffiffiffiffiffiffi
aðsÞ

p ðuÞ�1F
e=

ffiffiffiffiffiffiffi
aðsÞ

p
n�2 ðuÞ

� gs�1ðsðhðuÞÞÞjgðhðuÞÞð1 þ O1Þ dVðuÞ

¼ e�2n�2

ð
cl;sðx; hðuÞÞzmðuÞF

1
n�2ðe�1uÞ
r1ðe�1uÞ

� gs�1ðsðhðuÞÞÞjgðhðuÞÞð1 þ O1Þ dVðuÞ

where e�1u is short for de�1 u. A change of variable v ¼ e�1u gives (as dVðuÞ ¼
e2nþ2 dVðvÞ)

e

ð
cl;sðx; hðevÞÞzmðvÞF

1
n�2ðvÞ
r1ðvÞ

� gs�1ðsðhðevÞÞÞjgðhðevÞÞð1 þ O1ðevÞÞ dVðvÞ:

The absolute value of this integral may be estimated by above by

e sup
rðx;hÞa1

½cl;sðx; hÞgs�1ðsðhÞÞjgðhÞ�
ð
jvja1

zmðvÞ F
1
n�2ðvÞ
r1ðvÞ

����
����ð1 þ ejvjÞ dVðvÞ

which goes to zero, as e ! 0. Moreover, in the limit, the O1 and O2 terms are

X
l

O1ðzlf Fn�2ÞðYhðxÞÞ þ
X
l

O1ðzlf Fn�2ÞðYhðxÞÞ þ O2ð fFn�2ÞðYhðxÞÞ

where f ðz; tÞ ¼ �½nkzk2 þ ðn � 2Þit�=½kzk4 þ t2�. Note that j f ðyÞjaCnjyj�2

hence O1zlf , O1zlf and O2f are bounded. Now, for instance, let us look at

kðyÞ ¼ ðO1zlf Fn�2ÞðyÞ (the discussion of the remaining terms is similar). First,

note that zlf Fn�2 is homogeneous of degree �2n � 1, with respect to dilations.

The Taylor series expansion (about 0 ¼ YhðhÞ) of the O1 coe‰cients is a sum of

homogeneous terms of degree at least 1 (with coe‰cients depending on h) plus a

remainder of arbitrarily high order, hence the ‘principal part’ of kðyÞ is homo-

geneous of degree �2n. Therefore kðYðh; xÞÞ is a kernel of type 1. Q.e.d..
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To end the proof of Theorem 5, we shall show that AWrW � aðGÞI is an

operator of type 1. First, note that As, and then AW, is symmetric. Indeed, for

any two ð0; 1Þ-forms j and c

ðAsj;cÞ ¼ aðsÞ2nþ1

ð
gsðxÞabKðsðxÞ; sðhÞÞgs�1ðsðhÞÞgajgðhÞc

bðxÞ dhdx:

As Fað�yÞ ¼ FaðyÞ, it follows that KðsðxÞ; sðhÞÞ ¼ KðsðhÞ; sðxÞÞ. Hence

ðA�
scÞmðhÞ ¼ aðsÞ2nþ1

hgmðhÞ
ð

gs�1ðsðhÞÞgaKðsðhÞ; sðxÞÞgsðxÞabc
bðxÞ dx

¼ aðsÞ2n

ð
gsðhÞlmh

al
ðhÞKðsðhÞ; sðxÞÞgsðxÞabc

bðxÞ dx

¼ aðsÞ2nþ1

ð
gsðhÞlmh

al
ðhÞKðsðhÞ; sðxÞÞgs�1ðsðxÞÞg

b
habðxÞcgðxÞ dx:

Finally (as h
ab

¼ dab)

ðA�
scÞm ¼ ðAscÞm;

q.e.d.. Moreover, rW is symmetric on compactly supported forms hence

AWrWc ¼ aðGÞc� 1

jGj
X
s AG

aðsÞB�
sc

and the transpose of Bs (an operator of type 1) is again of type 1.
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