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1-TYPE MINIMAL SURFACES IN COMPLEX
GRASSMANN MANIFOLDS AND ITS GAUSS MAP

By
Wu BING-YE

Abstract. In this paper we establish an isometric imbedding of a
complex Grassmann manifold G(m,n) into a Euclidean space. Then
we use this isometric imbedding to study 1-type minimal surfaces in
G(m,n) and its Gauss map, and obtain some results.

1. Introduction

A submanifold M (connected but not necessary compact) of an Euclidean N-
space EV is said to be of finite type if each component of its position vector ¢
can be written as a finite sum of eigenfunctions of the Laplacian A of M, that is,

p=do+ 1+ -+,

where ¢, is a constant vector (called the center of mass of M) and A¢, = 1,¢,,
t=1,2,...,k. If in particular all eigenvalues {1;,42,...,4} are mutually dif-
ferent, then M is said to be of k-type (c.f. [9] for details).

In terms of finite-type submanifolds, a well-known theorem of Takahashi [6]
says that a compact submanifold M of Euclidean space is of 1-type if and only
if M lies in some hypersphere as a minimal submanifold, and such a submanifold
is always mass-symmetric, i.e., the center of mass of M is the center of the
hypersphere.

As is well-known, the complex projective space CP" can be isometrically
imbedded into a Euclidean space [1], and this isometric imbedding is basic to
studying spectral geometry of submanifolds in CP”. For related results one is
referred to see [10, 11]. In this paper, we shall establish an isometric imbedding of
a complex Grassmann manifold G(m,n) into a Euclidean space. Then, we use this
isometric imbedding to study 1-type minimal surfaces in G(m,n). We also study
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the Gauss map for minimal surfaces in G(m,n) and obtain some equivalent
conditions for their Gauss maps to be harmonic.

2. An Isometric Imbedding of G(m,n) into Euclidean Space

We equip the complex n-space C" with the standard Hermitian inner prod-
uct. The space of unitary bases can be identified with the unitary group U(n). Let
Z4 (A=1,...,n) be regarded as the projection from U(n) to C" by mapping a
matrix Z to its Ath column vector Z,. Writing

dZA :ZQ}ABZB, (21)
B

then w,p are the components of the Maurer-Cartan form on U(n), and they
satisfy
wyp+ Opg = 0. (22)

Here and in the following we use the following ranges of indices:
1<AB,...<n;, 1<opf,...<m m+1<ij,...<n.

Taking the exterior derivative of (2.1), we get

dCOAB = ZCUAC N OCB. (23)
C

All elements of the complex Grassmann manifold G(m,n) can be defined
by the multivector Z; A -+ A Z,, for any Z € U(n) up to a factor. The vectors
Z, and their orthogonal vectors Z; are defined up to a transformation of
U(m) and U(n — m), respectively, so that G(m,n) becomes a symmetric space
Un)/(Um) x Un—m)) ={[Z]|Ze U(n)} [2]. In particular, the form

dSz = Zwm’@ai (24)
is a positive Hermitian form on the Lie subspace for U(n)/U(m) x U(n —m),
and defines the canonical Kaehler metric on G(m,n). Let HM(n) =
{Fegl(n,C): F' = F} be the set of all Hermitian n x n-matrices. We define an

inner product {-,-» on the vector space HM (n) (and its complexification g/(n, C))
by

1 _
<F1,F2>=EU'F1F£, Fl,erHM(I’l) (OI‘ gl(n,C)).

Then HM (n) becomes the Euclidean space R™. We can define a map f from
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G(m,n) to HM (n) by
nz=z( )z =Y 22,
0 0 e
for Z € U(n), where I, is the identity m x m-matrix.

LemMa 2.1. The map f : G(m,n) — HM (n) defined as above is an isometric
imbedding, and that f(G(m,n)) = {F e HM(n) : F?> = F,tr F = m}.

