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ON D-PARACOMPACT p- AND Z-SPACES

By

Norihito SHIMANE and Takemi Mizoxami

1. Imtroduction

All spaces are assumed to be 7 topological spaces and all mappings to be
continuous and onto. The letter N always denotes all positive integers and 7y the
topology of a space X.

As well known as Dowker’s Theorem, a 7»-space X is paracompact if and
only if for each open cover % of X there exists a #-mapping f of X onto a metric
space M, where a mapping f is called a %-mapping if there exists an open cover
v of M such that f~!(¥") < %. Taking into account that developable spaces is
one of the nicest generalizations of metric spaces, it is quite natural to substitute a
metric space M in the above with a developable space D in order to get a
generalization of both paracompact spaces and developable spaces.

DeriniTioN 1.1 [12]. A space X is called a D-paracompact if for each open
cover % of X there exists a #-mapping of X onto a developable spaces.

Pareek originally gave its inner characterization to D-paracompact spaces
[12]. Besides many inner characterizations are given by Brandenburg {1], Chaber
[6] and Mizokami [9]. As for the overview of D-paracompact spaces, refer to [2].
In this paper, we consider the mapping properties of D-paracompact spaces on
the classes of D-paracompact p-spaces and D-paracompact Z-spaces.

2. D-paracompact p-spaces
With respect to the mapping property of D-paracompact spaces, the fol-

lowing problem remains unsolved.

ProBLEM [1], [6]. Let f: X — Y be a perfect mapping of a D-paracompact
space onto a space Y. Then is Y D-paracompact?

Received January 13, 1997



380 Norihito SHIMANE and Takemi Mizokami

Let us note that D-paracompactness is preserved by neither of perfect
preimages and closed images. The former is due to [6, Example 3.3] and the latter
due to [9, Example 3]. But we have the following positive partial answers given
by Chaber [6] and by Mizokami [9]: Let ¥ be a class of spaces such that
% < {D-paracompact spaces}. Then € is closed under perfect images when % is
either of the class of D-paracompact p-spaces [6] of D-paracompact g-spaces [9].
According to his definition there [6], a space X is a D-paracompact p-space if and
only if for any open cover % of X there exists a perfect #-mapping of X onto a
Moore space, that is a regular developable space. Originally, p-spaces are defined
for completely regular spaces by Arhangelskii as follows: A completely regular
space X is a p-space if X has a sequence {#,|n € N} of open covers of X in X
such that (\{S(x,%,)|ne N} < X for each x € X. A few inner characterizations
are given by Burke [4], Burke and Stoltenberg [5] and Pareek [13]. But, as
observed in Remark and the part preceding to Theorem 3.16 in [8, p. 442], since
the Stone-Cech compactification fX can be changed by any compactification of
X, their discussions are applicable to regular spaces. In this sense, we consider
here p-spaces, strict p-spaces, Pareek’s p-spaces for regular spaces. Pareek gave
the definition of p-spaces in his paper and showed the equivalence of (iv) and (v)
below [12, Theorem 4.4]. But this was criticized to be based on a dubious lemma
by Mack [1974, Math. Reviews 47 (# 1034)]. Here, we can show the equivalence
by a different way.

THEOREM 2.1. For a regular space X, the following are equivalent:

(i) X is a D-paracompact wA-space.

(i) X is a D-paracompact p-space in the sense of Burke [4]. (Refer to [8,
Theorem 3.21]).

(ili) X is a D-paracompact strict p-space in the sense of Burke and Stoltenberg
[5]. (Refer to [8, Theorem 3.17]).

(iv) X is a D-paracompact p-space in the sense of Pareek [12, Definition 4.6).

(v) For any open cover U of X, there exists a perfect U-mapping of X onto a
Moore space.

(vi) X is a D-paracompact space and has a perfect mapping of X onto a Moore
space.

Proor. Since D-paracompact spaces are submetacompact, the arguments of
[8, Theorem 3.19 and 3.21] can apply to get the equivalence of (i), (ii) and (iii). If
we again note the remark in [8, p. 442], the discussion of [13] holds true for
regular spaces, so that we have the equivalence of (iv) and (iii). (iii) — (v): Let %
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be an open cover of X and let {%, : ne N} be a strict p-sequence for X satisfying
the following:

(1) Cx=({S(x,%,) :ne N} is compact.

