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LAGRANGIAN SUBMANIFOLDS OF THE
COMPLEX HYPERBOLIC SPACE

By

Bang-yen CHEN and Luc VRANCKEN

Abstract. In previous papers [2, 3], B. Y. Chen introduced a
Riemannian invariant J,, for a Riemannian n-manifold M". He
proved in [3] that every submanifold M" in the complex hyperbolic
m-space CH™(—4) satisfies the sharp inequality: dy < (n*(n—2)/
2(n—1))H? —2(n+1)(n —2), where H? is the squared mean cur-
vature. In this paper, we study Lagrangian submanifolds in CH"(—4)
which satisfy the equality case of the inequality.

1. Introduction

Let CH™(—4) denote the complex hyperbolic space with constant hol-
omorphic sectional curvature —4. An immersion F : M" — CH™(—4) is called
totally real if the complex structure J of CH™(—4) maps at every point p of M
the tangent space to M at p into the normal space to M at p (cf. [10]). If n = m,
then a totally real immersion is called a Lagrangian immersion. In this case, J
interchanges the tangent and normal spaces at every point p of M. Lagrangian
geometry received renewed attention after its role in mirror symmetry was
discovered in [22] (see also [1]).

It is known that every submanifold M”" of CH™(—4) satisfies

(1.1) Su(p) < =2

< WHZ —2(n+1)(n-2),

where H? denotes the squared mean curvature of the immersion and J,; is the
intrinsic invariant on M defined by

(p) = (inf K)(p).
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Here 7 denotes the normalized scalar curvature and
(inf K)(p) =inf{K(n)|n a plane section in T,M},

where K(n) is the sectional curvature of z. (This inequality was first proved by
the first author in [2] for submanifolds of real space forms, and later extended in
[7] to totally real submanifolds of complex space forms, and in [3] to arbitrary
submanifolds of the complex hyperbolic space. A similar inequality also appeared
in affine differential geometry in [14, 15, 19, 20]. For various applications of the
inequality (1.1) and of related inequalities to minimal immersions, symplectic
geometry, spectral geometry and some other areas of mathematics, see [5, 6].)

For simplicity an n-dimensional submanifold of CH™(—4) is said to satisfy
the basic equality if it satisfies equality case of (1.1) identically. Since the squared
mean curvature H? simply measures the tension which the submanifold M
receives from its ambient space, a submanifold M satisfying the basic equality
implies that it receives the least possible tension among all isometric immersions
of M in CH™(—4). Compact submanifolds satisfying the basic equality in
CH'™(—4) are stable critical points of the total mean curvature functional among
the class of all isometric immersions of M in CH™(—4).

Proper CR-submanifolds in complex hyperbolic spaces satisfying the basic
equality are classified in [11] (see also [21] for a generalization of [11]). On the
other hand, Lagrangian submanifolds of a complex hyperbolic space are non-
proper CR-submanifolds. The class of Lagrangian submanifolds satisfying the
basic equality is much more complicated than the proper case. The purpose of
this paper is thus to investigate Lagrangian submanifolds of a complex hyperbolic
space which satisfy the basic equality.

For a Lagrangian submanifold satisfying the basic equality, it is known that
the submanifold is always minimal and that

9y, ={veT,M|h(v,w) =0 Ywe T,M}

defines an integrable differentiable distribution on an open dense subset of M.
Away from totally geodesic points this distribution is (n — 2)-dimensional. We
denote by @[f the 2-dimensional complementary distribution. Unfortunately, &+
need not be integrable. However, in case it is integrable, we succeed in Section 4
to determine all Lagrangian submanifolds of CH"(—4) which satisfy the basic
equality. This is done by reducing the problem to the classification of minimal
Lagrangian surfaces in CP?(4), CH?*(—4) and C.

In Section 5, we then restrict ourselves to the 3-dimensional case. We show
how a 3-dimensional Lagrangian submanifold satisfying the basic equality with
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nonintegrable complementary distribution can be obtained from a solution of the
following system of differential equations:

Ah = ¢ /3 sin(2h),
Ak = =3¢ 2/3(2e% + cos(2h))

defined on an open part D of R>.

2. The Complex Hyperbolic Space CH™(—4)

Consider the complex (m + 1)-dimensional space C""' endowed with the
pseudo-Euclidean metric gg given by

m
(21) go = —dzodZg + Z dede,
=1
where Z; denotes the complex conjugate of z.
On C"!, we define

m
F(z,w) = —zpwp + szwk.
k=1

Put
(2.2) HY (=1) = {z = (20,21, .,2m) € C" | (z,2) = —1},

where ¢, ) denotes the inner product on C*! induced from go. Then H>"*!(—1)
is a real hypersurface of C”™! whose tangent space at z e H>"*!(~1) is given by

T.HY (1) = {we C"™"|Re F(z,w) = 0}.

