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ALGEBRAS OF FINITE DIMENSION

By

Satoshi Suzuki

0. Introduction

Recently some finite dimensional cosemisimple Hopf algebras were con-

structed [Mas2] [F] [G]. We aim to give a plain and systematic description of

cosemisimple Hopf algebras of low dimension. For this purpose we construct

them as quotient bialgebras of a sufficientlylarge bialgebra. This way has the

advantage of defining homomorphisms and determining braidings.

In this paper we define and study a family of finitedimensional cosemisimple

Hopf algebras

3F = {A^＼A^＼A^＼A^＼N^ l,L }> 2},

which consists of quotients of a bialgebra B over an algebraically closed field k

with chk # 2.

This family contains the "non-trivial" cosemisimple Hopf algebras of

dimension 8, 12 if chk # 3.

In Section 1 we review basic definitions and results.

In Section 2 quadratic bialgebras B, B^ and B^ are constructed. We use B

to construct the family ^, and B^ to obtain braidings on the members of a

subfamily of J5".These bialgebras B, B^ are cosemisimple, and we determine all

braidings on them.

In Section 3 we define the family #" as a set of quotient bialgebras -of the

bialgebra B. We write A^L~ ' = A^＼ etc. Let v,X = +1. Our main results are

as follows.

i) AffL is a non-cocommutative involutory cosemisimple Hopf algebra of

dimension 4NL, which is non-commutative unless (L, X) = (2, +1).
^4^

is

furthermore semisimple if (dimA%k)) -1^0.
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ii)Any non-commutative subHopf algebra of A^ generated by a simple

subcoalgebra is a member of the family,

iii)All braidingson A^ are determined,

iv) We determine when A^^' and A^J^ are isomorphic.

1. Preliminaries [D]

We follow Sweedler's book [S] and Montgomery's book [M] for terminology

of Hopf algebras.

In this section we review basic definitionsand results.They are due to Doi

[D].

Let B be a bialgebra over a field k, t : BR B ―>k a ^-linear map which is

invertible with respect to the convolution product. (B, t) is called a braided

bialgebra if the following three conditions hold:

(1) Z-z(xi,yi)x2y2 = ZyiXiT(x2,y2)

(2) r(xy, z) = Et(x, z＼)r(y,z2)

(3) t(x,yz) = St(xi ,z)r(x2,y)

for x,y,z e B.

Then the following conditions are automatically satisfied:

t(x,1) = s(x) = t(1,jc),

ZT(xuyi)T(x2,zi)r(y2,z2) = Et(^i,zi)t(xi,Z2)t(x2, y2) foix,y,zeB.

We call this z a braiding on B.

Proposition 1.1 ([H, Proposition 1.2]). Let {B,x) be a braided bialgebra

generated by a subcoalgebra C, (I) the bi-idealgenerated by a coideal I of B. Then

x induces a braiding on the bialgebra B/(I) iff x ― 0 on CRI + IRC.

If {B,r) is a braided bialgebra, lx l is another braiding on B, where

tt~l(x,y)= t"1^, x), and the braiding t is said to be symmetric if V"1 = t.

Let C be a coalgebra over k, a : C R C ―≫･A:an invertible A:-linearmap. For

any bialgebra B, a linear map f : C -^ B is called a a-map if

2ff(xi,7i)/(x2)/(j2) = 2/0>i)/(*iM*2,}'2), *,y e C.

Let J'(C) be the tensor (bi-)algebra and Ia is the (bi-)ideal generated by

(4) ?0{x＼,y＼)xiy2-lLy＼X＼o(x2,y2), x,y,zeC.
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We can form the bialgebraM(C,a) = T(C)/Ia, which is calledis the quadratic

hialaebraassociatedwith (C.a).

Remark 1.2. i) The map i: C <-+ T(C) ―>M(C,a) is an injective coalgebra

(T-map.

ii) If B is a bialgebra and / : C ―≫2? is a o--(coalgebra)map, then there is a

unique (Zn-) algebra map / : M(C, a) ―≫B such that / oi ―f.

iii)M(C,g) has a natural algebra-gradation {C}w>0.

iv) M(C,o)op = M(C,o-l) = M(CM, M(C,a) = M(C,V"1).

Let (C,a) be as above. The map a is calleda Yang-Baxterform (or YB-form)

if for all x,y,z e C,

(5) Etf(xi,j;i)a(x2,zi)<T0>2,Z2)= ?&(y＼,z＼)(r(x＼,z2)(t(x2,j2)･

We call(C.a) a YB-coalaebra if a is a YB-form.

Remark 1.3. If a is a YB-form on C, so is la~l.

A YB-form a is said to be symmetric if la~x= a.