(2) {S(x,%,) :ne N} is an open neighborhood base of Cy in X.

Since X is regular and D-paracompact, for some open cover ¥"; of X such
that 77| < 9, A%, there exists a ¥ 1-mapping f; of X onto a developable space
D,. Without loss of generality, we can assume that D; has a decreasing
development {7}, : n € N} such that f;!(s/11) < #"1. By regularity of X, there
exists an open cover ¥, of X such that

Yy < Gnfi i) nU.

Using D-paracompactness of X again, there exists a ¥">-mapping f, of X onto a
developable space D, which has a decreasing development {2, :n€ N} such
that f;!(o/21) < ¥2. Repeating this process, we can get sequences {7, :n€ N},
{lni:ieN}, {fu:neN} and {D,:ne N} satisfying the following:

(3) D, has a decreasing development {/n : k € N} such that f;'(&n) <
V.

(4) For each n, f, is a ¥,-mapping of X onto D,.

(5) ¥, is an open cover of X such that

i=1

n—1
Vu < GnA (/\f,.‘l(ﬂ,-,,)) AU forn > 2.

Let f=]]fi: X — [ID; be defined by f(x) = (fi(x));, x € X. Then it is easily
seen from (4) and (5) that fis a %-mapping of X onto a developable space D =
f(X) = []Dn. We show that f is a perfect mapping, and consequently D is a
Moore space. For each p e D, by virtue of (3) and (5) we have

f7Up) = (VS(x,%n),

where x € f~!(p). So, because of (1), f~!(p) is compact. To see the closedness of
£, it suffices to show that for each point p = (p;); € D and each open subset U of
X such that f~!(p) < U, there exists a neighborhood ¥ of p in D such that
fUV)<cU. Let

Cx'—_ms(xagn)v fo‘l(p).

n

We can easily observe by virtue of (1) that f(C,\U) is a compact subset of D
and p ¢ f(Cx\U). Take a neighborhood G of p in D such that
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k
G= (H S(Puys Zniiymy) X | [{De : 1 # ”(i)}> nbp
i=1

GNf(C\U) =0.

By virtue of (3), (4) and (5), we can find some n(0) € N such that

(6) fu0)(S(Pu0)s #no1)) N (C:x\U) = 0.
Set

0= X\(f,,z(;)(S(Pn(O), dn(())l))\U)

Then O is an open neighborhood of C,. By virtue of (2), there exists s € N such
that

(7) Cx = S(x,%;) < O.

Using all of (3) through (7), we can find some e N such that

V= (S(p,, ) < [[{Da:n#}) 0D

is an open neighborhood of p in D such that f~!(¥) < U. Hence f is a perfect
mapping. Since (vi) — (i) is trivial, we have completed the proof. O

Let us note that in most cases, D-paracompact p-spaces go parallel to
paracompact p-spaces. For example, the following theorem on making the space
Moore corresponds to the metrization theorem of paracompact p-spaces.

THEOREM 2.2. A regular D-paracompact p-space X is a Moore space if and
only if X has a Gs-diagonal.

PrOOF. Only if part is trivial. If part: Let {%,:ne N} be a sequence of
open covers of X such that ("), S(p,%,) = {p} for each point pe X. By the
above theorem, for each n there exists a perfect %,-mapping f, of X onto a
Moore space D,. Let f: X — [],D, be defined by

f(X) = (./;l(x))n, xeX.

Then easily we can observe that f is a homeomorphism of X onto f(X) < [], Dn.
Since Moore spaces have countably productive and hereditary properties, f (X) is
a Moore space. This completes the proof. O

Nagata characterized a paracompact p-space as a space which is embedded in
the closed subspace of the product of a metrizable space and a compact space



On D-paracompact p- and Z-spaces 383

[11]. But this type of characterization does not work for D-paracompact p-spaces
stated below:

THEOREM 2.3. A regular D-paracompact p-space is embedded in a closed
subspace of the product of a Moore space and a compact space. But the converse is
not true.

Proor. The former is straightforward from [8, Lemma 3.13] and Theorem
2.1. For the latter, it suffices to consider the product space of a Moore space S =
NU .« and a compact space Z = 4(X;) for which § x Z is not D-paracompact
[6, Example 3.3].

