ON THE BRAIDED STRUCTURES OF BICROSSPRODUCT HOPF ALGEBRAS*

By
Shuan-hong Wang

Abstract

In this paper we show that if $H \approx A$ is a bicrossproduct Hopf algebra then $(H \forall A, \sigma)$ is braided if and only if σ has a unique form: $\sigma(h \otimes a, g \otimes b)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \tau\left(a_{2}, g_{20}\right)$ such that β, ω, τ and α satisfy certain compatible conditions. The result is applied to a certain bicrossproduct of H and $H^{c o p}$, where H is a Hopf algebra with bijective antipode.

An appropriately general setting in which to view the basic constructions is that of a braided Hopf algebra. Braided Hopf algebras are known as dual quasitriangular, coquasitriangular Hopf algebras. They play the role of the dual of a quasitriangular Hopf algebra and include all of the standard, multiparameter, and nonstandard quantizations of semisimple algebraic groups. Let A and H be two Hopf algebras such that H acts on A, A coacts on H, and the smash product multiplication together the smash coproduct comulitiplication on $H \otimes A$ make this a Hopf algebra, called a bicrossproduct Hopf algebra and denoted by H 认 A see ref. [Maj4]. It is natural that we ask when $H \dot{\sim} A$ admits a braided structure, and what forms the braided structure σ of $H \xi A$ will take if $H \xi A$ admits a braided structure.

In this paper we give a positive answer to the question above. We find necessary and sufficient conditions for A and H such that their bicrossproduct is a braided Hopf algebra. The result is applied to a certain bicrossproduct of H and $H^{c o p}$, where H is a Hopf algebra with bijective antipode.

The paper is organized as follows. Section 1 contains a survey of known definitions and results for the bicrossproduct $H \approx A$ obtained by S . Majid in ref. [Maj4], which will serve as a backgroud for our results. We also introduce some new notions (see Definition 1.3-1.4 below).

[^0]In Section 2, we discuss the braided structures of $H \forall A$. We show that (H 欮 A, σ) is braided if and only if there exist some bilinear forms $\alpha: A \otimes A \rightarrow k$, $\omega: H \otimes A \rightarrow k, \tau: A \otimes H \rightarrow k$ and $\beta: H \otimes H \rightarrow k$, satisfying certain compatible conditions such that (A, α) is braided, (H, A, ω) is a dual ω-Hopf algebra pair, (A, H, τ) is an anti-skew compatible τ-Hopf algebra pair and (H, β) is a braidedlike Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$, where δ_{H} is a comodule structure map of H, and σ has a unique form:

$$
\sigma(h \otimes a, g \otimes b)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \tau\left(a_{2}, g_{20}\right)
$$

What we do in Section 3 is to give a braided structure over $H \dot{\psi} H^{c o p}$, where H is a Hopf algebra with bijective antipode.

1. Preliminaries

Throughout this paper, unless otherwise explicittly stated, k denotes an arbitrary field, $\otimes=\otimes_{k}$, and H is a Hopf algebra over the field k with a multiplication m_{H}, unit μ_{H}, comultiplication Δ_{H}, counit ε_{H} and antipode S. We follow the notation in [Mon] and [S], but we will write the comultiplication in H, $\Delta: H \rightarrow H \otimes H, \Delta(h)=\sum h_{1} \otimes h_{2}$, for all $h \in H$. Denote by ${ }^{H} M o d$ the category of left H-comodules and by Mod_{H} the category of right H-modules. For $\left(V, \delta_{V}\right) \in$ ${ }^{H} M o d$ write: for all $v \in V$

$$
\delta_{V}(v)=\sum v_{(-1)} \otimes v_{0} \in H \otimes V
$$

We say that A is an algebra in Mod_{H} (i.e. A is a right H-module algebra) if the following conditions hold:
(1.1) (A, \leftharpoonup) is a right H-comodule,
(1.2) $a b \leftharpoonup h=\sum\left(a \leftharpoonup h_{1}\right)\left(b \leftharpoonup h_{2}\right)$ and $1 \leftharpoonup h=\varepsilon(h) 1$,
for all $a, b \in A, h \in H$.
Similarly, a coalgebra C in ${ }^{H} M o d$ (i.e. C is a left H-comodule coalgebra) means that the following conditions are satisfied:
(1.3) $\left(C, \delta_{C}\right)$ is a left H-comodule,
(1.4) $\sum c_{(-1)} \otimes c_{01} \otimes c_{02}=\sum c_{1(-1)} c_{2(-1)} \otimes c_{10} \otimes c_{20}, \quad \sum \varepsilon\left(c_{0}\right) c_{(-1)}=\varepsilon(c) 1$, for all $c \in C$.

We recall now the definition of a bicrossproduct Hopf algebra. Let A, H be two Hopf algebras, H a coalgebra in ${ }^{A} M o d$ and A an algebra in Mod_{H}. If the following conditions hold:
(i) $\Delta(a \leftharpoonup h)=\sum\left(a_{1} \leftharpoonup h_{1}\right) h_{2(-1)} \otimes a_{2} \leftharpoonup h_{20}, \varepsilon(a \leftharpoonup h)=\varepsilon(a) \varepsilon(h)$;
(ii) $\delta_{H}(h g)=\sum\left(h_{(-1)} \leftharpoonup g_{1}\right) g_{2(-1)} \otimes h_{0} g_{20}, \delta_{H}(1)=1 \otimes 1$;
(iii) $\sum h_{1(-1)}\left(a \leftharpoonup h_{2}\right) \otimes h_{10}=\sum\left(a \leftharpoonup h_{1}\right) h_{2(-1)} \otimes h_{20}$,
for all $h, g \in H, a \in A$. Then the tensor product $H \otimes A$ bears a Hopf algebra structure, called a bicrossproduct Hopf algebra and denoted H \& A, via the smash product and smash coproduct:

$$
\begin{gathered}
(h \text { ふ } a)(g \text { ふ } b)=\sum h g_{1} \hat{\rightsquigarrow}\left(a \leftharpoonup g_{2}\right) b ; \\
\Delta(h \preccurlyeq a)=\sum h_{1} \hat{\aleph} h_{2(-1)} a_{1} \otimes h_{20} \hat{\imath} a_{2} .
\end{gathered}
$$

It has an antipode given by

$$
S(h \otimes a)=\sum\left(1 \stackrel{\rightsquigarrow}{ } S\left(h_{(-1)}\right) a\right)\left(S\left(h_{0}\right) \nLeftarrow 1\right)
$$

for all $h \in H, a \in A$.
We recall now the definition of a braided Hopf algebra:
Definition 1.1 ([D, LT]). A braided Hopf algebra is a pair (A, σ) with a bilinear form $\sigma: A \otimes A \rightarrow k$ satisfying
$(\mathrm{BR} 1) \sigma(a b, c)=\sum \sigma\left(a, c_{1}\right) \sigma\left(b, c_{2}\right) ;$
(BR2) $\sigma(a, b c)=\sum \sigma\left(a_{1}, c\right) \sigma\left(a_{2}, b\right)$;
(BR3) $\sum \sigma\left(a_{1}, b_{1}\right) a_{2} b_{2}=\sum \sigma\left(a_{2}, b_{2}\right) b_{1} a_{1} ;$
$($ BR4 $) \sigma(a, 1)=\varepsilon(a) ; \sigma(1, a)=\varepsilon(a)$.
In this case, σ is termed a braided structure over A. It is a consequence of the above that $\sigma^{-1}(a, b)=\sigma(S(a), b)$.

