THE TYPE NUMBER ON REAL HYPERSURFACES IN A QUATERNION SPACE FORM

By
Hiroyuki Kurihara

0. Introduction

Let $M_{n}(c)$ be a $4 n$-dimensional quaternion space form with the metric g of constant quaternion sectional curvature $8 c$. The standard models of quaternion space forms are the quaternion projective space $P_{n}(Q),(c>0)$, the quaternion space $Q,(c=0)$ and the quaternion hyperbolic space $H_{n}(Q),(c<0)$. Let M be a connected real hypersurface in $M_{n}(c)$ with the induced metric.

In particular in [9], J. S. Pak characterized real hypersurfaces in $P_{n}(Q)$ in terms of the second fundamental form.

When we give a Riemannian manifold and its submanifold, the rank of determined second fundamental form is called the type number.
B. Y. Chen and T. Nagano ([2]) investigated totally geodesic submanifolds in Riemannian symmetric spaces, and as one of their results the following holds

Theorem A ([2]). Spheres and hyperbolic spaces are only simply connected irreducible symmetric spaces admitting a totally geodesic hypersurface.

Then it will be an interesting problem to study the type number t of real hypersurfaces in simply connected irreducible symmetric spaces excepted for spheres and hyperbolic spaces.

As a partial answer, it is known that there exists a point such that $t(p) \geq 2$ in any real hypersurface in complex space form with nonzero constant holomorphic sectional curvature and complex dimension ≥ 3 (cf. [8], [10]). Naturally we can consider the following question.

Does $M_{n}(c)$ satisfy the similar fact?
We answer this question affirmatively, i.e., we shall prove the following

Main Theorem. Let M be a connected real hypersurfaces in $M_{n}(c)(c \neq 0$, $n \geq 2$). Then there exists a point p in M such that $t(p) \geq 2$.

1. Preliminaries

A quaternion Kähler manifold is a Riemannian manifold (\bar{M}, g) on which there exists a 3-dimensional vector bundle \bar{V} of tensors of type $(1,1)$ satisfying the following properties:
(1) In any open set W in M, there is a local base $\left\{J_{i}(i=1,2,3)\right\}$ of \bar{V} such that

$$
\begin{gather*}
J_{i}^{2}=-I \tag{1.1}\\
J_{i} J_{i+1}=J_{i+2}=-J_{i+1} J_{i} \quad(i \bmod 3), \tag{1.2}
\end{gather*}
$$

where I denotes the identity endmorophism.
Such a local base $\left\{J_{i}(i=1,2,3)\right\}$ is called a canonical local base of the bundle \bar{V} in W.
(2) There is a Riemannian metric g on \bar{M} such that

$$
\begin{equation*}
g\left(J_{i} X, Y\right)+g\left(X, J_{i} Y\right)=0 \tag{1.3}
\end{equation*}
$$

for any $X, Y \in \mathfrak{X}(W)$, where $\mathfrak{X}(W)$ is the set of all vector fields on W.
(3) The Levi-Civita connection D on \bar{M} satisfies following conditions: If $\left\{J_{i}(i=1,2,3)\right\}$ is a canonical local base of \bar{V} in W, then there exists three local 1-forms $p_{i}(i=1,2,3)$ on \bar{M} such that

$$
\begin{equation*}
D_{X} J_{i}=p_{i+2}(X) J_{i+1}-p_{i+1}(X) J_{i+2} \quad(i \bmod 3), \tag{1.4}
\end{equation*}
$$

for all $X \in \mathfrak{X}(\bar{M})$.
Let $Q(X)$ be the 4 -plane spanned by vectors $X, J_{1} X, J_{2} X$ and $J_{3} X$, for any $X \in T_{x} \bar{M}, x \in \bar{M}$. If the sectional curvature of any section for $Q(X)$ depends only on X, we call it Q-sectional curvature.

A quaternion space form of Q-sectional curvature $8 c$ is connected quaternion Kahler manifold with constant Q-sectional curvature $8 c$, which denotes by $M_{n}(c)$.

