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TOPOLOGICAL LATTICES Ck(X) AND CP{X)

EMBEDDINGS AND ISOMORPHISMS

By

ToshijiTerada

Abstract. For a Tychonoff space X, the topological lattices Ck(X)

and CP(X) of all real-valued continuous functions on X endowed

respectively with the compact-open topology and the topology of

pointwise convergence are studied.It is proved that Ck(X) and Q(F)

are isomorphic if and only if CP(X) and CP(X) are isomorphic if

and only if X and Y are homeomorphic. It is also shown that CP(Y)

is embedded in CP(X) as a topological sublatticeif and only if Y is

a continuous image of a cozero-set of X.

1. Introduction

All spaces considered here are Tychonoff topological spaces. For a space X,

the set of all real-valued continuous functions on X is denoted by C(X). The

subset of C(X) consisting of bounded functions is denoted by C*(X). These sets

can be regarded as lattices with respect to the order: / < g if and only if

f(x) < g(x) at every point xeX. Ring structures on C{X) and C*{X) are also

defined as usual and have been studied extensively.In case topological spaces are

assumed to be compact, the following are famous.

Kaplansky Theorem [4]. For compact spaces X and Y, if there is a lattice

isomorphism between C(X) and C(Y), then X and Y are homeomorphic.

Gelfand-Kolmogoroff Theorem [2]. For compact spaces X and Y, if

thereis a ring isomorphism between C{X) and C{Y), then X and Y are

homeomorphic.

The Gelfand-Kolmogoroff theorem is considered as a corollary of the

Kaplansky theorem since every ring isomorphism between function spaces is a
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latticeisomorphism. It is well known that C(X) and C(vX) are ring isomorphic

for every space X, where vX is the Hewitt realcompactiflcation of X [3].So the

Kaplansky theorem and the Gelfand-Kolmogoroff theorem can not be uncon-

ditionallyextended to the class of Tychonoff spaces. However if some topological

structure is added to C{X), then the topological ring C(X) happens to char-

acterize the topology of X. The space C(X) with the topology of pointwise

convergence is denoted by CP(X). The space Ck(X) is the space C(X) with the

compact-open topology. The following are known.

Nagata Theorem [6]. If CP(X) and CP(Y) are isomorphic as topological

rings,then Tychonoff spaces X and Y are homeomorphic.

Morris-Wulbert Theorem [5]. If Q(X) and Ck{Y) are isomorphic as

topologicalalgebras,then Tychonoff spaces X and Y are homeomorphic.

It is also well-known that there are non-homeomorphic spaces X and Y such

that CP(X) and CP(Y) (or Ck{X) and Ck{Y)) are linearly homeomorphic (see

[1]).Two topological lattices are called isomorphic if there exists a lattice iso-

morphism which is also a homeomorphism between these topological lattices.As

mentioned above, every ring isomorphism between function spaces is a lattice

isomorphism. And CP(X) and Ck(X) are topological latticesin the sense that the

operations v and a are continuous. Hence the following question arises

naturally:

Are Xand Yhomeomorphic if Ck{X) and Ck{Y) are isomorphic as topological

lattices?

The same question is considered for function spaces with the topology of

pointwise convergence. Notice that every order isomorphism between function

spaces must be a latticeisomorphism. Hence, in order to see that Ck{X) and

Ck(Y) are isomorphic as topological lattices,it sufficesto show that there is an

order-isomorphic homeomorphism between Ck{X) and Ck(Y). For Tychonoff

spaces X and Y, we can show the following.

Theorem 1. If topologicallattices Ck{X) and Ck(Y) are isomorphic, then X

and Y are homeomorphic.

Theorem 2. If topologicallatticesC£(X) and C£(Y) are isomorphic, then X

and Y are homeomorphic.
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Theorem 3. If topologicallattices CP{X) and CP(Y) are isomorphic, then X

and Y are homeomorphic.

Theorem 4. If topologicallattices C* (X) and C*(Y) are isomorphic, then X

and Y are homeomorphic.

These theorems are generalizations of the Nagata theorem or the Morris-

Wulbert theorem, but not generalizations of the Kaplansky theorem. In order

to generalize the Kaplansky theorem to the class of Tychonoff spaces, a new

topology on C(X) is introduced. This idea is based on the following: In the

Kaplansky theorem, the latticesC(X) and C{ Y) can be thought of as topological

lattices with discrete topologies. Further the following more general question is

considered:

What is the space Y whose Q(F) can be embedded in Ck(X) as a topological

sublattice?