It is known that le"’“(—l) together with the induced metric g is a pseudo-
Riemannian manifold of constant sectional curvature —1, which is known as the
anti-de Sitter space time.

We put

Hl ={leCl|ii=1}.

Then we have an H{-action on H?"*'(—1) given by z+~ Jz. At each point z
in H"'(~1), the vector iz is tangent to the flow of the action. Since go is
Hermitian, we have Re go(iz,iz) = —1. Note that the orbit is given by Z(z) = e’z
and dz(¢)/dt = iz(t). Thus the orbit lies in the negative-definite plane spanned by
z and iz. The quotient space H 12’"“ / ~, under the identification induced from the
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action, is the complex hyperbolic space CH™(—4) with constant holomorphic
sectional curvature —4. The almost complex structure J on CH™”(—4) is induced
from the canonical almost complex structure J on CJ™"! via the totally geodesic
fibration

(2.3) n: HP(=1) — CH™(—4).

More details about this construction can be found in [9] and [16].
Concerning Lagrangian submanifolds, the following lifting result by Reck-
ziegel [18] is particularly useful.

TueoreMm 2.1 [18]. Let f: M" — H}Y(=1) be a horizontal isometric im-
mersion. Then F =nof : M" — CH™(—4) is a Lagrangian immersion.

Conversely, assume that M" is simply connected and let F : M" — CH™(—4)
be a Lagrangian immersion. Then there exists a horizontal isometric immersion
f:M"— le"’“(—l) such that F = mof. Moreover any two such immersions fi
and f> are related by fi = efy, where 0 is a constant.

Assume f: M — H"t'(—1) is an isometric immersion of M in H"'(-1).
Denote by D and V the Levi-Civita connections of C f’“ and of M, respectively.
Let / denote the second fundamental form of M in H{"''(—1). Then we have

(2.4) DyY =VyY +h(X,Y)+ (X, Y>f.

It is known that the second fundamental forms 4/ and A% of the immersions
f and F given in Theorem 2.1 are related by

(2.5) n.h! =ht.

Moreover, the second fundamental form 4/ of f is horizontal with respect to .

3. Lagrangian Immersions

From this section on, we will assume that F:M" — CH"(—4) is a
Lagrangian immersion. We denote by V the Levi-Civita connection on CH”"(—4).
Then the formula of Gauss decomposes V into tangential and normal parts which
states that

(3.1) Vi Y =Vy Y +h(X,Y),
for X, Y tangent vector fields. Similarly, we have

(3.2) Vil = —A: X + V3.
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Since M is a Lagrangian submanifold, it is well known that [10]
(3.3) VyJY =JVy Y,
(3.4) Ay X =-Jh(X,Y),

which imply that {(h(X,Y),JZ) is totally symmetric.

The equations (3.3) and (3.4) imply that the equation of Ricci reduces to the
equation of Gauss. For a Lagrangian submanifold, the equations of Gauss and
Codazzi reduce to:

(3.5) RX,Y)Z=AX,Z)Y — Y, Z)X + Ayy X — Ayx. 1Y
(3.6) (V) (Y, Z) = (Vyh) (X, Z),

where

(3.7) (Vxh)(Y,Z) = Vyh(Y,Z) —h(Vx Y, Z) — h(Y,Vx Z).

We recall the following existence and uniqueness theorems from [4, 7].

THEOREM 3.1. Let (M",{,)) be a Riemannian manifold and let F\,F, : M —
CH"(—4) be two isometric Lagrangian immersions. Suppose that

<hF1 (Xv Y)ijl*(Z)> = <hF2(Xa Y)vJFZ*(Z)>

Then there exists an isometry ® of CH"(—4) such that ® o F} = F>.

THEOREM 3.2. Let (M",{,>) be a simply connected Riemannian manifold and
let T be a symmetric (1,2)-tensor on M such that

() KT(X,Y),Z) is totally symmetric,

2) (VxTNY,Z)=Vx(T(Y,Z))—T(VxY,Z) - T(Y,VxZ) is totally sym-
metric,

3) R(X,Y)Z = —(KY,Z>X — (X, Z>Y)+ T(X,T(Y,Z)) — T(Y,T(X, Z)).

Then there exists a Lagrangian isometric immersion F : M" — CH"(—4) whose

second fundamental form h is given by h(X,Y)=JT(X,Y).

Next, assume that F: M" — CH"(—4), n >3, is a Lagrangian immersion
which satisfies the equality. Then, it was proved in [8] that A" has to be minimal.
Moreover, assume that the immersion has no totally geodesic points, and so

9y, ={veT,M|h(v,w)=0 Ywe T,M}
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defines an (n — 2)-dimensional integrable distribution. This distribution is called
the nullity distribution. It is easy to show that a Lagrangian submanifold
satisfies the basic equality if and only if the nullity distribution is at least (n — 2)-
dimensional.

