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ON EXPONENTIAL SUMS OVER PRIMES

IN ARITHMETIC PROGRESSIONS
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Introduction

By

HiroshiMikawa

I. M. Vinogradov's proof of the ternary Goldbach problem is based upon

bounds for the exponential sum

(1)

n<x

with a wide uniformity in real a, where A is the von Mangoldt function and,

for real 6, e{6) = exp(2niO). By using a combinatrial identity, R. C. Vaughan

presented an elegant simple argument on it, see [2], for instance.

J.-r.Chen's theorem on the binary Goldbach problem is built upon the linear

sieve and the mean prime number theorem, vide [5]. According to H. Iwaniec

[6], the Rosser's weight of the linear sieve has the well-factorable property. An

arithmetic function k is called "well-factorable of level D", if for any D＼,Di > 1,

D = D＼Dj, there exist two functions k＼and ki supporting in (0,Z>i] and (0,Z>2]

respectively such that |^i| < 1, ＼ki＼< 1 and k = k＼* kj. Also the mean prime

number theorem has been surprisingly developed by E. Fouvry and H. Iwaniec

[4],E. Fouvry [3] and E. Bombieri, J.-B. Friedlander and H. Iwaniec [1].In [1]

they established a non-trivial bound of the averaging sum

(2)

(d.c)=l

A(d)

for any fixed integer c # 0

D = r4/7-££> a.
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n<x
n = c (modd)

A(/i)-

)

X
W)

and for any well-factorablefunction a of level

Recently D. I. Tolev mixed the ternary problem with the binary problem,

and was led to a blend of (1) and (2):
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(3)
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E yw

d<D
(d,c)=l

£

n = c (modrf)

A(n)e(an)

In [8] he successfully estimated (3) with a wide uniformity in a, providing that

y≪ 1 and D = xl/3(logx)~B where B > 0 is some constant. As the sequence y

is regarded as sieving weights, it is of some interest to extend the level of

distribution D in (3). Thus the purpose of thispaper is to show that,if y is well-

factorable, then the above exponent 1/3 may be replaced by 4/9.

Theorem. Suppose that ＼a―a/q＼<q~2 with (a,q) = l. Let c#0 be an

integer. Let B > 0 be given. Then, for any well-factorablefunction X of level

D = x4/9(logx)~fi,we have that

(d,c) = ＼

J2 A(n)e(aw) ≪ xv＼xq-1 + x{＼ogxy4B + ^)1/8(logx)13

n<x
n= c(model)

where the implied constant depends only on B.

This assertion would be applicable to the problems of [7, 8, 9] and capable

to make a modest improvement upon these results. As well as [8], our argument

is elementary.

The notation of this paper is standard in Number Theory. Although the

symbol ||･ ||is used in two different meanings, there would be no confusion. For

real 9, ＼＼6＼＼is the distance from 6 to the nearest integer. For sequence a = (a(n)),

＼＼a＼＼stands for the /2-norm. n ~ N means that N < n < cN with some constant

0 < c < 2. We use the abbreviation L = logx.

I would like to thank Professor Doytchin Ivanov Tolev for calling my

attention to this problem. I would also like to thank M. Sc. Temenoujka Peneva

Peneva for encouragement and helpful discussion.

2. Proof of Theorem

We may assume that q < x, for otherwise our assertion is trivial.We choose

the parameters of the well-factorable property as D＼ = xx^L'B and Di = x1/9, so

that D = D1D2 = xA^VB. By a dyadic decomposition of summation ranges, it is

sufficient to show that

(4)

P:=

m~ M

V f(m)g(n) ^ A(k)e(ak) ≪x
n^N

(≪?.<･)=1 {n.c)=＼

k<x
k = c (mod mn)

V*(xq-'+xL-*B + q)l/*Ln



)
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uniformly for

(5) 1 ≪ M≪xl/3L"B, l≪N≪xl/9; f≪l,g≪l.

We next decompose A by means of the combinatrial identity of R. C.

