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1. Introduction

The purpose of this paper is to give a Poincare formula of real surfaces in

complex projective spaces stated in the following theorem.

Theorem 1.1. Let CPn be a complex projectivespace of complex dimension

n, M a realsubmanifoldof CPn of realdimension2 and N a complex submanifold

of complex dimension n ―1. Then we have

J
U(n+l)
%(MngN)d[iu(n+l)(g)

vol(C/(w+l))vol(JV)

2＼o＼{CPl)vo＼(CP"-1)

I

(1 + cos2 0x) dfiM{x)

where 0X is the Kdhler angle of M at x. Moreover the above formula holds for a

real submanifold M of real dimension 2n ―2 and a complex submanifold N of

complex dimension 1, where 6X is the Kdhler angle of T^M.

One of the oldest resultsin integral geometry is the Poincare formula for the

average of the intersection number of two curves. Many differentialgeometers

have studied the Poincare formula from various points of view. In particular,R.

Howard [1] has generalized this formula in Riemannian homogeneous spaces and

obtained the following formula.

Theorem 1.2. [1] Let G/K be a Riemannian homogeneous space with a

G-invariantRiemannian metric and take submanifoldsM and N of G/K. Assume

that dimM + dim TV = dim( G/K) and that G is unimodular. Then
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f
jJ(Af 0 gN) dfiG(g) =

f f
aK(T^M, T^N) dfiMxN(x, y)

JG J JMxN

where ok{T^M, T^N) is defined by (2.1) below. Furthermore, if G is transitiveon

the sets of tangent spaces to each of M and N then

where xq and yQ are any points of M and N, respectively.

Let CPn be a complex projective space of complex dimension n. The unitary

group U(n + 1) acts transitivelyon CPn. The isotropy subgroup of U(n + 1) at a

point in CPn is t/(l) x U(n). Thus CPn can be realized as a homogeneous space

CPn = U{n+l)/{U(l) x U(n)). Let u(≪+ 1) be the Lie algebra of U(n+l).

Define an inner product on u(n + 1) by

(X, Y) =-^Tmce(XY) (X,Yeu(n+l)).

We extend thisinner product (･,■)on u(n + 1) to the leftinvariant Riemannian

metric on U(n+＼). Then we obtain a biinvariant Riemannian metric on

U(n+ 1). This biinvariant Riemannian metric on U(n+ 1) induces a U(n+ 1)-

invariant Riemannian metric on U(n + 1)/(C/(1) x U(n)). R. Howard [1] has also

obtained the following formula in the case of CP".

Theorem 1.3. [1] Let CP" be a complex projectivespace.

(1) Let M and N be complex submanifolds of CP" of complex dimension 1

and n ―1. Then

JUln+l)
$(MngN)dvu(n+l)(g) =

vol(t/(w+l))vol(Af)vol(AQ

volfCP1) vol(CP"-1)

(2) Let M be a totallyreal submanifold of CP" of real dimension 2 and N a

complex submanifold of complex dimension n ― 1. Then

JU(n+l)
$(MngN)dnu,H+l)(g) =

vol(£/(≪+l))vol(M)vol(AQ

vol(RP2)vol{CPn-1)

where RP2 is a 2-dimensional real projective space.

Such complex and totallyreal submanifolds have constant Kahler angles. In

the case (1) the Kahler angle of M is 0 and in the case (2) that of M is n/2 and
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vol(J?P2) = 2n = 2vol(CP1). Thus the formulas in Theorem 1.3 are special cases

of the formula in Theorem 1.1.

On the other hand, the second auther proved the following inequality in [21.

JU(n+＼) VOl(CFl)
vol(M),

where M Is a submanifold of CPn of real dimension 2. This follows from

Theorem 1.1.In thisformula,if M is a complex submanifold of CP" of complex

dimension 1 then the equalityholds and thisis the case of Kahler angle 0 in

Theorem 1.1.

Acknowledgements

We would like to thank Professor Katsuei Kenmotsu for his considerable

comments at an early version of thispaper. The authers are indebted to the

refereefor useful comments which led to improvement of thispaper.

2. Preliminaries

In this section we shall review the Poincare formula on Riemannian

homogeneous spaces given by R. Howard [1].

