A FAMILY OF BRAIDED COSEMISIMPLE HOPF ALGEBRAS OF FINITE DIMENSION

By

Satoshi Suzuki

0. Introduction

Recently some finite dimensional cosemisimple Hopf algebras were constructed [Mas2] [F] [G]. We aim to give a plain and systematic description of cosemisimple Hopf algebras of low dimension. For this purpose we construct them as quotient bialgebras of a sufficiently large bialgebra. This way has the advantage of defining homomorphisms and determining braidings.

In this paper we define and study a family of finite dimensional cosemisimple Hopf algebras

$$\mathscr{F} = \{A_{NL}^{(++)}, A_{NL}^{(+-)}, A_{NL}^{(-+)}, A_{NL}^{(--)} \mid N \ge 1, L \ge 2\},\$$

which consists of quotients of a bialgebra B over an algebraically closed field k with $chk \neq 2$.

This family contains the "non-trivial" cosemisimple Hopf algebras of dimension 8, 12 if $chk \neq 3$.

In Section 1 we review basic definitions and results.

In Section 2 quadratic bialgebras B, $B^{(+)}$ and $B^{(-)}$ are constructed. We use B to construct the family \mathscr{F} , and $B^{(\pm)}$ to obtain braidings on the members of a subfamily of \mathscr{F} . These bialgebras B, $B^{(\pm)}$ are cosemisimple, and we determine all braidings on them.

In Section 3 we define the family \mathscr{F} as a set of quotient bialgebras of the bialgebra *B*. We write $A_{NL}^{(+1,-1)} = A_{NL}^{(+-)}$, etc. Let $\nu, \lambda = \pm 1$. Our main results are as follows.

i) $A_{NL}^{(\nu\lambda)}$ is a non-cocommutative involutory cosemisimple Hopf algebra of dimension 4NL, which is non-commutative unless $(L, \lambda) = (2, +1)$. $A_{NL}^{(\nu\lambda)}$ is furthermore semisimple if $(\dim A_{NL}^{(\nu\lambda)}) \cdot 1 \neq 0$.

Received April 8, 1996.

Revised October 7, 1996.

Satoshi Suzuki

ii) Any non-commutative subHopf algebra of $A_{NL}^{(\nu\lambda)}$ generated by a simple subcoalgebra is a member of the family.

- iii) All braidings on $A_{NL}^{(\nu\lambda)}$ are determined. iv) We determine when $A_{N_{L_1}}^{(\nu_1\lambda_1)}$ and $A_{N_{2}L_2}^{(\nu_2\lambda_2)}$ are isomorphic.

1. Preliminaries [D]

We follow Sweedler's book [S] and Montgomery's book [M] for terminology of Hopf algebras.

In this section we review basic definitions and results. They are due to Doi [D].

Let B be a bialgebra over a field $k, \tau: B \otimes B \to k$ a k-linear map which is invertible with respect to the convolution product. (B, τ) is called a *braided* bialgebra if the following three conditions hold:

(1)
$$\Sigma \tau(x_1, y_1) x_2 y_2 = \Sigma y_1 x_1 \tau(x_2, y_2)$$

(2)
$$\tau(xy,z) = \Sigma \tau(x,z_1) \tau(y,z_2)$$

(3)
$$\tau(x, yz) = \Sigma \tau(x_1, z) \tau(x_2, y)$$

for $x, y, z \in B$.

Then the following conditions are automatically satisfied:

$$\tau(x,1) = \varepsilon(x) = \tau(1,x),$$

$$\Sigma\tau(x_1,y_1)\tau(x_2,z_1)\tau(y_2,z_2) = \Sigma\tau(y_1,z_1)\tau(x_1,z_2)\tau(x_2,y_2) \quad \text{for } x, y, z \in B.$$

We call this τ a braiding on B.

PROPOSITION 1.1 ([H, Proposition 1.2]). Let (B, τ) be a braided bialgebra generated by a subcoalgebra C, (I) the bi-ideal generated by a coideal I of B. Then τ induces a braiding on the bialgebra B/(I) iff $\tau = 0$ on $C \otimes I + I \otimes C$.

If (B,τ) is a braided bialgebra, $t\tau^{-1}$ is another braiding on B, where ${}^{t}\tau^{-1}(x,y) = \tau^{-1}(y,x)$, and the braiding τ is said to be symmetric if ${}^{t}\tau^{-1} = \tau$.

Let C be a coalgebra over $k, \sigma: C \otimes C \to k$ an invertible k-linear map. For any bialgebra B, a linear map $f: C \to B$ is called a σ -map if

$$\Sigma\sigma(x_1, y_1)f(x_2)f(y_2) = \Sigma f(y_1)f(x_1)\sigma(x_2, y_2), \quad x, y \in C.$$

Let T(C) be the tensor (bi-)algebra and I_{σ} is the (bi-)ideal generated by

(4)
$$\Sigma \sigma(x_1, y_1) x_2 y_2 - \Sigma y_1 x_1 \sigma(x_2, y_2), \quad x, y, z \in C.$$

We can form the bialgebra $M(C,\sigma) = T(C)/I_{\sigma}$, which is called is the quadratic bialgebra associated with (C,σ) .

REMARK 1.2. i) The map $i: C \hookrightarrow T(C) \to M(C, \sigma)$ is an injective coalgebra σ -map.

ii) If B is a bialgebra and $f: C \to B$ is a σ -(coalgebra) map, then there is a unique (bi-) algebra map $\hat{f}: M(C, \sigma) \to B$ such that $\hat{f} \circ i = f$.

iii) $M(C,\sigma)$ has a natural algebra-gradation $\{C^n\}_{n\geq 0}$.

iv) $M(C,\sigma)^{op} = M(C,\sigma^{-1}) = M(C,t\sigma), \ M(C,\sigma) = M(C,t\sigma^{-1}).$

Let (C, σ) be as above. The map σ is called a *Yang-Baxter form* (or YB-form) if for all $x, y, z \in C$,

(5)
$$\Sigma \sigma(x_1, y_1) \sigma(x_2, z_1) \sigma(y_2, z_2) = \Sigma \sigma(y_1, z_1) \sigma(x_1, z_2) \sigma(x_2, y_2).$$

We call (C, σ) a YB-coalgebra if σ is a YB-form.

REMARK 1.3. If σ is a YB-form on C, so is $t\sigma^{-1}$.

A YB-form σ is said to be symmetric if ${}^{t}\sigma^{-1} = \sigma$.

PROPOSITION 1.4 ([D, Theorem 2.6]). If (C, σ) is a YB-coalgebra, σ uniquely extends to a braiding $\tilde{\sigma}$ on $M(C, \sigma)$.

We note that if (C, σ) is a YB-coalgebra then $M(C, \sigma)$ has another braiding ${}^t \tilde{\sigma}^{-1}$.

COROLLARY 1.5. $\tilde{\sigma}$ is symmetric iff σ is symmetric.

For a bialgebra B, a Hopf algebra H and a bialgebra map $\iota: B \to H$, we call (H, ι) (or simply H) a Hopf closure of B if the following universality holds: for any Hopf algebra A and any bialgebra map $f: B \to A$, there is a unique Hopf algebra map $\tilde{f}: H \to A$ such that $\tilde{f} \circ \iota = f$. See [Man] [H] [D].

PROPOSITION 1.6 ([T2] [D, Theorem 3.6] [H]). Let $M(C, \sigma)$ be the quadratic bialgebra associated with (C, σ) , $d(\neq 0)$ a grouplike element of $M(C, \sigma)$. If there is a map $j: C \to M(C, \sigma)$ such that

$$\Sigma i(x_1) j(x_2) = \varepsilon(x) d = \Sigma j(x_1) i(x_2)$$
 for all $x \in C$,

Satoshi Suzuki

then d is central and the (well-defined) localization $M(C,\sigma)[d^{-1}]$ becomes a Hopf algebra. Moreover it is a Hopf closure of $M(C,\sigma)$, and it follows that $M(C,\sigma)[d^{-1}] = M(C,\sigma)[G^{-1}]$, where G is the set of grouplike elements of $M(C,\sigma)$. If (C,σ) is a YB-coalgebra, $M(C,\sigma)[d^{-1}]$ has a braiding.

2. YB-coalgebras and quadratic bialgebras

From now on we work over an algebraically closed field k whose characteristic, *chk*, is not 2. Indices of Kronecker's δ_{ij} , X_{ij} , etc. are considered modulo 2.

In this section we define some YB-coalgebras and examine quadratic bialgebras associated with them.

Set $C = M_2(k)^*$, the dual coalgebra of the 2 × 2-matrix algebra $M_2(k)$, and let $\{X_{ij}\}_{1 \le i,j \le 2}$ be the comatrix basis of C, namely it spans C and satisfies

$$\Delta(X_{ij}) = \Sigma_{k=1}^2 X_{ik} \otimes X_{kj}, \quad \varepsilon(X_{ij}) = \delta_{ij}.$$

For any coalgebra D and $Y_{ij} \in D$, $1 \leq i, j \leq 2$, if the linear map $C \to D$, $X_{ij} \mapsto Y_{ij}$, is an injective coalgebra map, we denote the image by

$$span_k(Y_{ij}) = span_k\begin{pmatrix} Y_{11} & Y_{12} \\ Y_{21} & Y_{22} \end{pmatrix}.$$

Let $\lambda = \pm 1$. Now for any $\alpha \in k^{\times} = k - \{0\}$, we define linear maps $\sigma_{(\alpha)}$, $\tau_{(\alpha)}^{(\pm 1)} = \tau_{(\alpha)}^{(\pm)} : C \otimes C \to k$ as follows (see [D, Example 2.8] for $\tau^{(\lambda)}$):

$\sigma_{(lpha)}$	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₂₁	X ₂₂	$ au_{(lpha)}^{(\lambda)}$	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₂₁	X ₂₂
X ₁₁	0	0	0	0	X ₁₁	α	0	0	1
<i>X</i> ₁₂	0	α	1	0	<i>X</i> ₁₂	0	0	0	0
X_{21}	0	1	α	0	<i>X</i> ₂₁	0	0	0	0
X ₂₂	0	0	0	0,	X ₂₂	λ	0	0	α

PROPOSITION 2.1. $\sigma_{(\alpha)}$, $\tau_{(\alpha)}^{(\lambda)}$ ($\alpha \in k^{\times}$) are YB-forms on C.