We next recall the definition of a dual Hopf algebra pair:
Definition 1.2 ([FS]). Let H, A be two Hopf algebras. Assume that there exists a bilinear form $\omega: H \otimes A \rightarrow k .(H, A, \omega)$ is called a dual skew ω-Hopf algebra pair if the following conditions hold:
$(\mathrm{DP1}) \omega(h g, a)=\sum \omega\left(h, a_{1}\right) \omega\left(g, a_{2}\right) ;$
(DP2) $\omega(h, a b)=\sum \omega\left(h_{1}, a\right) \omega\left(h_{2}, b\right)$;
(DP3) $\omega(1, a)=\varepsilon(a) ; \omega(h, 1)=\varepsilon(h)$,
and in this case, we also say that (H, A, ω) is a dual pairing.
In what follows we introduce two new conceptions as follows:

Definition 1.3. Let H, A be two Hopf algebras. Assume that there exists a bilinear form $\tau: A \otimes H \rightarrow k .(A, H, \tau)$ is called an anti-skew τ-Hopf algebra pair if the following conditions hold:
$($ ASP1 $) \tau(a b, h)=\sum \tau\left(a, h_{2}\right) \tau\left(b, h_{1}\right) ;$
(ASP2) $\tau(a, h g)=\sum \tau\left(a_{1}, h\right) \tau\left(a_{2}, g\right) ;$
$(\operatorname{ASP} 3) \tau(a, 1)=\varepsilon(a) ; \tau(1, h)=\varepsilon(h)$,
and in this case, we also call (H, A, τ) an anti-skew pairing.

Definition 1.4. Let A, H be two Hopf algebras, and let $\omega: H \times A \rightarrow k$, $\tau: A \times H \rightarrow k$ be two bilinear maps. Assume that H is a left A-comodule with structure map δ_{H}. A braided-like Hopf algebra associated to (ω, τ, δ_{H}) is a pair (H, β) with a bilinear form $\beta: H \times H \rightarrow k$ satisfying
(BRL1) $\beta\left(h h^{\prime}, g\right)=\sum \beta\left(h_{1}, g_{1}\right) \beta\left(h^{\prime}, g_{20}\right) \omega\left(h_{2}, g_{2(-1)}\right) ;$
(BRL2) $\beta\left(h, g g^{\prime}\right)=\sum \beta\left(h_{1}, g_{1}^{\prime}\right) \beta\left(h_{30}, g\right) \omega\left(h_{2}, g_{2(-1)}^{\prime}\right) \tau\left(h_{3(-1)}, g_{20}^{\prime}\right)$;
(BRL3) $\sum \beta\left(h_{2}, g_{2}\right) g_{1} h_{1}=\sum h_{30} g_{30} \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right)$ $\tau\left(h_{3(-1)}, g_{20}\right) \omega\left(h_{4}, g_{3(-1)}\right) ;$
$($ BRL4 $) \beta(1, h)=\beta(h, 1)=\varepsilon(h)$.
Example 1.5. Let (H, σ) be a braided Hopf algebra and let A be arbitrary Hopf algebra. H is a left A-comodule with trivial comodule coaction $\delta_{H}(h)=$ $1 \otimes h$. Assume that $\omega: H \otimes A \rightarrow k, \tau: A \otimes H \rightarrow k$ be two trivial linear maps. Then it is easy to see that (H, A, ω) is a dual ω-Hopf algebra pair, (A, H, τ) is called an anti-skew τ-Hopf algebra pair, and (H, σ) is also a braided-like Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$.

Remark. The example 1.5 means that Definition 1.4 is a generalization of the usual braided Hopf algebra.

Example 1.6. Let (H, σ) be braided Hopf algebra with bijective antipode S. Then $H^{c o p}$ is also a Hopf algebra with the opposite comultiplication, i.e, $\Delta^{c o p}(h)$ $=\sum h_{2} \otimes h_{1}$. Define

$$
\delta_{H}: H \rightarrow H^{c o p} \otimes H, \quad \delta_{H}(h)=\sum S\left(h_{1}\right) h_{3} \otimes h_{2}
$$

Then, one has

1) $\left(H, \delta_{H}\right)$ is a coalgebra in $H^{c o p} \mathrm{Mod}$;
2) If $\omega(h, a)=\sigma(a, h)$, then $\left(H, H^{c o p}, \omega\right)$ is a dual pairing;
3) If $\tau(a, h)=\sigma(h, a),\left(H^{c o p}, H, \tau\right)$ is an anti-skew pairing;
4) (H, β) is a braided-like Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$ with

$$
\beta(h, g)=\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right)
$$

where $\omega(h, a)=\sigma(a, h), \tau(a, h)=\sigma(h, a)$, for all $a \in H^{c o p}, h \in H$.

Proof. 1) is obvious. 2) and 3) follow that (H, σ) is a braided Hopf algebra.
4) It is easy to see that (BRL4) in Definition 1.4 holds. In order to show that (BRL1) is satisfied, one has:

$$
\begin{aligned}
& \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, \underline{\left.g_{2(-1)}\right)} \beta\left(h^{\prime}, \underline{g_{20}}\right)\right. \\
&=\sum \underbrace{\beta\left(h_{1}, g_{1}\right)} \omega\left(h_{2}, S\left(g_{2}\right) g_{4}\right) \beta\left(h^{\prime}, g_{3}\right) \\
&=\sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{2}, h_{2}\right) \sigma\left(S\left(g_{3}\right) g_{6}, h_{3}\right)} \sigma\left(h_{1}^{\prime}, g_{4}\right) \sigma\left(g_{5}, h_{2}^{\prime}\right) \\
& \stackrel{(\mathrm{BR} 1)}{=} \sum \sigma\left(h_{1}, g_{1}\right) \sigma(\underbrace{g_{2} S\left(g_{3}\right)} g_{6}, h_{2}) \sigma\left(h_{1}^{\prime}, g_{4}\right) \sigma\left(g_{5}, h_{2}^{\prime}\right) \\
&=\sum \underline{\sigma\left(h_{1}, g_{1}\right)} \underbrace{\sigma\left(g_{4}, h_{2}\right)} \frac{\sigma\left(h_{1}^{\prime}, g_{2}\right)}{\underbrace{\sigma\left(g_{3}, h_{2}^{\prime}\right)}} \\
& \quad \stackrel{(\mathrm{BRI})+(\mathrm{BR} 2)}{=} \sum \sigma\left(h_{1} h_{1}^{\prime}, g_{1}\right) \sigma\left(g_{2}, h_{2} h_{2}^{\prime}\right)=\beta\left(h h^{\prime}, g\right),
\end{aligned}
$$

and the condition (BRLL) is proven.
Similarly, (BRL2) also holds.
We will show that the condition (BRL3) in Definition 1.4 holds as follows:

$$
\begin{aligned}
\sum & \underbrace{h_{30}} g_{30} \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, \underline{g_{2(-1)}}\right) \tau(\underbrace{h_{3(-1)}}, \underline{g_{20}}) \omega\left(h_{4}, g_{3(-1)}\right) \\
& =\sum h_{4} \underbrace{g_{50}} \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, S\left(g_{2}\right) g_{4}\right) \tau\left(S\left(h_{3}\right) h_{5}, g_{3}\right) \omega(h_{6}, \underbrace{g_{5(-1)}}) \\
& =\sum h_{4} g_{6} \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, S\left(g_{2}\right) g_{4}\right) \tau\left(S\left(h_{3}\right) h_{5}, g_{3}\right) \omega\left(h_{6}, S\left(g_{5}\right) g_{7}\right) \\
& =\sum h_{4} g_{6} \beta\left(h_{1}, g_{1}\right) \sigma\left(S\left(g_{2}\right) g_{4}, h_{2}\right) \sigma\left(g_{3}, S\left(h_{3}\right) h_{5}\right) \sigma\left(S\left(g_{5}\right) g_{7}, h_{6}\right) \\
& =\sum h_{5} g_{7} \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{2}, h_{2}\right) \sigma\left(S\left(g_{3}\right) g_{5}, h_{3}\right)} \sigma\left(g_{4}, S\left(h_{4}\right) h_{6}\right) \sigma\left(S\left(g_{6}\right) g_{8}, h_{7}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(\mathrm{BR} 1)}{=} \sum h_{4} g_{7} \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2} S\left(g_{3}\right) g_{5}, h_{2}\right) \sigma\left(g_{4}, S\left(h_{3}\right) h_{5}\right) \sigma\left(S\left(g_{6}\right) g_{8}, h_{6}\right) \\
& =\sum h_{4} g_{5} \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{3}, h_{2}\right) \sigma\left(g_{2}, S\left(h_{3}\right) h_{5}\right)} \sigma\left(S\left(g_{4}\right) g_{6}, h_{6}\right) \\
& \stackrel{(\mathrm{BR} 2)}{=} \sum h_{4} g_{4} \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2} S\left(h_{3}\right) h_{5}\right) \sigma\left(S\left(g_{3}\right) g_{5}, h_{6}\right) \\
& =\sum h_{2} g_{4} \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{2}, h_{3}\right) \sigma\left(S\left(g_{3}\right) g_{5}, h_{4}\right)} \\
& \stackrel{(\text { BR1 })}{=} \sum h_{2} g_{4} \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2} S\left(g_{3}\right) g_{5}, h_{3}\right)=\sum \underbrace{h_{2} g_{2} \sigma\left(h_{1}, g_{1}\right)} \sigma\left(g_{3}, h_{3}\right) \\
& \stackrel{(\mathrm{BR} 3)}{=} \sum g_{1} h_{1} \underbrace{\sigma\left(h_{2}, g_{2}\right) \sigma\left(g_{3}, h_{3}\right)}=\sum \beta\left(h_{2}, g_{2}\right) g_{1} h_{1},
\end{aligned}
$$