For this question, it does not seem that such a space Y can be simply

characterized. However if we consider the topology of pointwise convergence

instead of the compact-open topology, then we have a simple characterization.

2. Topological-IatticeEmbeddings and Proofs

The essentialparts of the proofs of the above theorems can be concentrated

in the proof of the following theorem.

Theorem 5. There is a topological-latticeembedding <1>from Ck{Y) into

Ck(X) such that { >(/)(x) : / e C(Y)} is open in R for any x e X if and only if

there is a continuous map (j)from X onto Y such thatfor any compact subset K of

Y there exists a compact subset K' of X with MK') =) K.

Here, the topological-latticeembedding <1>: Q(F) ―>Ck{X) is a homeo-

morphic embedding which satisfies<J>(/vg) = O(/) v<X>(#) and <$>(fAg) = >(/)

a 3%) for any f,geC(Y).

A subset / of the latticeC( Y) is said to be a prime ideal (see [7],[8])if the

following conditions are satisfied:

1) if / e / and g < f, then g e I,

2) If f,gel, then fvgel,

3) if / a g e I, then f e I or gel,

4) 1*0, i* cm.
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Let y be an arbitrary point of Y. For any fixed real number r, the set

I<r = {f e C(Y) :f(y) < r}

is a prime ideal. In general, when a prime ideal / is given, / is said to be

associated with a point y0 in Y if / e /, g e C( Y) and giyn) < /(Jn) imply gel.

Proof of Theorem 5. If there is a continuous map <j>from X onto Y such

that for any compact subset K of Y there exists a compact subset K' of X with

(/>(K')zd K, then the canonical map <D : Ck(Y) -> Q(X) defined by O(/) = / o ^

is a topological-latticeembedding with { >(/)(x) : / e C(7)} = /? for any xe X.

We assume that there is a topological-latticeembeding <t>: Q(F) ―>Q(Z)

such that {O(/)(x) :/ e C(F)} is open in R for any xel. Since Ck(Y) is

connected, { >(/)(x) : f e C(Y)} must be a non-empty open interval (ax,bx) for

any xe X.

For any point j in F and any real number r, the prime ideal I<r defined as

above is an open subset of Ck(Y). Conversely,

(1) For any open prime ideal /in Q(F), there existsa unique point y0 of Y

such that / is associated with y0.

In fact,let / be an arbitrary element of /. Then there is a compact subset K

of Y and an e > 0 such that the canonical open set

</,*,£> = {geC(Y) : ＼g(y)-f(y)＼ <eVyeK}

is a subset of /.

a) There is a point yK in K which satisfies:if g e C(Y) and g(yK) < /(j/s:),

then gel.

Suppose that, for every point y in K, there exists gy$I such that gy{y) <

f(y). Let Gy = {ue Y : gy(u) < /(≪)}.then Gy is an open subset of Y containing

y. Since K is compact, there are points yx,..., yn e K such that K a Gyi U ･･･ U

Gyn. Let

h = gyiA ■■■Agyn.

Then /*^ / and /z|AT< f＼K. However, since (hv f)＼K = f＼K, the supremum h v/

must be a member of /. Hence it follows that h is a member of / from the

condition 1) of the prime ideal, which is a contradiction.

b) Such a point yK is uniquely determined.

Assume that yl and y2 be distinctpoints in K which satisfy the condition

of a). Then for any k e C(Y) we can take k＼,k2e C(Y) with the following

properties: k = k＼vki, k＼(y,)</(vi) and kiiy-,)< fly?)- This means that k＼,
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Jt2e I and hence k e I, which implies that C( Y) = I. This is a contradiction. By

the same argument, we obtain the following

c) The point yK does not depend on the choices of / and </, iC,£>.

Let y0 be the point uniquely determined above. Then itis easy to see that / is

associated with y0.

Now, we can define a map </>from X to Y as follows: Take an arbitrary

point x of X. For any real number a which satisfiesax < a < bx, let

J<a = {geC(Y):R(g)(x)<a}.

Then this set is an open prime ideal in CP(Y) since <J>is a topological-lattice

embedding. Hence a unique point y in Y, with which this open prime ideal is

associated, is determined.

Since two open prime ideals I＼and h are associated with the same point if

and only if I＼PI72 is a prime ideal,

(2) the point y does not depend on the choice of the value a.

This show that (f>{x)= y is well-defined.

(3) (j)is onto.