PROOF. We show that $\sigma_{(\alpha)} = \sigma$ is a YB-form. We can write $\sigma(X_{i,j+1}, X_{l,m+1}) = \delta_{ij}\delta_{lm}\alpha^{\delta_{il}}$. For X_{ij} , X_{lm} and X_{uv} , observe that

$$\begin{split} \Sigma_{a,b,c}\sigma(X_{ia},X_{lb})\sigma(X_{aj},X_{uc})\sigma(X_{bm},X_{cv}) \\ &= \sigma(X_{i,i+1},X_{l,l+1})\sigma(X_{i+1,j},X_{u,u+1})\sigma(X_{l+1,m},X_{u+1,v}) \\ &= \delta_{ij}\delta_{lm}\delta_{uv}\alpha^{\delta_{il}}\alpha^{\delta_{i+1,u}}\alpha^{\delta_{lu}}, \end{split}$$

and

$$\begin{split} \Sigma_{a,b,c}\sigma(X_{lb},X_{uc})\sigma(X_{ia},X_{cv})\sigma(X_{aj},X_{bm}) \\ &= \sigma(X_{l,l+1},X_{u,u+1})\sigma(X_{i,i+1},X_{u+1,v})\sigma(X_{i+1,j},X_{l+1,m}) \\ &= \delta_{uv}\delta_{ij}\delta_{lm}\alpha^{\delta_{lu}}\alpha^{\delta_{i,u+1}}\alpha^{\delta_{il}}. \end{split}$$

Thus Condition (5) is satisfied.

The inverse is given by

$$\sigma_{(\alpha)}^{-1}=\sigma_{(\alpha^{-1})}.$$

Therefore $\sigma_{(\alpha)}$ is a YB-form for $\alpha \in k^{\times}$. It is easy to check that $\tau_{(\alpha)}^{(\lambda)}$ is also a YB-form on C.

Therefore $(C, \sigma_{(\alpha)})$ and $(C, \tau_{(\alpha)}^{(\lambda)})$ are YB-coalgebras for all $\alpha \in k^{\times}$.

REMARK 2.2. $\{\sigma_{(\alpha)}, \tau_{(\beta)}^{(+)} | \alpha, \beta \in k^{\times}\}, \{\tau_{(\alpha)}^{(+)}, \tau_{(\beta)}^{(-)} | \alpha, \beta \in k^{\times}\}$ form subgroups of the unit group of $M_2(k)^{\otimes 2}$.

Next we examine the defining relations of the quadratic bialgebras associated with them.

PROPOSITION 2.3.

i) The ideal I_{σ} , where $\sigma = \sigma_{(\alpha)}$, is generated by the following:

$$\{ X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, X_{j,j+1}X_{ii} - \alpha X_{i+1,i+1}X_{j+1,j} \} \quad if \ \alpha^2 = 1, \\ \{ X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, X_{ij}X_{lm}(i+j+l+m \equiv 1) \} \quad if \ \alpha^2 \neq 1.$$

ii) The ideal $I_{\tau^{(\lambda)}}$, where $\tau^{(\lambda)} = \tau^{(\lambda)}_{(\alpha)}$, is generated by the following: $\{X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12}, X_{i2}X_{i1} - \alpha X_{il}X_{i2}, X_{2j}X_{1j} - \lambda \alpha X_{1j}X_{2j}\}$ if $\alpha^2 = \lambda$.

$$\{X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12}, X_{ij}X_{lm}(i+j+l+m \equiv 1)\}$$
 if $\alpha^2 \neq \lambda$.

PROOF. i) For X_{ij} , X_{lm} , observe that

$$\Sigma \sigma(X_{ia}, X_{lb}) X_{aj} X_{bm} = \sigma(X_{i,i+1}, X_{l,l+1}) X_{i+1,j} X_{l+1,m}$$

= $lpha^{\delta_{ll}} X_{i+1,j} X_{l+1,m}$,

$$\Sigma X_{lb} X_{ia} \sigma(X_{aj}, X_{bm}) = X_{l,m+1} X_{i,j+1} \sigma(X_{j+1,j}, X_{m+1,m})$$
$$= X_{l,m+1} X_{i,j+1} \alpha^{\delta_{jm}}.$$

Thus the subset

$$\{\alpha^{\delta_{il}} X_{ij} X_{lm} - X_{l+1,m+1} X_{i+1,j+1} \alpha^{\delta_{jm}} \mid 1 \le i, j, l, m \le 2\}$$

generates the ideal I_{σ} . The above polynomials are written as follows:

$$\begin{cases} \alpha X_{ij}^2 - X_{i+1,j+1}^2 \alpha & \text{if } i = l, j = m, \\ X_{ij}X_{lj} - X_{l+1,j+1}X_{i+1,j+1} \alpha & \text{if } i \neq l, j = m, \\ \alpha X_{ij}X_{im} - X_{i+1,m+1}X_{i+1,j+1} & \text{if } i = l, j \neq m, \\ X_{ij}X_{lm} - X_{l+1,m+1}X_{i+1,j+1} & \text{if } i \neq l, j \neq m \text{ (i.e., } l \equiv i+1, m \equiv j+1\text{).} \end{cases}$$

ii) This is similarly shown as i).

REMARK 2.4. i) For the bialgebra $M(C, \sigma_{(-1)})$, see the quantum conformal group in [Man].

ii) $M(C, \tau_{(\pm 1)}^{(+)})$ are the quantum matrix bialgebras $M_{\pm 1}(2)$.

iii) $M(C, \tau_{(\sqrt{-1})}^{(-)})$ is Takeuchi's two-parameter bialgebra $M_{\alpha,\beta}(2)$ for $\alpha = \sqrt{-1}$, $\beta = -\sqrt{-1}$ ([T1], [D]).

Define $B = M(C, \sigma_{(\alpha)})$ for $\alpha^2 \neq 1$ and $B^{(\lambda)} = M(C, \tau_{(\alpha)}^{(\lambda)})$ for $\alpha^2 \neq \lambda$. We write $B^{(\pm 1)} = B^{(\pm)}$. These definitions, ignoring choice of α , are reasonable by Proposition 2.3.

On the other hand, we see by Proposition 1.1 that braidings $\tilde{\sigma}_{(\pm 1)}$, $\tilde{\tau}_{(\pm\sqrt{\lambda})}^{(\lambda)}$ are induced on *B*, $B^{(\lambda)}$, respectively, via the canonical surjections

$$M(C, \sigma_{(\pm 1)}) \to B, \quad M(C, \tau_{(\pm \sqrt{\lambda})}^{(\lambda)}) \to B^{(\lambda)}.$$

Note that $\{X_{ij}X_{lm}|i+j+l+m \equiv 1\}$ spans a coideal of T(C). Therefore we have the following claim:

CLAIM 2.5. i) $\sigma_{(\alpha)}: C \otimes C \to k$ extends to a braiding $\tilde{\sigma}_{(\alpha)}$ on B for every $\alpha \in k^{\times}$. ii) $\tau_{(\alpha)}^{(\lambda)}: C \otimes C \to k$ extends to a braiding $\tilde{\tau}_{(\alpha)}^{(\lambda)}$ on $B^{(\lambda)}$ for every $\alpha \in k^{\times}$.

We examine the coalgebra structure of B.

Proposition 2.6.

i) B has the following set as a basis

$$\{X_{11}^{n-r}, X_{22}X_{11}X_{22}, \dots, X_{12}^{n-r}, X_{21}X_{12}X_{21}, \dots, |n \ge 0, 0 \le r \le n\}$$

ii) The grouplike elements but 1 in B are given by

$$X_{11}^{2s} \pm X_{12}^{2s} \quad (s \ge 1).$$

Then are central non-zero divisors.

iii) The simple subcoalgebras of B which are not spanned by grouplike elements are of dimension 4. They are given by

$$C_{st} = span_k \begin{pmatrix} t & t \\ X_{11}^{2s} \overline{X_{11} X_{22} X_{11} \cdots} & X_{12}^{2s} \overline{X_{12} X_{21} X_{12} \cdots} \\ t & t \\ X_{12}^{2s} \overline{X_{21} X_{12} X_{21} \cdots} & X_{11}^{2s} \overline{X_{22} X_{11} X_{22} \cdots} \end{pmatrix} \quad (s \ge 0, t \ge 1).$$

iv) B is cosemisimple. The nth component C^n $(n \ge 1)$ of B is decomposed as the sum of simple subcoalgebras as follows:

$$C^{n} = \begin{cases} \Sigma_{n=2s+t}C_{st}, & \text{if } n \text{ is odd}; \\ \Sigma_{n=2s+t}C_{st} + k(X_{11}^{n} \pm X_{12}^{n}), & \text{if } n \text{ is even.} \end{cases}$$

PROOF. i) It is verified in the same manner as Theorem 3.1.i) below.

ii), iii), iv) It is easy to see that $X_{11}^{2s} \pm X_{12}^{2s}$ is grouplike for $s \ge 1$. By i) and the defining relations of *B*, it is a central non-zero divisor. *C* is isomorphic to C_{st} as coalgebras by

$$X_{11} \mapsto X_{11}^{2s} \underbrace{X_{11} X_{22} X_{11} \dots}_{X_{12}},$$

$$X_{12} \mapsto X_{12}^{2s} X_{12} X_{21} X_{12} \dots,$$

$$X_{21} \mapsto X_{12}^{2s} X_{21} X_{12} X_{21} \dots,$$

$$X_{22} \mapsto X_{11}^{2s} X_{22} X_{11} X_{22} \dots$$

By i) we have that

$$B = k \cdot 1 + \Sigma k (X_{11}^{2s} \pm X_{12}^{2s}) + \Sigma C_{st}$$

= $k \cdot 1 \oplus \{ \bigoplus_{s \ge 1} k (X_{11}^{2s} \pm X_{12}^{2s}) \oplus \{ \bigoplus_{s \ge 0, t \ge 1} C_{st} \}.$

Thus ii), iii), iv) are done.

