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Introduction

In [10], Kenmotsu proved that surfaces in the Euclidean 3-space E*® can be
represented by means of the mean curvature and the Gauss map. In [3] and [4],
we gave the Kenmotsu type representation formulas for surfaces in the hyperbolic
3-space (cf. [11]) and the Riemannian 3-sphere. For each Riemannian 3-space
form N* and a surface M? in N3, we can consider an adapted frame on M2 as a
map from M? to the isometry group Isom(N?3). The ‘Gauss map’ of M? to
8?(= SO(3)/S0O(2)) is defined from the ‘rotational part’ (ie., SO(3)-part) of the
adapted framing map. (For example, Isom(E?) = R® x SO(3).)

On the other hand, Nishikawa and the second author [8] proved the Lor-
entzian version of the Kenmotsu representation formula for spacelike surfaces in
the Minkowski 3-space L* (cf. [12]). Here Isom(L?) = R’ % S0y(1,2) and hence
the Gauss map is a map to the upper hyperboloid H? (= S0y(1,2)/S0(2)). In
this paper, we introduce the Kenmotsu type representation formula for spacelike
surfaces in the Lorentzian 3-space form of constant curvature 1, that is, the de
Sitter 3-space S;. A similar formula in the anti-de Sitter 3-space has been already
given in [6].

1. De Sitter 3-space S;

The de Sitter 3-space § 13 is defined as the semi-sphere in the Minkowski 4-
space L* of radius 1. As in [9] and [1], it is convenient to use the complex special
linear group SL(2;C), which is the double cover of SOy(1,3), as the group of
isometries of S;. Put
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Identify L* with the space Herm(2) = {x = xg€o + - - - + X3€3 | X0,...,X3 € R} of
7 %x 2 Hermitian matrices with the metric (x,x) = —detx. SL(2;C) acts iso-
metrically on L* by

g -x=gxg* (geSL(2;C),xeL?=Herm(2)).

Hence it acts on S’ isometrically and transitively. Then we can regard § 3 as the
symmetric space

§3 = SL(2; €©)/SU(1,1) = {gesg*|g € SL(2; )},

where SU(1,1) = {h e SL(2;C) |hesh* = e3}.

Divide SL(2;C) into three subsets G_, Gy, G according to the signature of
the indefinite Hermitian metric {g,87¢> = 821821 ~ €,,85, for the second row
complex vector g, = (g1, &) of g € SL(2; C). Then we can also divide § 3 which
is diffeomorphic to S? x R, into three components as follows:

S_ = {gesg’|lge G-} = {x € S7|x0 — x3 <OH= R?),
So = {gesg’|g € Go} = {x € §7 | x0 — x3 = 0}(=S' x R),
S, = {gesg’lg € G+ } = {x € ST | x0 — x3 > 0}(= RY).

Take a coordinate (y,, y;,¥,) on Sy defined by (yo,y1,32) = (1, X1,%2)/
|xo — x3|, the metric on S is written as ds?=(1/ y3)ds3, where dsi=
—dy} +dy? +dy3 is the Minkowski metric. We denote by RS; the upper half
space model (R3,ds?) of each Sy c S3.

The Gram-Schmidt procedure for row complex vectors of each matrix
g e SL(2;C) with respect to the indefinite Hermitian metric <-, '>Cf gives the
decomposition

(1.1) G.=5-SU(1,1) and G.=S-J-SU(L1),

where S is the Lie subgroup consisting of upper triangular matrices

(g 1§a> (a>0,leC).
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Then we can identify each component S_, S, with S, that is,
S_ = {sess™|se S}, 8§y ={-sess’|seS}.
Note that S(=Sz) is diffeomorphic to RS; under the map

RS} 3 (yo, 1, 2) — (\/g—o F(n +1\//\;_)l}_:2)/\/y_o> cs.