3. D-paracompact Z-spaces

As stated above, D-paracompact p-spaces and D-paracompact g-spaces are
preserved by perfect mappings. Both are Z-spaces in the sense of Nagami. So it is
quite natural to ask whether D-paracompact Z-spaces are preserved by perfect
mappings. In this section, we give the positive answer to it. Here, we use the
definition of X-spaces due to Michael, which is equivalent to the original one due
to Nagami.

DEerFINITION 3.1 [8, Definition 4.13]. A regular space X is called a (strong) Z-
space if X has a cover € by (resp. compact) countably compact subsets and has a
o-locally finite family & of closed subsets of X such that for C € ¢ and U € tx, if
Cc U, then Cc Fc U for some Fe#.

Since D-paracompact space is subparacompact, a D-paracompact Z-space is a
strong X-space. We state the terminology used in the proof. We call # a pair-
collection of a space X if 2 is a collection of ordered pairs P = (P, P;) of subsets
of X such that P; = P, and P;, P, are closed, open in X, respectively. We call 2
discrete, locally finite, o-discrete or a-locally finite in X if the family {P, : P e #}
is so in X, that is, each point p of X has a neighborhood in X intersecting P,
for at most one P € 2, and so forth. Let % be a family of open subsets of X.
Then we call that 2 is a pair-network for % in X if for each point p € X and
each Ued, if pe U, then pe Pyc P,c U for some P=(P,P;)e?. As
known already [7], a space X is developable if and only if there exists a g-discrete
pair-network for the topology tx of X. We prepare two lemmas for the main
theorem.
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LemMA 3.2. Let X be a subparacompact space and let & be a locally finite
Jamily of closed subsets of X and {U(F): F € #} its open expansion in X. Then
there exists a a-discrete pair-collection P of X such that for each point pe X and
each Fe #, if peF, then pe Py c P, <« U(F) for some P = (Py,P;) e 2.

ProoF. For each point p € X, take an open neighborhood V(p) of p in X
such that

V(D) e X\U{Fe# :p¢F}

and such that if pe () £, then
V(p) e ({U(F):peFe#F}.

By subparacompactness of X, there exists a o-discrete closed refinement 5# of
{V(p) :pe X}. For each Hes# with HN({J #) # 0, choose an open subset
W(H) of X such that

Hc W(H) < ({UF): FNH #¢§}.
Then
P ={(H,W(H)): He# with HN (| #) # 0}

is the required pair-collection of X. O

For brevity, in the next lemma we call that a space X satisfies the condition
(*) if for each discrete pair-collection {(F, U(F)): F € #} of X there exists a pair
V', #) of a family ¥ of subsets of X and a o-discrete pair-collection 2 of X
satisfying the following (1) and (2):

(1) ¥ ={V(F): Fe #} is an open expansion of & in X such that F c
V(F) « U(F) for each Fe &.

(2) For each point peX and each Fe# if pe V(F) then pe P c
P, c U(F) for some P = (P;,P;) e 2.

(We call the pair (¥",2) the (x)-pair for {(F,U(F)): Fe #}.)

LemMmA 3.3. Let X be a subparacompact space satisfying the condition (x).
Then X is D-paracompact.

Proor. By [1, Theorem 1, (iii)], it suffices to show that X is D-expandable,
that is, for each discrete pair-collection {(F,U(F)): Fe £} of X with FN
UF)=0if F#F and F, F' € %, there exists a “dissectable” family ¥ =
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{V(F):Fe %} of open subsets of X such that F c V(F) < U(F) for each
Fe%. To show the existence of such ¥°, by argument of the proof of
[1, Theorem 1, (ii) — (iii)], it suffices to find a g-discrete pair-network 2 for ¥ in
X. Thus we will construct such ¥~ and £ for a given discrete pair-collection
{(F,U(F)): Fe #} of X. First, by (x) there exists a (x)-pair V1, @) for
{(F,U(F)): F e #} satisfying (1) and (2):

(1) ¥1={Vi(F): Fe#} is an open expansion of & such that Fc
Vi(F) < U(F) for each Fe &#.