Satoshi Suzuki

PROPOSITION 2.7. i) $B^{(\lambda)}$ has the following set as a basis

$$\{X_{11}^{u}X_{22}^{v}, X_{12}^{u}X_{21}^{v} \mid u+v \ge 0\}.$$

ii) The grouplike elements but 1 in $B^{(\lambda)}$ are given by

$$X_{11}^{u}X_{22}^{u} \pm \sqrt{\lambda^{u}}X_{12}^{u}X_{21}^{u} \quad (u \ge 1).$$

They are non-zero divisors.

iii) The simple subcoalgebras of $B^{(\lambda)}$ which are not spanned by grouplike elements are all of dimension 4. They are given by

$$D_{uv} = span_k \begin{pmatrix} X_{11}^u X_{22}^v & X_{12}^u X_{21}^v \\ X_{21}^u X_{12}^v & X_{22}^u X_{11}^v \end{pmatrix}, \quad (u \leq v).$$

iv) $B^{(\lambda)}$ is cosemisimple. The nth component C^n $(n \ge 1)$ of $B^{(\lambda)}$ is decomposed as the sum of simple subcoalgebras as follows:

$$C^{n} = \begin{cases} \Sigma_{n=u+v,u \leq v} D_{uv}, & \text{if } n \text{ is odd}; \\ \Sigma_{n=u+v,u \leq v} D_{uv} + k(X_{11}^{n/2} X_{22}^{n/2} \pm \sqrt{\lambda^{n/2}} X_{12}^{n/2} X_{21}^{n/2}), & \text{if } n \text{ is even}. \end{cases}$$

We omit the proof.

COROLLARY 2.8. Let $\langle C_{st} \rangle$ denote the sub-bialgebra generated by the simple subcoalgebra $C_{st} \subset B$. Then as bialgebras,

$$B \supseteq \langle C_{st} \rangle \simeq \begin{cases} B, & \text{if } t \text{ is odd}; \\ B^{(+)}, & \text{if } t \text{ is even.} \end{cases}$$

We omit the proof. See the proof of Theorem 3.5 below.

Define linear maps $\sigma_{\alpha\beta} = \beta \sigma_{(\alpha\beta^{-1})}$, $\tau_{\alpha\beta}^{(\lambda)} = \beta \tau_{(\alpha\beta^{-1})}^{(\lambda)}$ for $\alpha, \beta \in k^{\times}$, $\lambda = \pm 1$. They are also YB-forms on C. The YB-form $\sigma_{\alpha\beta}$ extends to a braiding $\tilde{\sigma}_{\alpha\beta}$ on B, and $\tau_{\alpha\beta}^{(\lambda)}$ extends to a braiding $\tilde{\tau}_{\alpha\beta}^{(\lambda)}$ on $B^{(\lambda)}$.

PROPOSITION 2.9. i) $\sigma_{\alpha\beta}$ is symmetric iff $\alpha^2 = 1 = \beta^2$. $\tau_{\alpha\beta}^{(\lambda)}$ is symmetric iff $\alpha^2 = 1$, $\beta^2 = \lambda$. ii) The set of braidings on B is $\{\tilde{\sigma}_{\alpha\beta} \mid \alpha, \beta \in k^{\times}\}$, and that on $B^{(\lambda)}$ is

 $\{\tilde{\tau}^{(\lambda)}_{\alpha\beta} \mid \alpha,\beta \in k^{\times}\}.$

PROOF. i) We note that ${}^{t}\sigma_{\alpha\beta} = \sigma_{\alpha\beta}$, ${}^{t}\tau_{\alpha\beta}^{(\lambda)} = \tau_{\alpha,\lambda\beta}^{(\lambda)}$. The statement follows from these.

ii) We show the statement with B. The statement with $B^{(\lambda)}$ is similarly verified.

We have obtained braidings $\tilde{\sigma}_{\alpha\beta}(\alpha,\beta\in k^{\times})$ on B.

Let σ be a braiding. Note that the second component C^2 of B has a basis

$$\{X_{11}^2, X_{12}^2, X_{11}X_{22}, X_{22}X_{11}, X_{12}X_{21}, X_{21}X_{12}\}.$$

So for X_{ij} , X_{lm} , it follows that

$$\Sigma \sigma(X_{ia}, X_{lb}) X_{aj} X_{bm} = \sigma(X_{ij}, X_{lm}) X_{jj} X_{mm} + \sigma(X_{i,j+1}, X_{l,m+1}) X_{j+1,j} X_{m+1,m},$$

$$\Sigma X_{lb} X_{ia} \sigma(X_{aj}, X_{bm}) = X_{ll} X_{ii} \sigma(X_{ij}, X_{lm}) + X_{l,l+1} X_{i,i+1} \sigma(X_{i+1,j}, X_{l+1,m}).$$

These must be equal, so we obtain the following by Proposition 2.6.i):

$$\sigma(X_{ij}, X_{lm}) X_{jj} X_{mm} = X_{ll} X_{ii} \sigma(X_{ij}, X_{lm}),$$

$$\sigma(X_{i,j+1}, X_{l,m+1}) X_{j+1,j} X_{m+1,m} = X_{l,l+1} X_{i,i+1} \sigma(X_{i+1,j}, X_{l+1,m})$$

The above equations imply that $\sigma|_{C\otimes C}$ is given as follows with some α , β , $\gamma \in k$:

σ	X_{11}	X_{12}	X_{21}	<i>X</i> ₂₂
<i>X</i> ₁₁	γ	0	0	0
X ₁₂	0	α	β	0
X ₂₁	0	β	α	0
X ₂₂	0	0	0	γ

Moreover it follows by Condition (2) that

$$0 = \sigma(0, X_{12}) = \sigma(X_{11}X_{12}, X_{12})$$
$$= \sigma(X_{11}, X_{11})\sigma(X_{12}, X_{12}) + \sigma(X_{11}, X_{12})\sigma(X_{12}, X_{22}) = \gamma \alpha,$$

and

$$0 = \sigma(0, X_{12}) = \sigma(X_{11}X_{21}, X_{12})$$

= $\sigma(X_{11}, X_{11})\sigma(X_{21}, X_{12}) + \sigma(X_{11}, X_{12})\sigma(X_{21}, X_{22}) = \gamma\beta$

We have that $\gamma = 0$, α , $\beta \in k^{\times}$ since σ is invertible. Therefore $\sigma|_{C \otimes C} = \sigma_{\alpha\beta}$, so $\sigma = \tilde{\sigma}_{\alpha\beta}$.

We describe a Hopf closure of the bialgebra B.

Set $d_{\pm} = X_{11}^2 \pm X_{12}^2$. These are central grouplike elements. For example, observe that

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} X_{11} & X_{21} \\ X_{12} & X_{22} \end{pmatrix} = d_{+} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} X_{11} & X_{21} \\ X_{12} & X_{22} \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix},$$

and

$$\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} X_{11} & -X_{21} \\ -X_{12} & X_{22} \end{pmatrix} = d_{-} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} X_{11} & -X_{21} \\ -X_{12} & X_{22} \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$$

Using Proposition 1.6 and Proposition 2.6, we have the following.

PROPOSITION 2.10. The Hopf closure H of B is given by

$$H = B[d_{+}^{-1}] = B[d_{-}^{-1}] = B[G(B)^{-1}],$$

where G(B) is the set of grouplike elements in B. This Hopf algebra is braided and cosemisimple, and includes B as a sub-bialgebra. Furthermore, H is involutory. In fact, the antipode S is determined by

$$S(X_{ij}) = X_{ji}d_+^{-1} = (-1)^{i+j}X_{ji}d_-^{-1}.$$

3. Quotients of the bialgebra B

In this section we define and study a family of finite dimensional cosemisimple bi(Hopf) algebras which are quotients of the bialgebra B over an algebraically closed field k with $chk \neq 2$.

It will be shown that the family contains the "non-trivial" cosemisimple Hopf algebras of dimension 8 ([Mas2]) and of dimension 12 ([F]) if $chk \neq 3$. See also Gelaki's Hopf algebras of dimension 4p, where $p(\geq 3)$ is prime ([G]).

We construct the family. It is easy to see by Proposition 2.6 that for $L \ge 2$, $N \ge 1$ and λ , $\nu = \pm 1$, the following subsets

$$\{\overbrace{X_{22}X_{11}X_{22}\cdots}^{L}-\overbrace{X_{11}X_{22}X_{11}\cdots}^{L}, \overbrace{X_{21}X_{12}X_{21}\cdots}^{L}-\lambda \overbrace{X_{12}X_{21}X_{12}\cdots}^{L}\}, \\\{1-(X_{11}^{2N}+\nu X_{12}^{2N})\}$$

span coideals of *B*. Let J_L^{λ} and I_N^{ν} be the ideals generated by these coideals respectively, which are bi-ideals.

We can form the bialgebra

$$A_{NL}^{(\nu\lambda)} = B/J_L^{\lambda} + I_N^{\nu}.$$

We write $A_{NL}^{(+-)} = A_{NL}^{(+1,-1)}$, etc. Let π be the following surjective bialgebra map:

$$\pi: B \to A_{NL}^{(\nu\lambda)}, \quad X_{ij} \mapsto \overline{X}_{ij} = x_{ij}.$$

THEOREM 3.1.

i) $A_{NL}^{(\nu\lambda)}$ has the following set as a basis

$$\{x_{11}^s, x_{22}x_{11}x_{22}\dots, x_{12}^s, x_{21}x_{12}x_{21}\dots | 1 \le s \le 2N, \ 0 \le t \le L-1\}.$$

Thus dim $A_{NL}^{(\nu\lambda)} = 4NL$. ii) Let $G(A_{NL}^{(\nu\lambda)}) = G$ be the set of grouplike elements of $A_{NL}^{(\nu\lambda)}$. Then

$$G = \{x_{11}^{2s} \pm x_{12}^{2s}, x_{11}^{2s} \underbrace{x_{11}}_{x_{12}} x_{21} x_{11} \cdots \pm \sqrt{\lambda} x_{12}^{2s} \underbrace{x_{12}}_{x_{21}} x_{12} \cdots \mid 1 \leq s \leq N\}.$$

iii) The simple subcoalgebras of $A_{NL}^{(\nu\lambda)}$ which are not spanned by grouplike elements are given by

$$C_{st} = span_k \begin{pmatrix} t & t \\ x_{11}^{2s} & \overline{x_{11}x_{22}x_{11}} & x_{12}^{2s} & t \\ x_{12}^{2s} & \overline{x_{21}x_{12}x_{21}} & x_{11}^{2s} & \overline{x_{12}x_{11}x_{22}} & t \\ x_{11}^{2s} & \overline{x_{21}x_{12}x_{21}} & x_{11}^{2s} & \overline{x_{22}x_{11}x_{22}} & t \\ for & 0 \le s \le N - 1, \ 1 \le t \le L - 1 \end{pmatrix}$$

iv) $|G(A_{NL}^{(\nu\lambda)})| = 4N$, and there are exactly N(L-1) simple subcoalgebras of dimension 4.

v) $A_{NL}^{(\nu\lambda)}$ is non-cocommutative and cosemisimple. It is non-commutative unless $(L, \lambda) = (2, +1).$ vi) $A_{NL}^{(v\lambda)}$ is an involutory Hopf algebra.

vii) Let $\Lambda = \sum x_{11}^s \underbrace{x_{22}x_{11}x_{22}\cdots}_{x_{22}(1 \le s \le 2N, 0 \le t \le L-1)}$. Then Λ is a nonzero two-sided integral.

viii) $A_{NL}^{(\nu\lambda)}$ is semisimple if chk $\not\downarrow$ NL.