Let M be a real hypersurface in $M_{n}(c)(n \geq 2, c \neq 0)$. In a neighborhood of each point, we choose a unit normal vector field N in $M_{n}(c)$. The Levi-Civita connection D in $M_{n}(c)$ and ∇ in M are related by the following formulas for any $X, Y \in \mathfrak{X}(M)$:

$$
\begin{gather*}
D_{X} Y=\nabla_{X} Y+\langle A X, Y\rangle N, \tag{1.5}\\
D_{X} N=-A X, \tag{1.6}
\end{gather*}
$$

where \langle,$\rangle denotes the Riemannian metric on M$ induced from the metric g on $M_{n}(c)$ and A is the shape operator of M.

It is known that M has an almost contact metric structure induced from the quaternion structure J_{i} on $M_{n}(c)$, i.e., we define a tensor ϕ_{i} of type (1,1), a vector field ξ_{i} and a 1 -form η_{i} on M by the following,

$$
\begin{equation*}
\left\langle\phi_{i} X, Y\right\rangle=g\left(J_{i} X, Y\right), \quad\left\langle\xi_{i}, X\right\rangle=\eta_{i}(X)=g\left(J_{i} X, N\right) \tag{1.7}
\end{equation*}
$$

Then from (1.1) we have

$$
\begin{gather*}
\left\langle\phi_{i} X, Y\right\rangle+\left\langle X, \phi_{i} Y\right\rangle=0, \quad\left\langle\phi_{i} X, \phi_{i} Y\right\rangle=\langle X, Y\rangle-\eta_{i}(X) \eta_{i}(Y) \tag{1.8}\\
\phi_{i} \xi_{i+1}=\xi_{i+2}=-\phi_{i+1} \xi_{i} \quad(i \bmod 3) \tag{1.9}
\end{gather*}
$$

From (1.3), we obtain

$$
\begin{gather*}
\phi_{i}^{2}=-I+\eta_{i} \otimes \xi_{i}, \quad \eta_{i}\left(\xi_{i}\right)=1, \quad \phi_{i} \xi_{i}=0, \tag{1.10}\\
\eta_{i}\left(\xi_{i+1}\right)=\eta_{i}\left(\xi_{i+2}\right)=0 \quad(i \bmod 3), \tag{1.11}\\
\phi_{i}=\phi_{i+1} \phi_{i+2}-\eta_{i+2} \otimes \xi_{i+1}=-\phi_{i+2} \phi_{i+1}+\eta_{i+1} \otimes \xi_{i+2} \quad(i \bmod 3) . \tag{1.12}
\end{gather*}
$$

Furthermore from (1.2) and (1.7), we get

$$
\begin{align*}
\left(\nabla_{X} \phi_{i}\right) Y= & p_{i+1}(X) \phi_{i+2} Y-p_{i+2}(X) \phi_{i+1} Y \tag{1.13}\\
& +\eta_{i}(Y) A X-\langle A X, Y\rangle \xi_{i} \quad(i \bmod 3) .
\end{align*}
$$

In terms of (1.4) we have the following Codazzi equation

$$
\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X=c \sum_{i=1}^{3}\left(\eta_{i}(X) \phi_{i} Y-\eta_{i}(Y) \phi_{i} X-2\left\langle\phi_{i} X, Y\right\rangle \xi_{i}\right)
$$

2. Formulas

We assume that the rank of A is not larger than m on an open set W, then there exists an open set W_{0} such that t takes the constant m. Then the Codazzi equation gives

$$
\begin{align*}
-A\left(\nabla_{X} Y-\nabla_{Y} X\right) & =\left(\nabla_{X} A\right) Y-\left(\nabla_{Y} A\right) X \tag{2.1}\\
& \left.=c \sum_{i=1}^{3}\left(\eta_{i}(X) \phi_{i} Y-\eta_{i}(Y) \phi_{i} X-2\left\langle\phi_{i} X, Y\right) \xi_{i}\right\rangle\right)
\end{align*}
$$

for any vector fields $X,\left.Y \in \operatorname{ker} A\right|_{W_{0}}$.