2. Normal Gauss Maps of Spacelike Surfaces in S13

Let f be a conformal immersion from a Riemann surface M into S}, whose
image is a spacelike surface in S13. We can choose an adapted framing & : M —
SL(2; C) of f locally (that is, on each contractible neighborhood) and uniquely
up to a right multiplication of U(1)-valued map. This implies that f = &e36™,
&egé&” is a unit normal vector field of f and &(e; — v/—1e)&* is a vector field of

type (1,0), where
V=10
e 0
Uul) = {( . e“/‘_19> ees‘}.

We define the normal Gauss map %: M — € := CU {0} by

& &1 5’12)

4 =——, where § =
En (éazl E»

It should be pointed out that the normal Gauss map % is globally defined on
M. On the open set U_ := f‘l(S,) (resp. Uy := f"(S+)) in M, the image of ¥
is contained in the unit open disk D := {ze C||z| <1} (resp. in C\D). Then
%(f71(Sy)) = §' = aD. We also remark that the union U_ U U, is an open dense
subset in M.

As mentioned in Introduction, the normal Gauss map ¢ of f is also obtained
from the ‘rotational part’ of the adapted framing & as follows: The upper and
lower hyperboloids H %_r in the linear space R’ are given by

HE_L = {X = xo€9 + x1€1 + x26; |det x = 1,sgn(xp) = +1}.

The subgroup SU(1,1) in SL(2;C) acts transitively on each hyperboloid Hi,
and then Hi = SU(1,1)/U(1). Decomposing &|,. : Uy — Gz corresponding to
the decomposition (1.1) of Gg, we obtain an SU(I,1)-valued map /4 and an
S-valued map &% (defined locally) on each Uxz:

(2.1) Ely. = Fh, &ly, =SIh.

By using 4, 93 : Uz — Hzi is determined as follows:
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G_ =heoh™, 9, = —eiheoh’e;.

We denote by P the stereographic projection of H iUHE from the south
pole —¢g € H?. Then the normal Gauss map % on Us is just Po %x:

Po¥% =p/q:U_— D, 7
Y = / R where & = (q {)
Po%,=q/p:U; — C\D, p 4

On each Uz, ¢ can be also interpreted geometrically as follows: Consider
Sly_ (resp. fly,) to be a conformal immersion into RS} = (Ri,dsz) and RS; to
be a conformally embedded domain Rf’r in the Minkowski 3-space L® = (R>,ds?).
Let N(z) be the future-pointing (resp. past-pointing) unit normal timelike vector
at each point f(z) in L*. Parallel translating N(z) to the origin in L°, then we
again obtain the normal Gauss map 4_ : U_ — Hi (resp. 9, : U, — H?) of f
on U_ (resp. U,).

Each & : Uz — S in (2.1) is a (local) framing map of f: M — §;, that is,
flu. =& and f|,; =~ 35", In the same way as in [3] (cf. [9]), we can
show that % satisfies the following differential equation (2.2) of first order by
means of (the lift # of) %.

Take an isothermal coordinate z and (1,0)-form ¢ on M such that the
induced metric f* ds*> = ¢ - ¢. Let B be the sl(2; C)-valued (1,0)-form on U_U U,
written locally as

B ( g 1 > _%h(el —V—=le))h*¢ on U_,
= w = - =
9 9 —3eih(er — vV—-lep)h*er¢ on Uy,

then B, e N(T*1OM|, ® 97'TI-OH%). We can write the differential equa-
tion for & by using f as follows:

(B+B")es+3les, B+ les on U-,

1
1 )2
(22) 7 dy_{%g(/fw*)%@[e_a:ﬂw*] on U.

We denote by H the mean curvature of f and by ® its Hopf differential. It then
follows from Proposition 6.1 in [1] combined with (2.2) that

frds? = 49|’ |dz|*
{A+1g)+HO -9y
o= 49:(9). dz - dz.

{1 +191) + H(1 - 19)}(1 - |91%)

Moreover, we obtain the following



Kenmotsu type representation formula 193

PROPOSITION 1. The normal Gauss map %: M — C of a spacelike surface
with mean curvature H in 8} satisfies

(23) (=g +19P) + HO - |91°)}%.: + 2{|9* + H(1 - |9]*)}9%.9:
= H.(1-|%")*%..