We recall the following lemmas from [8]:

Lemma 3.1. Let F: M" — CH"(—4), n >3, be a Lagrangian immersion
satisfying the basic equality without totally geodesic points and p € M". Then there
exist a nonzero function A and an orthonormal frame {E\,E,, ..., E,} defined on a
neighborhood of p such that

WE), E\) = JJEy, h(Es, Es) = —/JEy,
WEy, Ey) = —JEy, h(E,E)=0, i>3 orj>3.
If we introduce local functions yj by
vl = (VEEj Ec,

then it was shown in [8] that the Codazzi equation (3.6) implies the following
relations for the functions yf]‘- and A

LemMa 3.2. Let M, p and {E\,...,E,} be as in the previous lemma. Then

(1) yil - yéz = 07 i > 27
(i) piy+7h =0, i>2,
(i) 7 =7y7=0,i,j>2,
(iv) yi=—-3rh i>2

Moreover, the function A satisfies the following system of differential equation

(V) Ei(4) = -3y},
(Vi) Ex(2) =313,
(i) Ei((A) = —Ayl, i>2.

4. Lagrangian Submanifolds with Integrable Complementary Nullity
Distribution

Let F: M" — CH"(—4), n >3, be a Lagrangian immersion without totally
geodesic points which satisfies the basic equality. Let us now assume that the
complementary nullity distribution 2 is also integrable. In this section, we will
show the way to construct such immersions F starting from minimal Lagrangian
immersions of surfaces. This construction will be divided into several lemmas.
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Let pe M and let {E\,...,E,} be the local frame constructed in Lemma 3.1.
Since we assume that &+ is an integrable distribution, it follows from Lemma 3.2
and [8] that we can write:

Vi By = —yEy + ok,

Ve, Ey = —0E; + aFs,

Vi Ey = yE1, VEgE| =0k,

Vi B3 = —aEy, VgE3= -0k, VgE;=0,

VE,'EI = VE;EZ = Oa > 3;

= )

1
VE,.E3 - —;EH l>4

5
VeEj=_"FEs+> yiEe 1jz4
k>4

Remark that if « = 0 on an open set, both the distribution 2 and 2+ are parallel
which implies that
(R(E3, E1)E1, E3) =0

on this open set. On the other hand, it would follow from the Gauss equation
and Lemma 3.1 that {R(Ej, E\)E;, E3) = —1. Clearly, this is a contradiction.
Therefore, by restricting ourselves to an open dense subset of M, we may assume
that o # 0.

Recall that a distribution 7T is called

(a) totally geodesic (or autoparallel) if and only if VyY e T for all X, Y e T
(b) spherical if and only if there exists a vector field H € T+ such that
VyY —<X,Y)HeT and VyH € T for all vector fields X,Y € T. The
vector field H is called the mean curvature vector of the distribution.

We define distributions 7y, 77 and T, by
Ty = span{Es},
T, = span{E}, E,},
T, = span{Ey,..., E,}.

As in [8] we may obtain the following lemmas.

LemMa 4.1.  The distribution Ty is totally geodesic in M" and in CH"(—4).
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Lemma 4.2. The distribution T\ is spherical with mean curvature vector
parallel to oEsy and the distribution To @ T\ is autoparallel in M".

Lemma 4.3. The distribution T, is spherical with mean curvature vector
(1/0)E5 and the distribution Ty @ T, is totally geodesic in M".

In particular, the above lemmas imply that there exist local coordinates

(t,u= (uj,up),v=(v1,...,0,-3))

on M such that
(i) Ez=4%,
(ii) -, s span T,
(i) 22, ..., 5> span T
Moreover, {d/0u;,d/0u;) does not depend on v, and <{d/dv;,0/dv;) does not
depend on uy.

LEMMA 4.4. The function o satisfies the following system of differential
equations:

(4.2) Eo=Eue=Ex=0, i>4

3

(4.3) Eyo=o? — 1.

ProOF. Ejo =0 (respectively, Eroa = 0) follows from (4.1) and the identity
(R(Ey, E\)Ey, E3) =0,  (respectively, (R(E\,E2)E, E3) =0.)
The remaining equations follow from (4.1), the Gauss equation and

(R(Ej,E\)E\,E3) =03, j=3.

It follows from the previous lemmas that we can choose coordi-
nates f,uy,up,vy,...,0,—3 such that E;=0/0t, {0/0uy,d/0uy} span Ty and
{0/dvy,...,0/0v,—3} span T,. It then follows from Lemma 4.4 that depending on
the initial conditions and after a translation of the f-coordinate, the function o is
given either by

(o.1) o= —tanh ¢t or by,
(o.2) o= —cotht or by,

(0.3) o= +1.
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In the last case, after replacing E3 by —FEj3 if necessary, we may assume that

o=1.

