
TSUKUBA J. MATH.
Vol. 26 No. 1 (2002), 49–60

1-TYPE MINIMAL SURFACES IN COMPLEX

GRASSMANN MANIFOLDS AND ITS GAUSS MAP

By

Wu Bing-Ye

Abstract. In this paper we establish an isometric imbedding of a

complex Grassmann manifold Gðm; nÞ into a Euclidean space. Then

we use this isometric imbedding to study 1-type minimal surfaces in

Gðm; nÞ and its Gauss map, and obtain some results.

1. Introduction

A submanifold M (connected but not necessary compact) of an Euclidean N-

space EN is said to be of finite type if each component of its position vector f

can be written as a finite sum of eigenfunctions of the Laplacian D of M, that is,

f ¼ f0 þ f1 þ � � � þ fk;

where f0 is a constant vector (called the center of mass of M ) and Dft ¼ ltft,

t ¼ 1; 2; . . . ; k. If in particular all eigenvalues fl1; l2; . . . ; lkg are mutually dif-

ferent, then M is said to be of k-type (c.f. [9] for details).

In terms of finite-type submanifolds, a well-known theorem of Takahashi [6]

says that a compact submanifold M of Euclidean space is of 1-type if and only

if M lies in some hypersphere as a minimal submanifold, and such a submanifold

is always mass-symmetric, i.e., the center of mass of M is the center of the

hypersphere.

As is well-known, the complex projective space CPn can be isometrically

imbedded into a Euclidean space [1], and this isometric imbedding is basic to

studying spectral geometry of submanifolds in CPn. For related results one is

referred to see [10, 11]. In this paper, we shall establish an isometric imbedding of

a complex Grassmann manifold Gðm; nÞ into a Euclidean space. Then, we use this

isometric imbedding to study 1-type minimal surfaces in Gðm; nÞ. We also study
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the Gauss map for minimal surfaces in Gðm; nÞ and obtain some equivalent

conditions for their Gauss maps to be harmonic.

2. An Isometric Imbedding of Gðm; nÞ into Euclidean Space

We equip the complex n-space Cn with the standard Hermitian inner prod-

uct. The space of unitary bases can be identified with the unitary group UðnÞ. Let

ZA ðA ¼ 1; . . . ; nÞ be regarded as the projection from UðnÞ to Cn by mapping a

matrix Z to its Ath column vector ZA. Writing

dZA ¼
X
B

oABZB; ð2:1Þ

then oAB are the components of the Maurer-Cartan form on UðnÞ, and they

satisfy

oAB þ oBA ¼ 0: ð2:2Þ

Here and in the following we use the following ranges of indices:

1aA;B; . . .a n; 1a a; b; . . .am; mþ 1a i; j; . . .a n:

Taking the exterior derivative of (2.1), we get

doAB ¼
X
C

oAC5oCB: ð2:3Þ

All elements of the complex Grassmann manifold Gðm; nÞ can be defined

by the multivector Z15 � � �5Zm for any Z A UðnÞ up to a factor. The vectors

Za and their orthogonal vectors Zi are defined up to a transformation of

UðmÞ and Uðn�mÞ, respectively, so that Gðm; nÞ becomes a symmetric space

UðnÞ=ðUðmÞ �Uðn�mÞÞ ¼ f½Z� jZ A UðnÞg [2]. In particular, the form

ds2 ¼
X
a; i

oaioai ð2:4Þ

is a positive Hermitian form on the Lie subspace for UðnÞ=UðmÞ �Uðn�mÞ,
and defines the canonical Kaehler metric on Gðm; nÞ. Let HMðnÞ ¼
fF A glðn;CÞ : F t ¼ Fg be the set of all Hermitian n� n-matrices. We define an

inner product h� ; �i on the vector space HMðnÞ (and its complexification glðn;CÞ)
by

hF1;F2i ¼ 1

2
tr F1F

t
2; F1;F2 A HMðnÞ ðor glðn;CÞÞ:

Then HMðnÞ becomes the Euclidean space Rn2
. We can define a map f from
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Gðm; nÞ to HMðnÞ by

f ð½Z�Þ ¼ Z
Im 0

0 0

� �
Zt ¼

X
a

ZaZ
t
a

for Z A UðnÞ, where Im is the identity m�m-matrix.