Let y be an arbitrary point of Y. Take a real number r and consider the

open prime ideal I<r = {/ e C{Y) : f(y) < r} in CP(Y). Then, since O(7<r) is

open in O(Q(y)), if we take a function / in I<r, then there is a compact subset

K' of X and an e > 0 such that

<a>(/),^/,fi>ncD(c(r))ca)(/^).

By the same argument as that in a) of (1),itis shown that there is a point jcin K'

with the following property: if g e C(Y) and <t>(g)(x)< <&(/)(*), then # e /_F<r.In

fact,for any point x e K', assume that there exists gx e C(Y) such that <$>(gx)(x)

< >(/)(x) and gx * /<. Let Gx = {i; X : O(fc)(w) < O(/)(i>)} for each x e *'.

Since A"' is compact, there exist xi,... ,xn e K' such that K' a GX[ U ･･･ U GXn.

Let

g = gXl a ･■･a^b.

Then ^ ^ 7<r and <$>{g)＼K'< <S>{f)＼K'.Since R(gv f)＼K' = R{f)＼K', gvf must

be in I<r and hence g e 7Jf. This is a contradiction. Let a = O(/)(x) and take the

open prime ideal /^a in CP(Y) denned as that one in c) of (1). Then, since

J^a a I<r, the open prime ideal J^" must be associated with y, which shows that

(j>(x)= y.

(4) (j>is continuous.

It sufficesto show that, for any closed subset F of Y and any point x e

X - (j)~l{F),there are g,he C(Y) which satisfy the following: <&(h)(x) > R(g)(x)



202 Toshiji Terada

and <b(h)＼<f>-l{F)<R(g)＼4-l{F). For xel-f'(F) let <j>(x)= y. Since {O(/)(x):

/g C(y)} = (ax,bx) is open, we can take a function g e C(F) and ae (ax,bx)

such that Q>(g)(x) < a. Then the open prime ideal J<a defined as above is

associated with y 4 F. Hence there is a function h in C(Y) which satisfies;h(u) <

g(u) for any ueF, and h is not a member of J^0. It follows that <&(h)(x) >

<X>(g)(x). We will show that <b(h)＼$~l(F) < R(g)＼(/>~l(F).Assume that there is a

point xq in </>~l(F)which satisfies <&(g)(xo) < >(/j)(xo)- Take a number r such

that O(g)(jco) < r < <X>(/2)(xo)-Then the open prime ideal jT^r contains g but does

not contain h. However, since this open prime ideal is associated with a point

</>(xo)in F and h((j>(xo)) < g(<j>(xo)),a contradiction is obtained.

(5) For any compact subset K of Y there is a compact subset K' of X such

that (f>{K') =3 A:.

We can assume that A is nonempty. Take an / e C( F) and e > 0. Then there

are a compact subset K' of X and a <S> 0 such that

<*(/), a:',(j> n *(c( 7)) c o≪/, a-,e≫.

It is proved that <j>{K')z> K. Assume that K is not a subset of ${K'). Then there

is a point x0 in ^(A") - </>~＼<f>{K')).For any point x' e K', let ax# = O(/)(jc;).

Since the open prime ideal ^flx' = {gf e C(Y) : O(gf)(x') < ax'} is associated with

^(x') and 4>(x')^<f>(xo), there exists gxieJ^ax' such that gfjc'(^(^o))^/(^(^o))+e-

Using the same argument as that in (3), it can be shown that there is a func-

tion g0 e C(Y) such that go(</>{xo)) > f(<fi(x0)) + e and <b(go)＼K' < O(/)|A"'. Since

^(jc0) e A", it follows that g0 $ </, A",e>. Let h = govf. Then O^A*' - a>(/)|^'

and /i(^(x0)) > f((/>(x0)) +s. It follows that <D(/*)e O(</, A≫) and h $ </, A",e>

are satisfied. This is a contradiction.

If >is a topological-latticeisomorphism from Q(F) onto Ck(X), then the

inverse of the continuous map (f>in the above proof must correspond to the

continuous map from Y onto X constracted similarly by using >-1 instead of <I>.

Hence it is shown that Theorem 1 is true.

Quite similarly we can prove the following.

Theorem 6. There is a topological-latticeembedding <i>from Cj£(Y) into

C£{X) such that {O (/)(*) : / e C*(Y)} is open in R for any x e X if and only if

there is a continuous map </>from X onto Y such thatfor any compact subset K of

Y there exists a compact subset K' of X with S(K') =>K.