Let £ be a finitedimensional real vector space with an inner product. For

two vector subspaces V and W of dimension p and q in E, take orthonormal

bases v＼,...,vpand wi,...,wq of V and W, respectively,and define

d(V, W) = ＼v＼A ･■･ A Vp A W＼ A ･･･ A Wq＼.

This definitionis independent of the choice of orthonormal bases. Furthermore, if

p + q ― dim E then

g{V,W) =a(V±,W±).

Let G be a Lie group and K a closed subgroup of G. We assume that G has a

leftinvariant Riemannian metric that is also invariant under the right actions of

elements of K. This metric induces a G-invariant Riemannian metric on G/K. We

denote by o the origin of G/K. For x and y in G/K and vector subspaces V and

W in TAG IK) and Ty(G/K), we define aK(V, W) by

(2.1) aK(V,W)=
I

JK

a((dgx)-1 V, dk~l(dgyrl W) dMK(k)
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where gx and gv are elements of G such that gxo = x and gyo ― y. This definition

is independent of the choice of gx and gY in G such that gxo = x and ^yo = y.

Proposition 2.1. Let V and W be vector spaces with inner product. Assume

dim V = m > n = dim W. Let F : V ^ W be a linear mapping. We set JF ―

sup{|F(wi) a ･･■a F(un)＼IMi,...,≪,is orthonormal system of V}. If F is not

onto mapping then JF = 0. And if F is onto then for any basis v＼,...,vn of

(KerF)＼

JF
＼F(vi) A ･･･ A F(vn)＼

A ■■■ A Vn
|

We can easily show this proposition and omit its proof. We will use this later

in calculating the coarea formula.

Let C" be an ≪-dimensional complex vector space with standard real inner

product <･,･> and almost complex structure /. Let V be a vector subspace of

C" of real dimension 2. If v＼,v2 is an orthonormal basis of V then -1 <

</yi,U2> < 1- In the case of -1 < </ui,i>2> < 0, we choose -v2 instead of v2.

Then 0 < </ui,i>2> < 1. We set

9 = COS"1^!,^).

We call 9 the Kdhler angle of V. We remark that the definition of 9 is inde-

pendent of the choice of the orthonormal basis of V. In particular, the vector

subspace V is complex or totally real if and only if 9 ― 0 or 9 ― n/2, respectively.

The action of U(l) x U(n) to C" is defined by

(z,A)v = zvA*

for {z,A) e U(＼) x U(n) and v e Cn.

Lemma 2.2. Let Gq be the set of real 2-dimensional vector subspaces with

Kdhler angle 9 of Cn. Then (7(1) x U(n) acts transitively on Gq.

Proof. Take V e Gg and its orthonormal basis e＼,e2such that (Je＼,e-i)=

cos (9. For any {z,A) e U(l) x U(n), ze＼A*, ze2A* is an orthonormal basis of

zVA*. Moreover zVA* e Gg, since (J(ze＼A*),ze2A*s) = cos0.

By the action of U(n), we can transport e＼to (1,0,..., 0). We decompose

e2 as

£?2= (z1,0,...,0) + (0,z2,...,z≪).
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2 =
(zi,0,...,0) and e'{= (0,z2,...,zn). Then we can transport e'{ to

(0, |^|,0,..., 0) by the action of U(n-l). Set e'2= (z,0,... ,0). Since U(n)

preserves the inner product and the Kahler angle, we can transport ei to

(^Tcos#,sin#,Q,...,0)

by the action of U(n). Thus we can transport any V in Go to Vq by the action of

U(n), where

VQ = Spano{(l,0,...,0),(＼/^Tcos^sin^O,...,0)}.

Therefore U(l) x U(n) acts transitivelyon Gg □

Corollary 2.3. For a real 2-dimensional vector subspace V in Cn,

&u(＼)xu(n){V,C"~l) is dependent only on the Kdhler angle of V.

3. Poincare Formulas of Meal SurfacesIn Complex ProjectiveSpaces

Let CPn be an ^-dimensionalcomplex projectivespace with almost complex

structure/ and let M a real2-dimensionalsubmanifold of CP". For x in M let

9X be the Kahler angle of TXM in TxCPn. This is a functionon M. We call0X

the Kdhler angle of M at x.