(2) @, is a g-discrete pair-collection of X such that for each p e X and each
Fe#, if pe V\(F), then pe Py « P, c U(F) for some P = (P1,P;) € Z1.
Write 2 = U{Q”l,, :ne N}, where each 2y, = {Py:0€ A1} is a discrete pair-
collection of X. By (), for each n there exists a (*)-pair

{Py € din}, Pond

for 2, satisfying the following (3) and (4):

(3) Py = P, © Py for each a € Ay,

(4) P, is a o-discrete pair-collection of X such that for each a e 4y, and
each pe X, if pe P.,, then pe Py c P, — Py, for some P = (Py, P2) € P
For each F e & set

Va(F) = U{P;2 cae | Ain Pu N V1(F) # 9 and Py U(F)}
n
and set
,@; = {(Pulyp;z) e UA},,}.

Then {V»(F): F e #} is an open expansion of # and 2| is a o-discrete pair-
collection of X such that for each pe X and each Fe %, if pe V|(F), then
pePcP,c Vo(F) for some P= (Py, P) € #|. Write each o-discrete pair-
collection %, as

Pon = | J{P2wm : me N},

where each Poum = {(Pu1, Pw2) : % € A2um} is a discrete pair-collection of X. For
each n, me N, by (x) there exists a (*)-pair

<{P;2 A€ A2nm},-@3nm>

for P.m satisfying the following (5) and (6):
(5) Py = Ply = Py, for each a € Aym.
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(6) P3pm is a o-discrete pair-collection of X such that for each « Azmm and
each Pe X, if pe P),, then pe Py = P, c P,, for some P = (P1, P2) € Papm.
Set

V3(F) = U{Ps s« € {4z : n,me N}, Py N Vy(F) # O and P,; = U(F)}
for each F e # and set
'@; = {(Pal’Pth) COHE U{Aan sn,m GN}}

Then {V3(F) : F € #} is an open expansion of .# satisfying the following (7) and
(8):

(7) F < Vi(F) c V3(F) < V3(F) c U(F) for each F e &#.

(8) 2, is a o-discrete pair-collection of X such that for each p€ X and each
Fe#, if peVy(F), then pe P; = P, = V3(F) for some P = (P, P,) e 2,
By repeating this process, we can construct a sequence {Va(F): Fe #} of open
expansion of # and a sequence {#, : ne N} of g-discrete pair-collections of X
satisfying the following (9) and (10):

9) FeVi(F) e Vo(F)c--- € Vo(F) < V1 (F) = --- < U(F) for each
Fe#.

(10) For each pe X and Fe &%, if pe V,(F), then pe P, c P, Vas1(F)
for some P = (Py,P,) € ..

Set

V(F)=J{Vu(F):ne N} foreach Fe #
and
2 = J{#, :neN}.

Then each V(F) is an open subset of X such that F c V(F) < U(F) and
obviously #’ is a o-discrete pair-network for {V'(F):Fe #} in X. This com-
pletes the proof. ]

For a closed mapping f: X — Y, we use the following notation: For each
open subset U of X, we write

[1(U) = Y\f(X\U),

which is open in Y.

THEOREM 3.4. Let f be a perfect mapping of a space X onto a space Y. If X
is a D-paracompact Z-space, then so is Y.
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Proor. By [10, Theorem 1.8], Y is a Z-space. Since subparacompactness is
preserved by perfect mappings, Y is subparacompact. Thus by Lemma 3.3, it
suffices to show that Y satisfies the condition (x). Let {(F,U(F)): Fe #} be a
discrete pair-collection of Y. We may assume that FNU(F') =0 for F, F'e #
with F # F'. Since X is D-paracompact, there exists a %-mapping g; of X onto a
developable space D), where

U = {f (UF): FeFIU{X\U [T (#)}.

Obviously there exists an open expansion {Vi(F):F e #} of f~!(#) in X such
that for each F e #

[YF) e i(F) < f7H(U(F))
and V,(F) =g7!(0) with O open in D;. For each Fe #,
Vi(F) =f(f*(ni(F)))
is an open subset of X such that
fTUF) e Vi(F) < Vi(F) = fH(U(F)).

Using the D-paracompactness of X, there exists a %»-mapping g of X onto a
developable space D,, where

U= {(Vi(F) : Fe FYU{X\U (&)}

Then there exists an open expansion {V>(F): F € #} of f~!(#) in X such that
for each Fe #

fHF) € Va(F) = i(F)

and V»(F) =g;'(0) with O open in D,. Let g: X — g(X) < Dy x D, be a
mapping defined by

g(x) = (91(x),ga2(x)) foreach x e X.