Taking the inner product of (2.1) with $\left.Z \in \operatorname{ker} A\right|_{W_{0}}$, from (1.7) and $c \neq 0$, we have

$$
\begin{equation*}
0=\sum_{i=1}^{3}\left(\eta_{i}(X)\left\langle\phi_{i} Y, Z\right\rangle+\eta_{i}(Y)\left\langle\phi_{i} Z, X\right\rangle-2 \eta_{i}(Z)\left\langle\phi_{i} X, Y\right\rangle\right) . \tag{2.2}
\end{equation*}
$$

Putting $Z=X$ in (2.2), we obtain

$$
\begin{equation*}
\sum_{i=1}^{3} \eta_{i}(X)\left\langle\phi_{i} Y, X\right\rangle=0 \tag{2.3}
\end{equation*}
$$

3. Proof of the Main theorem

Since Theorem A, we get $m \geq 1$. Suppose that $m=1$. Let λ be the nonzero principal curvature with principal subspace T_{λ}. Choose a local orthonormal frame field $U, e_{1}, \ldots, e_{4 n-2}$ on M such that $e_{1}, \ldots, e_{4 n-2}$ is in $\left.\operatorname{ker} A\right|_{W_{0}}$ and $U \in T_{\lambda}$. We use the following convention on the range of indices otherwise stated: $r, s, \ldots=$ $1, \ldots, 4 n-2$.

Putting $Z=e_{r}$ in (2.2), we get

$$
\begin{equation*}
\sum_{i=1}^{3}\left(\eta_{i}(X)\left\langle\phi_{i} Y, e_{r}\right\rangle-\eta_{i}(Y)\left\langle\phi_{i} X, e_{r}\right\rangle-2\left\langle\phi_{i} X, Y\right\rangle \eta_{i}\left(e_{r}\right)\right)=0 . \tag{3.1}
\end{equation*}
$$

Lemma. There exists a number i such that $\eta_{i}(U) \neq 0$.

Proof. We assume that

$$
\begin{equation*}
\eta_{i}(U)=0, \tag{3.2}
\end{equation*}
$$

for any number i. Then multiplying (3.1) by $\left\langle\phi_{i} U, e_{r}\right\rangle$ and summing up for r, since (1.8) $\sim(1.12)$ and (3.2) we have

$$
\begin{aligned}
& -\eta_{i+1}(X)\left\langle\phi_{i+2} Y, U\right\rangle+\eta_{i+1}(Y)\left\langle\phi_{i+2} X, U\right\rangle \\
& \quad+\eta_{i+2}(X)\left\langle\phi_{i+1} Y, U\right\rangle-\eta_{i+2}(Y)\left\langle\phi_{i+1} X, U\right\rangle=0 \quad(i \bmod 3) .
\end{aligned}
$$

Putting $X=e_{r}$ in above equation and summing up for r, from (1.9) $\sim(1.11)$ and (3.2) we obtain

$$
\left\langle\phi_{i} U, Y\right\rangle=0,
$$

together with equation $\left\langle\phi_{i} U, U\right\rangle=0$, we get

$$
\begin{equation*}
\phi_{i} U=0 . \tag{3.3}
\end{equation*}
$$

Putting $X=U$ and $Y=\xi_{i}$ in (1.13) and taking the inner product with U, then using (1.10), (3.2) and (3.3) we get $\lambda=0$, which is a contradiction.

On the other hand, (2.3) implies

$$
\begin{equation*}
\sum_{i=1}^{3} \eta_{i}(X)\left\langle\phi_{i} e_{r}, X\right\rangle=0 . \tag{3.4}
\end{equation*}
$$

Multiplying (3.1) by $\left\langle\phi_{i} U, e_{r}\right\rangle$ and summing up for r, from (1.9), (1.10), (1.12) and equation $\sum_{r}\left\langle\phi_{i} U, e_{r}\right\rangle e_{r}=\phi_{i} U$, we get

$$
\eta_{i}(U) \sum_{j=1}^{3} \eta_{j}^{2}(X)+\eta_{i+1}(X)\left\langle U, \phi_{i+2} X\right\rangle-\eta_{i+2}(X)\left\langle U, \phi_{i+1} X\right\rangle=0 \quad(i \bmod 3)
$$