ProOF. It is obvious that f(G(m,n)) = {Fe HM(n): F?>=F,tr F =m}.
Let F e HM(n) such that F?> = F and tr F = m. Then the eigenvalues of F are
1 or 0, and consequently there exists P e U(n) such that

FP(Ig 8>Pf. (2.5)

This implies that f(G(m,n)) > {Fe HM(n): F?> = F,tr F =m}. By virtue of
(2.1) and (2.2) we have

df = (0iZiZl + 0uZ,Z}), (2.6)

from which we see that the metric on G(m,n) induced from that on HM(n) by
fis
<df df> — A tr df df Zwmwm

This together with (2.4) implies that f is isometric. So the lemma is proved.

Now we identify G(m,n) with f(G(m,n)) = HM(n). In this point of view,
we have the following lemma which can be verified similarly as in [1].

LemMa 2.2. Let F e G(m,n), then

Tr(G(m,n)) ={X e HM(n) : XF + FX = X},
T#(G(m,n)) = {N € HM(n) : NF = FN},
G(X,Y)=(XY+YX)I—-2F), X,YeTr(G(m,n)),

where & is the second fundamental form of G(m,n) in HM(n), and I = I,.

For any Z € U(n), {V/2Z4Z}} gives a unitary basis of (g/(n.C),{-,->) = C ’
and {Z;Z!,Z,Z!} spans the complexification of TrG(m,n), where F = [Z]e
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G(m,n) Set Em' = Z,Z; + Z“Zit and Ex*,'* =V —I(Z,Z; — Z“Z:), then {Eai;Ea*i*}
forms an orthonormal basis of Tx(G(m,n)). The complex structure J on G(m,n)
is given by

JEoci = Loyxjx, JEoc*i* = _Eai-

By use of Lemma 2.2, a direct computation shows that the mean curvature vector
field H of G(m,n) in HM(n) is given by, at F € G(m,n),

_ 1 _ _ __n (m
Hp = m;(a(EahEai) +G(Eyivs Exir)) = m(n —m) <n 1 F) (2.7)

The following lemma can be shown similarly as in [1].

Lemma 2.3. (a) For any X € Tp(G(m,n)), JX = /—1(I —2F)X.

(b) G(JX,JY)=G(X,Y), V& =0, where X,Y € Tp(G(m,n)), and V is the
Levi-Civita connection of G(m,n).

(¢) G(m,n) is a minimal submanifold of a hypersphere in HM (n), whose centre

is %I and whose radius is \/m(n —m)/2n.
3. 1-Type Minimal Surfaces in G(m,n)

Let M be a Riemann surface with the metric ds3, = p@, where ¢ is the
complex-valued 1-form defined on M. The structure equations on M are given by

V-1
dp=—V—1p A g, a’p:—TK(p/\¢7 (3.1)

where p is the real-valued connection 1-form of ds3,, and K is the Gaussian
curvature of ds3,. Let ¢: M — G(m,n) be a smooth map, and put

¢*(wai) = dyip + bai@- (32)

Taking the exterior derivative of (3.2) and making use of (2.1) and (2.3), it is
easy to see that there exist locally defined complex-valued functions p,;, ¢,; and
ry such that (see, for instance, [2])

Dai® + G5 = Day; := day — Z api,p + Z ayjwji — vV —layp,
B J

4 + 15ip = Db := dby; — Zbﬂiwa/f + Zbajwji +V—=1byp. (3~3)
B j
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In terms of matrix notation, we can rewrite (3.3) as
Pp+ 0p =dA — ¢ A+ Ady, — V—14p,
Op + Rp = dB — ¢y, B+ By, + V—1Bp, (3.4)

where A = (ay), B = (by), P= (pu), Q= (qui), R= (ru), ¢11 = (¢ wyp) and
¢ = (¢ ;). It is known that ¢ is harmonic if and only if Q =0 (see [2]). ¢ is
an isometric immersion if and only if

tr(AB") =0, tr(AA"+ BB") = 1. (3.5)
If ¢ is an isometric immersion, then

tr(4A4") = coszg, tr(BB') = sinzg, (3.6)
where o is the Kaehler angle of ¢ (see [3, 4]). We say that ¢ is totally real if
o =mn/2, and ¢ is strongly conformal if 4B’ =0 (see [8]).

