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0. Introduction

Let Mn(c) be a 4≪-dimensional quaternion space form with the metric g of

constant quaternion sectional curvature 8c. The standard models of quaternion

space forms are the quaternion projective space Pn(Q),(c > 0), the quaternion

space Q, (c = 0) and the quaternion hyperbolic space Hn(Q), (c < 0). Let M be

a connected real hypersurface in Mn{c) with the induced metric.

In particular in [9], J. S. Pak characterized real hypersurfaces in Pn(Q) in

terms of the second fundamental form.

When we give a Riemannian manifold and its submanifold, the rank of

determined second fundamental form is called the type number.

B. Y. Chen and T. Nagano ([2])investigated totally geodesic submanifolds

in Riemannian symmetric spaces, and as one of their results the following holds

Theorem A ([2]). Spheres and hyperbolic spaces are only simply connected

irreducible symmetric spaces admitting a totally geodesic hypersurface.

Then it will be an interesting problem to study the type number t of real

hypersurfaces in simply connected irreducible symmetric spaces excepted for

spheres and hyperbolic spaces.

As a partialanswer, itis known that there existsa point such that t(p) > 2 in

any real hypersurface in complex space form with nonzero constant holomorphic

sectional curvature and complex dimension >3 (cf.[8],[10]). Naturally we can

consider the following question.

Does Mn(c) satisfy the similar fact!

We answer this question affirmatively,i.e.,we shall prove the following
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Main Theorem. Let M be a connectedreal hypersurfacesin Mn(c) (c ^ 0,

n>2). Then thereexistsa point p in M such that t(p)> 2.

1. Preliminaries

A quaternion Kahler manifold is a Riemannian manifold (M,g) on which

there exists a 3-dimensional vector bundle V of tensors of type (1,1) satisfying

the following properties:

(1) In any open set W in M, there is a local base {/,(/ =1,2,3)} of V such

that

(1.1) Jf = -I,

(1.2) JjJi+i = Ji+2 = -Ji+iJi (i mod 3),

where / denotes the identity endmorophism.

Such a local base {/,(/= 1,2,3)} is called a canonical local base of the

bundle V in W.

(2) There is a Riemannian metric g on M such that

(1.3) g(JiX,Y)+g(X,JiY)=O,

for any X, Fg3£(W/), where X(W) is the set of all vector fieldson W.

(3) The Levi-Civita connection D on M satisfiesfollowing conditions: If

{/;(/ = 1,2,3)} is a canonical local base of V in W, then there exists three local

1-forms Pi (i = 1,2,3) on M such that

(1.4) DxJt = Pi+2{X)Ji+l - Pi+l(X)Ji+2 (i mod 3),

for all X X(M).

Let Q(X) be the 4-plane spanned by vectors X,J＼X, JiX and J3X, for any

X e TXM, x e M. If the sectional curvature of any section for Q(X) depends only

on X, we callit Q-sectional curvature.

A quaternion space form of g-sectional curvature 8c is connected quaternion

Kahler manifold with constant (^-sectionalcurvature 8c, which denotes by Mn{c).

Let M be a real hypersurface in Mn{c) (n > 2, c # 0). In a neighborhood of

each point, we choose a unit normal vector field N in Mn(c). The Levi-Civita

connection D in Mn(c) and V in M are related by the following formulas for any

JT, YeX(M):

(1.5) DXY = VXY + (AX, Y}N,

(1.6) DXN=-AX,
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where <, > denotes the Riemannian metric on M induced from the metric g on

Mn(c) and A is the shape operator of M.

It is known that M has an almost contact metric structure induced from the

quaternion structure // on Mn{c), i.e., we define a tensor <f>tof type (1,1), a vector

field £j and a 1-form t]( on M by the following,

(1.7) <^Jf, 7> = g(JtX, Y), <&, JT> = rj^X) = g(JtX,N).

Then from (1.1) we have

(1.8) <t,x, f> + ixjjy = o, <4tx,*tYy = <x, f> -mW^iAn

(1.9) ^-+1 = £t+2 = -&+& (/mod 3).

From (1.3), we obtain

(1-10) # = -/ + tf/R6, ^(^) = 1, ^ = 0,

(1.11) i7/(^+i) = 7/(^+2) =0 (/mod 3),

(1.12) ^ = ^-+1^+2 - m+2 R ^i+i = -^+2^+1 + ^+i R ^+2 (i mod 3).