Now, we can formulate the main result of this section as follows.

THEOREM 4.1. Let F: M" — CH"(—4) be a Lagrangian immersion satisfying
the basic equality and without geodesic points. Assume that the orthogonal com-

plement of the nullity distribution is integrable. Then, every point p of an open
dense subset of M" has a neighborhood U, such that either

(1)

(iii)

F(t,u,v) = n(cosh t(y(u),0,...,0) 4 sinh #(0,0,0, #(v))), where
¢ (v1y...,00-3) — @(v)

describes the standard totally real (n — 3)-sphere S"~3 in E"2 = C"* and
¥ 1 (uy,up) — Y(u) describes a minimal horizontal immersion in H?(—1),
or

F(t,u,v) = n(cosh #(¢(v),0,0,0)) — sinh #(0,...,0,y(u))), where

¢ (V1. 00-3) — (V)

describes the standard totally real hyperbolic space HI”’3 in EI”’2 cC {172
and  : (uy,up) — Y (u) describes a minimal horizontal immersion in S>(1),
or

F(t,u,v) = n((cosh ¢, —sinh #,0,...,0) + (1/2)e "z(u,v)(1,—1,0,...,0) +
(1/2)e77(0,0, wy (u), wa(u), v, ..., 04-3)), Where

w:Dc R2 — C2 : (ul,uz) — (Wl(ul,uz),W2(u1,UQ))

is a minimal Lagrangian immersion and z is a complex-valued function
determined by the condition that
n—3
2(z+Z) =wiw + wawy + va,
i=1

and by the condition that its imaginary part depends only on u and satisfies
the following system of differential equations:

1
(2 =2)y, =5 D1 (W1)y, +w2(i02),, = W10w1),,, = W2(w2),, },

1
(2 = 2)y, = 5 D01 (W), +w2(92)y, = W1 (w1),, = W2(w2),,, },

where m: H{™ ' (=1) — CH™(—4) is the projection defined in section 2.
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Proor. First, we assume that (c.1) holds. Denote by f : M" — HX(—1) a
horizontal lift of the Lagrangian immersion F : M" — CH"(—4). We define a

map Y by
(4.4) W(t,u,v) = (cosh ) f(t,u,v) — (sinh ) E5(t,u,v).
Clearly, {y,y> = —1. A straightforward computation shows that
Dy =Dpy =0, i>3,
(4.5) Dpgy = (sech t)E),
Dpg,y = (sech 1) Es.

The above implies that y depends only on u = (uj,us). Therefore, we write
W (u) = Y(to,u,v9). It follows that yy determines an immersion of a surface into
H12n+1(—1).

From (2.4), (2.5), (4.1), (4.4), (4.5), (a.1), and Lemma 3.1 we find

Dg . (Ep) = (sech 1)(—yE> + AiE| + (sech 1)),
(46) DE] W*(Ez) = (sech l)(])E] — ;LiEz),

Dp (E>) = (sech t)(—=0E; — AiE) + (sech 1)y).

Thus, | determines a minimal horizontal immersion in an H(—1) which is
totally geodesic in HX'(-1).
Next, we put

(4.7 #(t,u,v) = (csch H){f(t,u,v) — (cosh )Y (u)}.

It follows that

¢* (E,) = DE,¢ = (CSCh [)Ej i>4.
Hence ¢ depends only on the variable v. Also, we have that

(p, ¢> = (esch? 1){{f, f> — 2 cosh t{f , > + cosh® tf, )}

= (csch? 1)(cosh? 1 — 1) = 1.
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It now follows from the previous lemmas that

5y
D¢, (E;) = (csch t){Vg/_Ei +;]E3 +5iif}
= (csch t)ng_E,- — (csch? )0,

where ng E; denotes the Th-component of Dg E;. This implies that the image of
¢ is a real hypersphere in an (n — 2)-dimensional, totally real, positive-definite
subspace of C {”1, which is also orthogonal to the 3-dimensional complex space
containing the image of . Combining (4.4) and (4.7) we get

f(t,u,v) = (sinh £)@(v) + (cosh £)yr(u).

Applying now an isometry of C f’“ gives (i).
In order to prove (ii), we proceed similarly starting from («.2). We define

Y(t,u,v) = (sinh ¢) f — (cosh 1)E3
and
#(t,u,v) = (sech 1){f + (sinh 1)) }.

Following now exactly the same type of arguments as before, we obtain (ii).
Finally, we consider the case that o« = 1 on a neighborhood of the point p.
Then, we have

DEs(e_r(f—l— E3))=—e'(f+E;5) + e '(Es +/)=0,
DEi(eit(f—F E3>) = 671<E[ + DEiE3) = et(E,‘ — éE,) = 0, i> 3,

Dg,(e”'(f + E3)) = e '(E1 — aEy) = 0,
Di(e'(f + E3)) = 0.