Let A be the Laplace-Beltrami operator on M. We consider ¢: M —
G(m,n) =« HM (n) to be the map to the Euclidean space. If there exist a constant

A >0 and a constant matrix 7 € HM(n) such that

Ap=i(p—T). (37)

then ¢ is said to be of l-type. In particular, when T = (m/n)l, ¢ is said to be
mass-symmetric 1-type. We now want to compute A¢. From (2.6) and (3.2) we
have

dp = (auZiZ}+ buiZsZ)gp+ Y (buiZiZ + 4 Z, Z}). (3.8)

o, o, i

Then, combining (2.1), (3.2), (3.3) and (3.8) we get

—Aqﬁ——tr D dp =" (44'+ BB");,Z,Z}
%p

- Z A'A+ B'B),ZiZ} =Y (quZiZyy+ 432, 7)) (3.9)

o,

If ¢ is mass-symmetric 1-type, then there exists a constant A > 0 such that
A¢:z(¢_%l>. (3.10)

It is clear from Lemma 2.2 that ¢,1 € T(j(G(m,n)), which together with (3.10)
yields that A¢ e T(j(G(m,n)). Therefore, from (3.9) we see that ¢,; =0, i.e., ¢ is
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harmonic. The following theorem follows from (3.9), (3.10) combined with the
fact that Y, Z,Z, = 1.

THEOREM 3.1. Let ¢ : M — G(m,n) be a smooth map. ¢ is mass-symmetric
1-type if and only if ¢ is harmonic, and AA' + BB' and A'A + B'B are scalar
matrices.

For later use we write down the following lemma which can be shown
similarly as Theorem 3.1.

LemmA 3.2. Let ¢: M — G(m,n) be a smooth map. If there exist constants
A>0 and a such that

A = (¢ — al),

then a =m/n, and consequently ¢ is mass-symetric 1-type.

From now on we assume that ¢ : M — G(m,n) is harmonic. Then (3.9) is
reduced to

1 _ _ _ _ _ _
100 = Zﬂ(AA’ + BB"),,Z,Z} — Z(A’A + B'B),Z:Z]. (3.11)
o, L]

We are now in a position to prove the main result of this section.

THEOREM 3.3. Let ¢: M — G(m,n) be a harmonic map. ¢ is of l-type
if and only if ¢=¢y @ ® --- @, where ¢,: M — G(my,n,) = HM (n,)
(p=1,...,5) are mass-symmetric 1-type with the same eigenvalue, ¢ is a constant
matrix in HM (no) with ¢§3 = ¢,, and that Dot Myt gy =m, 3
mp,n, (p=1,...,8) are positive integers, and ny is a non-negative integer.

n, = n. Here

Proor. The sufficiency is obvious. So we need only to prove the necessity.
If ¢ is of 1-type, then there are a constant 4 > 0 and a constant matrix T such
that (3.7) holds. Without loss of generality, we can assume that 7 is diagonal
(otherwise we can use an isometry of G(m,n) of the type F — PFP!, where P is
in U(n)). Suppose that
allnl 0
. , (3.12)
0 as’Inj/
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where aj,...,ay € R are different from each other and n;+---+ny =n.
From (3.11) we see that Age Tj(G(m,n))a which together with (3.7) yields
TeT qf(G(m,n)) Therefore ¢T = T'¢ at any point in M, and hence we have the

3

decomposition
h 0
¢= : (3.13)
0 ¢S,
where ¢, : M — HM (n,), ¢[% =¢,, and putting tr¢, =m,, then m,eZ,
my +---+my =m. So by (3.7) we get
Ap, = Mg, —aply,) (p=1,....5"). (3.14)

It is clear from (3.13) and (3.14) that ¢, = 0 when m, = 0, while ¢, = I,,, when
m, = n,. Now we consider the case n, >m, > 0. In this situation from (3.13)
we see that ¢, defines a map ¢, : M — G(m,,n,), and which together with (3.14)
and Lemma 3.2 yields a, = m,/n,. Thus ¢,: M — G(my,n,) is mass-symmetric
1-type with eigenvalue 2. Now the necessity follows easily.