and（BRL3）is proved．
Thus (H, β) is a braided－like Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$ ．

2．The Braided Structures over H \＆A

In this Section we will describle the braided structures over bicrossproduct Hopf algebra H \＆

The following is obvious：

Proposition 2．1．Let H خ̧ A be a bicrossproduct bialgebra．Define maps as follows：

$$
\begin{aligned}
& p: H \nLeftarrow A \rightarrow H, p(h \otimes a)=\varepsilon(a) h, \quad \pi: H \nLeftarrow A \rightarrow A, \pi(h \otimes a)=\varepsilon(h) a, \\
& i: A \rightarrow H \text { ふ } A, i(a)=1_{H} \otimes a, \quad j: H \rightarrow H \nLeftarrow A, j(h)=h \otimes 1_{A} .
\end{aligned}
$$

Then 1）p, i is a bialgebra map，
2）π is a coalgebra map and $\pi((h$ 於 $a)(g$ 动 $b))=\varepsilon(h)(a \leftharpoonup g) b$ ，
3）j is a algebra map，and $\Delta(j(h))=\sum h_{1}$ के $h_{2(-1)} \otimes h_{20}$ 旗 ．
Let $(H$ ふ $A, \sigma)$ be a bicrossproduct bialgebra，and $\sigma: H \nLeftarrow A \otimes H$ ふ $A \rightarrow k$ a bilinear form，Define：

$$
\begin{aligned}
& \alpha: A \times A \rightarrow k, \alpha(a, b)=\sigma(i \otimes i)(a \otimes b)=\sigma(1 \otimes a, 1 \otimes b) ; \\
& \beta: H \times H \rightarrow k, \beta(h, g)=\sigma(j \otimes j)(h \otimes g)=\sigma(h \otimes 1, g \otimes 1) ; \\
& \omega: H \times A \rightarrow k, \omega(h, a)=\sigma(j \otimes i)(h \otimes a)=\sigma(h \otimes 1,1 \otimes a) ; \\
& \tau: A \times H \rightarrow k, \tau(a, h)=\sigma(i \otimes j)(a \otimes h)=\sigma(1 \otimes a, h \otimes 1),
\end{aligned}
$$

The following Proposition 2.2 is obvious：

Proposition 2.2. With the notation above, let $H \underset{\sim}{\omega}$ be a bicrossproduct bialgebra. If σ satisfies condition (BR4), then

1) $\alpha(a, 1)=\varepsilon(a) 1=\alpha(1, a)$
2) $\beta(h, 1)=\varepsilon(h) 1=\beta(1, h)$,
3) $\omega(h, 1)=\varepsilon(h) 1 ; \omega(1, a)=\varepsilon(a) 1$,
4) $\tau(a, 1)=\varepsilon(a) 1 ; \tau(1, h)=\varepsilon(h) 1$.

Proposition 2.3. Let $H \hat{\hbar} A$ be a bicrossproduct Hopf algebra and σ : $H \hat{\aleph} A \otimes H \hat{幺} A \rightarrow k$ a bilinear form, if $(H \hat{\psi} A, \sigma)$ is a braided Hopf algebra, then we have:

$$
\sigma(h \otimes a, g \otimes b)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \tau\left(a_{2}, g_{20}\right)
$$

where $h, g \in H, a, b \in A$.
Proof. For all $a, b, a^{\prime}, b^{\prime} \in A ; h, h^{\prime}, g, g^{\prime} \in H$, we have:

$$
\begin{align*}
& \sigma\left((h \otimes a)\left(h^{\prime} \otimes a^{\prime}\right),(g \otimes b)\left(g^{\prime} \otimes b^{\prime}\right)\right) \\
& \quad \stackrel{(\mathrm{BR1})}{=} \sum \sigma\left(h \otimes a,\left((g \otimes b)\left(g^{\prime} \otimes b^{\prime}\right)\right)_{1}\right) \sigma\left(h^{\prime} \otimes a^{\prime},\left((g \otimes b)\left(g^{\prime} \otimes b^{\prime}\right)\right)_{2}\right) \\
& \stackrel{(\mathrm{BR} 2)}{=} \sum \sigma\left((h \otimes a)_{1},\left(g^{\prime} \otimes b^{\prime}\right)_{1}\right) \sigma\left((h \otimes a)_{2},(g \otimes b)_{1}\right) \\
& \quad \sigma\left(\left(h^{\prime} \otimes a^{\prime}\right)_{1},\left(g^{\prime} \otimes b^{\prime}\right)_{2}\right) \sigma\left(\left(h^{\prime} \otimes a^{\prime}\right)_{2},(g \otimes b)_{2}\right) . \tag{1}
\end{align*}
$$

Letting $a=1, h^{\prime}=1, b=1, g^{\prime}=1$ in both sides of the equation (1), we obtain

$$
\sigma\left(h \otimes a^{\prime}, g \otimes b^{\prime}\right)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}^{\prime}\right) \alpha\left(a_{1}^{\prime}, b_{2}^{\prime}\right) \tau\left(a_{2}^{\prime}, g_{20}\right)
$$

and so completing the proof of proposition 2.3.
The following give some useful identities concerning the forms σ, β, ω and τ :
Proposition 2.4. Let B is H be a bicrossproduct Hopf algebra. Assume that $\sigma(h \otimes a, g \otimes b)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \tau\left(a_{2}, g_{20}\right)$ is a braided structure over $H \leadsto A$. Then we have the following identities:
$(\mathrm{BC} 1) \sum \omega\left(h_{2}, b\right) h_{1}=\sum h_{20} \omega\left(h_{1}, b_{1}\right) \alpha\left(h_{2(-1)}, b_{2}\right) ;$
(BC2) $\sum \tau\left(a, g_{2}\right) g_{1}=\sum g_{20} \tau\left(a_{2}, g_{1}\right) \alpha\left(a_{1}, g_{2(-1)}\right)$;
$\left.(\mathrm{BC} 3) \sum \omega\left(h, b_{1}\right) b_{2}=\sum\left(b_{1} \leftharpoonup h_{1}\right) h_{2(-1)} \omega\left(h_{20}, b_{2}\right)\right) ;$
(BC4) $\left.\sum \tau\left(a_{1}, g_{2}\right)\left(a_{2} \leftharpoonup g_{1}\right)=\sum g_{(-1)} a_{1} \tau\left(a_{2}, g_{0}\right)\right)$;
(BC5) $\left.\sum \beta(h, g)=\sum\left(g_{(-1)} \leftharpoonup h_{1}\right) h_{2(-1)} \beta\left(h_{20}, g_{0}\right)\right)$;
(BC6) $\sum \beta\left(h, g_{1}\right) \tau\left(a, g_{2}\right)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \tau\left(a \leftharpoonup h_{3}, g_{20}\right)$;
$(\mathrm{BC} 7) \sum \alpha\left(a, b_{1}\right) \omega\left(h, b_{2}\right)=\sum \omega\left(h_{1}, b_{1}\right) \alpha\left(a \leftharpoonup h_{2}, b_{2}\right)$;
$(\mathrm{BC} 8) \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, b \leftharpoonup g_{2}\right)=\sum \beta\left(h_{1}, g_{1}\right)$ - $\omega\left(h_{2}, g_{2(-1)}\right) \tau\left(h_{3(-1)}, g_{20}\right) \omega\left(h_{30}, b\right)$;
(BC9) $\sum \alpha\left(a_{1}, b \leftharpoonup g_{2}\right) \tau\left(a_{2}, g_{1}\right)=\sum \tau\left(a_{1}, g\right) \alpha\left(a_{2}, b\right)$.