Since <e'(f + E3),e”'(f 4+ E3)> =0, we see that e /(f + E;) is a constant
lightlike vector along M. Clearly, by applying an isometry of C f’“ we may
assume

e '(f + E3) = (1,-1,0,...,0).
We now define a map # by

’7([7 u, U) = et(f - E3)
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Then
Dpy=e'(f — E3) +e'(Es—f) =0,
Dg,np = 2e'Ey,
Dg,n = 2e'E,
Dgn=2e"E;, i>3,

from which we deduce that # depends only on the u and v-variables. Therefore it

defines a map from an open part of R> x R" into C}™'. The above formulas
also imply that

(4.8) <17* <60u,»)”7* <6ij)> does not depend on vy,

<,7* <6avl->”7* ((351)])> does not depend on u.

This means that the metric induced by the map # defines a product metric on
R? x R"*. Computing now the second fundamental form for the immersion 5 of
an open part of R x R"® into C'*!, we get

€IDE/.EZ- = 2e‘(VE/.E,-)T2 + 2615,-]-(E3 —i—f),

where (-)7, denotes the component of (-) in the direction of the distribution 7.
Recall that e (E; +f) is a constant vector and therefore the image of 7 is
contained in a linear n-dimensional space parallel to the complex subspace
spanned by (1,—1,0,...,0) and E;(p), E2(p), Es(p),...,E,(p). Choosing initial
conditions at the point p = (#,up,v9), we may assume that



Lagrangian submanifolds of complex hyperbolic space 107

e "(f +E;)(p)=(1,-1,0,...,0),
n(p) =e"(f - E3)(p) = (1,1,0,...,0),
Ei(p) = (0,0,1,0,0,....,0),

(4.9) E»(p) = (0,0,0,1,0,....,0),
E4(p) = (0,0,0,0,1,0,...,0),
E,(p) = (0,0,0,0,...,0,1).

Since 7(p) = (1,1,0,...,0) and # is independent of the variable 7, we can thus
write

7](1/{, U) = 77(507”7 U) = 7’](1,1/{,1))
=(1,1,0,...,0) + z(u,v)(1,—1,0,...,0) + (0,0,%, (u,v), ..., 7,_; (u,v)).
Denote now by ¢ the map from an open part of R?> x R" > to C"! defined by

(u’ U) = é(”? U) = (’71(% U)’ e ,7’],,,1(14, U))

Clearly ¢ = p o, where p denotes the projection on the last (n — 1) coordinates.
It follows that

E(E) = n,(E1) —one”(f + E3) = 2¢'Er — one”'(f + E3),
(4.10) E(E2) = n,(E2) — me™'(f + E3) = 2¢"Ey — e '(f + E3),
EAE) =n(E) —we ' (f + E3) =2e'E; —we ' (f + E3), >3,

where oy, 00,04,...,0, are local functions. The above formulas show that ¢&
defines a Lagrangian immersion from an open part of R*> x R"™* into C"~!. By
using (4.8), (4.9) and (4.10), we see that the pull-back metric on R*> x R"* is the
product metric. Computing now the second fundamental form of this immersion,

we get
Dr, & (Er) = y¢u(Ea) + i28.(Er),
D&, (Er) = 0. (Er) — ¢, (Ea),
Dp,¢.(Ey) = —0¢,(Er) — idé,(Ey),
Dr¢.(E) = & ((VEE))r,),

Dg . (E) = Dgé.(Ey) =0.
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Hence applying Moore’s theorem, we conclude that the immersion & is a
product immersion. Thus it decomposes into immersions w: R*> — C> and
7: R"3 — C" 3. Moreover, the second one is totally geodesic and Lagrangian,
whereas the first one is Lagrangian and minimal. Therefore we can write

n=(1,1,0,...,0) + z(u,0)(1,~1,0,...,0)
+ (0,0, wy (ur,u2), wa(ur, u2), 01, ..., Up—3),
where w: D < R> — C?: (uy,uz) — (Wi (uy,uz), wa(uy,uz)) is a minimal Lagran-

gian immersion. Since <{#,7) =0, we deduce that

n—3
(4.11) 2(Z+Z)=W]W] +sz2+Zvi2.
i=1

Since

f4+E=e'(1,-1,0,...,0),
f—Ei=¢'n=¢7"(1,1,0,...,0) + ¢ 'z(u,0)(1,-1,0,...,0)

+e71(0,0, wi (ur, u2), wa(ur, u2),v1, . .., Up_3),

we deduce that
. 1
f = (cosh ¢, —sinh ¢,0,...,0) +§e”z(u, v)(1,-1,0,...,0)
1 —t
+§e (0,0, wi (uy,u2), wa(uy,2), 01, - -, Up—3).
Since f is horizontal, we have if, f,> = <if, fu,> = <if, f,> = 0 and