Vaughan. We take the parameters in [2,§24] as U = V = x1/3. Then A is written

as the sum of Ao and Ay's, 1 < i,j < 2, where

Ay(k) =

Ao(k)
(A(k)

lo

k<x1/3

otherwise;

]T aj(t)!j(hy, A2j(k) =

th=k
r<.x-'''3

th=k

A-'/3</,/!<.V2''3

withfli(w) = b＼(n) ≪ log≪, ai{ri)≪ 1, l＼{n) = d＼{n) = 1, /2(≪)

and d.2{n)≪ z(n).

The contribution of An to P is at most

E E
＼mn

+')

= logw, b2(n) ≪ A(n)

≪ (x1/3 + MN)L ≪ xl/2

Let Qjj be the partialsum of P corresponding to Ay, 1 < i,j < 2. Then

(6)

,=1.2 /=1,2

We firstconsider the "type I" sum Qy, j = 1,2. Since l＼{h)= 1, we see that

Qu≪
E E E.M')

m^M n-~N ;<y';3(m.c)=＼(n,c)=＼

^2 e(ath)

III< X
th= c (mod mn)

The above congruence is solubleif and only if (t,mn) = 1, and equivalentto

h = r (mod mn) with some r. Writing h = r + mnk, we change the variableh for

k. Then k runs through some intervalof length < x(tmn)~. Here we note that

tmn ≪ xxl'iMN ≪ x or x(tmn)~l≫ 1. Hence we have that

(7)

m n t

＼_] e(ottmnk)

k

≪^
E E

m~~M n-^N
(m.ct)―＼ (n.ct)=＼

Eminf

/<A-l/3 ^

El'
x

t^ (A:) mini ―,

k≪MNx1^ v

x 1

tmn' ||a#mz||

)1
Pi
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≪L
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(?**)2C(? mm
))

≪ L(xL9)l/2{{xq-1 + MNxl/3 + q)L)l/2

≪ xl/2(xq~l+ MNxl/3 + q)l/2L6

by Cauchy's inequality and [2,§25, (3)]. The estimation of Qn is similar.

We proceed to the "type II" sum Qy, j = 1,2. Put

R = R(M,N,U,V-J,g,r,s)

£ ]T f(m)g(n)

(m,c)=l(≪,c)=l

E

u~U

uv = c (mod mn)

r(u)s(v)e(auv)

By

(8)

a dyadic decomposition of summation ranges, we find that

＼Qn＼+ ＼Qi2＼≪ L2 sup＼R＼

where the supremum is taken over allparameters M,N,U,V and allsequences

f,g,r,s satisfying(5) and

(9)

(10)

xl/3 ≪ U, V ≪ x2/3; r{k) ≪ log A:, s{k) ≪ r{k)

In the next section we shall show that

＼R＼2≪ ||r||2|U＼2x3^(xq-1 + xL~4B + q)l/4L13

uniformly. We here note that, by symmetry, we may assume

(11) V≪U.

Therefore, since ||r||2||s||2≪ xL5, (4) follows from (6), (7), (8) and (10). Our proof

of Theorem is thus reduced to the estimation (10) for R under the conditions (5),

(9) and (11).

3. Type II Sum

In order to show (10), we first arrange R in the following three ways:

u

E

m n

E

1!

J E

u m

E

n

1

u m n V

We then examine each of these,and compare the threeresultingbounds for R.
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We begin by taking the second way. It follows from Cauchy's inequality that

(12) R＼2< ＼＼rfMj2
£

(m,c)=l

= ||r||MS, say.

£

(n,c)=l

9(n)
£

v~V
uv<x

uv = c (mod mn)

We expand the square is S and brine the sum over u

s

{m,c)=l I

J2 S 9{n＼)g{n2) Y^ V s(vx)s{v2)

n＼,c)=＼ (≪2,c)―1

v＼~V v->~ V

The above simultaneous congruences are

s(v)e(ctuv)

2

inside to obtain

J2 e(<xu(vi - v2))