Obviously both ¥(F) and V,(F) are the inverse images of open subsets of
X' =g(X) for each Fe &. Since X’ is a developable space, there exists a
o-discrete pair-network 2’ for the topology of X’. Set

2 ={(g7'(P1),g'(P2)) : P=(P1,P) e Z'}.
and write newly

P ={(F,,V,):a€d,andne N}.
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where for each n, {F,:ae 4,} is a discrete family of closed subsets of X.
Obviously # satisfies the following (1):

(1) # is a pair-network for {V|(F),V,(F):Fe #} in X.

By the definition of a strong Z-space, Y has a cover ¢ by compact subsets and
has a o-locally finite family # = {H, : 1 € A} of closed subsets of ¥ such that:

(2) For each O ety and each Ce ¥, if C = O, then C < H; < O for some
AeA.

Without loss of generality, we can assume that s is closed under any finite
intersections. For each n, let 4, ={J{4}:i<n}. Then {F,:x e 4,} is locally
finite in X and 4, = A4,.;. For each n, let A, be the totality of finite subsets of 4,
and for each (6,4) e A, x A, (6,0') € Ay X A, n, me N, set

F(©@) = N{f(F,):aed},
f(6,2) = F(6) N H,,
w©) =f ({Vu: aed}),

W(s,8) = WE)Uw ().

For each n, me N let T(m,n) be the set of all combinations (J,4,n) €
Am x A x {n} such that

A,,(é],/l) = {aEAn :f(Fa)n(F(élv'l)\W(él)) # 0}

is finite. (T'(m,n) may be empty for some m, n.) For each combination (dy,4,n) €
T(m,n), let

A@B1,An) = {02 € Ay : 8y < An(1,4) and F(81,4) = W(31) U W(5,)}.

From the definition of T'(m,n), A(d1,4,n) is finite. For each &, € A(d1,4,n) with
(61,4,n) € T(m,n), m, ne N, construct an order pair of subsets of Y

P(61,4,62) = (P1(61,4,02), P2(61,4,62))

where
P(1,4,02) = F(61,4)
and
P5(01,4,82) = W(61,62).
Set

P(61,2,n) = {P(61,1,8,) : 02 € A(d1, A, m)}
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and
2 =J{2?©1,4,n) : (61,4,n) € T(m,n) and m,n e N}.

Then obviously 2 is a o-locally finite pair-collection of Y. We establish the
following claim:

CramM: For each pe Y and each Fe &#, if pef*(Va(F)), then pe Q1 <

0> < f*(Vi(F)) for some Q= (Q1,0) € 2.

Suppose p € f*(Va(F)). Then f~!(p) = V>(F). By the compactness of fp)
and by (1), there exists ng € N such that for each n > np there exists J, € A, such
that

fYp)NF, # 0 for each « €y,
FUp) & N{Va:aedn} = Va(F)

and &, < ,,1, which imply
p € F(6,) N W(bn), W (0n) = fH(Va(F)).

Take Ce% with pe C and let {H,;:ie N} be a decreasing sequence of
members of # containing C satisfying the following (3):

(3) For each O ey, if Ce O, then C < H); < O for some i.
In fact, such a sequence {H;} exists because of (2) and of the assumption on
#. We show the following (4):

(4) For each te N, there exists ip € N such that

(Onas Ali0), 2) € T(mo, ).

To show (4), assume the contrary, i.e., for some s € N, A(dn,, A({)) is infinite for
each i. Then, since {f(Fy):a€ 4,} is locally finite in ¥, we can choose a
sequence {o;:ie N} < 4, and a sequence {p;:i€ N} of points of ¥ such that

pie Y\{py,...,pi1} and
i€ f(F) U (F Gy A1)\ W (6))

and F,, # F, whenever i #j. By (3) {p: : i e N} has a cluster point in Y. But this
is a contradiction, because p; € f(F,,) for each i. This establishes (4). Since

C N (F(Gn) \ W (Os))

is a compact subset and is contained in f*(V)(F)), there exists my >no and
d1 € A,, such that

CN(F©Gn)\W (0m)) = W(61) = [*(Vi(F))-
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Using (4), there exists ij € N such that (5, A(i1),n1) € T(no,n;). By (3), we can
easily find & > i; such that

F(Onyy A(12)) = W (0o, 01).