. 1
if = (icosht,—isinh#,0,...,0) —|—§e_tiz(u,v)(l,—l,0,...,0)

+%eit(0707wlv}1}27vl7 .. .,Un,:;),
. 1
f = (sinh #, —cosh £,0,...,0) — Ee”z(u, v)(1,-1,0,...,0)

1
—t
- ze (0707W151/V27017~ . ';Un—3)a
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ful :%6)7 Zul(lv_laoa"~70) +%eit(0707 (Wl)ul’(Wz)u170""70)7
1, 1,

fuzzie ZM2(17_1707"'70)+56 (0707(Wl)uzv(Wz)uz’o""70)7
1, 1,

fvlzie zvl(l,—l,O,...,O)—i—Ee (0,0,0,0,1,0,...,0),...
1, 1,

fvﬂzie zu,l,z(l,—l,o,...,0)+§e (0,0,0,0,0,...,0,1).

we deduce that

t

02@ﬂﬁ&z?%@{®ﬁ0%_+@ﬂﬂﬁm+@mhM@—@Mﬂﬁm

-2t

8

-2t

=g (2E =2y Fwi(W1)y, +wa(i2),, = W1 (w1),, = W2(w2),,),

ie
+

(wi (1), — W1(E]),, + wa(iW2),, — Wa(wa),)

- =2t
0={<if, fuy = %(2(5 = 2),, T wi(iw1),, +wa(W2),, — Wi(w1),, — W2(w2),,),

l'e—Zf

0=dif fud == (2(2—2),), i>3.

Hence the imaginary part of z depends only on u and is determined by
1
(2 =2)y, =5 1@y, +w2(i02), = W1001),,, = W2(w2),, },
_ 1 _ _ _ _

(2 = 2)y, = 5 101 (W1)y, +w2(2),,, = W1 (w1),, = W2(w2),,,}.

This completes the proof of the theorem. O
REmMARK 4.1. Conversely, a straightforward computation shows that the

immersion, as defined in Theorem 4.1, give rise to Lagrangian immersions of

CH"(—4) satisfying the basic equality.

5. Lagrangian 3-Dimensional Immersions in CH?*(—4)

Let F: M? — CH?3(—4) be a Lagrangian immersion without totally geodesic
points satisfying the basic equality. Let p e M and let {E}, E», E5} be the local
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frame constructed in Lemma 3.1. So, we have from Lemma 3.2 that
Vi By = —yE) + okj,
Vi, Ey = —0E) + oEj,
Vg, E; =0,
Vi Ey = yE) + fEs,
(5.1) Vi, E\ =0E, — BEs,
Vi Es = —oE) — BEs,
Vi, E3 = PEi — 0k,
Vi, El = —{E,
Ve E, = 1pE;.

We also assume that M3 contains no points where the distribution 2+ is inte-
grable. In particular the function f is nowhere zero. Therefore, by changing the
sign of E, if necessary we may assume that f > 0. Remark that from Lemma 3.2
we also have

Ei(2) = =329,
(5.2) E>(J) = —31y,
Es(2) = Jo

Since we assumed that M3 does not have any totally geodesic points, we may
assume A > 0, by replacing E3 by —Es if necessary. So (5.2) yields

E; (lu) = _357
(53) Ex(p) = =3y,
Es(p) =0, p=logi.

LemMA 5.1. The functions o, f,y and 6 satisfy the following system of dif-
ferential equations:

() Es(o) =o? =~ 1,

(i) E3(f) = 208,

(iif)  Ei(x) — E2(B) =0,

(iv)  Ei(f) + Ex(2) =0,

(v)  Ei(B) —3E3(y) = 26 — 3ay,
(vi)  Ex(B) + 3E5(0) = 2By + 300,
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(vii) Ei(y) — E2() = —%op,
(viil) E1(0) + Ex(p) +72 +0% = 1+21> —a® — 357,

Proor. Statements (i)—(v) and (viii) follow from the Gauss equation and
straight-forward computation. And statements (vi) and (vii) follow from
(5.3). O

Remark that except for Lemma 5.1 (viii), these are exactly the same
equations as those obtained in Lemma 2 of [15] determining an extremal class of
3-dimensional hyperbolic affine sphere. Therefore, following the ideas of [15], we
get the following two lemmas:

LemMa 5.2. For any function t with Es(t)=1 there are functions
hok,/: M — R with Es(h) = E5(k) = E3(/) =0 such that

_sinh(z — /) cosh(s — /)

(%) t T T (1= £) + cos?(h) |
®) _ sin(h) cos(h)

*sinh?(t — /) 4 cos?(h)’
(xi) )= -

\/sinhz(t — /) + cos2(h) .