PROOF. i) Let B' be the algebra $k \langle X, Y \rangle / \{X^2 - Y^2\}$ and $\lambda, \nu = \pm 1$. Let V be the k-vector space with a basis $\{\langle s, t \rangle \in V | s \ge 1, 0 \le t \le L - 1\}$.

We define the following ideals of B':

$$J_L^{\lambda\prime} = (\overbrace{YXYX\cdots}^L - \lambda \overbrace{XYXY\cdots}^L),$$
$$I_N^{\nu\prime} = (1 - \nu X^{2N}).$$

We prove i) step-by-step.

(Step 1) We define a right B'-module structure on V. Define the actions of X and Y as follows:

$$X: \langle s, t \rangle \mapsto \begin{cases} \langle s, t+1 \rangle, & \text{if } t \text{ is odd,} \quad t \leq L-2, \\ \lambda \langle s+1, L-1 \rangle, & t=L-1, \\ \langle s+1, 0 \rangle, & \text{if } t \text{ is even,} \quad t=0, \\ \langle s+2, t-1 \rangle, & t \geq 2, \end{cases}$$
$$Y: \langle s, t \rangle \mapsto \begin{cases} \langle s+2, t-1 \rangle, & \text{if } t \text{ is odd,} \\ \langle s, t+1 \rangle, & \text{if } t \text{ is even,} \quad t \leq L-2, \\ \lambda \langle s+1, L-1 \rangle, & t=L-1. \end{cases}$$

It is easy to see $X^2 \equiv Y^2$ in $End_k(V)$.

Thus we have a right B'-module structure on V.

(Step 2) We claim the subspace W spanned by

$$\{\langle q(2N) + s, t \rangle - v^q \langle s, t \rangle \mid 1 \le s \le 2N, q \ge 1, 0 \le t \le L - 1\}$$

is a submodule of V.

For example, when t = L - 1 is odd and s = 2N, observe the following:

$$\begin{aligned} X : \langle q(2N) + 2N, L - 1 \rangle &\mapsto \lambda \langle q(2N) + 2N + 1, L - 1 \rangle \\ &= \lambda \langle (q+1)(2N) + 1, L - 1 \rangle \\ &\equiv \lambda \nu^{q+1} \langle 1, L - 1 \rangle \; (\text{mod } W), \end{aligned}$$

and

$$\begin{aligned} X: v^q \langle 2N, L-1 \rangle &\mapsto v^q \lambda \langle 2N+1, L-1 \rangle \\ &= v^q \lambda \langle 1 \cdot (2N) + 1, L-1 \rangle \\ &\equiv v^q \lambda v \langle 1, L-1 \rangle \; (\text{mod } W). \end{aligned}$$

(Step 3) The action of B' induces the $B'/J_L^{\lambda'}$ -module structure on V. We check it case-by-case. When L is even, for each $0 \le 2u \le L-2$, observe the following:

$$\begin{split} \overbrace{YX}^{L} & \overbrace{(YX)}^{L/2-u-1} \langle s, L-2 \rangle \\ & \xrightarrow{YX} \lambda \langle s+1, L-1 \rangle \\ & \overbrace{(YX)^{u}}^{(YX)^{u}} \lambda \langle s+1+4u, L-1-2u \rangle, \\ & \cdot \langle s, 2u+1 \rangle \xrightarrow{(YX)^{u}} \langle s+4u, 1 \rangle \xrightarrow{YX} \langle s+4u+3, 0 \rangle \\ & \overbrace{(YX)}^{L/2-u-1} \langle s+4u+3, L-2u-2 \rangle. \\ \hline \overbrace{XY}^{L} & \overbrace{(S, 2u)}^{(XY)^{u}} \langle s+4u, 0 \rangle \xrightarrow{XY} \langle s+4u+1, 1 \rangle \\ & \overbrace{(XY)}^{L/2-u-1} \langle s+4u+1, L-2u-1 \rangle, \\ & \cdot \langle s, 2u+1 \rangle \xrightarrow{(XY)^{L/2-u-1}} \langle s, L-1 \rangle \\ & \xrightarrow{XY} \lambda \langle s+3, L-2 \rangle \\ & \overbrace{(XY)^{u}}^{(XY)^{u}} \lambda \langle s+3+4u, L-2-2u \rangle. \end{split}$$

Thus it follows that $\overbrace{YX \cdots X}^{L} \equiv \lambda \overbrace{XY \cdots Y}^{L}$ in $End_k(V)$. When L is odd (so $L \ge 3$), for each $2 \le 2u \le L - 1$, observe the following:

$$\begin{split} \overbrace{YX}^{L} & \overbrace{(YX)^{(L-1)/2}}^{(L-1)/2} \langle s, L-1 \rangle \xrightarrow{Y} \lambda \langle s+1, L-1 \rangle, \\ & \cdot \langle s, 2u \rangle \xrightarrow{(YX)^{(L-1)/2-u}} \langle s, L-1 \rangle \xrightarrow{Y} \lambda \langle s+1, L-1 \rangle \\ & \xrightarrow{(XY)^{u}} \lambda \langle s+1+4u, L-1-2u \rangle. \\ & \cdot \langle s, 2u-1 \rangle \xrightarrow{(YX)^{u-1}} \langle s+4u-4, 1 \rangle \xrightarrow{YX} \langle s+4u-1, 0 \rangle \\ & \xrightarrow{(YX)^{(L-1)/2-u}} \langle s+4u-1, L-1-2u \rangle \xrightarrow{Y} \langle s+4u-1, L-2u \rangle. \end{split}$$

$$\begin{split} \overbrace{XY}^{L} & \overbrace{\cdots X}^{L} : \cdot \langle s, 0 \rangle \mapsto \langle s+1, L-1 \rangle, \\ & \cdot \langle s, 2u \rangle \xrightarrow{(XY)^{u}} \langle s+4u, 0 \rangle \xrightarrow{X} \langle s+4u+1, 0 \rangle \\ & \xrightarrow{(YX)^{(L-1)/2-u}} \langle s+4u+1, L-2u-1 \rangle, \\ & \cdot \langle s, 2u-1 \rangle \xrightarrow{(XY)^{(L-1)/2-u}} \langle s, L-2 \rangle \xrightarrow{XY} \lambda \langle s+1, L-1 \rangle \\ & \xrightarrow{(XY)^{u-1}} \lambda \langle s+4u-3, L-2u+1 \rangle \xrightarrow{X} \lambda \langle s+4u-1, L-2u \rangle. \end{split}$$

Thus we have that $YX \cdots Y \equiv \lambda'XY \cdots X'$ in $End_k(V)$. In either case V becomes a right $B'/J_L^{\lambda'}$ -module by the action. (Step 4) V/W is a $B'/J_L^{\lambda'} + I_N^{\lambda'}$ -module of dimension 2NL. Since V/W has the set $\{\langle s, t \rangle | 1 \leq s \leq 2N, 0 \leq t \leq L-1\}$ as a basis, V/W

has dimension 2NL.

The action of X^2 is given by $X^2 : \langle s, t \rangle \mapsto \langle s+2, t \rangle$. Thus for $1 \leq s \leq 2N$, $0 \leq t \leq L-1$, it follows that

$$X^{2N}: \langle s,t\rangle \mapsto \langle s+2N,t\rangle = \langle 1\cdot (2N)+s,t\rangle \equiv v\langle s,t\rangle \mod W.$$

So we have that $1 \equiv vX^{2N}$ in $End_k(V/W)$. Thus it is done.

(Step 5) We construct a right $A_{NL}^{\nu\lambda}$ -module $M = (V/W) \oplus (V/W)$. There are two algebra maps

$$\pi'_{0}: B \to B'/J_{L}^{+\prime} + I_{N}^{+\prime},$$

$$X_{11} \mapsto \overline{X} = x, \quad X_{22} \mapsto \overline{Y} = y$$

$$X_{i,i+1} \mapsto 0,$$

and

$$\pi'_{1}: B \to B'/J_{L}^{\lambda'} + I_{N}^{\nu'},$$

$$X_{12} \mapsto \overline{X} = x, \quad X_{21} \mapsto \overline{Y} = y,$$

$$X_{ii} \mapsto 0.$$

They induce algebra maps

$$\pi_{0}: A_{NL}^{(\nu\lambda)} \to B'/J_{L}^{+\prime} + I_{N}^{+\prime},$$

$$x_{11} \mapsto x, \quad x_{22} \mapsto y, \quad x_{i,i+1} \mapsto 0,$$

$$\pi_{1}: A_{NL}^{(\nu\lambda)} \to B'/J_{L}^{\lambda\prime} + I_{N}^{\nu\prime},$$

$$x_{12} \mapsto x, \quad x_{21} \mapsto y, \quad x_{ii} \mapsto 0.$$

Using these, we obtain the right $A_{NL}^{(\nu\lambda)}$ -module $V/W = V_0$ through π_0 with a basis

$$\{\langle s,t\rangle_0 = \langle s,t\rangle \mid 1 \leq s \leq 2N, 0 \leq t \leq L-1\}$$

and the right $A_{NL}^{(\nu\lambda)}$ -module $V/W = V_1$ through π_1 with a basis

$$\{\langle s,t\rangle_1 = \langle s,t\rangle \mid 1 \leq s \leq 2N, 0 \leq t \leq L-1\}.$$

Let M be the right $A_{NL}^{(\nu\lambda)}$ -module $V_0 \oplus V_1$. We note that M has dimension 4*NL*.