Proposition 1.4 ([D, Theorem 2.6]). If (C,c) w ≪YB-coalgebra, a uniquely

extends to a braiding a on M(C,a).

We note that if (C,a) is a YB-coalgebra then M(C,a) has another braiding

'tf-i.

Corollary 1.5. aw symmetric iff a is symmetric.

For a bialgebra 5, a Hopf algebra H and a bialgebra map i: B ―>if, we call

(if,i) (or simply if) a ifo/>/ closure of 5 if the following universality holds: for

any Hopf algebra A and any bialgebra map / : B ―>A, there is a unique Hopf

algebra map / : H -> A such that / oi =/. See [Man] [H] [Dl.

Proposition 1.6 ([T2] [D, Theorem 3.6][H]). Let M(C,a) be the quadratic

bialgehra associated with (C,a), dfeO) a grouplike element of M(C,a). If there is

a map j : C ―>･M(C,a) such that

2>Kxi)J(x2) ―s(x)d = 'Lj(xi)i(x2) for all x e C,
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then d is central and the {well-defined)localization M(C,a)[d l] becomes a Hopf

algebra. Moreover it is a Hopf closure of M(C,a), and it follows that

M(C,a)[d~l] ― M(C,a)[G~l], where G is the set of grouplike elements of

M(C,a). If (C,a) is a YB-coalgebra, M(C,a)[d~l] has a braiding.

2. YB-eoalgebras and quadratic bialgebras

From now on we work over an algebraically closed field k whose charac-

teristic,chk, is not 2. Indices of Kronecker's Sy, Xy, etc.are considered modulo 2.

In this section we define some YB-coalgebras and examine quadratic

bialgebras associated with them.

Set C = M.2(k)*, the dual coalgebra of the 2 x 2-matrix algebra M2{k), and

let {Xij}l<ij^2 be tne comatrix basis of C, namely it spans C and satisfies

A(Xtj) = li=lXik (g)XkJ, e(Xy) = Sy.

For any coalgebra D and Ytje D, 1 ^ /, j S 2, if the linear map C ―>D,

Xu ＼―≫Yy, is an injective coalgebra map, we denote the image by

spank{Yij) = spank
(Vu

＼Y2i 1W
Let X= ±1. Now for any aekx ―k - {0}, we definelinear maps ova)

T(±l)
_

T(a) - rj^ :CRC^k as follows(see [D, Example 2.8]for tW)

%)

Xn

Xll

Xu Xn Xi＼ X22

0

0

0

0

0

a

1

0

0

1

a

0

Proposition 2.1. a^, t[^

0

0

0

0

T(≪)

Xu

Xl2

Xn

X-n

Xn X＼2 Xi＼ Xyi

a

0

0

k

0

0

0

0

(otekx) are YB-forms on C.

0

0

0

0

Proof. We show that a^ = a is a YB-form.

We can write a(XiJ+u Xijm+i) =3ij8imadu.

For Xij, Xim and Xuv, observe that

%>a,b,c&(Xia,^lb)^{^aj, ^uc)^{^bmi %cv)

―o{Xu+i, Xn+i)a(Xi+ij, Xuu+i)a(Xi+＼m, Xu+i)V)

= 3ij5lmSuvas"as^oiSl"

1

0

0

a
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^a,b,c^(^lb, Xuc)a{Xia, Xcv)a(Xaj, %bm)

= o(Xiyi+＼,XM)M+i )a(Xtj+i, Xu+itV)a(Xi+ij, Xi+＼

= duvdijdim0LSi≫as^as≫.

Thus Condition (5) is satisfied.

The inverse is given by

V)=
(T(≪-1)

Therefore a^ is a YB-form for aekx.

It is easy to check that tvJ.is also a YB-form on C

m)

Therefore (C,a^) and (C, tS) are YB-coalgebras for allaekx.

5

□

Remark 2.2. {o*(a),t t^ |a,/? e &*}, {vi
>
t|

J |
a,/? e &:*} form subgroups of

the unit group of M2(&)R .

Next we examine the defining relations of the quadratic bialgebras associated

with them.

Proposition 2.3.

i) The ideal Ia, where a = a^, is generated by the following:

{Xn - X22,X＼2 ~ ^iiXjj+iXa - otXi+iti+＼Xj+ij} if a =1,

{X,2, - X^X'-X^XijXimii + j + Um^ 1)} i/a2 * 1.

ii) The idealIxw, where t^ = xSl,is generatedby thefollowing:

{XuXzi ―X2iX＼＼,X＼2X2＼- XX21X12,XaXn - aXuXa, X2jXy - AaXyX2j}

{XuX22-X22XluXnX2l-kX2lXn,XijXUi+j + l + m=＼)}

Proof, i) For Xtj, X/w, observe that

Y<(j{Xia,Xib)XajXbm = O'(X,y+i,17)/+i)XJ+i;yl7+i)W

= or"Xj+i jXi+ijn,

if a2 = L

if a2 # L
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~LXibXiaa(Xaj,Xbm) ― Xijm+＼Xij+i(T(Xj+ij,Xm+itm)

= Xijn+iXu+iaf*.