Proof. By (BR1), one gets:

$$
\begin{align*}
& \sigma\left((h \otimes a)\left(h^{\prime} \otimes a^{\prime}\right), g \otimes b\right) \\
& \quad=\sum \sigma\left(h \otimes a, g_{1} \otimes g_{2(-1)} b_{1}\right) \sigma\left(h^{\prime} \otimes a^{\prime}, g_{20} \otimes b_{2}\right) \tag{A}
\end{align*}
$$

By (BR2) one has:

$$
\begin{align*}
& \sigma\left(h \otimes a,(g \otimes b)\left(g^{\prime} \otimes b^{\prime}\right)\right) \\
& \quad=\sum \sigma\left(h_{1} \otimes h_{2(-1)} a_{1}, g^{\prime} \otimes b^{\prime}\right) \sigma\left(h_{20} \otimes a_{2}, g \otimes b\right) \tag{B}
\end{align*}
$$

and by (BR3) one knows:

$$
\begin{align*}
& \sum \sigma\left((h \otimes a)_{1},(g \otimes b)_{1}\right)(h \otimes a)_{2}(g \otimes b)_{2} \\
& \quad=\sum(g \otimes b)_{1}(h \otimes a)_{1} \sigma\left((h \otimes a)_{2},(g \otimes b)_{2}\right) . \tag{C}
\end{align*}
$$

Let $a=1$ and $g=1$ in the equation (C), then we get

$$
\begin{align*}
& \sum \sigma\left(h_{1} \otimes h_{2(-1)}, 1 \otimes b_{1}\right)\left(h_{20} \otimes b_{2}\right) \\
& \quad=\sum\left(h_{1} \otimes\left(b_{1} \leftharpoonup h_{2}\right) h_{3(-1)}\right) \omega\left(h_{20}, b_{2}\right) \tag{D}
\end{align*}
$$

and by applying $(i d \otimes \varepsilon)$ to both sides of the equation (D), and by proposition 2.3, we obtain (BC 1); by applying $(\varepsilon \otimes i d)$ to both sides of the equation (D), and by proposition 2.3, we get (BC 3).

Letting $h=1, b=1$ in equation (C), then applying $(i d \otimes \varepsilon)$ to both sides of the equation (C), and proposition 2.3 , we can get $(\mathrm{BC} 2)$; applying $(\varepsilon \otimes i d)$ to both sides of the equation (C), and proposition 2.3, we can obtain (BC4).

By letting $a=b=1$ in the equation (C), then applying $(\varepsilon \otimes i d)$ to both sides of the equation (C), we can get (BC5).

Let $h=1, a^{\prime}=b=1$ in the formula (A), then by proposition 2.3, and (BC 2), we get (BC6).

By letting $h=1, a^{\prime}=1, g=1$ in the equation (A), then by proposition 2.3, we get ($B C 7$).

By letting $a=1, g=1, b^{\prime}=1$ in the formula (B), then by proposition 2.3, we get (BC8).

Letting $h=g=1, b^{\prime}=1$ in the equation (B), then by proposition 2.3, we get (BC9).

This completes the proof.
Proposition 2.5. Let $B \approx H$ be a bicrossproduct Hopf algebra. Assume that $\sigma(h \otimes a, g \otimes b)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \tau\left(a_{2}, g_{20}\right)$ is a braided structure over $H \stackrel{\sim}{\gamma} A$. Then we have

1) (A, α) is a braided Hopf algebra,
2) (H, A, ω) is a dual pairing,
3) (A, H, τ) is an anti-skew pairing;
4) (H, β) is a braided-like Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$.

Proof. It follows from the proposition 2.1 that α, β, ω, and τ respectively satisfies (BR4), (BRL4), (DP3), and (ASP3).

1) Since $i: A \rightarrow H \otimes A$ is a bialgebra map, and $(B \hbar A, \sigma)$ a braided Hopf algebra, so is (A, α).
2) is obvious by letting $a=a^{\prime}=1, g=1$ in the equation (A) and letting $a=1, g=g^{\prime}=1$ in the equation (B).
3) is easy to be seen by letting $h=h^{\prime}=1, b=1$ in the formula (A) and letting $h=1, b=b^{\prime}=1$ in the equation (B).
4) Let $a=a^{\prime}=b=1$ in the equation (A), one gets (BRL1); by letting $a=b^{\prime}=b=1$ in the formula (B), one has (BRL2); by letting $a=b=1$ in the equation (C), we can complete the proof of that (A, β) is a braided-like Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$, including the proof.

Theorem 2.6. Let H 欮 A be a bicrossproduct Hopf algebra. If there exist forms $\alpha: A \times A \rightarrow k, \beta: H \times H \rightarrow k, \omega: H \times A \rightarrow k, \tau: A \times H \rightarrow k$, such that the following conditions hold:

1) (A, α) is a braided Hopf algebra;
2) (H, A, ω) is a dual pairing;
3) (A, H, τ) is an anti-skew pairing;
4) (H, β) is a braided-like Hopf algebra associated to (ω, τ, δ).
5) The conditions $(\mathrm{BC} 1)-(\mathrm{BC} 9)$ in Proposition 2.4 hold.

Then $(H \approx A, \sigma)$ is a braided Hopf algebra with a braided structure given by:

$$
\sigma(h \otimes a, g \otimes b)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \tau\left(a_{2}, g_{20}\right)
$$

Proof. It is obvious that σ satisfies (BR4). In what follows we show that (BR1) holds:

$$
\begin{aligned}
& \left.\sigma\left((h \otimes a)\left(h^{\prime} \otimes a^{\prime}\right), g \otimes b\right)=\sum \sigma\left(h h_{1}^{\prime} \otimes\left(a \leftharpoonup h_{2}^{\prime}\right) a^{\prime}\right), g \otimes b\right) \\
& =\sum \beta\left(h_{1} h_{1}^{\prime}, g_{1}\right) \omega\left(h_{2} h_{2}^{\prime}, g_{2(-1)}\right) \omega\left(h_{3} h_{3}^{\prime}, b_{1}\right) \alpha(\underbrace{\left(a-h_{4}^{\prime}\right)_{1}} a_{1}^{\prime}, b_{2}) \\
& \tau(\underbrace{\left(a \leftharpoonup h_{4}^{\prime}\right)_{2}} a_{2}^{\prime}, g_{20}) \\
& =\sum \underbrace{\beta\left(h_{1} h_{1}^{\prime}, g_{1}\right)} \omega\left(h_{2} h_{2}^{\prime}, g_{2(-1)}\right) \omega\left(h_{3} h_{3}^{\prime}, b_{1}\right) \\
& \alpha\left(\left(a_{1} \leftharpoonup h_{4}^{\prime}\right) h_{5(-1)}^{\prime} a_{1}^{\prime}, b_{2}\right) \tau\left(\left(a_{2} \leftharpoonup h_{50}^{\prime}\right) a_{2}^{\prime}, g_{20}\right) \\
& \stackrel{(\mathrm{BRL} 1)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \beta\left(h_{1}^{\prime}, g_{20}\right) \underbrace{\omega\left(h_{3} h_{2}^{\prime}, g_{3(-1)}\right)} \underline{\omega\left(h_{4} h_{3}^{\prime}, b_{1}\right)} \\
& \alpha\left(\left(a_{1} \leftharpoonup h_{4}^{\prime}\right) h_{5(-1)}^{\prime} a_{1}^{\prime}, b_{2}\right) \tau\left(\left(a_{2} \leftharpoonup h_{50}^{\prime}\right) a_{2}^{\prime}, g_{30}\right) \\
& \stackrel{(\text { DP1 } 1)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \beta\left(h_{1}^{\prime}, g_{20}\right) \omega\left(h_{3}, g_{3(-1) 1}\right) \omega\left(h_{2}^{\prime}, g_{3(-1) 2}\right) \\
& \omega\left(h_{4}, b_{1}\right) \omega\left(h_{3}^{\prime}, b_{2}\right) \underbrace{\alpha\left(\left(a_{1} \leftharpoonup h_{4}^{\prime}\right) h_{5(-1)}^{\prime} a_{1}^{\prime}, b_{3}\right)} \underline{\tau\left(\left(a_{2} \leftharpoonup h_{50}^{\prime}\right) a_{2}^{\prime}, g_{30}\right)} \\
& \stackrel{(\mathrm{BR} 1)+(\mathrm{ASP1})}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \beta\left(h_{1}^{\prime}, g_{20}\right) \omega\left(h_{3}, g_{3(-1) 1}\right) \omega\left(h_{2}^{\prime}, g_{3(-1) 2}\right) \\
& \omega\left(h_{4}, b_{1}\right) \underbrace{\left.\omega\left(h_{3}^{\prime}, b_{2}\right) \alpha\left(a_{1} \leftharpoonup h_{4}^{\prime}\right), b_{3}\right)} \alpha\left(h_{5(-1)}^{\prime}, b_{4}\right) \alpha\left(a_{1}^{\prime}, b_{5}\right) \\
& \tau\left(a_{2}^{\prime}, g_{301}\right) \tau\left(a_{2} \leftharpoonup h_{50}^{\prime}, g_{302}\right) \\
& \stackrel{(\mathrm{BC} 7)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \beta\left(h_{1}^{\prime}, g_{20}\right) \omega\left(h_{3}, g_{3(-1) 1}\right) \omega\left(h_{2}^{\prime}, g_{3(-1) 2}\right) \\
& \omega\left(h_{4}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \underbrace{\omega\left(h_{3}^{\prime}, b_{3}\right) \alpha\left(h_{4(-1)}^{\prime}, b_{4}\right)} \\
& \alpha\left(a_{1}^{\prime}, b_{5}\right) \tau\left(a_{2}^{\prime}, g_{301}\right) \tau(a_{2} \leftharpoonup \underbrace{h_{40}^{\prime}}, g_{302}) \\
& \stackrel{(\mathrm{BCl})}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \beta\left(h_{1}^{\prime}, g_{20}\right) \omega(h_{3}, \underbrace{g_{3(-1) 1}}) \\
& \omega(h_{2}^{\prime}, \underbrace{g_{3(-1) 2}}) \omega\left(h_{4}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \omega\left(h_{4}^{\prime}, b_{3}\right) \\
& \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau(a_{2}^{\prime}, \underbrace{g_{301}}) \tau(a_{2}-h_{3}^{\prime}, \underbrace{g_{302}})
\end{aligned}
$$