-Take a complex submanifold N of complex dimension n―＼. By Theorem

1.2,we have

(3.1)
f
^MngN)dfiu{H+l)(g)

Jc/(≪+i)

f f
au(i)xU(n)(TxM,TyN) dfiMxN(x, y)

J JMxN

We can simply write

(j(Ox,n) = (Tu(i)xU(n)(TxM, TyN)

by Corollary 2.3. We shallidentify the tangent space of CPn with C" and that of

TV with C""1. By the action of 17(1) x U(n) we can identify TXM with Ve defined

in the proof of Lemma 2.2. Then

o(0,n) = I a(k
JU(l)xU(n)

-^c-Va^dxcwW

= vol(£/(l))
f
a(k-lVe,Cn-l)dfiu{n)(k)

JU(n)
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The one parameter subgroup e^^t in U{＼) corresponds to y/^l In the Lie

algebra u(l), whose length is l/＼/2 with respect to the invariant inner product. So

vol(C/(l)) =2n/V2.

We put e＼= (1,0, ...,0) and e{0) = (V^cos0,sin0,O,.. .,0). Let ei,...,en

be the standard unitary basis of C". For fc= (kjj)e U(n) we have

a(k'lVe,Cn~l)

= ^~!eia k~le{6)a e2 a V^Te2 a ■･･ a en a ＼P-ien＼

= e＼ka e(0)A:a^a ＼T-＼.eia ■･･ ac,a ＼/―TeM|

= |^i A ("v7―TcOS^i + Sin^2) A £2A a/―1^2 A ･･･ ACflA ＼/^Te≪|

= ＼k＼＼e＼a (V― 1 cosQk＼＼e＼+ sin^^Ki) A ^2 a ■･ ･ a v^-Te≪|

= ＼＼kn＼2co$6 - J?{knk2＼)sm6＼

where k＼and ki are the firsttwo columns of k and J(z) is imaginary part of

complex number z. Thus we have

<t(0,≪) = 2n71
JU(n)

I＼kn|2cos0 - J(knk2i) sin0＼ dfiu{n)(k)

The natural projection p : U(n) -> S2n~l c Cn; k h->k< (1,0,...,0) is U(n)

equivariant, so Jdp is constant on U(n).

*
0

is an orthonormal

°1

o ･

ro -<

U 0 (1 < i<n- 1)

basis of (Ker dpe)1. Using Proposition 2.1 we get Jdp =

Jdpe = ＼fl.By the coarea formula we have

y/l＼ ||fcii|2cos0-y(fcii*2i)sin0|^w(A:)

JU(n)

= vol(C/(w-l))
[
I|zi|2cos0--/(zif2) sin01^2,-1

Z＼

zn

Define a mapping /: S2n~l-{z＼z= '(0,0,z3,...,z≫)e S2""1} -> S3 by

/(*) = /('(zi,z2,z3,...,zB)) =

1

>/n2 + m2

ft
w
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By the coarea formula, for a function <f>defined on S2"^1 we have

Js*
＼J/-V)

</>(z)djuf-i{w){z)

)

dnsi(w) = L <f>(z)JdfzdjLiS2n-i (z)
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We firstcompute Jdf- at a point z = '(zi,Z2,Z3,...,zn).Since the mapping /

0(4) x 0(2n ―4)-equivariant, it is sufficientto compute Jdfx at

x = '(cosa, 0,0,0, sina,0,..., 0)

I 2 2
where cosa=y|zi| +＼z2＼ and sina =

Then

z3＼2 + ■■■+ ＼zn＼2. Put

y = '(―sin a, 0,0,0, cos a, 0,..., 0)

is

y,eh ej (2 < i < 4,6 < j < In)

is an orthonormal basis of TxS2n~x.It is obvious that y,ej (6<j<2n) are

elements of Ker dfx.Using Proposition 2.1, we get

Hence we put

Jdfz =
I

(N2 + M2)3/2

<f>(z)= (＼zl＼2+ ＼z2＼2)3/2-h＼2cos6-.J(z]z2)Sin6＼

then we have the following equation.

|zi |2 cos 6 ― J{z＼Z2) sin 0 djusin-i (z)

J52"-1

(|zi |2 + ＼z2＼2)3/21|zi|2 cos 6> - ^(ziz2) sin0＼ dfiri(w)(z) djusi(w)

J53 J/-'(n') J V y

We note that for any weS3, f l(w) is equal to the set

{ Vi, rw2, Vl-r2z3,..., Vl - r2zn)|0 < r < 1,r(z3,...,zn) e S2n~5}

Here we define a mapping g :(0,1] x S2n~5―>/"^w) by

z' = '{r,(z3,...,zn)) i-> ?(rwi,rw2, Vl - r2z3,...,Vl- r2zn).