Lemma 2.1. The map f : Gðm; nÞ ! HMðnÞ defined as above is an isometric

imbedding, and that f ðGðm; nÞÞ ¼ fF A HMðnÞ : F 2 ¼ F ; tr F ¼ mg.

Proof. It is obvious that f ðGðm; nÞÞH fF A HMðnÞ : F 2 ¼ F ; tr F ¼ mg.

Let F A HMðnÞ such that F 2 ¼ F and tr F ¼ m. Then the eigenvalues of F are

1 or 0, and consequently there exists P A UðnÞ such that

F ¼ P
Im 0

0 0

� �
Pt: ð2:5Þ

This implies that f ðGðm; nÞÞI fF A HMðnÞ : F 2 ¼ F ; tr F ¼ mg. By virtue of

(2.1) and (2.2) we have

df ¼
X
a; i

ðoaiZiZ
t
a þ oaiZaZ

t
i Þ; ð2:6Þ

from which we see that the metric on Gðm; nÞ induced from that on HMðnÞ by

f is

hdf ; df i ¼ 1

2
trðdf � df Þ ¼

X
a; i

oaioai:

This together with (2.4) implies that f is isometric. So the lemma is proved.

Now we identify Gðm; nÞ with f ðGðm; nÞÞHHMðnÞ. In this point of view,

we have the following lemma which can be verified similarly as in [1].

Lemma 2.2. Let F A Gðm; nÞ, then

TF ðGðm; nÞÞ ¼ fX A HMðnÞ : XF þ FX ¼ Xg;

T?
F ðGðm; nÞÞ ¼ fN A HMðnÞ : NF ¼ FNg;

sðX ;Y Þ ¼ ðXY þ YX ÞðI � 2F Þ; X ;Y A TF ðGðm; nÞÞ;

where s is the second fundamental form of Gðm; nÞ in HMðnÞ, and I ¼ In.

For any Z A UðnÞ, f
ffiffiffi
2

p
ZAZ

t
Bg gives a unitary basis of ðglðn:CÞ; h� ; �iÞGCn2

,

and fZiZ
t
a;ZaZ

t
i g spans the complexification of TFGðm; nÞ, where F ¼ ½Z� A
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Gðm; nÞ. Set Eai ¼ ZiZ
t
a þ ZaZ

t
i and Ea �i � ¼

ffiffiffiffiffiffiffi
�1

p
ðZiZ

t
a � ZaZ

t
i Þ, then fEai;Ea �i �g

forms an orthonormal basis of TF ðGðm; nÞÞ. The complex structure J on Gðm; nÞ
is given by

JEai ¼ Ea�i � ; JEa �i � ¼ �Eai:

By use of Lemma 2.2, a direct computation shows that the mean curvature vector

field H of Gðm; nÞ in HMðnÞ is given by, at F A Gðm; nÞ,

HF ¼ 1

2mðn�mÞ
X
a; i

ðsðEai;EaiÞ þ sðEa�i � ;Ea �i � ÞÞ ¼
2n

mðn�mÞ
m

n
I � F

� �
: ð2:7Þ

The following lemma can be shown similarly as in [1].

Lemma 2.3. (a) For any X A TF ðGðm; nÞÞ, JX ¼
ffiffiffiffiffiffiffi
�1

p
ðI � 2F ÞX .

(b) sðJX ; JY Þ ¼ sðX ;YÞ, �‘‘s ¼ 0, where X ;Y A TF ðGðm; nÞÞ, and �‘‘ is the

Levi-Civita connection of Gðm; nÞ.
(c) Gðm; nÞ is a minimal submanifold of a hypersphere in HMðnÞ, whose centre

is
m

n
I and whose radius is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðn�mÞ=2n

p
.