THEOREM 3.4. Let M be a compact oriented Riemannian 2-manifold, and
¢: M — G(m,n) an isometric minimal immersion. Then the first eigenvalue 1, of
the Laplace-Beltrami operator of M satisfies

M < 4J [tr(AA" + BB)* + tr(A'4 + B'B)*]/Area(M),
M
and the equality holds if and only if ¢ is of 1-type.

PrOOF. By (3.11) and ¢=>",Z,Z! a direct computation shows that

(A §> =5 (A ) =2

(Ap,Ap> = 8 tr(AA" + BB')*> + 8 tr(A'A + B'B)*. (3.15)
Substituting (3.15) into the inequality (see [5])

jM (Ap, APy — JM (Mg gy =0

we can obtain the desired inequality. From [5] we see that the equality holds if
and only if ¢ is of 1-type.
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4. The Gauss Map

Let ¢ : M — G(m,n) be an isometric minimal immersion from a Riemann
surface with the metric ds3,. Regarding ¢ as the map to Euclidean space
HM (n) =~ R"™, we can define the Gauss map gy M — G, 2 of ¢, where G, 2 is
the real Grassmann manifold and the 2-plane g4(x) at each point x € M parallels
the tangent plane of ¢(M) in HM(n) at the point ¢(x). By (3.11), the mean
curvature vector H of the isometric immersion ¢ : M — HM(n) is given by

1 _ _ _ - _ _
H=—2Ap=-2 E;(AAI + BB");,Z,Z}+2 Z(A’A +B'B),Z:ZI.  (41)
%, L]

By (2.1), (3.2) and (3.4), the covariant derivative DH = (D'H)p + (D"H)p of H
is given by

D'H=-2Y (PA' + BR");,Z,Z}+2Y (A'P+ R'B),Z/Z]
o, fi iJ

~2> (24A'A+ AB'B+ BB'A),,Z:Z,

o,

~2> (2BB'B+ AA'B+ BA'A) ,Z,Z]. (4.2)

o,

We denote by T+¢(M) the normal space of ¢(M) in HM (n). If g, is harmonic,
then by Ruh-Vilms’ theorem [7], the projection of DH on Tt¢$(M) vanishes.
Therefore, from (4.2) we get

PA"+ BR'"=0, A'P+R'B=0,

> (24A4'A+ AB'B+ BB'A) ,(Z,Z1)"

o,

+ Z(zBB’B + AA'B+ BA'A) (Z,Z!)" =0, (4.3)

o,

where (Z,Z!)" and (Z,Z!)" denote, respectively, the projection of Z;Z! and
Z,Z! on the complexification of T*¢(M). From (3.4) and (4.3) we have

d(AA" + BB') — ¢,,(AA" + BB') + (44" + BB")¢$,; =0,
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We can choose Zi,...,Z, suitably such that A4’ + BB’ and A'A + B'B are
diagonal. Put

M M
AA'+ BB' = , A'A+B'B= . (45)
Hon Hy

Then from (4.4) it is clear that g, ..., u, are constant, and that ¢*w,; = 0 when
t, # Wy, while ¢*w; =0 when g, # ;. By virtue of (2.6) and (3.2) we get

dp = (aiZiZ}+ buiZZ))p + Y (buiZiZly+ 8y ZoZ})9, (4.6)
o,

o, i

from which we can calculate out that

(ZiZY)'" = ZiZL =Y (@uityy + baibp) ZiZ) — > (Guibpy + buitiyy) ZpZ],

B.j Bij
(Z,ZI)" = Z,Z] = (aubpy + buiag) ZiZy — > (@it + buibp) ZpZ].  (4.7)
B.j B.j