$$
\begin{aligned}
& =\sum \beta\left(h_{1}, g_{1}\right) \overbrace{\omega\left(h_{2}, g_{2(-1)}\right)} \beta\left(h_{1}^{\prime}, g_{20}\right) \overbrace{\omega(h_{3}, \underbrace{g_{3(-1) 1}} \underline{g}_{4(-1) 1}} \\
& \omega(h_{2}^{\prime}, \underbrace{g_{3(-1) 2}} \underline{g_{4(-1) 2}}) \omega\left(h_{4}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \omega\left(h_{4}^{\prime}, b_{3}\right) \\
& \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau(a_{2}^{\prime}, \underbrace{g_{30}}) \tau\left(a_{2} \leftharpoonup h_{3}^{\prime}, \underline{g_{40}}\right) \\
& \stackrel{(\mathrm{DPP} 1)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega(h_{2}, \underbrace{g_{2(-1)} g_{3(-1)} g_{4(-1)}}) \beta(h_{1}^{\prime}, \underbrace{g_{20}}) \\
& \omega(h_{2}^{\prime}, \underbrace{g_{30(-1)}} \underbrace{g_{40(-1)}}) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \omega\left(h_{4}^{\prime}, b_{3}\right) \\
& \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau(a_{2}^{\prime}, \underbrace{g_{300}}) \tau(a_{2} \leftharpoonup h_{3}^{\prime}, \underbrace{g_{400}}) \\
& =\sum \beta\left(h_{1}, g_{1}\right) \underbrace{\omega\left(h_{2}, g_{2(-1)}\right.}) \beta\left(h_{1}^{\prime}, g_{201}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)}\right) \underbrace{\omega\left(h_{3}, b_{1}\right)} \\
& \alpha\left(a_{1}, b_{2}\right) \omega\left(h_{4}^{\prime}, b_{3}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau\left(a_{2}^{\prime}, g_{20201}\right) \tau\left(a_{2} \leftharpoonup h_{3}^{\prime}, g_{20202}\right) \\
& \stackrel{(\text { DP1) }}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)}\right) \alpha\left(a_{1}, b_{2}\right) \\
& \omega\left(h_{4}^{\prime}, b_{3}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau(a_{2}^{\prime}, \underbrace{g_{20201}}) \underbrace{\tau\left(a_{2} \leftharpoonup h_{3}^{\prime}, g_{20202}\right.}) \\
& \stackrel{(\mathrm{BC} 2)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)}\right) \\
& \alpha\left(a_{1}, b_{2}\right) \omega\left(h_{4}^{\prime}, b_{3}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \alpha(\underbrace{\left(a_{2}-h_{3}^{\prime}\right)_{1}}, g_{20202(-1)}) \\
& \tau(\underbrace{\left(a_{2}-h_{3}^{\prime}\right)_{2}}, g_{20201}) \tau\left(a_{2}^{\prime}, g_{202020}\right) \\
& \stackrel{(\mathrm{i})+(\mathrm{BR} 1)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \underbrace{\omega\left(h_{2}^{\prime}, g_{202(-1)}\right.}) \alpha\left(a_{1}, b_{2}\right) \\
& \alpha\left(a_{1}^{\prime}, b_{4}\right) \omega\left(h_{5}^{\prime}, b_{3}\right) \alpha\left(\left(a_{2} \leftharpoonup h_{3}^{\prime}\right), \underline{g_{20202(-1) 1}}\right) \alpha\left(h_{4(-1)}^{\prime}, \underline{g_{20202(-1) 2}}\right) \\
& \tau\left(a_{3} \leftharpoonup h_{40}^{\prime}, \underline{g_{20201}}\right) \tau\left(a_{2}^{\prime}, \underline{g_{202020}}\right) \\
& \stackrel{(\mathrm{DP1})}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)}\right) \underbrace{\omega\left(h_{3}^{\prime}, g_{203(-1)}\right)} \\
& \alpha\left(a_{1}, b_{2}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \omega\left(h_{6}^{\prime}, b_{3}\right) \underbrace{\alpha\left(\left(a_{2} \leftharpoonup h_{4}^{\prime}\right), g_{2030(-1) 1}\right)} \\
& \alpha\left(h_{5(-1)}^{\prime}, \underline{g_{2030(-1) 2}}\right) \tau\left(a_{3} \leftharpoonup h_{50}^{\prime}, g_{2020}\right) \tau\left(a_{2}^{\prime}, \underline{g_{20300}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(\mathrm{BC} 7)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)}\right) \underbrace{\omega\left(h_{3}^{\prime}, g_{203(-1) 2}\right)} \\
& \\
& \alpha\left(a_{1}, b_{2}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \omega\left(h_{5}^{\prime}, b_{3}\right) \alpha\left(a_{2}, g_{203(-1) 1}\right) \underbrace{\alpha\left(h_{4(-1)}^{\prime}, g_{203(-1) 3}\right)} \\
& \stackrel{(a_{3} \leftharpoonup \underbrace{h_{40}^{\prime}}, g_{2020}) \tau\left(a_{2}^{\prime}, g_{2030}\right)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \underbrace{\beta\left(h_{1}^{\prime}, g_{201}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)}\right)} \alpha\left(a_{2}, \underline{\left.g_{203(-1) 1}\right)}\right. \\
& \\
& \alpha\left(a_{1}, b_{2}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \omega\left(h_{5}^{\prime}, b_{3}\right) \omega\left(h_{4}^{\prime}, \underline{\left.g_{203(-1) 2}\right)}\right. \\
& \\
& \underbrace{\tau\left(a_{3} \leftharpoonup h_{3}^{\prime}, g_{2020}\right)} \tau\left(a_{2}^{\prime}, \underline{\left.g_{2030}\right)}\right. \\
& \stackrel{(\mathrm{BCC} 6)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \alpha\left(a_{2}, g_{203(-1)}\right) \\
& \\
& \alpha\left(a_{1}, b_{2}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \underbrace{\omega\left(h_{3}^{\prime}, b_{3}\right) \omega\left(h_{2}^{\prime}, g_{2030(-1))}\right.} \\
& \stackrel{\tau\left(a_{3}, g_{202}\right) \tau\left(a_{2}^{\prime}, g_{20300}\right)}{(\mathrm{DP1})+(\mathrm{BC} 2)}=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \alpha\left(a_{2}, g_{203(-1)}\right) \\
& \\
& \alpha\left(a_{1}, b_{2}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)} b_{3}\right) \tau\left(a_{2}, g_{203}\right) \tau\left(a_{2}^{\prime}, g_{2020}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum \sigma\left(h \otimes a, g_{1} \otimes g_{2(-1)} b_{1}\right) \sigma\left(h^{\prime} \otimes a^{\prime}, g_{20} \otimes b_{2}\right) \\
& =\sum \beta\left(h_{1}, g_{1}\right) \underbrace{\omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, \underline{g_{3(-1) 1}} b_{1}\right)} \alpha\left(a_{1}, \underline{g_{3(-1) 2}} b_{2}\right) \tau\left(a_{2}, g_{20}\right) \\
& \beta\left(h_{1}^{\prime}, \underline{g_{301}}\right) \omega\left(h_{2}^{\prime}, \underline{g_{302(-1)}}\right) \omega\left(h_{3}^{\prime}, b_{3}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau\left(a_{2}^{\prime}, \underline{g_{3020}}\right) \\
& \stackrel{(\mathrm{DP1)}}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, \underline{g_{2(-1)} g_{3(-1)}} b_{1}\right) \underbrace{\alpha\left(a_{1}, \underline{g}_{30(-1)} b_{2}\right)} \tau\left(a_{2}, \underline{g_{20}}\right) \\
& \\
& \beta\left(h_{1}^{\prime}, \underline{g_{3001}}\right) \omega\left(h_{2}^{\prime}, \underline{\left.g_{3002(-1)}\right) \omega\left(h_{3}^{\prime}, b_{3}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau\left(a_{2}^{\prime}, \underline{g_{30020}}\right)}\right. \\
& \stackrel{(\mathrm{BR} 2)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \underbrace{\alpha\left(a_{2}, g_{202(-1)}\right) \tau\left(a_{3}, g_{201}\right)} \\
& \\
& \beta(h_{1}^{\prime}, \underbrace{g_{20201}}) \omega(h_{2}^{\prime}, \underbrace{g_{20202(-1)}}) \omega\left(h_{3}^{\prime}, b_{3}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \tau(a_{2}^{\prime}, \underbrace{g_{202020}}) \\
& \stackrel{\mathrm{DPP})+(\mathrm{BC} 2)}{=} \sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)} b_{1}\right) \beta\left(h_{1}^{\prime}, g_{201}\right) \alpha\left(a_{2}, g_{203(-1)}\right) \\
& \alpha\left(a_{1}, b_{2}\right) \alpha\left(a_{1}^{\prime}, b_{4}\right) \omega\left(h_{2}^{\prime}, g_{202(-1)} b_{3}\right) \tau\left(a_{2}, g_{203}\right) \tau\left(a_{2}^{\prime}, g_{2020}\right),
\end{aligned}
$$

and（BR1）is proved．
Similarly，we can check（with tedious calculation）that（BR2）and（BR3） hold．

This completes the proof of Theorem．
Thus it follows from Proposition 2．3，Proposition 2.4 and Theorem 2.6 that：

Theorem 2．7．The bicrossproduct Hopf algebra H is A is braided if and only if there exist forms $\alpha: A \times A \rightarrow k, \beta: H \times H \rightarrow k, \omega: H \times A \rightarrow k$ ，and $\tau: A \times H \rightarrow k$ ， such that (A, α) is a braided Hopf algebra，(H, A, ω) is a dual pairing，(A, H, τ) is an anti－skew pairing，(H, β) is a braided－like Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$ and the conditions $(\mathrm{BC})-(\mathrm{BC} 9)$ are satisfied．Moreover，σ has a unique decomposition：

$$
\sigma(h \otimes a, g \otimes b)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{1}\right) \alpha\left(a_{1}, b_{2}\right) \tau\left(a_{2}, g_{20}\right)
$$

Remark．Let H be arbitrary Hopf algebra．Theorem 2.7 shows that if A is not a braided Hopf algebra then the H 放 A is not a braided Hopf algebra either．

Corollary 2．8．Let H is A be bicrossproduct Hopf algebra and (H, β) ， (A, α) braided Hopf algebras．Then $\sigma(h \otimes a, g \otimes b)=\sum \beta(h, g) \alpha(a, b)$ is a braided structure over H is A if and only if

$$
\left(\mathrm{BCl}^{\prime}\right) \sum \varepsilon(b) h=\sum h_{0} \alpha\left(h_{(-1)}, b\right)
$$

$\left(\mathrm{BC}^{\prime}\right) \sum \varepsilon(a) g=\sum g_{0} \alpha\left(a, g_{(-1)}\right)$ ；
$\left(\mathrm{BC}^{\prime}\right) \sum \varepsilon(h) b=\sum b \leftharpoonup h ;$
$\left.\left(\mathrm{BC}^{\prime}\right) \sum \beta(h, g)=\sum\left(g_{(-1)} \leftharpoonup h_{1}\right) h_{2(-1)} \beta\left(h_{20}, g_{0}\right)\right) ;$
Proof．Letting $\beta: H \times H \rightarrow k, \omega: H \times A \rightarrow k$ ，be trivial in Theorem 2．7， we obtain this Corollary．

Corollary 2．9．Let H 放 A be bicrossproduct Hopf algebra and $(H, \beta) a$ braided Hopf algebras．Assume that A is cocommutative．Then $\sigma(h \otimes a, g \otimes b)=$ $\sum \beta(h, g) \varepsilon(a) \varepsilon(b)$ is a braided structure over H 出 A if and only if
$\left(\mathrm{BCl}^{\prime \prime}\right) \sum \varepsilon(h) b=\sum b \leftharpoonup h ;$
$\left.\left(\mathrm{BC}^{\prime \prime}\right) \sum \beta(h, g)=\sum\left(g_{(-1)} \leftharpoonup h_{1}\right) h_{2(-1)} \beta\left(h_{20}, g_{0}\right)\right)$.