3. 1-Type Minimal Surfaces in Gðm; nÞ

Let M be a Riemann surface with the metric ds2
M ¼ jj, where j is the

complex-valued 1-form defined on M. The structure equations on M are given by

dj ¼ �
ffiffiffiffiffiffiffi
�1

p
r5j; dr ¼ �

ffiffiffiffiffiffiffi
�1

p

2
Kj5j; ð3:1Þ

where r is the real-valued connection 1-form of ds2
M , and K is the Gaussian

curvature of ds2
M . Let f : M ! Gðm; nÞ be a smooth map, and put

f�ðoaiÞ ¼ aaijþ baij: ð3:2Þ

Taking the exterior derivative of (3.2) and making use of (2.1) and (2.3), it is

easy to see that there exist locally defined complex-valued functions pai, qai and

rai such that (see, for instance, [2])

paijþ qaij ¼ Daai :¼ daai �
X
b

abioab þ
X
j

aajoji �
ffiffiffiffiffiffiffi
�1

p
aair;

qaijþ raij ¼ Dbai :¼ dbai �
X
b

bbioab þ
X
j

bajoji þ
ffiffiffiffiffiffiffi
�1

p
bair: ð3:3Þ
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In terms of matrix notation, we can rewrite (3.3) as

PjþQj ¼ dA� f11Aþ Af22 �
ffiffiffiffiffiffiffi
�1

p
Ar;

Qjþ Rj ¼ dB� f11Bþ Bf22 þ
ffiffiffiffiffiffiffi
�1

p
Br; ð3:4Þ

where A ¼ ðaaiÞ, B ¼ ðbaiÞ, P ¼ ðpaiÞ, Q ¼ ðqaiÞ, R ¼ ðraiÞ, f11 ¼ ðf�oabÞ and

f22 ¼ ðf�oijÞ. It is known that f is harmonic if and only if Q ¼ 0 (see [2]). f is

an isometric immersion if and only if

trðABtÞ ¼ 0; trðAAt þ BBtÞ ¼ 1: ð3:5Þ

If f is an isometric immersion, then

trðAAtÞ ¼ cos2 a

2
; trðBBtÞ ¼ sin2 a

2
; ð3:6Þ

where a is the Kaehler angle of f (see [3, 4]). We say that f is totally real if

a ¼ p=2, and f is strongly conformal if ABt ¼ 0 (see [8]).

Let D be the Laplace-Beltrami operator on M. We consider f : M !
Gðm; nÞHHMðnÞ to be the map to the Euclidean space. If there exist a constant

l > 0 and a constant matrix T A HMðnÞ such that

Df ¼ lðf� TÞ; ð3:7Þ

then f is said to be of 1-type. In particular, when T ¼ ðm=nÞI , f is said to be

mass-symmetric 1-type. We now want to compute Df. From (2.6) and (3.2) we

have

df ¼
X
a; i

ðaaiZiZ
t
a þ baiZaZ

t
i Þjþ

X
a; i

ðbaiZiZ
t
a þ aaiZaZ

t
i Þj: ð3:8Þ

Then, combining (2.1), (3.2), (3.3) and (3.8) we get

1

4
Df ¼ �tr gD df ¼

X
a;b

ðAAt þ BBtÞbaZaZ
t
b

�
X
i; j

ðAtAþ BtBÞjiZiZ
t
j �

X
a; i

ðqaiZiZ
t
a þ qaiZaZ

t
i Þ: ð3:9Þ

If f is mass-symmetric 1-type, then there exists a constant l > 0 such that

Df ¼ l f�m

n
I

� �
: ð3:10Þ

It is clear from Lemma 2.2 that f; I A T?
f ðGðm; nÞÞ, which together with (3.10)

yields that Df A T?
f ðGðm; nÞÞ. Therefore, from (3.9) we see that qai ¼ 0, i.e., f is
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harmonic. The following theorem follows from (3.9), (3.10) combined with the

fact that
P

A ZAZ
t
A ¼ I .

Theorem 3.1. Let f : M ! Gðm; nÞ be a smooth map. f is mass-symmetric

1-type if and only if f is harmonic, and AAt þ BBt and AtAþ BtB are scalar

matrices.

For later use we write down the following lemma which can be shown

similarly as Theorem 3.1.

Lemma 3.2. Let f : M ! Gðm; nÞ be a smooth map. If there exist constants

l > 0 and a such that

Df ¼ lðf� aIÞ;

then a ¼ m=n, and consequently f is mass-symetric 1-type.

From now on we assume that f : M ! Gðm; nÞ is harmonic. Then (3.9) is

reduced to

1

4
Df ¼

X
a;b

ðAAt þ BBtÞbaZaZ
t
b �

X
i; j

ðAtAþ BtBÞjiZiZ
t
j : ð3:11Þ

We are now in a position to prove the main result of this section.