If we replace the ambient space S} by the de Sitter 3-space S3(c?) of constant

curvature ¢? (¢ > 0), then the above equation will change to

(1= 191 + 19°) + H( = [9°)}9.: + 2{c|9]* + H(1 - |9} 9%.9:
= H.(1-9)*)%:.

Putting ¢ =0 in it, we can obtain the generalized harmonic map equation for
Gauss maps of spacelike surfaces in L3 ([8]).

ProrosiTioN 2. For a CMC (constant mean curvature) H conformal im-
mersion f : M — S3(c?), the normal Gauss map % is a non-holomorphic harmonic
map from M to C equipped with the following metric e

;o 4)d¢*
(=P e+ 103 +HA =g}

hc,H |

ReMARK 1. (1) When |H| > ¢, k] restricted on the unit open disk D is
deformed to a hyperbolic metric 4|d¢|*/(|H|(1 — ||*)?) as ¢ goes to 0 for a fixed
nonzero H.

(2) When |H| < ¢, there exists a CMC H conformal immersion / from M to
the hyperbolic 3-space of constant curvature —c? such that the pair of / and f
forms a kind of Bonnet pair (cf. Appendix II in [3]). Then the normal Gauss
maps f and f satisfy the same harmonic map equation, up to the coordinate
change of a homothety in €. (For the study of the metric h; y and harmonic
maps to (D,h, ), see also [5].)

3. Kenmotsu Type Representation Formula in Si”

Conversely, we can show that (2.3) is the integrability condition for the
framing equation (2.2). We then obtain the following Kenmotsu type repre-
sentation formula in S;.
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THEOREM 3. Let M be a simply connected Riemann surface with a reference
point zo € M, and take an isothermal coordinate z on M. Give a smooth function H
on M. Let v: M — D be a non-holomorphic smooth map satisfying the equation
(2.3):

A+ D)+ HO =) 2+ HO = )

27 VV; = szz'-
11—y (1= y»? ’

Define a 1-form w on M as follows and assume that it is smooth on M:

29, e
{4 MY+ HO = W} = )

Put a Lie(S)-valued 1-form pu on M by

p= s pres sl £ ()

Ve

Then there exists uniquely a smooth map & : M — S such that ¥ (zo) = €9 and
S VdS =p Put f=Se3F", then f: M — S_c S13 is a conformal immersion
outside {w € M|w(w) = 0} with prescribed mean curvature H and the normal Gauss
map G =v.

ReMARK 2. If we regard the immersion f constructed in Theorem 3 as
an immersion f = (fy, f1,/2) : M — RS}, then f is given by the following path
integral:

fiz) = exp(ZRe J vw>, A2 +V1h(2) = J folew + 72@).

) Z0

REMARK 3. For a spacelike surface in S with CMC H of range |H| > 1
(resp. |H| = 1), we have obtained the Kenmotsu-Bryant type (resp. Weierstrass-
Bryant type (cf. [9])) representation formula by means of its adjusted Gauss map
[1], which is a non-holomorphic harmonic map (resp. holomorphic map) to the
hyperbolic disk (D, 4|d¢|>/(1 —|{|*)?). By a similar adjusting theory to the one in
[3], we can also deform the normal Gauss map to the adjusted Gauss map
through a one-parameter family of integrable differential equations of first order.

REMARK 4. It has been proved in [7] and [13] that any complete spacelike
surface in §; with CMC H of range |H| < 1 is totally umbilic. We also note that
any totally umbilic complete spacelike surface of range |H| < 1 is never contained
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Figure 1: Totally umbilic spacelike surfaces in RS} (=S_):|H|>1,|H|=1,|H| <1

in S_(<S3). (See the third example in Figure 1). Then any CMC H (|H| < 1)
spacelike surface in S_ is not complete.
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