1-TYPE MINIMAL SURFACES IN COMPLEX GRASSMANN MANIFOLDS AND ITS GAUSS MAP

By
Wu Bing-Ye

Abstract

In this paper we establish an isometric imbedding of a complex Grassmann manifold $G(m, n)$ into a Euclidean space. Then we use this isometric imbedding to study 1-type minimal surfaces in $G(m, n)$ and its Gauss map, and obtain some results.

1. Introduction

A submanifold M (connected but not necessary compact) of an Euclidean N space E^{N} is said to be of finite type if each component of its position vector ϕ can be written as a finite sum of eigenfunctions of the Laplacian Δ of M, that is,

$$
\phi=\phi_{0}+\phi_{1}+\cdots+\phi_{k},
$$

where ϕ_{0} is a constant vector (called the center of mass of M) and $\Delta \phi_{t}=\lambda_{t} \phi_{t}$, $t=1,2, \ldots, k$. If in particular all eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right\}$ are mutually different, then M is said to be of k-type (c.f. [9] for details).

In terms of finite-type submanifolds, a well-known theorem of Takahashi [6] says that a compact submanifold M of Euclidean space is of 1-type if and only if M lies in some hypersphere as a minimal submanifold, and such a submanifold is always mass-symmetric, i.e., the center of mass of M is the center of the hypersphere.

As is well-known, the complex projective space $C P^{n}$ can be isometrically imbedded into a Euclidean space [1], and this isometric imbedding is basic to studying spectral geometry of submanifolds in $C P^{n}$. For related results one is referred to see $[10,11]$. In this paper, we shall establish an isometric imbedding of a complex Grassmann manifold $G(m, n)$ into a Euclidean space. Then, we use this isometric imbedding to study 1-type minimal surfaces in $G(m, n)$. We also study
the Gauss map for minimal surfaces in $G(m, n)$ and obtain some equivalent conditions for their Gauss maps to be harmonic.

2. An Isometric Imbedding of $G(m, n)$ into Euclidean Space

We equip the complex n-space C^{n} with the standard Hermitian inner product. The space of unitary bases can be identified with the unitary group $U(n)$. Let $Z_{A}(A=1, \ldots, n)$ be regarded as the projection from $U(n)$ to C^{n} by mapping a matrix Z to its A th column vector Z_{A}. Writing

$$
\begin{equation*}
d Z_{A}=\sum_{B} \omega_{A B} Z_{B} \tag{2.1}
\end{equation*}
$$

then $\omega_{A B}$ are the components of the Maurer-Cartan form on $U(n)$, and they satisfy

$$
\begin{equation*}
\omega_{A B}+\bar{\omega}_{B A}=0 . \tag{2.2}
\end{equation*}
$$

Here and in the following we use the following ranges of indices:

$$
1 \leq A, B, \ldots \leq n ; \quad 1 \leq \alpha, \beta, \ldots \leq m ; \quad m+1 \leq i, j, \ldots \leq n
$$

Taking the exterior derivative of (2.1), we get

$$
\begin{equation*}
d \omega_{A B}=\sum_{C} \omega_{A C} \wedge \omega_{C B} \tag{2.3}
\end{equation*}
$$

All elements of the complex Grassmann manifold $G(m, n)$ can be defined by the multivector $Z_{1} \wedge \cdots \wedge Z_{m}$ for any $Z \in U(n)$ up to a factor. The vectors Z_{α} and their orthogonal vectors Z_{i} are defined up to a transformation of $U(m)$ and $U(n-m)$, respectively, so that $G(m, n)$ becomes a symmetric space $U(n) /(U(m) \times U(n-m))=\{[Z] \mid Z \in U(n)\}$ [2]. In particular, the form

$$
\begin{equation*}
d s^{2}=\sum_{\alpha, i} \omega_{\alpha i} \bar{\omega}_{\alpha i} \tag{2.4}
\end{equation*}
$$

is a positive Hermitian form on the Lie subspace for $U(n) / U(m) \times U(n-m)$, and defines the canonical Kaehler metric on $G(m, n)$. Let $H M(n)=$ $\left\{F \in g l(n, C): \bar{F}^{t}=F\right\}$ be the set of all Hermitian $n \times n$-matrices. We define an inner product $\langle\cdot, \cdot\rangle$ on the vector space $H M(n)$ (and its complexification $g l(n, C)$) by

$$
\left\langle F_{1}, F_{2}\right\rangle=\frac{1}{2} \operatorname{tr} F_{1} \bar{F}_{2}^{t}, \quad F_{1}, F_{2} \in H M(n)(\text { or } g l(n, C)) .
$$

Then $H M(n)$ becomes the Euclidean space $R^{n^{2}}$. We can define a map f from
$G(m, n)$ to $H M(n)$ by

$$
f([Z])=Z\left(\begin{array}{cc}
I_{m} & 0 \\
0 & 0
\end{array}\right) \bar{Z}^{t}=\sum_{\alpha} Z_{\alpha} \bar{Z}_{\alpha}^{t}
$$

for $Z \in U(n)$, where I_{m} is the identity $m \times m$-matrix.