(Step 6) It follows that $M \simeq A_{NL}^{(\nu\lambda)}$ as right $A_{NL}^{(\nu\lambda)}$ -modules. Define an $A_{NL}^{(\nu\lambda)}$ -module map $\phi : A_{NL}^{(\nu\lambda)} \to M$ and a k-linear map $\psi : M \to A_{NL}^{(\nu\lambda)}$ as follows:

$$\begin{split} \phi : A_{NL}^{(\nu\lambda)} \to M, \quad a \mapsto \{ \langle 2N, 0 \rangle_0 + \nu \langle 2N, 0 \rangle_1 \} \cdot a, \\ \psi : M \to A_{NL}^{(\nu\lambda)}, \quad \langle s, t \rangle_0 \mapsto x_{11}^s \overbrace{x_{22}x_{11}x_{22}\cdots}^t, \\ \langle s, t \rangle_1 \mapsto x_{12}^s \overbrace{x_{21}x_{12}x_{21}\cdots}^t. \end{split}$$

It is easy to see that ψ is surjective and that $\phi \circ \psi$ is the identity map on M. Therefore we have that $M \simeq A_{NL}^{(\nu\lambda)}$ as $A_{NL}^{(\nu\lambda)}$ -modules, in particular $\dim A_{NL}^{(\nu\lambda)} =$ dim M = 4NL.

This completes the proof of i).

ii) ~ v) These are easily verified by i). Since $A_{NL}^{(\nu\lambda)}$ is generated by $\{x_{ij}\}$, it is commutative iff $(L, \lambda) = (2, +1)$.

vi) There is an algebra map $B \to B^{op}$, $X_{ij} \mapsto X_{ji} \cdot (X_{11}^{2(2N-1)} + X_{12}^{2(2N-1)})$, and this induces an algebra map S,

The anti-algebra map S is an antipode of $A_{NL}^{(\nu\lambda)}$, which is given by

$$S: x_{ij} \mapsto x_{ji} (x_{11}^{2(2N-1)} + x_{12}^{2(2N-1)})$$
$$= x_{ji} (x_{11}^2 + x_{12}^2)^{-1}.$$

So $A_{NL}^{(\nu\lambda)}$ is an involutory Hopf algebra.

vii) The element $\Lambda = \sum x_{11}^s \underbrace{x_{22}x_{11}x_{22}\cdots}_{t} (1 \le s \le 2N, 0 \le t \le L-1)$ is non-zero by i).

Recall that Λ is called a left (resp. right) integral if $a\Lambda$ (resp. Λa) = $\varepsilon(a)\Lambda$ for all $a \in A_{NL}^{(\nu\lambda)}$.

It is enough to check on the subset $\{x_{ij}\}$. Observe the following.

$$\begin{aligned} x_{12}\Lambda &= x_{21}\Lambda = 0 \\ &= e(x_{12})\Lambda = e(x_{21})\Lambda. \\ x_{11}\Lambda &= \sum x_{11}^{s+1} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} = \sum x_{11}^{s} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} = \Lambda \\ &= e(x_{11})\Lambda. \\ x_{22}\Lambda &= \sum x_{22}x_{11}^{s} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} + \sum_{s:odd} x_{11}^{s-1}x_{22}x_{11} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} \\ &= \sum_{s:even} x_{11}^{s} x_{22} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} + \sum_{s:odd} x_{11}^{s-1}x_{22}x_{11} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} \\ &= \sum_{s:even,t=0} x_{11}^{s} x_{22} + \sum_{s:even,t=1} x_{11}^{s+2} + \sum_{s:odd,t=L-2} x_{11}^{s} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} \\ &+ \sum_{s:odd,t=L-1} x_{11}^{s+2} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} \\ &= \sum_{s:even} x_{11}^{s} x_{22} + \sum_{s:even} x_{11}^{s} + \sum_{s:odd,0 \leq t \leq L-3} x_{11}^{s} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} \\ &+ \sum_{s:odd} x_{11}^{s} \underbrace{x_{22}x_{11}x_{22}}_{x_{22}x_{11}x_{22}} \\ &= \Lambda \\ &= e(x_{22})\Lambda. \end{aligned}$$

Thus Λ is a left integral. It is similarly shown that Λ is a right integral. Therefore Λ is a non-zero two-sided integral.

viii) It follows that $\varepsilon(\Lambda) = 2NL \neq 0$ iff $chk \not\downarrow NL$.

16

REMARK 3.2. For the multiplication relations of $A_{NL}^{(\nu\lambda)}$, we note the following.

- x_{ij}^2 is central.
- $x_{ii}^{2N+1} = x_{ii}$, and $x_{i,i+1}^{2N+1} = v x_{i,i+1}$.
- $x_{11}^{4N} + x_{12}^{4N} = 1.$
- $(x_{11}^{2s} + \mu x_{12}^{2s})^{-1} = x_{11}^{2(2N-s)} + \mu x_{12}^{2(2N-s)}$ for $1 \le s \le N, \mu = \pm 1$.

Set $h_{\pm} = x_{11}^2 \pm x_{12}^2$ and $g = \overbrace{x_{11}x_{22}x_{11}\cdots}^L + \sqrt{\lambda}\overbrace{x_{12}x_{21}x_{12}\cdots}^L$ for a fixed $\sqrt{\lambda}$. C_m denotes the cyclic group of order m.

PROPOSITION 3.3. i) The subgroup $\langle h_+, h_- \rangle$ of G is central in $A_{NL}^{(\nu\lambda)}$, and the order is 2N. As groups

$$\langle h_+, h_- \rangle \simeq \begin{cases} C_N \times C_2, & if(N, v) = (even, +1); \\ C_{2N}, & otherwise. \end{cases}$$

ii) $G \subset Z(A_{NL}^{(\nu\lambda)})$, the center of $A_{NL}^{(\nu\lambda)}$, iff $g \in Z(A_{NL}^{(\nu\lambda)})$ iff $(L, \lambda) = (even, +1)$.

PROOF. i) The order of $\langle h_+, h_- \rangle$ is 2N by Theorem 3.1. If (N, v) =

$$\begin{cases} (\text{even}, +1), & \text{then } \langle h_+, h_- \rangle = \langle h_+ \rangle \times \langle x_{11}^{2N} - x_{12}^{2N} \rangle, \\ (\text{even}, -1), & \text{then } \langle h_+, h_- \rangle = \langle h_+ \rangle = \langle h_- \rangle, \\ (\text{odd}, +1), & \text{then } \langle h_+, h_- \rangle = \langle h_- \rangle, \\ (\text{odd}, -1), & \text{then } \langle h_+, h_- \rangle = \langle h_+ \rangle. \end{cases}$$

ii) Note that $G = \langle h_+, h_- \rangle \cup \langle h_+, h_- \rangle g$. So it follows that $G \subset Z(A_{NL}^{(\nu\lambda)})$ iff $g \in Z(A_{NL}^{(\nu\lambda)})$.

It is easy to see that

$$g \text{ is central} \Leftrightarrow \begin{cases} x_{ii} \cdot \overbrace{x_{11}x_{22}\cdots}^{L} = \overbrace{x_{11}x_{22}\cdots}^{L} \cdot x_{ii}, \\ \\ x_{i,i+1} \cdot \overbrace{x_{12}x_{21}\cdots}^{L} = \overbrace{x_{12}x_{21}\cdots}^{L} \cdot x_{i,i+1}, & \text{for } i = 1, 2. \end{cases} \square$$

Remark 3.4.

i) The dimension of a simple subcoalgebra of $A_{NL}^{(\nu\lambda)}$ is either 1 or $2^2 = 4$. ii) The simple subcoalgebra C_{01} generates $A_{NL}^{(\nu\lambda)}$ as an algebra. iii) For the YB-coalgebra $(C, \sigma_{\alpha\beta}), C \simeq C_{01} \subset A_{NL}^{(\nu\lambda)}, X_{ij} \mapsto x_{ij}$, is a coalgebra $\sigma_{\alpha\beta}$ -map.

We identify C and C_{01} .

iv) $A_{12}^{(+-)}$ ($\simeq A_{12}^{(--)}$, see Prop.3.12 below) is the "non-trivial" semisimple Hopf algebra of dimension 8 ([Mas2]). The ideal decomposition is given as follows:

$$A_{12}^{(+-)} = k(x_{11} + x_{22} + x_{11}^2 + x_{11}x_{22}) \oplus k(x_{11} - x_{22} - x_{11}^2 + x_{11}x_{22})$$
$$\oplus k(x_{11} - x_{22} + x_{11}^2 - x_{11}x_{22}) \oplus k(x_{11} + x_{22} - x_{11}^2 - x_{11}x_{22})$$
$$\oplus span_k\{x_{12}, x_{21}, x_{12}^2, x_{12}x_{21}\}.$$

v) Since the subHopf algebra $K = k \langle h_+, h_- \rangle$ is normal, $A_{NL}^{(\nu\lambda)} K^+$ is a Hopf ideal, where $K^+ = \operatorname{Ker} \varepsilon_K$. So $A_{NL}^{(\nu\lambda)} / A_{NL}^{(\nu\lambda)} K^+ = \overline{A}$ is a Hopf algebra of dimension 2L. It is easy to see that the elements $\overline{x}_{11} = a$, $\overline{x}_{22} = b \in \overline{A}$ are grouplike and generate \overline{A} as an algebra. This means that \overline{A} is a group-algebra. Moreover let ab = c, then the order of c is L. Then,

$$\bar{A} = k \langle a, b | a^2 = 1 = b^2, \overline{baba \cdots} = \overline{abab \cdots} \rangle$$
$$= k \langle a, c | a^2 = 1, c^L = 1, aca^{-1} = c^{-1} \rangle$$

 $= kD_L$, where D_L is the dihedral group of order 2L.