In the proof of Theorem 5, if we replace compact sets with finitesets,then

analogous results are obtained for the function spaces with the topology of



Topological Lattices Ck(X) and CP{X) 203

pointwise convergence. Further, if {O(/)(x) : / e C( 7)} contains at least 2 values,

then the interior of this set is a non-empty open interval (ax,bx). Inquiring into

the proof of Theorem 5, we have the following.

Theorem 7. There is a topological-latticeembedding <E>from CP(Y) into

CP{X) such that {<S>{f){x): / e C(Y)} contains at least 2 values for any xe X if

and only if there is a continuous map d>from X onto Y.

Theorem 8. There is a topological-latticeembedding <I>from C*{Y) into

C*(X) such that { >(/)(x) :f e C*(Y)} contains at least 2 values for any xeX if

and only if there is a continuous map d> from X onto Y.

It has been already obvious that Theorem 2, 3 and 4 are true.

If we turn to look at above theorems, then the following problem arises:For

a space X, how can we characterize such a space Y whose Ck{Y) {or CP(Y)) is

embedded in Ck(X) (or CP(X)) as a topologicalsublatticelIn case Cp we have a

simple characterization of such a space Y. The following lemma is obvious.

Lemma. Let A be a topological sublattice of CP{X) and let Z = {x e X:

A(x)＼ > 2}, where A(x) = {f(x) : f e A} and || means the cardinality of a set.

Let r : CP{X) -> CP(Z) be the restrictionr(f) = f＼Z. Then r＼A: A -> r{A) is a

topological-latticeisomorphism.

Theorem 9. CP(Y) is embedded in CP{X) as a topological sublatticeif and

only if Y is a continuous image of a cozero-set of X.

Proof. For a cozero-set U of X, assume that there is a continuous map (f)

from U onto Y. Then there is a canonical embedding <& : CP(Y) -+ CP(U) defined

by <b(f)=fo(/> for any f e CP(Y). Let t be an order-preserving homeomor-

phism from the real line R onto the open interval (―1,1) such as {2/n)tan~l.

Then the map H : CP{Y) -> CP(U) defined by

H(f)(u) = t(R(f)(u))

is a topological-latticeembedding, where f e C(Y) and ue U. Further, we can

take a continuous map s : X -> [0,1] such that j-1(0) = A" - C/.Let ＼ : Q(F) -≫■

CP(X) be the map defined as follows: ＼(/)(*) = 0 if x e X - U and T(/)(x) -

s(x)H(f)(x) if xe U. Then itis not difficultto see that T is a topological-lattice

embedding.
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Conversely, let <E>: CP(Y) ―>CP{X) be a topological-latticeembedding. Let

F={xeX:＼{R(f)(x):feC(Y)}＼ = l}.

If F = 0, then we have already shown that Y is a continuous image of X in

Theorem 7. So we can assume that F ^ 0. Further, we can assume that O(0 y) =

0x, since &: CP(Y) ^ CP(X) defined by <&'(/) = O(/)-O(0r) is also a topol-

ogical-latticeembedding, where 0^ and RY are real-valued constant functions on

X and Y respectively with values 0. Hence it follows that O(/)(x) = 0 is satisfied

for any x e F and any / e C(Y).

(0) F is a zero-set.

For each integer /,let iy e C( F) be the real-valued constant function on Y

with the value z.It sufficesto show that

F=nWr)"1(0):i = 0,±l,±2,...}.

Assume that there is a point x in X ―F such that x R(iy)~l(0) for every

integer i. Then there exists a function g e C{Y) such that $>{g){x) ^ 0. Now, let

a=(l/2)O(gf)(x). Take

^ = {/eC(7):<D(/)(x)<fl}.

Then /^a is an open prime ideal in CP{Y). Hence there is a point j/eF such

that J^-a is associated with y. But this is a contradiction, since if a > 0 then

iY e /^a for all /, and if a < 0 then /> $ J<a for all /.

Let U = X ―F. Then there is a topological-latticeembedding of Cp(F) into

CP(U) by Lemma, which satisfiesthe condition of Theorem 7. Hence Y is a

continuous image of U.

It is obvious that the similartheorem is obtained for C*(X) and C*(Y).

Corollary 1. Let Xbe a Lindelofspace.If CP(Y) is embedded in CP(X) as

a topologicalsublattice,then Y is also Lindelof.

The following example show that topological-latticeembeddings can not be

replaced with topological,order-isomorphicembeddings in Theorem 5, 6, 7, 8.