Lemma 2.1. The map $f: G(m, n) \rightarrow H M(n)$ defined as above is an isometric imbedding, and that $f(G(m, n))=\left\{F \in H M(n): F^{2}=F, \operatorname{tr} F=m\right\}$.

Proof. It is obvious that $f(G(m, n)) \subset\left\{F \in H M(n): F^{2}=F, \operatorname{tr} F=m\right\}$. Let $F \in H M(n)$ such that $F^{2}=F$ and $\operatorname{tr} F=m$. Then the eigenvalues of F are 1 or 0 , and consequently there exists $P \in U(n)$ such that

$$
F=P\left(\begin{array}{cc}
I_{m} & 0 \tag{2.5}\\
0 & 0
\end{array}\right) \bar{P}^{t}
$$

This implies that $f(G(m, n)) \supset\left\{F \in H M(n): F^{2}=F, \operatorname{tr} F=m\right\}$. By virtue of (2.1) and (2.2) we have

$$
\begin{equation*}
d f=\sum_{\alpha, i}\left(\omega_{\alpha i} Z_{i} \bar{Z}_{\alpha}^{t}+\bar{\omega}_{\alpha i} Z_{\alpha} \bar{Z}_{i}^{t}\right) \tag{2.6}
\end{equation*}
$$

from which we see that the metric on $G(m, n)$ induced from that on $H M(n)$ by f is

$$
\langle d f, d f\rangle=\frac{1}{2} \operatorname{tr}(d f \cdot d f)=\sum_{\alpha, i} \omega_{\alpha i} \bar{\omega}_{\alpha i} .
$$

This together with (2.4) implies that f is isometric. So the lemma is proved.
Now we identify $G(m, n)$ with $f(G(m, n)) \subset H M(n)$. In this point of view, we have the following lemma which can be verified similarly as in [1].

Lemma 2.2. Let $F \in G(m, n)$, then

$$
\begin{gathered}
T_{F}(G(m, n))=\{X \in H M(n): X F+F X=X\}, \\
T_{F}^{\perp}(G(m, n))=\{N \in H M(n): N F=F N\}, \\
\bar{\sigma}(X, Y)=(X Y+Y X)(I-2 F), \quad X, Y \in T_{F}(G(m, n)),
\end{gathered}
$$

where $\bar{\sigma}$ is the second fundamental form of $G(m, n)$ in $H M(n)$, and $I=I_{n}$.
For any $Z \in U(n),\left\{\sqrt{2} Z_{A} \bar{Z}_{B}^{t}\right\}$ gives a unitary basis of $(g l(n . C),\langle\cdot, \cdot\rangle) \cong C^{n^{2}}$, and $\left\{Z_{i} \bar{Z}_{\alpha}^{t}, Z_{\alpha} \bar{Z}_{i}^{t}\right\}$ spans the complexification of $T_{F} G(m, n)$, where $F=[Z] \in$
$G(m, n)$. Set $E_{\alpha i}=Z_{i} \bar{Z}_{\alpha}^{t}+Z_{\alpha} \bar{Z}_{i}^{t}$ and $E_{\alpha^{*} i^{*}}=\sqrt{-1}\left(Z_{i} \bar{Z}_{\alpha}^{t}-Z_{\alpha} \bar{Z}_{i}^{t}\right)$, then $\left\{E_{\alpha i}, E_{\alpha^{*} i^{*}}\right\}$ forms an orthonormal basis of $T_{F}(G(m, n))$. The complex structure J on $G(m, n)$ is given by

$$
J E_{\alpha i}=E_{\alpha^{*} i^{*}}, \quad J E_{\alpha^{*} i^{*}}=-E_{\alpha i} .
$$

By use of Lemma 2.2, a direct computation shows that the mean curvature vector field \bar{H} of $G(m, n)$ in $H M(n)$ is given by, at $F \in G(m, n)$,

$$
\begin{equation*}
\bar{H}_{F}=\frac{1}{2 m(n-m)} \sum_{\alpha, i}\left(\bar{\sigma}\left(E_{\alpha i}, E_{\alpha i}\right)+\bar{\sigma}\left(E_{\alpha^{*} i^{*}}, E_{\alpha^{*} i^{*}}\right)\right)=\frac{2 n}{m(n-m)}\left(\frac{m}{n} I-F\right) . \tag{2.7}
\end{equation*}
$$

The following lemma can be shown similarly as in [1].

Lemma 2.3. (a) For any $X \in T_{F}(G(m, n)), J X=\sqrt{-1}(I-2 F) X$.
(b) $\bar{\sigma}(J X, J Y)=\bar{\sigma}(X, Y), \bar{\nabla} \bar{\sigma}=0$, where $X, Y \in T_{F}(G(m, n))$, and $\bar{\nabla}$ is the Levi-Civita connection of $G(m, n)$.
(c) $G(m, n)$ is a minimal submanifold of a hypersphere in $H M(n)$, whose centre is $\frac{m}{n} I$ and whose radius is $\sqrt{m(n-m) / 2 n}$.