Theorem 3.3. Let f : M ! Gðm; nÞ be a harmonic map. f is of 1-type

if and only if f ¼ f0 l f1 l � � � l fs, where fp : M ! Gðmp; npÞHHMðnpÞ
ðp ¼ 1; . . . ; sÞ are mass-symmetric 1-type with the same eigenvalue, f0 is a constant

matrix in HMðn0Þ with f2
0 ¼ f0, and that

Ps
p¼1 mp þ tr f0 ¼ m,

Ps
p¼0 np ¼ n. Here

mp; np ðp ¼ 1; . . . ; sÞ are positive integers, and n0 is a non-negative integer.

Proof. The su‰ciency is obvious. So we need only to prove the necessity.

If f is of 1-type, then there are a constant l > 0 and a constant matrix T such

that (3.7) holds. Without loss of generality, we can assume that T is diagonal

(otherwise we can use an isometry of Gðm; nÞ of the type F 7! PFPt, where P is

in UðnÞ). Suppose that

T ¼
a1In1

0

. .
.

0 as 0Ins 0

0
BB@

1
CCA; ð3:12Þ
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where a1; . . . ; as 0 A R are di¤erent from each other and n1 þ � � � þ ns 0 ¼ n.

From (3.11) we see that Df A T?
f ðGðm; nÞÞ, which together with (3.7) yields

T A T?
f ðGðm; nÞÞ. Therefore fT ¼ Tf at any point in M, and hence we have the

decomposition

f ¼

0
BB@

f1 0

. .
.

0 fs 0

1
CCA; ð3:13Þ

where fp : M ! HMðnpÞ, f2
p ¼ fp, and putting tr fp ¼ mp, then mp A Z,

m1 þ � � � þms 0 ¼ m. So by (3.7) we get

Dfp ¼ lðfp � apInpÞ ðp ¼ 1; . . . ; s 0Þ: ð3:14Þ

It is clear from (3.13) and (3.14) that fp ¼ 0 when mp ¼ 0, while fp ¼ Imp
when

mp ¼ np. Now we consider the case np > mp > 0. In this situation from (3.13)

we see that fp defines a map fp : M ! Gðmp; npÞ, and which together with (3.14)

and Lemma 3.2 yields ap ¼ mp=np. Thus fp : M ! Gðmp; npÞ is mass-symmetric

1-type with eigenvalue l. Now the necessity follows easily.

Theorem 3.4. Let M be a compact oriented Riemannian 2-manifold, and

f : M ! Gðm; nÞ an isometric minimal immersion. Then the first eigenvalue l1 of

the Laplace-Beltrami operator of M satisfies

l1 a 4

ð
M

½trðAAt þ BBtÞ2 þ trðAtAþ BtBÞ2�=AreaðMÞ;

and the equality holds if and only if f is of 1-type.

Proof. By (3.11) and f ¼
P

a ZaZ
t
a, a direct computation shows that

hDf; fi ¼ 1

2
trðDf � fÞ ¼ 2;

hDf;Dfi ¼ 8 trðAAt þ BBtÞ2 þ 8 trðAtAþ BtBÞ2: ð3:15Þ

Substituting (3.15) into the inequality (see [5])

ð
M

hDf;Dfi� l1

ð
M

hDf; fib 0

we can obtain the desired inequality. From [5] we see that the equality holds if

and only if f is of 1-type.
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4. The Gauss Map