Putting $X=e_{r}$ in above equation and summing up for r, by (1.9) we have

$$
\eta_{i}(U)\left(\sum_{j=1}^{3} \eta_{j}^{2}\left(\sum e_{r}\right)-2\right)=0
$$

According to Lemma, above equation implies

$$
\begin{equation*}
\sum_{j=1}^{3} \eta_{j}^{2}\left(\sum e_{r}\right)=2 \tag{3.5}
\end{equation*}
$$

Multiplying (3.4) by $\eta_{i}\left(e_{r}\right)$ and summing up for r, then using (1.9), (1.10) and Lemma we have

$$
\begin{equation*}
\sum_{j=1}^{3} \eta_{j}(X)\left\langle U, \phi_{j} X\right\rangle=0 \tag{3.6}
\end{equation*}
$$

Again multiplying (3.4) by $\left\langle\phi_{i} X, e_{r}\right\rangle$ and summing up for r and since (1.8), (1.12) and (3.6) we obtain

$$
\begin{equation*}
\eta_{i}(X)\left(\|X\|^{2}-\sum_{j=1}^{3} \eta_{j}^{2}(X)\right)=0 \tag{3.7}
\end{equation*}
$$

Suppose that $\eta_{i}(X)=0$ for any number i. Then we observe $\eta_{i}\left(\xi_{i}\right)=\eta_{i}(U)=1$. This implies $\xi_{i}=U$ for any number i, which is a contradiction. Thus by (3.7) we get

$$
\sum_{j=1}^{3} \eta_{j}^{2}(X)=\|X\|^{2}
$$

Putting $X=e_{r}$ in above equation and summing up for r, we have

$$
\sum_{j=1}^{3} \eta_{j}^{2}\left(\sum e_{r}\right)=4 n-2
$$

which contradicts (3.5).
It completes the proof of Main Theorem.
Remark (added in Proof). J. E. D'Atri [3], J. Berndt [1] and A. Martinez [6] gave some examples of real hypersurfaces in $M_{n}(c), c \neq 0$. In case $M_{n}(c)$ is $H_{n}(Q)$, the type number of these examples is maximum. In case $M_{n}(c)$ is $P_{2}(Q)$, there is an example of $t \equiv 4$ in the above. However, we don't know an example of real hypersurface in $M_{n}(c), c \neq 0$ such that $t \equiv 2$.

References

[1] J. Berndt, Real hypersurfaces in quaternionic space forms, J. reine angew. Math. 419 (1991), 9-26.
$[2]$ B. Y. Chen and T. Nagano, Totally geodesic submanifolds in symmetric spaces, Duke Math. J 45 (1978), 405-425.
[3] J. E. D'Atri, Certain isoparametric families of hypersurfaces in symmetric spaces, J. Differential Geometry 14 (1979), 21-40.
[4] S. Ishihara, Quaternion Kählerian manifolds, J. Differential. Geom. 9 (1974), 483-500.
[5] H. Kurihara and R. Takagi, A note on the type number of real hypersurfaces in $P_{n}(\boldsymbol{C})$, Tsukuba J. Math. 22 (1998), 793-802.
[6] A. Martinez, Ruled real hypersurfaces in quaternionic projective space, An. Sti. Univ. Al I Cuza 34 (1988), 73-78.
[7] A. Martinez and J. D. Perez, Real hypersurfaces in quaternionic projective space, Ann. Mat. Pura Appl. (IV) 145 (1986), 355-384.
[8] R. Niebergall and P. J. Ryan, Real hypersurfaces in complex space form, pp. 233-305 in Tight and Taut Submanifolds, edited by T. E. Cecil and S.-s. Chern, Cambridge U. Press, (1997).
[9] J. S. Pak, Real hypersurfaces in quaternionic Kaehlerian manifolds with constant Q-sectional curvature, Kodai Math. Sem. Rep. 29 (1977), 22-61.
[10] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.

> Graduate School of Science and Technology Chiba University
> Chiba-Shi, 263-8522
> Japan