Corollary 2.10. Let $H \approx A$ be bicrossproduct Hopf algebra and (A, α) a braided Hopf algebras. Assume that H is cocommutative. Then $\sigma(h \otimes a, g \otimes b)=$ $\sum \alpha(a, b) \varepsilon(h) \varepsilon(g)$ is a braided structure over $H \leftrightarrow A$ if and only if
$\left(\mathrm{BCl}^{\prime \prime}\right) \sum \varepsilon(b) h=\sum h_{0} \alpha\left(h_{(-1)}, b\right) ;$
$\left(\mathrm{BC}^{\prime \prime}\right) \sum \varepsilon(a) g=\sum g_{0} \alpha\left(a, g_{(-1)}\right) ;$
$\left(\mathrm{BC}^{\prime \prime}\right) \sum \varepsilon(h) b=\sum b \leftharpoonup h$.
 dual pairing, and (A, H, τ) an anti-skew pairing. Assume that A, H are cocommutative. If the condition $g h=\sum h_{20} g_{20} \omega\left(h_{1}, g_{1(-1)}\right) \tau\left(h_{2(-1)}, g_{10}\right) \omega\left(h_{3}, g_{2(-1)}\right)$ is satisfied, then $\sigma(h \otimes a, g \otimes b)=\sum \omega\left(h_{1}, g_{(-1)}\right) \omega\left(h_{2}, b\right) \tau\left(a, g_{0}\right)$ is a braided structure over H 动 A if and only if
$\left(\mathrm{BCl}^{\prime \prime \prime}\right) \sum \omega\left(h, b_{1}\right) b_{2}=\sum\left(b_{1} \leftharpoonup h_{1}\right) h_{2(-1)} \omega\left(h_{20}, b_{2}\right) ;$
$\left(\mathrm{BC} 2^{\prime \prime \prime}\right) \sum \tau\left(a_{1}, g_{2}\right)\left(a_{2}-g_{1}\right)=\sum g_{(-1)} a_{1} \tau\left(a_{2}, g_{0}\right)$;
$\left(\mathrm{BC}^{\prime \prime \prime}\right) \sum \varepsilon(h) \tau(a, g)=\sum \omega\left(h_{1}, g_{(-1)}\right) \tau\left(a \leftharpoonup h_{2}, g_{0}\right) ;$
$\left(\mathrm{BC4}^{\prime \prime \prime}\right) \sum \omega(h, b-g)=\sum \omega\left(h_{1}, g_{(-1)}\right) \tau\left(h_{2(-1)}, g_{0}\right) \omega\left(h_{20}, b\right)$.
Proof. Letting $\beta: H \times H \rightarrow k, \alpha: A \times A \rightarrow k$ be trivial in Theorem 2.7, we get this Corollary.

3. Application to $H \hat{\sim} H^{c o p}$

Let H be an arbitrary Hopf algebra with a bijective antipode S. Then $H^{c o p}$ is also a Hopf algebra with an antipode S^{-1}. Define

$$
\leftharpoonup: H^{c o p} \otimes H \rightarrow H^{c o p}, \quad a \leftharpoonup h=\sum S\left(h_{1}\right) a h_{2}
$$

for all $a \in H^{c o p}, h \in H$,
and

$$
\delta_{H}: H \rightarrow H^{c o p} \otimes H, \quad \delta_{H}(h)=\sum S\left(h_{1}\right) h_{3} \otimes h_{2},
$$

for all $h \in H$, then H is a coalgebra in $H^{\text {cop }} \operatorname{Mod}$ and $H^{c o p}$ is an algebra in $\operatorname{Mod} d_{H}$.
Then we can construct a bicrossproduct $M(H)=H \otimes H^{c o p}$ with multiplication and comultiplication respectively as follows:

$$
\begin{aligned}
& (h \otimes a)(g \otimes b)=\sum h g_{1} \otimes S\left(g_{2}\right) a g_{3} b \\
& \Delta(h \otimes a)=\sum h_{1} \otimes S\left(h_{2}\right) h_{4} a_{1} \otimes h_{3} \otimes a_{2}
\end{aligned}
$$

Let (A, α) be braided. Then $\left(A^{c o p}, \alpha^{t}\right)$ is also braided with $\alpha^{t}(a, b)=\alpha(b, a)$. Thus, we have

Theorem 3.1. Let (H, σ) be a braided Hopf algebra. Then the bicrossproduct Hopf algebra H 设 $H^{c o p}$ is a braided Hopf algebra with a braided structure given by:

$$
\tilde{\sigma}(h \otimes a, g \otimes b)=\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2} b, h_{2} a\right)
$$

for all $a, b \in H^{c o p}, h, g \in H$
Proof. Let $\beta(h, g)=\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right), \omega(h, a)=\sigma(a, h), \tau(a, h)=\sigma(h, a)$ for all $a \in H^{c o p}, h, g \in H$. By Example $1.6\left(H, H^{c o p}, \omega\right)$ is a dual pairing, ($H^{c o p}, H, \tau$) is an anti-skew pairing, and (H, β) is a braided-like Hopf algebra associated to $\left(\omega, \tau, \delta_{H}\right)$. Thus we will only check that the conditions (BCl)-(BC9) are satisfied.
we first have:

$$
\begin{aligned}
& \sum \omega\left(h_{1}, b_{2}\right) \alpha\left(h_{2(-1)}, b_{1}\right) h_{20}=\sum \sigma\left(b_{2}, h_{1}\right) \sigma\left(b_{1}, \underline{\left.h_{2(-1)}\right) h_{20}}\right. \\
& \quad=\sum \underbrace{\sigma\left(b_{2}, h_{1}\right) \sigma\left(b_{1}, S\left(h_{2}\right) h_{4}\right)} h_{3} \stackrel{(\mathrm{BR} 2)}{=} \sum \sigma(b, \underbrace{h_{1} S\left(h_{2}\right)} h_{4}) h_{3} \\
& \quad=\sum \sigma\left(b, h_{2}\right) h_{1}=\sum \omega\left(h_{2}, b\right) h_{1},
\end{aligned}
$$

and (BCl) is proved.
Similarly, we can show that the condition (BC 2) is also true.
Secondly, we have:

$$
\begin{aligned}
\sum & \left(b_{2} \leftharpoonup h_{1}\right) \underline{h_{2(-1)}} \omega\left(\underline{h_{20}}, b_{1}\right)=\sum(\underbrace{b_{2}-h_{1}}) S\left(h_{2}\right) h_{4} \omega\left(h_{3}, b_{1}\right) \\
& =\sum S\left(h_{1}\right) b_{2} \underline{h_{2} S\left(h_{3}\right)} h_{5} \omega\left(h_{4}, b_{1}\right)=\sum S\left(h_{1}\right) b_{2} h_{3} \omega\left(h_{2}, b_{1}\right) \\
& =\sum S\left(h_{1}\right) \underbrace{b_{2} h_{3} \sigma\left(b_{1}, h_{2}\right)} \stackrel{(\mathrm{BR} 3)}{=} \sum \underline{S\left(h_{1}\right) h_{2} b_{1} \sigma\left(b_{2}, h_{3}\right)} \\
& =\sum b_{1} \sigma\left(b_{2}, h\right)=\sum b_{1} \omega\left(h, b_{2}\right),
\end{aligned}
$$

and (BC3) is proved.
Similarly, it is not hard to verify that the condition (BC4) also holds.
Third, we check (BC5) as follows:

$$
\begin{aligned}
\sum & (\underbrace{g_{(-1)}} \leftharpoonup h_{1}) \underline{h_{2(-1)}} \beta(\underline{h_{20}}, \underbrace{g_{0}}) \\
& =\sum(\underbrace{S\left(g_{1}\right) g_{3} \leftharpoonup h_{1}}) S\left(h_{2}\right) h_{4} \beta\left(h_{3}, g_{2}\right) \\
& =\sum S\left(h_{1}\right) S\left(g_{1}\right) g_{3} h_{2} S\left(h_{3}\right) h_{5} \beta\left(h_{3}, g_{2}\right) \\
& =\sum S\left(h_{1}\right) S\left(g_{1}\right) g_{3} h_{3} \beta\left(h_{2}, g_{2}\right) \\
& =\sum S\left(h_{1}\right) S\left(g_{1}\right) \underbrace{g_{4} h_{4}} \sigma\left(h_{2}, g_{2}\right) \underbrace{\sigma\left(g_{3}, h_{3}\right)} \\
& \stackrel{(\mathrm{BR} 3)}{=} \sum S\left(h_{1}\right) S\left(g_{1}\right) \underbrace{h_{3} g_{3} \sigma\left(h_{2}, g_{2}\right)} \sigma\left(g_{4}, h_{4}\right) \\
& \stackrel{(\mathrm{BR} 3)}{=} \sum S\left(g_{1} h_{1}\right) g_{2} h_{2} \sigma\left(h_{3}, g_{3}\right) \sigma\left(g_{4}, h_{4}\right) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right)=\beta(h, g),
\end{aligned}
$$

and (BC5) is proven.