It is clear that g is a diffeomorpfaism. By a simple calculation, we get

Jdgz/ = (l-r2)n-＼
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By the coarea formula,

J/-≫
t(z)dfif-i,w)(z)

f f
(<f>o g)(z')Jg(z')dpi{0:l]xS2n-s(z')

J J(0,l]xS2"-5

f1
= Ww^cose-Jiw^sinelvoliS2"-5) r5 ■(1 - r2)""3 Jr

Jo

So we obtain

Since

vol^2""5)

n(n -＼){n- 2)
I＼w＼|2 cos6 -

≪/(wiw2)sin#|.

＼z＼I cos 6 - J(z＼Z2) sin 6＼dfisin-＼(z)

s2"-1

=
n(n-l)(n-2)＼

J＼w^ cos9
~J(w^sin6＼d^{w)

||azi|2cos# ―
≪/((azi)

･ dij) sin#| = ||zi|2cos0 ― J{z＼z-i)sin^

for any a e C with |a| = 1, we have

)||zi|2cos0
― J>{z＼Z2)sin ^1 d/isi(z)

S3

= In ||zi|2cos0 ― J{z＼Z2)s＼nd＼d/ucpi[z]

JCP1

Let H(2, C) be a vector space of 2 by 2 Hermitian matrices. Define an innei

product on H(2,C) by

{A,B) =
~
Tmce(AB*)

where B* is the conjugate transpose of B. We define S2 by

S2 = {Xe H{2, C) | X2 = X,Trace(X) = 1}.

Remark 3.1. S2 is a 2-dimensional Riemannian submanifold in H(2,C).

Lemma 3.2. Let h : CPl ―>S2 be a mapping given by
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[:;]

where '(zi.zj)e S2. Then h is an

-[
Z＼Z＼ ZXz{＼

Z2Z＼ Z2Z2
I

isometry.

A directcomputation shows that S*

1/2

0

is a sphere with center

°1

1/2

and radius 1/2. So we put S2{＼/2) = S*. Set

L = {X g H(2, C) ITrace(X) = 0}

Then

is an orthonormal

:

basis

ri/2 o "

[
0 1/2.

Therefore we

:

of L.

[:

:

Hence

0

-1

r 1/2+*,

I
x2 - yf^lxi

obtain

lzl

CPl

-1

:

･-

U
i +

0

any point X

X2 +

X2 + V^lx^ 1

1/2-X!
J
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V=I1

0 J

of S2(l/2) is represented by

[ 0 v^Tl

2
cos 6 ― J{z＼Z2) sin 0＼dpiCPi [z]

SHl/2)

By the isometric variable

the above integral is

- cos 6 + x＼ cos 0 ― X3 sin 0

transformation

1

2

"Ml"

.≪3-

equal to

cos 6 + u＼

'cos 9

0

sin 6

0

1

0

―sin 01 Vx＼

0 x2

cos 9 J 1x3

f
^52(1/2) (") =

Js^l/2)

1

2

dMsH＼/2)(x)

COS#― U＼
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Using the spherical coordinates, we have the following.

J

52 (1/2)

1

2

n

4

cos 6 ― u＼ dfiS2n/2)(u)

0

(1+COS20)

- COS (j)x ■-sin fa dfadfa

Using volfS2 -1)= 2nm/(m - 1)!,we obtain

a(0,n)
＼o＼(U(n+l))

2vol(CPl)vol{CP"-1)
(l+cos20)

Now (3.1)impliesTheorem 1.1for a realsubmanifold M of realdimension 2 and

a complex submanifold N of complex dimension n ―1.

In the case of a realsubmanifold M of realdimension In ―2 and a complex

submanifold N of complex dimension 1 we can prove Theorem 1.1 using (3.1)

and the above formula of cr(0,n).

Remark 3.3. By the transferprinciplein integralgeometry (see [1] para-

graph 3.5 on pages 14-15), it is clear that Theorem 1.1 holds for allcomplex

space forms with isotropy subgroup U(l) x U(n).
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