ProorF. Combining Lemma 5.1 (i) and Lemma 5.1 (ii) yields
Es(o+iB) = (a+if)* — 1.
Integrate this equation along the integral curves of E3 gives
(4 if — 1) = (@ + if + 1) +in/2-h)

for some functions /, /i satistying Es/ = E3h = 0, which implies equations (ix) and
(x). Equation (xi) can now be obtained by solving the third differential equation
of (5.3).

LemmA 5.3. Let f be any function with Es(f) = —1. Define functions

ar,az, by, by by
1

. \3
R T LT

by = Ei(f),
by = Ex>(f).
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Then the vector fields
T = Ej,
(5.4) U=aE +aFE,+ (a1b) + a:b,)E3,
V =—amE +a By + (a1by — axby) E3,
satisfy [T,U]=[T,V]=[U,V]=0.
This lemma can be verified by a direct long computation.

Lemma 5.3 implies that it is possible to find coordinates (¢,u,v) such that

g Dy 2y
ot

(3-3) ou ov

It also follows from (5.2), Lemma 5.1 (i) and Lemma 5.1 (ii) that a possible
choice of the function f is given by

—20

(5.6) f= L ginnt
\/(ocz — B = 1) +4a2p?

2

Using Lemma 5.2, we deduce that
(5.7) f=(—t

Since Ei(f) = b1, E2(f) = b2, E3(f) = —1, it follows from (5.4), (5.5) and (5.7)
that

oo,
ou ov

Hence (5.7) and E;(f) = —1 imply that / is a constant. Thus, by a translation of
the t-coordinate we may assume that / = 0. Thus, (ix), (x) and (xi) reduce to

sinh(#) cosh(#)

(i) * 7 T Sinh (1) + cos2 (k)
') _ sin(h) cos(h)

~ sinh?(1) 4 cos2(h)’
(xi’) A= ot

\/sinhz(t) + cos?(h)

where h = h(u,v), k = k(u,v).
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We can formulate the main theorem of this section as follows.

THEOREM 5.1. Let f: M® — CH?3(—4) be a Lagrangian immersion satisfying
the basic equality and p € M?>. If the immersion has no totally geodesic points and
the distribution 9 is nowhere integrable, then there exist coordinates (u,v,t)
defined in a neighborhood D x I of p and functions h: D — R : (u,v) — h(u,v) and
k:D— R: (u,v) — k(u,v) satisfying

(5.8) Ah = e 23 sin(2h),
and
(5.9) Ak = =3¢ %3 (cos(2h) + 2¢%),

where A = 8% /0u® 4 0% /dv®. Moreover, the induced metric can be expressed by

0 0 J 0
<E’E> = 17 <%’%> = _huhm

0 o\ _ 0 0N\ _ owpzg 2 ‘12 2
(5.10) <6l’6u> = hy, <6u’6u> =e (cos” h+sinh” 1) + hy,
AN 0 0N\ _ .2 02 2
<E,%> = —hu, <%,%> =e (COS h + sinh l) + hu’
and the tensor T = —Jh induced from the second fundamental form satisfies

0 0 0 0 0 0

(G =7(on) = T(Ga) =

(2 0N _ 1_2coszhcosh2t i—hug
ou’ du sinh? ¢ + cos2 h ) \u ot)’

1 o sin 24 sinh 2¢ ( 0 6)
o SmAASI T (0, O
2 sinh? ¢ +cos2 h \v ‘0t

o 0 2 cos? hicosh® ¢\ /@ 0
11 T(—, =) =-*3[1 - """ )= —h—
(5-11) (50’50) ¢ ( sinh? ¢ + cos? h) <6u l 6t)’

132"/3 sin 2/ sinh 2¢ (6 N (’))
2 sinh? ¢ +cos2 h \ov  “ot)’

T 7 a7 __1621»'/3 sin 2/ sinh 2¢ i—hﬁ
uov) 2 sinh? ¢ +cos2 h \ou 'ot)’

TV 1_2coszhcosh2t <0+h ﬁ)
. 2 u
sinh” 7+ cos2 i ) \Ov ot

_|_
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Conversely, let h,k be any solutions of (5.8) and (5.9) on an open set D of R,
We define on M = D x R a metric by (5.10) and a tensor T by (5.11). Let

M, = {(x,l)eM|h(x) # %(2k+1)neZ or l;éO}

and let M\ be a simply connected component of My. Then, up to rigid motions of
CH?3(—4), there exists a unique Lagrangian immersion F : M| — CH?3(—4) with
nonintegrable distribution &, the second fundamental form h = JT, and satisfying
the basic equality.

Proor. Let f: M3 — CH?3(—4) be a Lagrangian immersion satisfying the
basic equality. Assume that the immersion has no totally geodesic points and
the distribution 2 is nowhere integrable. We use the notations introduced in the
beginning of this section.