3. 1-Type Minimal Surfaces in $G(m, n)$

Let M be a Riemann surface with the metric $d s_{M}^{2}=\varphi \bar{\varphi}$, where φ is the complex-valued 1-form defined on M. The structure equations on M are given by

$$
\begin{equation*}
d \varphi=-\sqrt{-1} \rho \wedge \varphi, \quad d \rho=-\frac{\sqrt{-1}}{2} K \varphi \wedge \bar{\varphi} \tag{3.1}
\end{equation*}
$$

where ρ is the real-valued connection 1 -form of $d s_{M}^{2}$, and K is the Gaussian curvature of $d s_{M}^{2}$. Let $\phi: M \rightarrow G(m, n)$ be a smooth map, and put

$$
\begin{equation*}
\phi^{*}\left(\omega_{\alpha i}\right)=a_{\alpha i} \varphi+b_{\alpha i} \bar{\varphi} \tag{3.2}
\end{equation*}
$$

Taking the exterior derivative of (3.2) and making use of (2.1) and (2.3), it is easy to see that there exist locally defined complex-valued functions $p_{\alpha i}, q_{\alpha i}$ and $r_{\alpha i}$ such that (see, for instance, [2])

$$
\begin{align*}
& p_{\alpha i} \varphi+q_{\alpha i} \bar{\varphi}=D a_{\alpha i}:=d a_{\alpha i}-\sum_{\beta} a_{\beta i} \omega_{\alpha \beta}+\sum_{j} a_{\alpha j} \omega_{j i}-\sqrt{-1} a_{\alpha i} \rho \\
& q_{\alpha i} \varphi+r_{\alpha i} \bar{\varphi}=D b_{\alpha i}:=d b_{\alpha i}-\sum_{\beta} b_{\beta i} \omega_{\alpha \beta}+\sum_{j} b_{\alpha j} \omega_{j i}+\sqrt{-1} b_{\alpha i} \rho \tag{3.3}
\end{align*}
$$

In terms of matrix notation, we can rewrite (3.3) as

$$
\begin{align*}
& P \varphi+Q \bar{\varphi}=d A-\phi_{11} A+A \phi_{22}-\sqrt{-1} A \rho \\
& Q \varphi+R \bar{\varphi}=d B-\phi_{11} B+B \phi_{22}+\sqrt{-1} B \rho \tag{3.4}
\end{align*}
$$

where $A=\left(a_{\alpha i}\right), B=\left(b_{\alpha i}\right), \quad P=\left(p_{\alpha i}\right), Q=\left(q_{\alpha i}\right), R=\left(r_{\alpha i}\right), \phi_{11}=\left(\phi^{*} \omega_{\alpha \beta}\right)$ and $\phi_{22}=\left(\phi^{*} \omega_{i j}\right)$. It is known that ϕ is harmonic if and only if $Q=0$ (see [2]). ϕ is an isometric immersion if and only if

$$
\begin{equation*}
\operatorname{tr}\left(A \bar{B}^{t}\right)=0, \quad \operatorname{tr}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)=1 \tag{3.5}
\end{equation*}
$$

If ϕ is an isometric immersion, then

$$
\begin{equation*}
\operatorname{tr}\left(A \bar{A}^{t}\right)=\cos ^{2} \frac{\alpha}{2}, \quad \operatorname{tr}\left(B \bar{B}^{t}\right)=\sin ^{2} \frac{\alpha}{2} \tag{3.6}
\end{equation*}
$$

where α is the Kaehler angle of ϕ (see [3, 4]). We say that ϕ is totally real if $\alpha=\pi / 2$, and ϕ is strongly conformal if $A \bar{B}^{t}=0$ (see [8]).

Let Δ be the Laplace-Beltrami operator on M. We consider $\phi: M \rightarrow$ $G(m, n) \subset H M(n)$ to be the map to the Euclidean space. If there exist a constant $\lambda>0$ and a constant matrix $T \in H M(n)$ such that

$$
\begin{equation*}
\Delta \phi=\lambda(\phi-T), \tag{3.7}
\end{equation*}
$$

then ϕ is said to be of 1-type. In particular, when $T=(m / n) I, \phi$ is said to be mass-symmetric 1-type. We now want to compute $\Delta \phi$. From (2.6) and (3.2) we have

$$
\begin{equation*}
d \phi=\sum_{\alpha, i}\left(a_{\alpha i} Z_{i} \bar{Z}_{\alpha}^{t}+\bar{b}_{\alpha i} Z_{\alpha} \bar{Z}_{i}^{t}\right) \varphi+\sum_{\alpha, i}\left(b_{\alpha i} Z_{i} \bar{Z}_{\alpha}^{t}+\bar{a}_{\alpha i} Z_{\alpha} \bar{Z}_{i}^{t}\right) \bar{\varphi} \tag{3.8}
\end{equation*}
$$