Thus we obtain a short exact sequence by means of [Mas1, Definition 1.3]

$$1 \to K \hookrightarrow A_{NL}^{(\nu\lambda)} \to kD_L \to 1.$$

vi) As bialgebras

$$B/J_2^{\lambda} = B/(X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12})$$

= $k\langle X_{ij} \rangle/(X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, X_{ij}X_{lm} \ (i+j+l+m \equiv 1),$
 $X_{11}X_{22} - X_{22}X_{11}, X_{12}X_{21} - \lambda X_{21}X_{12})$

 $= B^{(\lambda)}/(X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2).$

Thus $A_{N2}^{(\nu\lambda)}$ is furthermore a quotient bialgebra of $B^{(\lambda)}$:

$$A_{N2}^{(\nu\lambda)} = B^{(\lambda)} / (X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, 1 - (X_{11}^{2N} + \nu X_{12}^{2N})).$$

We note that $\{X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2\}$ spans a coideal of $B^{(\lambda)}$ and that $\{1 - (X_{11}^{2N} + \nu X_{12}^{2N})\}$ spans a coideal modulo the coideal $span_k\{X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2\}$.

Recall that C_{st} denotes a simple subcoalgebra of dimension 4 of $A_{NL}^{(\nu\lambda)}$ for $0 \leq s \leq N-1$, $1 \leq t \leq L-1$. Let $\langle C_{st} \rangle$ denote the subHopf algebra generated by C_{st} . It is easy to see that $\langle C_{st} \rangle$ is commutative iff either t is even or $(L,\lambda) = (2t,+1)$. So it follows that t is odd if $\langle C_{st} \rangle$ is non-commutative.

We show that $\langle C_{st} \rangle$ is a member of the family $\{A_{NL}^{(\nu\lambda)}\}$ if t is odd. Set

$$GCD(L, t) = m_L, \quad GCD(N, 2s + t) = m_N,$$

$$L/m_L = L_0, \quad N/m_N = N_0, \quad t/m_L = t_0, \quad (2s + t)/m_N = (s, t)_0,$$

$$(2 \le L_0 \le L, 1 \le N_0 \le N).$$

THEOREM 3.5. Assume that t is odd and $C_{st} \subset A_{NL}^{(\nu\lambda)}$. Then

$$\langle C_{st} \rangle \simeq A_{N_0 L_0}^{(\nu \lambda)}$$
 as Hopf algebras.

PROOF. Let t be odd, and fix $0 \le s \le N-1$ and $1 \le t \le L-1$. We note that integers 2s + t, t_0 , $(s, t)_0$, m_L and m_N are also odd.

Set

$$z_{11} = x_{11}^{2s} \underbrace{x_{11} x_{22} \cdots x_{11}}_{t}, \quad z_{12} = x_{12}^{2s} \underbrace{x_{12} x_{21} \cdots x_{12}}_{t},$$
$$z_{21} = x_{12}^{2s} \underbrace{x_{21} x_{12} \cdots x_{21}}_{t}, \quad z_{22} = x_{11}^{2s} \underbrace{x_{22} x_{11} \cdots x_{22}}_{t}.$$

The map $\omega: A_{N_0L_0}^{(\nu\lambda)} \to \langle C_{st} \rangle$, $x_{ij} \mapsto z_{ij}$, is a (well-defined) surjective Hopf algebra map. This is easily verified.

We show that the map ω is injective. Recall and set that

$$G_{0} = G(A_{N_{0}L_{0}}^{(\nu\lambda)})$$

$$= \{x_{11}^{2u} \pm x_{12}^{2u}, x_{11}^{2u} \cdot \overbrace{x_{11}x_{22}x_{11}\cdots}^{L_{0}} \pm \sqrt{\lambda}x_{12}^{2u} \cdot \overbrace{x_{12}x_{21}x_{12}\cdots}^{L_{0}} | 1 \leq u \leq N_{0} \},$$

$$(C_{uv})_{0} = C_{uv} \subset A_{N_{0}L_{0}}^{(\nu\lambda)}.$$

Then it follows that

$$A_{N_0L_0}^{(\nu\lambda)}=kG_0\oplus\Sigma(C_{uv})_0.$$

Thus it is enough to show that ω is injective on kG_0 and on $\Sigma(C_{uv})_0$.

It is easy to see that ω is injective on kG_0 . So we show that ω is injective on $\Sigma(C_{uv})_0$. First we examine $\omega((C_{uv})_0)$ for $0 \leq u \leq N_0 - 1$, $1 \leq v \leq L_0 - 1$. Let tv = qL + r, for some q, $0 \le r \le L - 1$. It is easy to see that $r \ne 0$, so it

follows that $1 \leq r, L-r \leq L-1$. For $x_{11}^{2u} \overbrace{x_{11}x_{22}x_{11}\cdots}^{v} \in (C_{uv})_0$, observe that

Let

$$(a,b) = \begin{cases} ((2s+t)u + sv + \frac{q}{2}L \mod N, r), & \text{if } q \text{ is even}, \\ ((2s+t)u + sv + \frac{(q-1)}{2}L + r \mod N, L - r), & \text{if } q \text{ is odd}, \\ (0 \le a \le N - 1, 1 \le b \le L - 1). \end{cases}$$

So we have that

$$0\neq\omega(x_{11}^{2u}\overbrace{x_{11}x_{22}x_{11}\cdots}^{v})\in\omega((C_{uv})_0)\cap C_{ab}.$$

Since C_{ab} is a simple subcoalgebra, it follows that

$$\omega((C_{uv})_0) = C_{ab} \subset A_{NL}^{(v\lambda)}.$$

Thus ω is injective on $(C_{uv})_0$.

Next assume that there are $0 \leq u$, $u' \leq N_0 - 1$, $1 \leq v$, $v' \leq L_0 - 1$ such that $\omega((C_{uv})_0) = \omega((C_{u'v'})_0)$.

Let $tv' = q'L + r', \ 1 \le r' \le L - 1.$

It is easy to see that $q \equiv q' \mod 2$ implies u = u' and v = v'.

So let q be even and q' odd. This implies that q + q' + 1 is even and that L = r + r'.

We have that t(v+v') = (q+q'+1)L, so it follows that $L_0|v+v'$.

It follows that $L_0 = v + v'$, since $1 \leq v$, $v' \leq L_0 - 1$.

So we have $t = (q + q' + 1)m_L$, and this means that t is even. A contradiction.

Thus $\omega((C_{uv})_0) = \omega((C_{u'v'})_0)$ iff u = u', v = v', so ω is injective on $\Sigma(C_{uv})_0$. Therefore we have the injectivity of ω .

This completes the proof of the theorem.

It is easy to see that the following lemma holds.

LEMMA 3.6. Assume that A_1 and A_2 are bialgebras over an algebraically closed field. If the bialgebra $A_1 \otimes A_2$ is generated by a simple subcoalgebra as an algebra, then so is A_i , i = 1, 2. Moreover if any simple subcoalgebra of $A_1 \otimes A_2$ has dimension 1 or n^2 , then either A_1 or A_2 is pointed.

COROLLARY 3.7.

i) Assume that $A_{NL}^{(\nu\lambda)}$ is non-commutative, i.e. $(L,\lambda) \neq (2,+1)$, and $C_{st} \subset A_{NL}^{(\nu\lambda)}$. Then

$$\langle C_{st} \rangle = A_{NL}^{(\nu\lambda)}$$
 iff t is odd, $(L,t) = 1$ and $(N, 2s + t) = 1$.

ii) Assume simply that t is odd and $C_{st} \subset A_{NL}^{(\nu\lambda)}$. Then

$$\langle C_{st} \rangle = A_{NL}^{(\nu\lambda)} \quad iff \ (L,t) = 1, (N,2s+t) = 1.$$

iii) Let N be 2^nm , and m odd. Then

 $A_{NL}^{(\nu\lambda)} \simeq A_{2^n,L}^{(\nu\lambda)} \otimes kC_m \quad as \ Hopf \ algebras.$

iv) If $A_{2^n,L}^{(\nu\lambda)}$ is non-commutative, then it is indecomposable as the tensor product of its subHopf algebras.

PROOF. i), ii) These follow from the dimensionality.

iii) Let N be $2^n m$ and m odd. We may assume that $m \ge 3$. Now let s = (m-1)/2, t = 1, then it follows that 2s + t = m, $N_0 = 2^n$, $L_0 = L$, and $\langle C_{st} \rangle \simeq A_{2^n,L}^{(\nu\lambda)}.$

Let $f = x_{11}^{2\cdot 2^n} + v x_{12}^{2\cdot 2^n}$. Then f is a central grouplike element with order m, and $C_{st} \cdot f = C_{s't}$, where $s' = 2^n + (m-1)/2 \le N-1$.

For such s, s' and t, it follows that

$$(2s' + t, N) = \left(2\left\{2^n + \frac{m-1}{2}\right\} + 1, 2^n m\right)$$
$$= (2^{n+1} + m, 2^n m)$$
$$= 1.$$

Thus the simple subcoalgebra $C_{st} \cdot f = C_{s't}$ generates $A_{NL}^{(\nu\lambda)}$ as an algebra by ii). Therefore we have that

 $A_{2^nm,L}^{(\nu\lambda)} \simeq A_{2^n,L}^{(\nu\lambda)} \otimes kC_m$, as Hopf algebras.

iv) Let $2^n = N$. Applying Lemma 3.6 to $A_{NL}^{(\nu\lambda)}$, we may assume

$$A_{NL}^{(\nu\lambda)} = \langle C_{st} \rangle \otimes kF,$$

for some $0 \le s \le N-1$, $1 \le t \le L-1$, (abelian)subgroup $F \subset G(A_{NL}^{(\nu\lambda)})$. Since $A_{NL}^{(\nu\lambda)}$ is non-commutative, so is $\langle C_{st} \rangle$. This means that t is odd. By Theorem 3.5, $\langle C_{st} \rangle \simeq A_{N_0 L_0}^{(\nu \lambda)}$.

Comparing the dimensions, we have that $|F| = m_N m_L$.

Counting the number of 4-dimensional simple subcolagebras, we have the following:

$$N(L-1) = N_0(L_0-1) \cdot |F|$$

= $N_0(L_0-1)m_Nm_L$
= $N(L-m_L).$

Thus we have that $m_L = 1$.

On the other hand, it follows that $m_N = 1$ since 2s + t is odd and N is a power of 2.

Thus we have that $F = \langle 1 \rangle$.

Next we show that we can obtain all braidings on $A_{NL}^{(\nu\lambda)}$. See [GW], [G]. We identify $C < A_{NL}^{(\nu\lambda)}$ as in Remark 3.4. Note that any braiding on $A_{NL}^{(\nu\lambda)}$ is

determined on $C \otimes C$. If a bilinear map τ on C extends to a braiding on $A_{NL}^{(\nu\lambda)}$, we denote the braiding by $\tilde{\tau}$.