Substituting (4.7) into the last equation in (4.3) we have
0=A(A'A+ B'B)+ (AA' + BB')A — 4 tr[(AA' + BB')AB'|B
— [tr(AA" + BB")* + tr(A'4 + B'B)*)4,
0=B(A'A+ B'B) + (AA"' + BB")B — 4 tr[(AA"' + BB')BA'|4
— [tr(4A4" + BB')* + tr(4'A + B'B)’|B. (4.8)
(4.5) and (4.8) yields
iy, + 1) = Xy + Yby,
bui(py + 1) = Xbyi + Yatsi, (4.9)

where x =y + -+ 2, y = 4 tr[(44' + BB')AB']. From (4.9) we get y|b,|* =
y]ay|?, so if y # 0, we must have |ay| = |b,| for any o, i, and consequently, ¢ is
totally real. We now assume that ¢ is not totally real, then y = 0, which together
with (4.9) implies that either a, = by,; =0 or u,+ u; = x. We claim that for
Uy, # 0, there exists iy such that w, + g, = x. Otherwise, a,,; = by,; = 0, so that
My = Zi(|am,,~\2 + |byyi|*) = 0, which is a contradiction. Similarly, for i, # 0,
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there exists o such that u, + g, =x. Hence we can assume that

allml 0
AA' + BB' = K ;
aslmx
0 Opay
bi I, 0
A'A+ B'B= E : (4.10)
bslls
0 0y,
where ay, ..., a, (resp. by,...,bs) are nonzero constants different from each other
and satistying a, + b, =x (p=1,...,s), and 0, is the my x mo-zero matrix. We

remark that Z;:o m, =m, Z;:o l, =n—m, and mg and [y may equal to zero. In
this situation, the matrices 4, B can be written as

A] Bl

Ay B,
0 0

where A4,, B, are (m, x I,)-matrices, and 4,4} + B,B} = a,l,,, A}A,+ B}B, =
bply,, p=1,...,s. Put n, =m, +1,. First we consider the n;-dimensional sub-
space 7 defined by Z1 A -+ A Zyy AZps1t A -+ A Zyyy, of C". Obviously it is a
constant subspace of C" and Z; A --- A Z,, defines a m;-dimensional subspace of
71. We may consider 7; as C™. Then we can define a map ¢, : M — G(my,n;) <
HM (n;), which 4- and B-matrices coincide with 4; and B; respectively. So a
similar computation as in (3.11) shows that

1
180 = by~ uty = x(-201,).
n

which implies that ¢; is mass-symmetric 1-type with eigenvalue 4x. Similarly we
can define ¢y, ¢,,...,¢, so that ¢ =¢, D ¢; D --- D ¢,, where ¢, is a constant
matrix in HM(ng) with ¢3 = ¢,, and ¢, M — G(my,ny) is mass-symmetric
I-type with eigenvalue 4x, p=1,...,s. Therefore, ¢ is of I-type.

Conversely, if ¢ is of 1-type, from Theorems 3.1 and 3.3, we have the
decomposition ¢ = ¢y @ ¢; @ - - @ ¢, and (4.10). Here each ¢, (p=1,...,5)isa
map to G(my,n,) = HM(n,) and satisfying that A¢, = (¢, — ¢,1,) for a constant
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A=4(a,+b,) and ¢, =m,/n, = b,/A. We remark that 1 is independent of p,
and a,m, = b,l, for every p. Then we obtain

x:=tr[(AA"+ BB')’ + (A'A + B'B)’] = > (mpa; + [,b?)
p=1

s 2 o
_Zl;mpap_4tr(AA +BB') =7. (4.11)

Assume y =0, then (4.11) implies that the equation (4.9) and hence the
last equation in (4.3) holds. The first two equations in (4.3) follow from
d(AA"+ BB") =0 and d(A'A + B'B) = 0. Consequently g, is harmonic. So we
have the following

THEOREM 4.1. Let ¢ : M — G(m,n) be an isometric minimal immersion which
is not totally real. Then the Gauss map g4 of ¢ is harmonic if and only if ¢ is of
1-type and tr[(AA" + BB")AB'] = 0.

Recall that ¢ is said to be strongly conformal if 4B’ =0. The following
theorem can be shown similarly.

THEOREM 4.2. Let ¢ : M — G(m,n) be an isometric minimal immersion which
is strongly conformal. Then the Gauss map gy of ¢ is harmonic if and only if ¢ is

of l-type.
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