UV＼,UV2<X
uv＼=c (mod mn＼)

uv2= c (mod mni)

soluble if and only if (v＼,mn＼)=

(v2,mri2)= ＼ and v＼= vj (modm(≫i,≪2)),and reduce to the single equation

u = b (modw[≪i,≪2])with some b. Writing v＼―V2+ m(ni,ri2)kand u = b +

m＼n＼,nj]Lwe change the variables(v＼,V2,u)for (k,v,l).Then we see that

(13) ＼m(n＼,ri2)k＼= ＼v＼―V2＼< V,

and that / runs through some interval of length < U(m[n＼,ri2])~l.Also

u(v＼― V2) = (b + m＼n＼,n2}l)m(ni,ri2)k

(14)

Hence we have that

= bminy, ni)k + m2n＼ri2kl

s<< EEEEEi^+m^'w2)^)ii^)i

m n＼ ≪2 k v

The terms with k ―0 contribute

m

E Ei 42
/

i≪ Ml2 £

2>( ccm2n＼ri2kl)

■
)

≪ ＼＼s＼＼2(UL3+ MN2).

As for the terms with k ^ 0, we may assume k > 0. Put nxnjk =j. Then, by

(13).the condition on / becomes

0 < mi = mn＼n2k [≪i,n2]m(ni, n2)k ≪ N2 V

Also the trivial bound for the sum over / is
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u

<K~[ 1 + 1 =
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Um

m

(n＼,n2)k

2n＼H2k
+ 1≪ -T. + 1 ≪ ―r. + 1.

Moreover the sum over v is O(||^[|) because of ab≪a2 + b2. Hence the sum

under considerationis bounded bv

(15)
E

m

ii ii
2

≪ ＼＼s＼＼

5>(y)MI2 Y^ e{am2jl)

i

E E
^O)min(^+l

≪;~Mmj≪N2V v J

1

lam2/!!

)

Here we note that min(a + ＼,b)< min(a,b) + 1. Thus, substituting(14) and (15)

into (12), we have that

(16) |i?|2≪||r||2|H|2

1 M ^ ^ T3(7)min(―-.,-―

a* *m, ＼m J
＼＼am

m-M mj≪N2V ＼ J w

TT)+MUL3 + M2N2 + MN2VL3
1

2j＼＼) j

Now, in the above double sum, we splitup the summation range forj. We

then appeal to

Lemma. For 0 < M, J < x, we have that

G:=M E ^T3(y)min(
m~M j^J

X

m2j

1

＼＼xm2j＼

)

≪ M2JL3 + x3/4{xq~l+ xM-{ + qf/4L*.

We put our proof of thislemma off until the next section.Therefore, through

the second way, we reach the following estimation.

(17) ＼R＼2≪ llrll2^!!2/,9!.*3/4^-1 + xM-[ + qfA + MU + M2N2 + MN2V}

= ||r||2||s||2L97,say.

Next, turning back to the begining, we take the third way. In place of the

form J2U Em I£, Et-1, our startingpoint is now £M J2m En IEv I- Then' bY the

similar argument as above, we get the similar bound to (16), in which the pair of

parameters (M,N) is replaced by (MTV, 1). We thus have that



(18)

|*|2≪IM|2M|2l3
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MN ]T .Emin(^7'^^j

d~MN dj≪V ＼"J H -711

≪ ＼＼r＼＼2＼＼s＼＼2Ln{x3/4{xq+̂ x(MN)~l

= ＼＼r＼＼2＼＼s＼＼2LnZ,say,
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j + MNU + M2N2 + MNV
＼

+ q)l/4+ MNU + M2N2 + MNV}

by Lemma again.

Finally we take the firstway. Restarting from XL IJ2m Yln ZU? we argue as

before. We then have the similar estimation to (16), replacing (M,N) by (1, MN).

Hence we see that

|i?|2≪ ||r||2p||2
u

≪

Y^ T5(/z)min

M2N2V
V' IIah＼＼

) + t/L8 + M2N2 + M2N2 V
1

The square of the above sum over h is at most

k≪M2N2V

x x^ .
(x 1

- > mm -,-―- J ≪ x{xq~l+ M2N2 V + q)L2＼

by Cauchy's inequality and [2,§25, (3)].Hence, going through the firstway, we

get that

(19) R＼2≪ Hrll^jl^L13^1/2^-1 + M2N2V + q)l/2+ U + M2N2 + M2N2V}

= r＼2＼s＼＼2LuX,say.