Let f : M ! Gðm; nÞ be an isometric minimal immersion from a Riemann

surface with the metric ds2
M . Regarding f as the map to Euclidean space

HMðnÞGRn2
, we can define the Gauss map gf : M ! G2;n2 of f, where G2;n2 is

the real Grassmann manifold and the 2-plane gfðxÞ at each point x A M parallels

the tangent plane of fðMÞ in HMðnÞ at the point fðxÞ. By (3.11), the mean

curvature vector H of the isometric immersion f : M ! HMðnÞ is given by

H ¼ � 1

2
Df ¼ �2

X
a;b

ðAAt þ BBtÞbaZaZ
t
b þ 2

X
i; j

ðAtAþ BtBÞjiZiZ
t
j : ð4:1Þ

By (2.1), (3.2) and (3.4), the covariant derivative DH ¼ ðD 0HÞjþ ðD 00HÞj of H

is given by

D 0H ¼ �2
X
a;b

ðPAt þ BRtÞbaZaZ
t
b þ 2

X
i; j

ðAtPþ RtBÞjiZiZ
t
j

� 2
X
a; i

ð2AAtAþ ABtBþ BBtAÞaiZiZ
t
a

� 2
X
a; i

ð2BBtBþ AAtBþ BAtAÞaiZaZ
t
i : ð4:2Þ

We denote by T?fðMÞ the normal space of fðMÞ in HMðnÞ. If gf is harmonic,

then by Ruh-Vilms’ theorem [7], the projection of DH on T?fðMÞ vanishes.

Therefore, from (4.2) we get

PAt þ BRt ¼ 0; AtPþ RtB ¼ 0;

X
a; i

ð2AAtAþ ABtBþ BBtAÞaiðZiZ
t
aÞ

?

þ
X
a; i

ð2BBtBþ AAtBþ BAtAÞaiðZaZ
t
i Þ

? ¼ 0; ð4:3Þ

where ðZiZ
t
aÞ

? and ðZaZ
t
i Þ

? denote, respectively, the projection of ZiZ
t
a and

ZaZ
t
i on the complexification of T?fðMÞ. From (3.4) and (4.3) we have

dðAAt þ BBtÞ � f11ðAAt þ BBtÞ þ ðAAt þ BBtÞf11 ¼ 0;

dðAtAþ BtBÞ � f22ðAtAþ BtBÞ þ ðAtAþ BtBÞf22 ¼ 0: ð4:4Þ
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We can choose Z1; . . . ;Zn suitably such that AAt þ BBt and AtAþ BtB are

diagonal. Put

AAt þ BBt ¼

0
BB@

m1

. .
.

mm

1
CCA; AtAþ BtB ¼

0
BB@

mmþ1

. .
.

mn

1
CCA: ð4:5Þ

Then from (4.4) it is clear that m1; . . . ; mn are constant, and that f�oab ¼ 0 when

ma 0 mb, while f�oij ¼ 0 when mi 0 mj. By virtue of (2.6) and (3.2) we get

df ¼
X
a; i

ðaaiZiZ
t
a þ baiZaZ

t
i Þjþ

X
a; i

ðbaiZiZ
t
a þ aaiZaZ

t
i Þj; ð4:6Þ

from which we can calculate out that

ðZiZ
t
aÞ

? ¼ ZiZ
t
a �

X
b; j

ðaaiabj þ baibbjÞZjZ
t
b �

X
b; j

ðaaibbj þ baiabjÞZbZ
t
j ;

ðZaZ
t
i Þ

? ¼ ZaZ
t
i �

X
b; j

ðaaibbj þ baiabjÞZjZ
t
b �

X
b; j

ðaaiabj þ baibbjÞZbZ
t
j : ð4:7Þ

Substituting (4.7) into the last equation in (4.3) we have

0 ¼ AðAtAþ BtBÞ þ ðAAt þ BBtÞA� 4 tr½ðAAt þ BBtÞABt�B

� ½trðAAt þ BBtÞ2 þ trðAtAþ BtBÞ2�A;

0 ¼ BðAtAþ BtBÞ þ ðAAt þ BBtÞB� 4 tr½ðAAt þ BBtÞBAt�A

� ½trðAAt þ BBtÞ2 þ trðAtAþ BtBÞ2�B: ð4:8Þ

(4.5) and (4.8) yields

aaiðma þ miÞ ¼ xaai þ ybai;

baiðma þ miÞ ¼ xbai þ yaai; ð4:9Þ

where x ¼ m2
1 þ � � � þ m2

n , y ¼ 4 tr½ðAAt þ BBtÞABt�. From (4.9) we get yjbaij2 ¼
yjaaij2, so if y0 0, we must have jaaij ¼ jbaij for any a, i, and consequently, f is

totally real. We now assume that f is not totally real, then y ¼ 0, which together

with (4.9) implies that either aai ¼ bai ¼ 0 or ma þ mi ¼ x. We claim that for

ma0
0 0, there exists i0 such that ma0

þ mi0 ¼ x. Otherwise, aa0i ¼ ba0i ¼ 0, so that

ma0
¼

P
iðjaa0ij

2 þ jba0ij
2Þ ¼ 0, which is a contradiction. Similarly, for mi0 0 0,
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there exists a0 such that ma0
þ mi0 ¼ x. Hence we can assume that