Then, combining (2.1), (3.2), (3.3) and (3.8) we get

$$
\begin{align*}
\frac{1}{4} \Delta \phi= & -\operatorname{tr}_{g} D d \phi=\sum_{\alpha, \beta}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)_{\beta \alpha} Z_{\alpha} \bar{Z}_{\beta}^{t} \\
& -\sum_{i, j}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)_{j i} Z_{i} \bar{Z}_{j}^{t}-\sum_{\alpha, i}\left(q_{\alpha i} Z_{i} \bar{Z}_{\alpha}^{t}+\bar{q}_{\alpha i} Z_{\alpha} \bar{Z}_{i}^{t}\right) \tag{3.9}
\end{align*}
$$

If ϕ is mass-symmetric 1 -type, then there exists a constant $\lambda>0$ such that

$$
\begin{equation*}
\Delta \phi=\lambda\left(\phi-\frac{m}{n} I\right) \tag{3.10}
\end{equation*}
$$

It is clear from Lemma 2.2 that $\phi, I \in T_{\phi}^{\perp}(G(m, n))$, which together with (3.10) yields that $\Delta \phi \in T_{\phi}^{\perp}(G(m, n))$. Therefore, from (3.9) we see that $q_{\alpha i}=0$, i.e., ϕ is
harmonic. The following theorem follows from (3.9), (3.10) combined with the fact that $\sum_{A} Z_{A} \bar{Z}_{A}^{t}=I$.

Theorem 3.1. Let $\phi: M \rightarrow G(m, n)$ be a smooth map. ϕ is mass-symmetric 1-type if and only if ϕ is harmonic, and $A \bar{A}^{t}+B \bar{B}^{t}$ and $\bar{A}^{t} A+\bar{B}^{t} B$ are scalar matrices.

For later use we write down the following lemma which can be shown similarly as Theorem 3.1.

Lemma 3.2. Let $\phi: M \rightarrow G(m, n)$ be a smooth map. If there exist constants $\lambda>0$ and a such that

$$
\Delta \phi=\lambda(\phi-a I)
$$

then $a=m / n$, and consequently ϕ is mass-symetric 1-type.

From now on we assume that $\phi: M \rightarrow G(m, n)$ is harmonic. Then (3.9) is reduced to

$$
\begin{equation*}
\frac{1}{4} \Delta \phi=\sum_{\alpha, \beta}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)_{\beta \alpha} Z_{\alpha} \bar{Z}_{\beta}^{t}-\sum_{i, j}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)_{j i} Z_{i} \bar{Z}_{j}^{t} \tag{3.11}
\end{equation*}
$$

We are now in a position to prove the main result of this section.

Theorem 3.3. Let $\phi: M \rightarrow G(m, n)$ be a harmonic map. ϕ is of 1-type if and only if $\phi=\phi_{0} \oplus \phi_{1} \oplus \cdots \oplus \phi_{s}$, where $\phi_{p}: M \rightarrow G\left(m_{p}, n_{p}\right) \subset H M\left(n_{p}\right)$ $(p=1, \ldots, s)$ are mass-symmetric 1-type with the same eigenvalue, ϕ_{0} is a constant matrix in $H M\left(n_{0}\right)$ with $\phi_{0}^{2}=\phi_{0}$, and that $\sum_{p=1}^{s} m_{p}+\operatorname{tr} \phi_{0}=m, \sum_{p=0}^{s} n_{p}=n$. Here $m_{p}, n_{p}(p=1, \ldots, s)$ are positive integers, and n_{0} is a non-negative integer.

Proof. The sufficiency is obvious. So we need only to prove the necessity. If ϕ is of 1-type, then there are a constant $\lambda>0$ and a constant matrix T such that (3.7) holds. Without loss of generality, we can assume that T is diagonal (otherwise we can use an isometry of $G(m, n)$ of the type $F \mapsto P F \bar{P}^{t}$, where P is in $U(n)$). Suppose that

$$
T=\left(\begin{array}{ccc}
a_{1} I_{n_{1}} & & 0 \tag{3.12}\\
& \ddots & \\
0 & & a_{s^{\prime}} I_{n_{s^{\prime}}}
\end{array}\right)
$$

where $a_{1}, \ldots, a_{s^{\prime}} \in R$ are different from each other and $n_{1}+\cdots+n_{s^{\prime}}=n$. From (3.11) we see that $\Delta \phi \in T_{\phi}^{\perp}(G(m, n))$, which together with (3.7) yields $T \in T_{\phi}^{\perp}(G(m, n))$. Therefore $\phi T=T \phi$ at any point in M, and hence we have the decomposition

$$
\phi=\left(\begin{array}{ccc}
\phi_{1} & & 0 \tag{3.13}\\
& \ddots & \\
0 & & \phi_{s^{\prime}}
\end{array}\right)
$$

where $\phi_{p}: M \rightarrow H M\left(n_{p}\right), \quad \phi_{p}^{2}=\phi_{p}$, and putting $\operatorname{tr} \phi_{p}=m_{p}$, then $m_{p} \in Z$, $m_{1}+\cdots+m_{s^{\prime}}=m$. So by (3.7) we get

$$
\begin{equation*}
\Delta \phi_{p}=\lambda\left(\phi_{p}-a_{p} I_{n_{p}}\right) \quad\left(p=1, \ldots, s^{\prime}\right) \tag{3.14}
\end{equation*}
$$

It is clear from (3.13) and (3.14) that $\phi_{p}=0$ when $m_{p}=0$, while $\phi_{p}=I_{m_{p}}$ when $m_{p}=n_{p}$. Now we consider the case $n_{p}>m_{p}>0$. In this situation from (3.13) we see that ϕ_{p} defines a map $\phi_{p}: M \rightarrow G\left(m_{p}, n_{p}\right)$, and which together with (3.14) and Lemma 3.2 yields $a_{p}=m_{p} / n_{p}$. Thus $\phi_{p}: M \rightarrow G\left(m_{p}, n_{p}\right)$ is mass-symmetric 1-type with eigenvalue λ. Now the necessity follows easily.