In conjunction with (17), (18) and (19), we conclude that

(20) ＼R＼2≪ ||r||2||5||2L13min(X,Y,Z).

Now we recall the conditions (5),(9) and (11). It follows from (17) and (18)

that

min( Y, Z) ≪ x3/4(xq~l+ xM~l + qf'4 + M2N2 + min{MU + MN2 V, MNU)

since min(a + b,a + c) = a + min(b, c), N ≫ 1 and V ≪ U. The above last term is

< MU + min(M7V2 V, MNU)

< MU + (MN2V)]/2(MNU)l/2

≪ Mx2/3 + MN^2xl/2

≪ xL~B.
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Here we used the inequality that min(a, b) < asb', s+ t = 1, s,t > 0. Hence

min( Y, Z) ≪ x3/4(xq-1 + xL'AB + q)l/4+ xM~1/4

W + xM-x'＼ say

Also, from (19), we see that

X ≪ W + xl/2(M2N2 F)1/2 + M2N2 V

because of 1 < q < x. In consequence, it turns out that

min(X, 7, Z) = min(X, min( F, Z))

≪ W + min(x1/2(M27V2 K)1/2 + M2N2V, xM~l/4)

≪ W+ (x1/2(M27V2K)1/2)1/5(xM-1/4)4/5 + (M2N2V)l/＼xM-l/4f9

≪W + x9/l0(N2V)l/w + x*/＼N2V)1/9

≪ W

since A^2F≪x8/9.

Substituting thisinto (20), we get the required bound (5) for R. Therefore we

have Theorem, except for the verificationof Lemma.

4. Proof of Lemma

It remains to estimate G. To this end, we employ a well-known Fourier

series:For H > 2,

where

Put H

min(jy,H^ir1) =

Wh = Wh(H) ≪ min

heZ

KogH<wv~>?)

= x(M2J) l. Unless H > 2, we triviallyhave that

G ≪ M ]T J2^(j) ≪ M2JL2.

m~M j~J

So we may use the above expansion to obtain



mini

On exponential sums over primes

H
1

am2/ I
0(L) + ^2 whe(otm2jh)

0<＼h＼<H2

Substituting thisinto G, we see that

(21) G ≪ M2JLi + M J2

0<＼h＼<H2

M2JL3+F, say.

Here we consider

^ e(ccm2jh)

2

＼whi$>U)

E E

^2 e{ocm2jh)

e(a{mj - m＼)jh)

We write m＼―mi = g, so that ＼g＼< M and m＼ ―m＼

sum is then bounded by

(22) ≪
E

m~ M

1 +

g<M

≪m+ y^

g<2M

mm

^2 e{n2mgjh)

w~M

(m
1

'＼＼zgjh＼＼

Hence it follows from (21), Cauchy's Inequality

(23) F2 ≪ M2 J2

k<H2

wk

≪M2HJL9l

xL9i

T3(/)2EKiE
h<H2

HJML+ Y^

h<H2

si+*}

We proceed to E.

say

minf

j~J

)

359

Im-ig + g2. The above

and (22) that

^2 e{am2jh)

m~M

2

)}

Dividing the interval (0,H2} into the subintervals (0, H]

and (H2k-＼H2k], 1 < k ≪ L, we find that

(24) E ≪ L max ―
＼<t≪hT

E EE

h<2HTy~yg<2M

min I M,
1

＼gM＼

)

Put / gjh. Then /≪ MJHT ≪(x/M)T or M≪xT/l Hence, by Cauchy's
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inequality and [2,§25, (3)], the triple sum in (24) is at most

/≪ (xlM)T

T3(7)min

E

(x/M)T

(m MlJ

T3(/)2M

＼1 M TJ

We therefore have that

[3

[4

[5

[6

[7

]

]

]

]

]

[8]

[9]

E

l≪(x/M)T

mm

e≪xi/2(-+^+")"2l6
＼q M )
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