Recall YB-forms $\sigma_{\alpha\beta}$, $\tau^{(\lambda)}_{\alpha\beta}$ on C.

CLAIM 3.8. Let σ be a braiding on $A_{NL}^{(\nu\lambda)}$.

i) If $L \ge 3$, $\sigma|_{C \otimes C}$ coincides with $\sigma_{\alpha\beta}$ for some $\alpha, \beta \in k^{\times}$ such that $(\alpha\beta)^N = \nu$, $(\alpha\beta^{-1})^L = \lambda$.

ii) If L = 2, $\sigma'|_{C \otimes C}$ coincides with either $\sigma_{\alpha\beta}$ for some $\alpha, \beta \in k^{\times}$ such that $(\alpha\beta)^N = \nu, \ (\alpha\beta^{-1})^2 = \lambda \text{ or } \tau_{\gamma\delta}^{(\lambda)}$ for some $\gamma, \delta \in k^{\times}$ such that $\delta^2 = \gamma^2, \ \gamma^{2N} = 1.$

PROOF. i) Assume that $L \ge 3$. The subcoalgebra $C \cdot C$ of $A_{NL}^{(\nu\lambda)}$ has a basis

$$\{x_{11}^2, x_{12}^2, x_{11}x_{22}, x_{22}x_{11}, x_{12}x_{21}, x_{21}x_{12}\}.$$

We have similarly as in Proposition 2.9,

$$\sigma|_{C\otimes C} = \sigma_{\alpha\beta}$$
 for some $\alpha, \beta \in k^{\times}$.

Moreover σ satisfies the following:

$$0 = \sigma(1 - (x_{11}^{2N} + v x_{12}^{2N}), x_{11})$$

= 1 - v{ $\sigma_{\alpha\beta}(x_{12}, x_{12})\sigma_{\alpha\beta}(x_{12}, x_{21})$ }^N
= 1 - v($\alpha\beta$)^N.

Thus it follows that $(\alpha\beta)^N = \nu$.

Observe that when L is even,

$$0 = \sigma(\overbrace{x_{21}x_{12}\cdots x_{12}}^{L} - \lambda \overbrace{x_{12}x_{21}\cdots x_{21}}^{L}, x_{22})$$
$$= \alpha^{L} - \lambda \beta^{L},$$

and that when L is odd,

$$0 = \sigma(\overbrace{x_{21}x_{12}\cdots x_{21}}^{L} - \lambda \overbrace{x_{12}x_{21}\cdots x_{12}}^{L}, x_{21})$$
$$= \alpha^{L} - \lambda \beta^{L}.$$

Thus in either case, it follows that $\alpha^L = \lambda \beta^L$, or $(\alpha \beta^{-1})^L = \lambda$. ii) Assume that L = 2. The subcoalgebra $C \cdot C$ of $A_{N2}^{(\nu\lambda)}$ has a basis

$$\{x_{11}^2, x_{12}^2, x_{11}x_{22}, x_{12}x_{21}\}\$$

As in the proof of Proposition 2.9, we have the following:

$$\sigma(x_{ij}, x_{lm}) x_{jj} x_{mm} = x_{ll} x_{ii} \sigma(x_{ij}, x_{lm}),$$

$$\sigma(x_{i,j+1}, x_{l,m+1}) x_{j+1,j} x_{m+1,m} = x_{l,l+1} x_{i,i+1} \sigma(x_{i+1,j}, x_{l+1,m}).$$

Using these relations, we have the following with α , β , γ , $\delta \in k$,

σ	<i>X</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₂₁	X ₂₂
<i>X</i> ₁₁	γ	0	0	δ
<i>X</i> ₁₂	0	α	β	0
X_{21}	0	β	α	0
X ₂₂	λδ	0	0	γ.

Moreover σ satisfies the following equations:

$$0 = \sigma(x_{11}x_{12}, x_{12}) = \gamma \alpha,$$

$$0 = \sigma(x_{11}x_{21}, x_{12}) = \gamma \beta,$$

$$0 = \sigma(x_{11}x_{12}, x_{21}) = \delta \beta,$$

$$0 = \sigma(x_{11}x_{21}, x_{21}) = \delta \alpha.$$

So it follows that either $\gamma = 0 = \delta$ or $\alpha = 0 = \beta$. Thus $\sigma|_{C\otimes C}$ is either $\sigma_{\alpha\beta}$ or $\tau_{\gamma\delta}^{(\lambda)}$, for $\alpha, \beta, \gamma, \delta \in k^{\times}$. If $\sigma|_{C\otimes C} = \sigma_{\alpha\beta}$, then the relations on α, β follow similarly as in the proof of i). Let $\sigma|_{C\otimes C} = \tau_{\gamma\delta}^{(\lambda)}$. Observe that

$$\begin{aligned} 0 &= \sigma(x_{11}^2 - x_{22}^2, x_{22}) \\ &= \tau_{\gamma\delta}^{(\lambda)}(x_{11}, x_{22})^2 - \tau_{\gamma\delta}^{(\lambda)}(x_{22}, x_{22})^2 \\ &= \delta^2 - \gamma^2, \\ 0 &= \sigma(1 - (x_{11}^{2N} - \nu x_{12}^{2N}), x_{11}) \\ &= 1 - \tau_{\gamma\delta}^{(\lambda)}(x_{11}, x_{11})^{2N} \\ &= 1 - \gamma^{2N}. \end{aligned}$$

Thus it follows that $\delta^2 = \gamma^2$, $\gamma^{2N} = 1$.

CLAIM 3.9.

i) The YB-form $\sigma_{\alpha\beta}$ extends to a braiding on $A_{NL}^{(\nu\lambda)}$ if $(\alpha\beta)^N = \nu$, $(\alpha\beta^{-1})^L = \lambda$. ii) The YB-form $\tau_{\gamma\delta}^{(\lambda)}$ extends to a braiding on $A_{N2}^{(\nu\lambda)}$ if $\delta^2 = \gamma^2$, $\gamma^{2N} = 1$.

PROOF. Recall that *B* has braidings $\{\tilde{\sigma}_{\alpha\beta} | \alpha, \beta \in k^{\times}\}$ and that $B^{(\lambda)}$ has braidings $\{\tilde{\tau}_{\gamma\delta}^{(\lambda)}|\gamma,\delta\in k^{\times}\}.$

i) It is easy to see by Proposition 1.1 that $\tilde{\sigma}_{\alpha\beta}: B \otimes B \to k$ induces a braiding on $A_{NL}^{(\nu\lambda)}$ iff

$$\begin{cases} (\alpha\beta)^N = \nu, \\ (\alpha\beta^{-1})^L = \lambda. \end{cases}$$

ii) Recall that $A_{N2}^{(\nu\lambda)} = B^{(\lambda)}/(X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2, 1 - (X_{11}^{2N} + \nu X_{12}^{2N})).$ It follows that $\tau_{\gamma\delta}^{(\lambda)}$ induces a braiding on $B^{(\lambda)}/(X_{11}^2 - X_{22}^2, X_{12}^2 - X_{21}^2)$ iff $\delta^2 = \gamma^2$, and that $\tau_{\gamma\delta}^{(\lambda)}$ induces a braiding on $A_{N2}^{(\nu\lambda)}$ iff $\delta^2 = \gamma^2$, $\gamma^{2N} = 1 = \delta^{2N}$. \Box

PROPOSITION 3.10.

i) The set of braidings on $A_{NL}^{(\nu\lambda)}$ is given as follows:

$$\{\tilde{\sigma}_{\alpha\beta}|(\alpha\beta)^{N} = \nu, (\alpha\beta^{-1})^{L} = \lambda\}, \quad \text{if } L \ge 3,$$

$$\{\tilde{\sigma}_{\alpha\beta}, \tilde{\tau}_{\gamma\delta}^{(\lambda)}|(\alpha\beta)^{N} = \nu, (\alpha\beta^{-1})^{2} = \lambda, \delta^{2} = \gamma^{2}, \gamma^{2N} = 1\}, \quad \text{if } L = 2$$

ii) $A_{NL}^{(\nu\lambda)}$ is, in fact, a braided Hopf algebra. If chk $\not\prec$ NL, the number of braidings on $A_{NL}^{(\nu\lambda)}$ is

$$\begin{cases} 2NL, & \text{if } L \ge 3\\ 8N, & \text{if } L = 2 \end{cases}$$

iii) The number of symmetric braidings on $A_{NL}^{(\nu\lambda)}$ is given as follows; When $L \geq 3$,

Ν	L	(v, λ)	σ
odd	odd	$(\pm 1, \pm 1)$	2
		$(\pm 1, \mp 1)$	0
odd	even	(v, +1)	2
		(v, -1)	0
even	odd	$(+1, \lambda)$	2
		$(-1,\lambda)$	0
even	even	(+1, +1)	4
		otherwise	0.

When L = 2,

Ν	(v, λ)	$\tilde{\sigma}$	$ ilde{ au}^{(\lambda)}$
odd	(v, +1)	2	4
	(v, -1)	0	0
even	(+1, +1)	4	4
	(+1, -1)	0	0
	(-1, +1)	0	4
	(-1, -1)	0	0.