Theorem 3.4. Let M be a compact oriented Riemannian 2-manifold, and $\phi: M \rightarrow G(m, n)$ an isometric minimal immersion. Then the first eigenvalue λ_{1} of the Laplace-Beltrami operator of M satisfies

$$
\lambda_{1} \leq 4 \int_{M}\left[\operatorname{tr}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)^{2}+\operatorname{tr}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)^{2}\right] / \operatorname{Area}(M)
$$

and the equality holds if and only if ϕ is of 1-type.
Proof. By (3.11) and $\phi=\sum_{\alpha} Z_{\alpha} \bar{Z}_{\alpha}^{t}$, a direct computation shows that

$$
\begin{gather*}
\langle\Delta \phi, \phi\rangle=\frac{1}{2} \operatorname{tr}(\Delta \phi \cdot \phi)=2 \\
\langle\Delta \phi, \Delta \phi\rangle=8 \operatorname{tr}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)^{2}+8 \operatorname{tr}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)^{2} \tag{3.15}
\end{gather*}
$$

Substituting (3.15) into the inequality (see [5])

$$
\int_{M}\langle\Delta \phi, \Delta \phi\rangle-\lambda_{1} \int_{M}\langle\Delta \phi, \phi\rangle \geq 0
$$

we can obtain the desired inequality. From [5] we see that the equality holds if and only if ϕ is of 1-type.

4. The Gauss Map

Let $\phi: M \rightarrow G(m, n)$ be an isometric minimal immersion from a Riemann surface with the metric $d s_{M}^{2}$. Regarding ϕ as the map to Euclidean space $H M(n) \cong R^{n^{2}}$, we can define the Gauss map $g_{\phi}: M \rightarrow G_{2, n^{2}}$ of ϕ, where $G_{2, n^{2}}$ is the real Grassmann manifold and the 2-plane $g_{\phi}(x)$ at each point $x \in M$ parallels the tangent plane of $\phi(M)$ in $H M(n)$ at the point $\phi(x)$. By (3.11), the mean curvature vector H of the isometric immersion $\phi: M \rightarrow H M(n)$ is given by

$$
\begin{equation*}
H=-\frac{1}{2} \Delta \phi=-2 \sum_{\alpha, \beta}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)_{\beta \alpha} Z_{\alpha} \bar{Z}_{\beta}^{t}+2 \sum_{i, j}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)_{j i} Z_{i} \bar{Z}_{j}^{t} \tag{4.1}
\end{equation*}
$$

By (2.1), (3.2) and (3.4), the covariant derivative $D H=\left(D^{\prime} H\right) \varphi+\left(D^{\prime \prime} H\right) \bar{\varphi}$ of H is given by

$$
\begin{align*}
D^{\prime} H= & -2 \sum_{\alpha, \beta}\left(P \bar{A}^{t}+B \bar{R}^{t}\right)_{\beta \alpha} Z_{\alpha} \bar{Z}_{\beta}^{t}+2 \sum_{i, j}\left(\bar{A}^{t} P+\bar{R}^{t} B\right)_{j i} Z_{i} \bar{Z}_{j}^{t} \\
& -2 \sum_{\alpha, i}\left(2 A \bar{A}^{t} A+A \bar{B}^{t} B+B \bar{B}^{t} A\right)_{\alpha i} Z_{i} \bar{Z}_{\alpha}^{t} \\
& -2 \sum_{\alpha, i}\left(2 \bar{B} B^{t} \bar{B}+\bar{A} A^{t} \bar{B}+\bar{B} A^{t} \bar{A}\right)_{\alpha i} Z_{\alpha} \bar{Z}_{i}^{t} \tag{4.2}
\end{align*}
$$