Since {H,;)} is decreasing, it is obvious that ((5,,0,,1(i2),h1) € T(ny,n;). Recalling
the definition of 2(dy,,,A(i2),d1), we have

P € Pi(9n, A(i2),01) < Pa(dn, A(12),61) = f*(V1(F))

and P(6y,, A(i2),01) € 2. This establishes the validity of the claim. Using Lemma
3.3, we can conclude that Y is D-paracompact. This completes the proof. [J

Finally, we give a positive result to the mapping property of D-paracompact
spaces. To state it, we need the definition of f-spaces. Z-spaces and Moore spaces
are f-spaces [8, Theorem 7.8(i)].

DerNITION 3.5 [8, Definition 7.7]. A space X is called a B-space if there
exists a B-function g: N x X — tx such that

(i) xeg(n,x) for each ne N, xe X.

(i) If x € g(n, x,) for each ne N, then {x, :ne N} has a cluster point in X.

THEOREM 3.6. Let f: X — Y be a perfect mapping. If X is a D-paracompact
B-space with a Gs-diagonal, then Y is a D-paracompact f-space.

PrROOF. Since as easily checked f-spaces are preserved by perfect mappings,
Y has a B-function g: N x Y — 7y. To see that Y satisfies the condition (x) in
Lemma 3.3, let {(F,U(F)):F e %} be a discrete pair-collection. Without loss
of generality, we can assume that U(F)NF' =@ whenever F # F'. Since X is
subdevelopable [12, Proposition 5.1], in the sense of [3], there exists a one-to-one
%-mapping h of X onto a developable space D, where

U={f(UF):FeF}U{x\ (&)}

Then there exists a family ¥" = {V(F): F e #} of open subsets of X and a
o-locally finite pair-network

P ={(Fy,Vy):0€ Ay,ne N}

for ¥ Uh~!(zp) in X satisfying the following:
M) fUF) = V(F) < f7H(U(F)), Fe #.
(2) For each n, {F,: 0 € A,} is locally finite in X and 4, c A,,;.
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(3) For each pe X and Fe &, if p e V(F), then there exists a € 4,, ne N,
such that pe F, <« V, = V(F).
Let A, be the totality of finite subsets of 4, and for each s € A,, ke N, let

H(S,k) = {/(F) : a3\ U{a(k,») : y € K(9)},
K©) = (Sf(Fo) : eI\ f*(U{Va: 2 €8})

and
w©,k) =1 ({Va:aed}).

Then obviously H(d,k) =« W(d,k) for each 6 and k, and by virtue of (2),
{H(6,k) :0 € A,} is locally finite in Y. Construct the pair-collection of Y

2 ={(H(,k), W(6,k)) : 5 € A, k,n € N}.

Then we show that 2 is a o-locally finite pair-network for # = {W(F) : F e #}
in Y, where W(F) = f*(V(F)), F e #. It is trivial that 2 is o-locally finite in Y.
To see that 2 is a pair-network for #” in Y, let pe W(F), F € #. Then there
exists a sequence {d, : n >no} with J, € A, for each n > ny, satisfying for each
n 2 ny

P E W(On k), 06, <dny1 and
On={0€d,: F,Nf(p) #Pand V, = V(F)}.

In this case we have (\{K(6,):n=no}=0. For, if ge (N, K(3,), then ge
({f(F,) : «€d,} for each n, which implies

K1 (P) Nh(f~'(q)) # B,

but this is a contradiction to f~!(p)N f~!(g) = 0. Assume p ¢ H(5,,n) for each
n. Then p € g(n, p,) for some point p, € K(,). Since g is a f-function, {p,} has a
cluster point py, which must belong to (1), K(J,). But this is a contradiction to the
above. Hence we have

peic Q= W(F)
for some Q = (01, 02) € 2. This completes the proof. O
REMARK. (i) Y need not have a Gjs-diagonal. In fact, there exists a perfect

mapping of a disjoint topological sum of two Michael lines onto a space which
has no Gjs-diagonal [14].
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(i) This theorem is not a corollary to the result in [9] that if X is a perfect
image of a perfect D-paracompact space, then so is X because there exists a
compact subdevelopable space X but not perfect.
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