PROOF. i) This follows from Claim 3.8 and 3.9. ii) There is a surjective map

$$\{ (p,q) \in k \times k \mid p^{2N} = \nu, q^{2L} = \lambda \} \to \{ (\alpha,\beta) \in k \times k \mid (\alpha\beta)^N = \nu, (\alpha\beta^{-1})^L = \lambda \},$$
$$(p,q) \mapsto (pq,pq^{-1}).$$

Set $(p,q) \sim (p',q') \Leftrightarrow (p,q) = \pm (p',q')$. It is an equivalence relation, which induces the bijection

$$\{(p,q) \mid p^{2N} = \nu, q^{2L} = \lambda\} / \sim \approx \{(\alpha,\beta) \mid (\alpha\beta)^N = \nu, (\alpha\beta^{-1})^L = \lambda\} \}.$$

Let $chk \not\geq NL$. Then it follows that $|\{\tilde{\sigma}\}| = 2N \cdot 2L \cdot \frac{1}{2} = 2NL$. For $\tilde{\tau}^{(\lambda)}$, since $\gamma^{2N} = 1$ and $\delta^2 = \gamma^2$, it follows that $|\{\tilde{\tau}^{(\lambda)}\}| = 2N \cdot 2 = 4N$. iii) Recall that $chk \neq 2$. On $A_{NL}^{(\nu\lambda)}$, $\tilde{\sigma}_{\alpha\beta}$ is symmetric iff $\alpha^2 = 1 = \beta^2$ and

 $(\alpha\beta)^N = \nu, \ (\alpha\beta^{-1})^L = \lambda.$ On $A_{N2}^{(\nu\lambda)}, \ \tilde{\tau}_{\gamma\delta}^{(\lambda)}$ is symmetric iff $\gamma^2 = 1, \ \delta^2 = \lambda$ and $\gamma^{2N} = 1, \ \delta^2 = \gamma^2.$

REMARK 3.11. The algebra map $\theta: A_{NL}^{(\nu\lambda)} \to A_{NL}^{(\nu\lambda)cop}$, $x_{ij} \mapsto x_{ji}$, is a bijective Hopf algebra map. Define $\langle a, b \rangle = \tilde{\sigma}_{\alpha\beta}(\theta(a), b)$ for $a, b \in A_{NL}^{(\nu\lambda)}$. The linear map $\langle , \rangle: A_{NL}^{(\nu\lambda)} \otimes A_{NL}^{(\nu\lambda)} \to k$ is a non-trivial Hopf paring.

Using Proposition 3.10, we have the following indispensable proposition.

PROPOSITION 3.12. $A_{N_1L_1}^{(\nu_1\lambda_1)} \simeq A_{N_2L_2}^{(\nu_2\lambda_2)}$ if and only if both $(N_1, L_1) = (N_2, L_2)$ and $\begin{cases} (\nu_2, \lambda_2) = \pm (\nu_1, \lambda_1), & (case \ N_1, L_1 \ odd); \\ \lambda_2 = \lambda_1, & (case \ N_1 \ odd, L_1 \ even); \\ \nu_2 = \nu_1, & (case \ N_1 \ even, L_1 \ odd); \\ (\nu_2, \lambda_2) = (\nu_1, \lambda_1), & (case \ N_1, L_1 \ even). \end{cases}$

PROOF. For a fixed $\sqrt{-1}$, we can define a bialgebra map $\xi: B \to B$,

$$\xi : X_{ii} \mapsto X_{ii},$$
$$X_{12} \mapsto \sqrt{-1} X_{12},$$
$$X_{21} \mapsto -\sqrt{-1} X_{21}$$

Let

$$\check{A}_{NL}^{(\nu\lambda)} = \begin{cases} A_{NL}^{(-\nu,-\lambda)}, & \text{if } N, L \text{ are odd,} \\ A_{NL}^{(-\nu,\lambda)}, & \text{if } N \text{ is odd, } L \text{ is even,} \\ A_{NL}^{(\nu,-\lambda)}, & \text{if } N \text{ is even, } L \text{ is odd,} \\ A_{NL}^{(\nu\lambda)}, & \text{if } N, L \text{ are even.} \end{cases}$$

Then the following diagram commutes:

Thus by Proposition 3.10.iii), if N or L is odd, then the statement follows. Assume that both N and L are even. Then

$$(v_1, \lambda_1) = \begin{cases} (++) \Rightarrow \text{ by Prop. 3.10.iii}), \ (v_2, \lambda_2) = (++). \\ (-+) \Rightarrow \text{ by Prop. 3.3.ii}), \ G(A_{N_1L_1}^{(v_1\lambda_1)}) \text{ is central so } \lambda_2 = +1. \\ \text{By Prop. 3.10.iii}), \ v_2 = -1 \text{ so}(v_2, \lambda_2) = (-+). \\ (+-) \Rightarrow \text{ by Prop. 3.3.ii}), \ kG(A_{N_1L_1}^{(v_1\lambda_1)}) \cap Z(A_{N_1L_1}^{(v_1\lambda_1)}) = K \text{ so } \lambda_2 = -1. \\ \text{By Prop. 3.3.ii}), \ v_2 = +1 \text{ so}(v_2, \lambda_2) = (+-). \\ (--) \Rightarrow \text{ it follows that}(v_2, \lambda_2) = (--). \end{cases}$$

This completes the proof.

REMARK 3.13 ([Mas2], [F]). The "non-trivial" 8-dimensional semisimple Hopf algebra is given by

$$A_{1,2}^{(+-)} \simeq A_{1,2}^{(--)}.$$

Let $chk \neq 3$. The two "non-trivial" 12-dimensional semisimple Hopf algebras are given by

$$A_{1,3}^{(++)} \simeq A_{1,3}^{(--)}$$
 and $A_{1,3}^{(+-)} \simeq A_{1,3}^{(-+)}$.

Recall that *H* is a Hopf closure of *B* and that $A_{NL}^{(\nu\lambda)}$ is a Hopf algebra which is a quotient of *B* through π . So there is a Hopf algebra map $\tilde{\pi} : H \to A_{NL}^{(\nu\lambda)}$ such that $\tilde{\pi} = \pi|_B$.

H is a right $A_{NL}^{(\nu\lambda)}$ -comodule algebra via $\tilde{\pi}$. See [DT]. Then

PROPOSITION 3.14. H is a cleft $A_{NL}^{(\nu\lambda)}$ -comodule algebra. Namely there is an invertible comodule map $\phi : A_{NL}^{(\nu\lambda)} \to H$.

PROOF. Recall the basis $\{x_{11}^s : x_{22}x_{11}\cdots, x_{12}^s : x_{21}x_{12}\cdots | 1 \le s \le 2N, 0 \le t \le L-1\}$. This can be written as follows:

$$\begin{pmatrix} x_{11}^{2(s+1)} & x_{12}^{2(s+1)} \\ x_{11}^{2s} \cdot x_{11} & x_{11}^{2s} \cdot x_{22} & x_{12}^{2s} \cdot x_{12} & x_{12}^{2s} \cdot x_{21} \\ x_{11}^{2s} \cdot x_{11}x_{22} & x_{11}^{2s} \cdot x_{22}x_{11} & x_{12}^{2s} \cdot x_{12}x_{21} & x_{12}^{2s} \cdot x_{21}x_{12} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{11}^{2s} \cdot \overline{x_{11}x_{22}} \cdots & x_{11}^{2s} \cdot \overline{x_{22}x_{11}} \cdots & x_{12}^{2s} \cdot \overline{x_{12}x_{21}} \cdots & x_{12}^{2s} \cdot \overline{x_{21}x_{12}} \\ x_{11}^{2s} \cdot \overline{x_{11}x_{22}} \cdots & x_{LL}^{2s} & x_{11}^{2s} \cdot \overline{x_{22}x_{11}} \cdots & x_{12}^{2s} \cdot \overline{x_{12}x_{21}} \cdots & x_{L,L+1}^{2s} \end{pmatrix}$$

We use it. Define, for example, a linear map $\phi : A_{NL}^{(\nu\lambda)} \to B \to H$ by the small letters to its capital letters, i.e., x_{ij} to X_{ij} , etc. Then ϕ is a right $A_{NL}^{(\nu\lambda)}$ -comodule map.

We define another linear map $\psi : A_{NL}^{(\nu\lambda)} \to H$ as follows: On the bottom row,

$$\psi : x_{11}^{2s} \cdot \underbrace{x_{11}x_{22}\cdots x_{LL}}_{L} \mapsto \underbrace{(X_{LL}\cdots X_{22}X_{11}}_{L} \cdot X_{11}^{2s}) \left(\frac{1}{d_{+}}\right)^{2s+L},$$

$$x_{12}^{2s} \cdot \underbrace{x_{12}x_{21}\cdots x_{L,L+1}}_{L} \to \lambda \underbrace{(X_{L,L+1}\cdots X_{21}X_{12}}_{L} \cdot X_{12}^{2s}) \left(\frac{1}{d_{+}}\right)^{2s+L},$$

and on the other rows,

$$\psi = S \circ \phi.$$

Then we have $\psi = \phi^{-1}$, so ϕ is invertible. Therefore *H* is a cleft $A_{NL}^{(\nu\lambda)}$ -comodule algebra.

Added in Proof

The group $G = G(A_{NL}^{(\nu\lambda)})$ is abelian, and the type is given as follows. The case that L is even:

$$G = \langle h_+, h_- \rangle \times \langle h_+^{-L/2} g \rangle$$
$$= \begin{cases} (C_N \times C_2) \times C_2, & \text{if } (N, \nu) = (even, +1); \\ (C_{2N}) \times C_2, & \text{otherwise.} \end{cases}$$

The case that L is odd:

$$G = \begin{cases} \langle h_{\lambda}^{(1-L)/2}g \rangle = C_{4N} & \text{if } \nu = -\lambda^{N}; \\ \langle h_{\lambda}^{(1-L)/2}g \rangle \times \langle h_{+}^{-1}h_{-} \rangle = C_{2N} \times C_{2}, & \text{if } \nu = \lambda^{N}. \end{cases}$$

Proposition 3.12 follows from this and Proposition 3.3.

References

- [D] Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21(5), 1731–1749.
- [DT] Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801-817.
- [F] N. Fukuda, Semisimple Hopf algebras of dimension 12 (to appear).
- [GW] S. Gelaki and S. Westreich, On the quasitriangularity of $U_q(sl_n)'$, preprint.
- [G] S. Gelaki, Quantum groups of dimension pq^2 , preprint.
- [H] T. Hayashi, Quantum groups and quantum determinants, J. Algebra 152 (1992), 146-165.
- [Man] Yu. Manin, Quantum groups and non-commutative geometry, U. of Montreal Lectures, 1988.
- [Mas1] A. Masuoka, Coideal subalgebras in finite Hopf algebras, J. Algebra 163 (1994), 819-831.
- [Mas2] —, Semisimple Hopf algebras of dimension 6, 8, Israel J. Math. 92 (1995), 361-373.
- [M] S. Montgomery, Hopf algebras and their actions on rings, American Mathematical Society, Prividence, 1993.
- [S] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- [T1] M. Takeuchi, A two-parameter quantization of GL(n), Proc. Japan Acad. 66. Ser. A (1990), 112–114.
- [T2] —, Matric bialgebras and quantum groups, Israel J. Math. 72 (1990), 232–251.

Institute of Mathematics University of Tsukuba Ibaraki 305, Japan