First it follows from (5.4), (5.5), (ix’), (x’), and (iii) and (iv) of Lemma 5.1
and a straightforward computation that

(5.12) by — ahy, + arhy,
' =
alhu — azl’lv
5.13 by =4 =t
(5:13) ? at + a3
From (5.4) and (5.5) we get
aifly — oty
5.14 Eju=—"2%"""_hu,
( ) 11 (112 +(1% 1K
a\u, + au

Using (5.12)—(5.14), (5.3) becomes

__wp,+apy, — (—ahy + aoh)py

3(at + a3)

5= Gy — ar, — (@ahu + arho)p,

3(at + a3) '
Thus, using Lemma 5.3 it follows after a long computation that we can express
Ay, ary, az, and ap, in terms of aj,an, u, p,, o and f as follows:
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arky(cos 2h + cosh 2t) + 3ay hy, sin 2k — 2ayh, sinh 2t

=" 3(cos 2h + cosh 2t) ’
g = ark,(cos 2h + cosh 2¢) + 3ayh, sin 2h — 2ayh, sinh 2¢
e 3(cos 2h + cosh 2¢) ’
b — ark,(cos 2h + cosh 2t) + 3axh, sin 2k + 2a,hy, sinh 2t
e 3(cos 2h + cosh 2t) ’
; azk,(cos 2h + cosh 2¢) + 3ayh, sin 2h + 2ay h, sinh 2¢
0= T :

3(cos 2h + cosh 2¢)
We now deduce after a lengthy computation that equations (v) and (vi) of
Lemma 5.1 (v) and Lemma 5.1 are trivially satisfied and that equations (vii) and

(viii) of Lemma 5.1 reduce to (5.8) and (5.9). In order to obtain (5.10) and (5.11),
we use Lemma 5.3. First it follows that

<27£> = <E37E3> = 17

= (B3, Uy = aiby + axby = hy,

a ja}
- i> = <E37 V> = a]b2 — a2b1 = —hu,
> =ai + a3 + (arby + arhy)’
= hf + e_(2/3>k(sinh2 ¢ + cos? h),
0 0
<— _U> = Cl12 + Cl; + (Cl1b2 — a2b1)2
= h? + e~ ¥¥*(sinh? 1 4 cos? h),
0 0
) = (a1by + axby)(a1by — arby)
= —h,h,.

In order to obtain (5.11) we proceed as follows. First, it follows from Lemma 5.3
that
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aj 0 0 ar 0 0
E=—a—(a—he) s+l ),
T a2y a? (6u & 6t> at + a3 (61) +h 61)

a J 0 a 0 0
E, = ~ M= > 5\ A. u=s, |
Tt a (614 h 6t> +a12+a§ <8v+h 81)

0
Ey=—.
37 ot

It also follows from Lemma 5.2 and 5.3 that
(2> — B> — 1)* + 40> = (sinh? ¢ + cos® h) 2,
(5.16) al +a3 =702 = B2 = 1) +4a?p7) 7,
= ¢ %3 (sinh? £ + cos? h),
and

1
Ma+ip)* = 1)
1 (2= p>—1)—2iap

(02 = B2 = 1)%) + do2f%)

(@ —3aa2) — i(a3 — 3d3ay) = (a) + iaz)® =

Applying now the previous formulas, we obtain

J 0
T(@’%) = (a} — a3)AE| — 2a1a2).E;

A 2 aanf(0 0 2 (0 ., 0
= ){al(al 3a2)<5u hval>+a2(a2 3a;) aerhu

(af + a3

0 0
2k/3 (it 2 2 2 @2
= ¢“*/°(sinh” f + cos h)((oc pe—1) <6u h”(%)

0 0

_ 1_Zcoszhcoshzt <6_h6>
= e .
sinh” 7+ cos? h ) \du ot
1 in 2k sinh 2t [ 0 0
Lo .sz sin <+ u).
2 sinh” ¢ + cos? i \0v ot

The other equations are obtained in a similar manner.



Lagrangian submanifolds of complex hyperbolic space 117

Since all integrability conditions have been checked, the proof of the converse
follows straightforwardly from the fundamental existence and uniqueness theo-
rems. ]

REMARK 5.1. There exist infinitely many solutions for the differential system
(5.8) and (5.9), in particular, there exist infinitely many solutions of the dif-
ferential system with /2 = 0 (see, for instance, [13]). Hence, it follows immediately
from Theorem 5.1 that there exist infinitely many Lagrangian submanifolds in
CH?(—4) with nonintegrable distribution & which satisfy the basic equality.

REMARK 5.2. Theorem 4.1 and Theorem 5.2 together determine Lagrangian
submanifolds of CH? satisfying the basic equality.
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