We denote by $T^{\perp} \phi(M)$ the normal space of $\phi(M)$ in $H M(n)$. If g_{ϕ} is harmonic, then by Ruh-Vilms' theorem [7], the projection of $D H$ on $T^{\perp} \phi(M)$ vanishes. Therefore, from (4.2) we get

$$
\begin{gather*}
P \bar{A}^{t}+B \bar{R}^{t}=0, \quad \bar{A}^{t} P+\bar{R}^{t} B=0 \\
\sum_{\alpha, i}\left(2 A \bar{A}^{t} A+A \bar{B}^{t} B+B \bar{B}^{t} A\right)_{\alpha i}\left(Z_{i} \bar{Z}_{\alpha}^{t}\right)^{\perp} \\
+\sum_{\alpha, i}\left(2 \bar{B} B^{t} \bar{B}+\bar{A} A^{t} \bar{B}+\bar{B} A^{t} \bar{A}\right)_{\alpha i}\left(Z_{\alpha} \bar{Z}_{i}^{t}\right)^{\perp}=0 \tag{4.3}
\end{gather*}
$$

where $\left(Z_{i} \bar{Z}_{\alpha}^{t}\right)^{\perp}$ and $\left(Z_{\alpha} \bar{Z}_{i}^{t}\right)^{\perp}$ denote, respectively, the projection of $Z_{i} \bar{Z}_{\alpha}^{t}$ and $Z_{\alpha} \bar{Z}_{i}^{t}$ on the complexification of $T^{\perp} \phi(M)$. From (3.4) and (4.3) we have

$$
\begin{align*}
& d\left(A \bar{A}^{t}+B \bar{B}^{t}\right)-\phi_{11}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)+\left(A \bar{A}^{t}+B \bar{B}^{t}\right) \phi_{11}=0, \\
& d\left(\bar{A}^{t} A+\bar{B}^{t} B\right)-\phi_{22}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)+\left(\bar{A}^{t} A+\bar{B}^{t} B\right) \phi_{22}=0 . \tag{4.4}
\end{align*}
$$

We can choose Z_{1}, \ldots, Z_{n} suitably such that $A \bar{A}^{t}+B \bar{B}^{t}$ and $\bar{A}^{t} A+\bar{B}^{t} B$ are diagonal. Put

$$
A \bar{A}^{t}+B \bar{B}^{t}=\left(\begin{array}{ccc}
\mu_{1} & & \tag{4.5}\\
& \ddots & \\
& & \mu_{m}
\end{array}\right), \quad \bar{A}^{t} A+\bar{B}^{t} B=\left(\begin{array}{ccc}
\mu_{m+1} & & \\
& \ddots & \\
& & \mu_{n}
\end{array}\right)
$$

Then from (4.4) it is clear that μ_{1}, \ldots, μ_{n} are constant, and that $\phi^{*} \omega_{\alpha \beta}=0$ when $\mu_{\alpha} \neq \mu_{\beta}$, while $\phi^{*} \omega_{i j}=0$ when $\mu_{i} \neq \mu_{j}$. By virtue of (2.6) and (3.2) we get

$$
\begin{equation*}
d \phi=\sum_{\alpha, i}\left(a_{\alpha i} Z_{i} \bar{Z}_{\alpha}^{t}+\bar{b}_{\alpha i} Z_{\alpha} \bar{Z}_{i}^{t}\right) \varphi+\sum_{\alpha, i}\left(b_{\alpha i} Z_{i} \bar{Z}_{\alpha}^{t}+\bar{a}_{\alpha i} Z_{\alpha} \bar{Z}_{i}^{t}\right) \bar{\varphi} \tag{4.6}
\end{equation*}
$$

from which we can calculate out that

$$
\begin{align*}
& \left(Z_{i} \bar{Z}_{\alpha}^{t}\right)^{\perp}=Z_{i} \bar{Z}_{\alpha}^{t}-\sum_{\beta, j}\left(\bar{a}_{\alpha i} a_{\beta j}+\bar{b}_{\alpha i} b_{\beta j}\right) Z_{j} \bar{Z}_{\beta}^{t}-\sum_{\beta, j}\left(\bar{a}_{\alpha i} \bar{b}_{\beta j}+\bar{b}_{\alpha i} \bar{a}_{\beta j}\right) Z_{\beta} \bar{Z}_{j}^{t} \\
& \left(Z_{\alpha} \bar{Z}_{i}^{t}\right)^{\perp}=Z_{\alpha} \bar{Z}_{i}^{t}-\sum_{\beta, j}\left(a_{\alpha i} b_{\beta j}+b_{\alpha i} a_{\beta j}\right) Z_{j} \bar{Z}_{\beta}^{t}-\sum_{\beta, j}\left(a_{\alpha i} \bar{a}_{\beta j}+b_{\alpha i} \bar{b}_{\beta j}\right) Z_{\beta} \bar{Z}_{j}^{t} \tag{4.7}
\end{align*}
$$

Substituting (4.7) into the last equation in (4.3) we have

$$
\begin{align*}
0= & A\left(\bar{A}^{t} A+\bar{B}^{t} B\right)+\left(A \bar{A}^{t}+B \bar{B}^{t}\right) A-4 \operatorname{tr}\left[\left(A \bar{A}^{t}+B \bar{B}^{t}\right) A \bar{B}^{t}\right] B \\
& -\left[\operatorname{tr}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)^{2}+\operatorname{tr}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)^{2}\right] A \\
0= & B\left(\bar{A}^{t} A+\bar{B}^{t} B\right)+\left(A \bar{A}^{t}+B \bar{B}^{t}\right) B-4 \operatorname{tr}\left[\left(A \bar{A}^{t}+B \bar{B}^{t}\right) B \bar{A}^{t}\right] A \\
& -\left[\operatorname{tr}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)^{2}+\operatorname{tr}\left(\bar{A}^{t} A+\bar{B}^{t} B\right)^{2}\right] B \tag{4.8}
\end{align*}
$$