$$
\begin{aligned}
\sum & \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \tau\left(a \leftharpoonup h_{3}, g_{20}\right) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right) \sigma\left(\underline{g_{3(-1)}}, h_{3}\right) \sigma(\underline{g_{30}}, \underbrace{a \leftharpoonup h_{4}}) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{2}, h_{2}\right) \sigma\left(S\left(g_{3}\right) g_{5}, h_{3}\right)} \sigma\left(g_{4}, S\left(h_{4}\right) a h_{5}\right) \\
& \stackrel{(\mathrm{BR} 1)}{=} \sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(\underline{\left.g_{2} S\left(g_{3}\right) g_{5}, h_{2}\right) \sigma\left(g_{4}, S\left(h_{3}\right) a h_{4}\right)}\right. \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{3}, h_{2}\right) \sigma\left(g_{2}, S\left(h_{3}\right) a h_{4}\right)} \\
& \left.\stackrel{(\mathrm{BR} 2)}{=} \sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, \underline{h_{2} S\left(h_{3}\right)}\right) h_{4}\right)=\sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{2}, a h_{2}\right)} \\
& \stackrel{(\mathrm{BR} 2)}{=} \sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right) \sigma\left(g_{3}, a\right)=\sum \beta\left(h, g_{1}\right) \tau\left(a, g_{2}\right),
\end{aligned}
$$

and this proves (BC6).
It is easy to check that the condition (BC7).
Finally, we have:

$$
\begin{aligned}
\sum & \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, g_{2(-1)}\right) \tau\left(h_{2(-1)}, g_{20}\right) \omega\left(h_{20}, b\right) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right) \sigma\left(\underline{g_{3(-1)}}, h_{3}\right) \sigma\left(\underline{g_{30}}, h_{4(-1)}\right) \sigma\left(b, h_{40}\right) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{2}, h_{2}\right) \sigma\left(S\left(g_{3}\right) g_{5}, h_{3}\right)} \sigma\left(g_{4}, h_{4(-1)}\right) \sigma\left(b, h_{40}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(\text { BR } 1)}{=} \sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(\underline{g_{2}\left(S\left(g_{3}\right)\right.} g_{5}, h_{2}\right) \sigma\left(g_{4}, h_{3(-1)}\right) \sigma\left(b, h_{30}\right) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{3}, h_{2}\right) \sigma\left(g_{2}, \underline{h_{3(-1)}}\right) \sigma\left(b, \underline{h_{30}}\right) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{3}, h_{2}\right) \sigma\left(g_{2}, S\left(h_{3}\right) h_{5}\right)} \sigma\left(b, h_{4}\right) \\
& \stackrel{(\text { BR2) }}{=} \sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, \underline{\left.h_{2} S\left(h_{3}\right) h_{5}\right) \sigma\left(b, h_{4}\right)}\right. \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{3}\right) \sigma\left(b, h_{2}\right) \\
& \stackrel{(\text { BRI) }}{=} \sum \underbrace{\sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right)} \sigma\left(\underline{S\left(g_{3}\right) b g_{4}}, h_{3}\right) \\
& =\sum \beta\left(h_{1}, g_{1}\right) \sigma\left(b \leftharpoonup g_{2}, h_{2}\right)=\sum \beta\left(h_{1}, g_{1}\right) \omega\left(h_{2}, b \leftharpoonup g_{2}\right),
\end{aligned}
$$

and (BC8) is proven.
A similar proof shows that (BC 9) is also true.
Thus, by Theorem 2.6 we have

$$
\begin{aligned}
\tilde{\sigma}(h & \otimes a, g \otimes b) \\
& =\sum \underbrace{\beta\left(h_{1}, g_{1}\right)} \omega\left(h_{2}, g_{2(-1)}\right) \omega\left(h_{3}, b_{2}\right) \alpha\left(a_{2}, b_{1}\right) \tau\left(a_{1}, g_{20}\right) \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2}, h_{2}\right) \sigma\left(\underline{g_{3(-1)}}, h_{3}\right) \sigma\left(b_{2}, h_{4}\right) \sigma\left(b_{1}, a_{2}\right) \sigma\left(\underline{\left.g_{30}, a_{1}\right)}\right. \\
& =\sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{2}, h_{2}\right) \sigma\left(S\left(g_{3}\right) g_{5}, h_{3}\right)} \sigma\left(b_{2}, h_{4}\right) \sigma\left(b_{1}, a_{2}\right) \sigma\left(g_{4}, a_{1}\right) \\
& \stackrel{(\mathrm{BR} 1)}{=} \sum \sigma\left(h_{1}, g_{1}\right) \underbrace{\sigma\left(g_{3}, h_{2}\right) \sigma\left(b_{2}, h_{3}\right)} \frac{\sigma\left(b_{1}, a_{2}\right) \sigma\left(g_{2}, a_{1}\right)}{\left(\stackrel{\text { BR } 1)}{=} \sum \sigma\left(h_{1}, g_{1}\right)\right.} \underbrace{\sigma\left(g_{3} b_{2}, h_{2}\right) \sigma\left(g_{2} b_{1}, a\right)} \stackrel{(\mathrm{BR} 2)}{=} \sum \sigma\left(h_{1}, g_{1}\right) \sigma\left(g_{2} b, h_{2} a\right) .
\end{aligned}
$$

This concludes the proof.

References

[D] Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21 (1993), 1731-1749.
[DT] Y. Doi and M. Takeuchi, Multiplication alteration by two cocyles the quantum version, Comm. Algebra 22 (1994), 5715-5732.
[FS] W. R. Ferrer Santos, Twisting products in Hopf algebras and the construction of the quantum double, Comm. Algebra 23(7) (1995), 2719-2744.
[LT] R. G. Larson and J. Towber, Two dual classes of bialgebras related to the concept of quantum group and quantum Lie algebra, Comm. Algebra 19 (1991), 3295-3345.
[Majl] S. Majid, Braided momentum in the q-Poincare group, J. Math. Phys. 34 (1993), 2045-2058.
[Maj2] S. Majid, Braided groups, J. Pure Appl. Algebra 86 (1993), 187-221.
[Maj3] S. Majid, Representations, duals and quantum doubles of monoidal categories, Rend. Circ. Mat. Palenmo Suppl. 26 (1991), 197-206.
[Maj4] S. Majid, "Foundations of Quantum Group Theory," Cambridge Univ. Press, Cambridge, UK, 1995.
[Mon] S. Montgomery, "Hopf Algebras and their Actions on Rings", CBMS Lectures in Math. Vol. 82, AMS, Providence, RI, 1993.
[R] D. E. Radford, Minimal quasitriangular Hopf algebras, J. Algebra 157 (1993), 285-315.
[S] M. E. Sweedler, "Hopf Algebras". Benjamin, NY, 1969.

Department of Mathematics
Henan Normal University
Xinxiang, Henan 453002, China

[^0]: *Project supported by the National Natural Science Foundation of China (Grant. No. 19601015) and the NSF of Henan Province (Grant. No. 994051800).
 Received November 25, 1999.