Example. There exist spaces X and Y with the following properties:

1) There is an order-isomorphic, topological embedding <X> from Ck{Y)

(CP(Y)) into Ck{X) {CP{X)) such that {<&(/)(x) : / e C(Y)} = R for any x e X.

2) Y is not a continuous image of X.
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In fact, let X be the unit interval [0,1] and Y the two-points space {0,1}.

Then obviously there is no continuous map from X onto Y. The map > : Ck (Y)

―>■Cic(X), which satisfies the condition 1),is defined as follows: For / e C(Y) and

xe[0,l],

O(/)(x) = (l-x)/(0)+x/(l).

3. Generalizations of the Kaplansky Theorem

Let X be a space. For / e C(X) and a compact subset K of X, let

[/, jq = fa 6 c(JO:0|* = /W.

Then we can define the topology on C(X) generated by

{[/,*] :/eC(Jf),*ejr},

where Jf is the family of all compact subsets of X. This topology is called the

compact-discrete topology. The space C(X) with the compact-discrete topology is

denoted by Cd(X). The meaning of CJ(X) is obvious.

The compact-discrete topology is related to a topology on the power set of a

topological space. The power set P{X) is the set of all subsets of a space X. We

define the topology xK on P(X) as follows: For each pair A, B of disjoint compact

subsets of X, let

(A,B} = {YeP(X) :A c Y,Bf)Y = 0}.

Considering the family of all these subsets (A,B} as an open (sub-)base, we can

introduce a topology on P(X). This topology is called the compact-cocompact

topology.

Theorem 10. The topology zK is T＼ and zero-dimensional, and hence

Tychonoff.

Proof. Let G be an arbitrary point and take another point H in P(X). Then

there exists a point x in X such that (1) x e H and x $ G or (2) x e G and x <£H.

In case (1), // is an element of the basic open set <{x},0>, but G is not in

<{x},0>. If (2) is satisfied,then <0, {x}> is a neighborhood of i/ which does

not contain G. In order to show the zero-dimensionality, it sufficesto show that

every basic open set <^4,^> is closed. Let C <£(A,B}. Then there is a point x

in X such that either xe A＼C or x e BDC. Using the same argument above, it

is shown that <0, {x}> or <{x},0> is a neighborhood of C which does not

intersect with (A, By.
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Considering graphs of functions, the set C(X) can be thought of as a subset

of the power set P(X x R) of the product space X x R.

Theorem 11. The compact-discretetopology on C{X) coincideswith the

relativetopology of the compact-cocompact topology on P(X x R).

Proof. Let / be an arbitrarypoint in C(X). Any basic neighborhood

[/,K] of / with respect to the compact-discrete topology is equal to the

neighborhood <{(x,/(x)):xe^},0>nC(I) of/with respect to the relative

compact-cocompact topology. Conversely,for any basic neighborhood <v4,l?>n

C(X) of / with respect to the relativecompact-cocompact topology, the set

[/,nx(A) {Jnx(B)} is a neighborhood of /with respect to the compact-discrete

topology which is included in (A,B}, where nx is the natural projectionfrom

X x R onto X.

The following is easy.

Theorem 12. The space Cd(X) has the following properties:

1) Cd(X) is a zero-dimensional Tychonoff space.

2) Cd(X) is a topological ring.

3) Cd{X) is a topologicallattice.

4) Cd(X) is discreteif and only if X is compact.

As mentioned in Introduction, algebraic latticesare regarded as topological

latticeswith discrete topologies. So we can generalize the Kaplansky theorem as

follows:

Theorem 13. If topologicallatticesQ(X) and Cd(Y) are isomorphic, then X

and Y are homeomorphic.

Theorem 14. If topologicallatticesQ(X) and Q*(F) are isomorphic, then X

and Y are homeomorphic.

These theorems follow from the following,which can be proved similarlyas

Theorem 5.

Theorem 15. There is a topological-latticeembedding 3> from Q(F) into

Cd(X) such that {3>(/)(x) : / e C(Y)} is open in R for any x e X if and only if
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there is a continuous map <f>from X onto Y such thatfor any compact subset K of

Y there exists a compact subset K' of X with <b(K') 3 K.

Theorem 16. There is a topological-latticeembedding > from C£{Y) into

Q(X) such that{Q>(f){x) :/eC*(7)} is open in R for any xeX if and only if

thereis a continuous map (j)from X onto Y such thatfor any compact subset K of Y

there exists a compact subset K' of X with d>(K') 3 K.
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