AAt þ BBt ¼

a1Im1
0

. .
.

asIms

0 0m0

0
BBBB@

1
CCCCA;

AtAþ BtB ¼

b1Il1 0

. .
.

bsIls
0 0l0

0
BBBB@

1
CCCCA; ð4:10Þ

where a1; . . . ; as (resp. b1; . . . ; bs) are nonzero constants di¤erent from each other

and satisfying ap þ bp ¼ x ðp ¼ 1; . . . ; sÞ, and 0m0
is the m0 �m0-zero matrix. We

remark that
Ps

p¼0 mp ¼ m,
Ps

p¼0 lp ¼ n�m, and m0 and l0 may equal to zero. In

this situation, the matrices A, B can be written as

A ¼

A1

. .
.

As

0

0
BBBB@

1
CCCCA; B ¼

B1

. .
.

Bs

0

0
BBBB@

1
CCCCA;

where Ap, Bp are ðmp � lpÞ-matrices, and ApA
t
p þ BpB

t
p ¼ apImp

, At
pAp þ Bt

pBp ¼
bpIlp , p ¼ 1; . . . ; s. Put np ¼ mp þ lp. First we consider the n1-dimensional sub-

space p1 defined by Z15 � � �5Zm1
5Zmþ15 � � �5Zmþl1 of Cn. Obviously it is a

constant subspace of Cn and Z15 � � �5Zm1
defines a m1-dimensional subspace of

p1. We may consider p1 as Cn1 . Then we can define a map f1 : M ! Gðm1; n1ÞH
HMðn1Þ, which A- and B-matrices coincide with A1 and B1 respectively. So a

similar computation as in (3.11) shows that

1

4
Df1 ¼ ða1 þ b1Þf1 � b1In1

¼ x f1 �
m1

n1
In1

� �
;

which implies that f1 is mass-symmetric 1-type with eigenvalue 4x. Similarly we

can define f0; f2; . . . ; fs so that f ¼ f0 l f1 l � � �l fs, where f0 is a constant

matrix in HMðn0Þ with f2
0 ¼ f0, and fp : M ! Gðmp; npÞ is mass-symmetric

1-type with eigenvalue 4x, p ¼ 1; . . . ; s. Therefore, f is of 1-type.

Conversely, if f is of 1-type, from Theorems 3.1 and 3.3, we have the

decomposition f ¼ f0 l f1 l � � �l fs and (4.10). Here each fp ðp ¼ 1; . . . ; sÞ is a

map to Gðmp; npÞHHMðnpÞ and satisfying that Dfp ¼ lðfp � cpIpÞ for a constant
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l ¼ 4ðap þ bpÞ and cp ¼ mp=np ¼ bp=l. We remark that l is independent of p,

and apmp ¼ bplp for every p. Then we obtain

x :¼ tr½ðAAt þ BBtÞ2 þ ðAtAþ BtBÞ2� ¼
Xs

p¼1

ðmpa
2
p þ lpb

2
pÞ

¼ l

4

Xs

p¼1

mpap ¼
l

4
trðAAt þ BBtÞ ¼ l

4
: ð4:11Þ

Assume y ¼ 0, then (4.11) implies that the equation (4.9) and hence the

last equation in (4.3) holds. The first two equations in (4.3) follow from

dðAAt þ BBtÞ ¼ 0 and dðAtAþ BtBÞ ¼ 0. Consequently gf is harmonic. So we

have the following

Theorem 4.1. Let f : M ! Gðm; nÞ be an isometric minimal immersion which

is not totally real. Then the Gauss map gf of f is harmonic if and only if f is of

1-type and tr½ðAAt þ BBtÞABt� ¼ 0.

Recall that f is said to be strongly conformal if ABt ¼ 0. The following

theorem can be shown similarly.

Theorem 4.2. Let f : M ! Gðm; nÞ be an isometric minimal immersion which

is strongly conformal. Then the Gauss map gf of f is harmonic if and only if f is

of 1-type.
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