Furthermore from (1.2) and (1.7), we get

(1.13) (V^f) T = ^/+1 (X)ji+2 Y - Pi+2(X)<j>i+l Y

+ rit{Y)AX - (AX, Y}Zi (i mod 3).

In terms of (1.4) we have the following Codazzi equation

<yxA)Y- {VYA)X = c^MJTjhY - mWhX - 2<^X, r>&).

i=＼

2. Formulas

We assume that the rank of A is not larger than m on an open set W, then

thereexistsan open set Wo such that t takes the constantm. Then the Codazzi

equation gives

(2.1) -A{VX Y - WYX) = {VXA) Y - (VYA)X

3
= cV(^(i%r - m{Y)(t>iX- 2<hx, Y)tt≫

1=1

for any vector fields X, Y ekQrA＼w
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Taking the inner product of (2.1) with Z e ker^l^ , from (1.7) and c ^ 0, we

have

3
(2.2) 0 = ^.(X)<^.F,Z> + ^.(F)<^.Z,X> - 2//,:(Z)<^Z,F≫

;=1

Putting Z = X in (2.2),we obtain

3
(2.3)

1=1

tjAxxhY, xy = o

3. Proof of the Main theorem

Since Theorem A, we get m > 1. Suppose that m = 1. Let X be the nonzero

principal curvature with principal subspace Tx. Choose a local orthonormal frame

field U, e＼,...,e^n-i on M such that e＼,...,e$n-2 is in ker A＼Wo and U g T%. We

use the following convention on the range of indices otherwise stated: r,s,... =

l,...,4≪-2.

Putting Z = er in (2.2), we get

(3.1)

1=1

■Y,ery - ^.(rx^r.o - 2(4tx, Yyni(er))= o

Lemma. There existsa number i such thatrjj(U)# 0.

Proof. We assume that

(3.2) 1i(U) = 0,

for any number /.Then multiplying(3.1) by <^,-t/,er> and summing up for r,

since(1.8)~(1.12) and (3.2) we have

- ii+i(x)<h+2Y, uy + ^.+1(F)<^.+2x, co

+ iIwW^i Y, U} - tii+2(Y)Wi+lX, Uy = 0 (/mod3).

Putting X = erin above equation and summing up for r, from (1.9)~(1.11)and

(3.2)we obtain

<^,t/,r> = o,

together with equation <^,C/,l/y = 0, we get

(3.3) ^C/ = 0.
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Putting X = U and Y = £,･in (1.13) and taking the inner product with

using (1.10),(3.2) and (3.3) we get k ― 0, which is a contradiction.

On the other hand, (2.3)implies

3
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U, then

□

(3.4) ]>>(X)<^r,X> = 0.

Multiplying (3.1) by <^,-C/,er} and summing up for r, from (1.9),(1.10), (1.12)

and equation V.<^.t/,er>er = (j>tU,we get

7=1

j{x) + ii+i(x)<u>tt+2X> - ni+2(xKu,<!>i+iX> = 0 (/mod 3)

Putting X = er in above equation and summing up for r, by (1.9) we have

mW)

(
i>;(E*)-2)=°

7=1 /

According to Lemma, above equation implies

(3.5) !>;£≫ =2

7=1

Multiplying (3.4) by //,-(er)and summing up for r, then using (1.9), (1.10) and

Lemma we have

(3.6)

Again multiplying (3.4) by <^X,<?r> and summing up for r and since (1.8),(1.12)

and (3.6) we obtain

(3.7) riiW

(

imi2-
7=1

)-
Suppose that rjt(X) = 0 for any number i. Then we observe V/(^/)= Vi{U) = 1-

This implies £,･= U for any number /,which is a contradiction. Thus by (3.7) we

get

J2≪](x)

= ＼＼x＼＼2-
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Putting X = er in above equation and summing up for r, we have

7=1

= 4n-2

which contradicts(3.5).

It completes the proof of Main Theorem.

Remark (added in Proof). J. E. D'Atri [3],J. Berndt [1]and A. Martinez

[6] gave some examples of real hypersurfacesin Mn(c),c # 0. In case Mn(c) is

Hn(Q), the type number of theseexamples is maximum. In case Mn(c) is Pi(Q),

thereis an example of t = 4 in the above. However, we don't know an example

of real hypersurfacein Mn(c), c/0 such that t = 2.
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