(4.5) and (4.8) yields

$$
\begin{align*}
& a_{\alpha i}\left(\mu_{\alpha}+\mu_{i}\right)=x a_{\alpha i}+y b_{\alpha i} \\
& b_{\alpha i}\left(\mu_{\alpha}+\mu_{i}\right)=x b_{\alpha i}+\bar{y} a_{\alpha i} \tag{4.9}
\end{align*}
$$

where $x=\mu_{1}^{2}+\cdots+\mu_{n}^{2}, \quad y=4 \operatorname{tr}\left[\left(A \bar{A}^{t}+B \bar{B}^{t}\right) A \bar{B}^{t}\right]$. From (4.9) we get $y\left|b_{\alpha i}\right|^{2}=$ $y\left|a_{\alpha i}\right|^{2}$, so if $y \neq 0$, we must have $\left|a_{\alpha i}\right|=\left|b_{\alpha i}\right|$ for any α, i, and consequently, ϕ is totally real. We now assume that ϕ is not totally real, then $y=0$, which together with (4.9) implies that either $a_{\alpha i}=b_{\alpha i}=0$ or $\mu_{\alpha}+\mu_{i}=x$. We claim that for $\mu_{\alpha_{0}} \neq 0$, there exists i_{0} such that $\mu_{\alpha_{0}}+\mu_{i_{0}}=x$. Otherwise, $a_{\alpha_{0} i}=b_{\alpha_{0} i}=0$, so that $\mu_{\alpha_{0}}=\sum_{i}\left(\left|a_{\alpha_{0} i}\right|^{2}+\left|b_{\alpha_{0} i}\right|^{2}\right)=0$, which is a contradiction. Similarly, for $\mu_{i_{0}} \neq 0$,
there exists α_{0} such that $\mu_{\alpha_{0}}+\mu_{i_{0}}=x$. Hence we can assume that

$$
\begin{align*}
& A \bar{A}^{t}+B \bar{B}^{t}=\left(\begin{array}{cccc}
a_{1} I_{m_{1}} & & & 0 \\
& \ddots & & \\
& & a_{s} I_{m_{s}} & \\
0 & & & 0_{m_{0}}
\end{array}\right), \\
& \bar{A}^{t} A+\bar{B}^{t} B=\left(\begin{array}{cccc}
b_{1} I_{l_{1}} & & & 0 \\
& \ddots & & \\
& & b_{s} I_{l_{s}} & \\
0 & & & 0_{l_{0}}
\end{array}\right) \tag{4.10}
\end{align*}
$$

where a_{1}, \ldots, a_{s} (resp. b_{1}, \ldots, b_{s}) are nonzero constants different from each other and satisfying $a_{p}+b_{p}=x(p=1, \ldots, s)$, and $0_{m_{0}}$ is the $m_{0} \times m_{0}$-zero matrix. We remark that $\sum_{p=0}^{s} m_{p}=m, \sum_{p=0}^{s} l_{p}=n-m$, and m_{0} and l_{0} may equal to zero. In this situation, the matrices A, B can be written as

$$
A=\left(\begin{array}{llll}
A_{1} & & & \\
& \ddots & & \\
& & A_{s} & \\
& & & 0
\end{array}\right), \quad B=\left(\begin{array}{llll}
B_{1} & & & \\
& \ddots & & \\
& & B_{s} & \\
& & & 0
\end{array}\right),
$$

where A_{p}, B_{p} are $\left(m_{p} \times l_{p}\right)$-matrices, and $A_{p} \bar{A}_{p}^{t}+B_{p} \bar{B}_{p}^{t}=a_{p} I_{m_{p}}, \bar{A}_{p}^{t} A_{p}+\bar{B}_{p}^{t} B_{p}=$ $b_{p} I_{l_{p}}, p=1, \ldots, s$. Put $n_{p}=m_{p}+l_{p}$. First we consider the n_{1}-dimensional subspace π_{1} defined by $Z_{1} \wedge \cdots \wedge Z_{m_{1}} \wedge Z_{m+1} \wedge \cdots \wedge Z_{m+l_{1}}$ of C^{n}. Obviously it is a constant subspace of C^{n} and $Z_{1} \wedge \cdots \wedge Z_{m_{1}}$ defines a m_{1}-dimensional subspace of π_{1}. We may consider π_{1} as $C^{n_{1}}$. Then we can define a map $\phi_{1}: M \rightarrow G\left(m_{1}, n_{1}\right) \subset$ $H M\left(n_{1}\right)$, which A - and B-matrices coincide with A_{1} and B_{1} respectively. So a similar computation as in (3.11) shows that

$$
\frac{1}{4} \Delta \phi_{1}=\left(a_{1}+b_{1}\right) \phi_{1}-b_{1} I_{n_{1}}=x\left(\phi_{1}-\frac{m_{1}}{n_{1}} I_{n_{1}}\right)
$$

which implies that ϕ_{1} is mass-symmetric 1-type with eigenvalue $4 x$. Similarly we can define $\phi_{0}, \phi_{2}, \ldots, \phi_{s}$ so that $\phi=\phi_{0} \oplus \phi_{1} \oplus \cdots \oplus \phi_{s}$, where ϕ_{0} is a constant matrix in $H M\left(n_{0}\right)$ with $\phi_{0}^{2}=\phi_{0}$, and $\phi_{p}: M \rightarrow G\left(m_{p}, n_{p}\right)$ is mass-symmetric 1-type with eigenvalue $4 x, p=1, \ldots, s$. Therefore, ϕ is of 1-type.

Conversely, if ϕ is of 1-type, from Theorems 3.1 and 3.3, we have the decomposition $\phi=\phi_{0} \oplus \phi_{1} \oplus \cdots \oplus \phi_{s}$ and (4.10). Here each $\phi_{p}(p=1, \ldots, s)$ is a map to $G\left(m_{p}, n_{p}\right) \subset H M\left(n_{p}\right)$ and satisfying that $\Delta \phi_{p}=\lambda\left(\phi_{p}-c_{p} I_{p}\right)$ for a constant
$\lambda=4\left(a_{p}+b_{p}\right)$ and $c_{p}=m_{p} / n_{p}=b_{p} / \lambda$. We remark that λ is independent of p, and $a_{p} m_{p}=b_{p} l_{p}$ for every p. Then we obtain

$$
\begin{align*}
x & :=\operatorname{tr}\left[\left(A \bar{A}^{t}+B \bar{B}^{t}\right)^{2}+\left(\bar{A}^{t} A+\bar{B}^{t} B\right)^{2}\right]=\sum_{p=1}^{s}\left(m_{p} a_{p}^{2}+l_{p} b_{p}^{2}\right) \\
& =\frac{\lambda}{4} \sum_{p=1}^{s} m_{p} a_{p}=\frac{\lambda}{4} \operatorname{tr}\left(A \bar{A}^{t}+B \bar{B}^{t}\right)=\frac{\lambda}{4} \tag{4.11}
\end{align*}
$$

Assume $y=0$, then (4.11) implies that the equation (4.9) and hence the last equation in (4.3) holds. The first two equations in (4.3) follow from $d\left(A \bar{A}^{t}+B \bar{B}^{t}\right)=0$ and $d\left(\bar{A}^{t} A+\bar{B}^{t} B\right)=0$. Consequently g_{ϕ} is harmonic. So we have the following

Theorem 4.1. Let $\phi: M \rightarrow G(m, n)$ be an isometric minimal immersion which is not totally real. Then the Gauss map g_{ϕ} of ϕ is harmonic if and only if ϕ is of 1-type and $\operatorname{tr}\left[\left(A \bar{A}^{t}+B \bar{B}^{t}\right) A \bar{B}^{t}\right]=0$.

Recall that ϕ is said to be strongly conformal if $A \bar{B}^{t}=0$. The following theorem can be shown similarly.

Theorem 4.2. Let $\phi: M \rightarrow G(m, n)$ be an isometric minimal immersion which is strongly conformal. Then the Gauss map g_{ϕ} of ϕ is harmonic if and only if ϕ is of 1-type.

Acknowledgement

The author would like to thank the referee for helpful suggestions.

References

[1] Ros A., Spectral geometry CR-minimal submanifolds in the complex projective space, Kodai Math. J., 6 (1983), 88-99.
[2] Chern S. S. and Wolfson J. G., Harmonic maps of the two-sphere into complex Grassmann manifold II, Ann. of Math., 125 (1987), 301-335.
[3] Shen Y. B. and Dong Y. X., On pseudo-holomorphic curves in complex Grassmannians, Chin. Ann. of Math., 20B (1999), 341-350.
[4] Wu B. Y., Curvature pinching theorems for minimal surfaces in complex Grassmann manifolds, Tsukuba J. Math., 24 (2000), 337-350.
[5] Ros A., Eigenvalue inequalities for minimal submanifolds and P-manifolds, Math. Z., 187 (1984), 393-404.
[6] Takahashi T., Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.
[7] Ruh E. A. and Vilms J., The tension fields of the Gauss map, Tran. Amer. Math. Soc., 149 (1970), 569-573.
[8] Burstall F. E. and Wood J. C., The construction of harmonic maps into complex Grassmannian, J. Diff. Geom., 23 (1986), 255-297.
[9] Chen B. Y., Total mean curvature and submanifolds of finite type, World Scientific, 1984.
[10] Shen Y. B., On spectral geometry of minimal surfaces in $C P^{n}$, Tran. Amer. Math. Soc., 347 (1995), 3873-3889.
[11] Zhang Y. Z., Harmonic Gauss maps and 1-type submanifolds in $C P^{n}$ (in Chinese), Chin. Ann. of Math., 18A (1997), 635-644.

Wu Bing-Ye
Department of Mathematics
Zhejiang Normal University
Jinhua, Zhejiang, 321004 P.R. China