Thus the subset

{af'XtjXbn- Xi+i^+iXt+ij+i^ 11 S hhhm S 2}

generates the ideal Ia. The above polynomials are written as follows:

<

ccXjj Xi+lj+la

XijXij ― Xi+＼,j+＼Xi+＼,j+＼&

OLXijXim ― Xi+＼jn+＼Xi+＼j+＼

XijXim ― Xi+ijn+iXj+i /+i

ifi = /,j ―m,

ifi ＼=IJ = m,

ifi = IJ # m,

ifi^lj^m (i.e.,/= i + l,m =j + 1).

ii) This is similarly shown as i). □

Remark 2.4. i) For the bialgebra Af(C,<7(_i)), see the quantum conformal

group in [Man].

ii) M(C1 T(+n) are the quantum matrix bialgebras M+i(2).

iii)M(C, t~/-j) is Takeuchi's two-parameter bialgebra Ma^(2)

for a = y^T, fi = ->/=T ([Tl], [D]).

Define B = M(C>(a)) for a2 # 1 and Bf& = M(C,t[^) for a2 # L We write

#±!) = I^i). These definitions,ignoring choice of a, are reasonable by Prop-

osition 2.3.

On the other hand, we see by Proposition 1.1 that braidings ff(+i),f: '
^

are

induced on B, B^k＼ respectively, via the canonical surjections

M(C,a{±l))^B, MiCr^^B^.

Note that {XyXim＼i + j +1 + m = 1} spans a coideal of T(C).

Therefore we have the following claim:

Claim 2.5.

i) <T(a): C R C ―>k extends to a braiding a^

ii) r,l : C R C ―*k extends to a braiding x)l

We examine the coalgebra structure of B.

on B for every oleIc*.

on B^ for every a e kx



A family of braided cosemisimple

Proposition 2.6.

i) B has the following set as a basis

r

7

{X^r%2XnX22 ...;*?2-rX2lX^X^ ＼n̂ 0,0 S r S ≪}･

ii) T/ie grouplike elements hut 1 i≪B are given by

X≫±X≫ (s^l).

Then are central non-zero divisors.

iii) The simple subcoalgehras of B which are not spanned by grouplike elements

are of dimension 4. They are given by

Ca = spank

/

W

i2

t

X＼＼X2iX＼＼ ･ ･ ■

t

121X12X21 ･･ ･

t
A,

_

Xl2XnX2＼X＼2 ■･･

t
>^L __

(s^O,t ^ 1)

iv) B is cosemisimple.The nth component Cn (n ^ 1) of B is decomposed as

the sum of simple subcoalqehrasas follows:

cn = i 2"n=2s+tIssti

*->n=2s+tCst+ k＼X"i + ^{2)'

if n is odd;

if n is even.

Proof, i) It is verifiedin the same manner as Theorem 3.Li) below.

ii),iii),iv) It is easy to see that Xff ± X^ is grouplike for s ^ 1. By i) and

the defining relations of B, it is a central non-zero divisor.C is isomorphic to Cst

as coalgebras by

Xn^Xff

t

XuXiiXu ...,

X＼2I―≫X^X^X^X^ ...,

Xi＼H-≫1^2X21X12X21 ･･･,

X22I―>XjIX22X11X22

By i) we have that

B = k-l+ Uc(Xfi ± Xli) + SCjr

= fc■1 e {e^iM^n ± ^S> c {c^0,^1 c*}

Thus ii),iii),iv) are done. □



Corollary 2.8. Let <Cj?> denote the sub-hialgebra generated by the simple

subcoalgebra Cst <= B. Then as bialgebras,

if tis odd;

if t is even

is decomposed

if n is odd;

if n is even.

(B,

= a<xp,'*$ = ^＼p- The statement follows fromProof, i) We note thatla^

these.

B 2 <Cst>

We omit the proof. See the proof of Theorem 3.5 below.

Define linear maps a^ = /fo^-i), ^ = /frj^l-ufor a, /?e fcx, A = +1. They

are also YB-forms on C. The YB-form aap extends to a braiding dap on B, and

r} extends to a braiding fjJ on B^＼

Proposition 2.9. i) uap is symmetric iff a2 ― 1 = fi2.rj is symmetric iff

a2 = 1, f = L

ii) I7ie set of braidings on B is {dg^＼a,fie kx}, and that on B^ is

{i^lajek*}.

8
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Proposition 2.7.

i) B^ has thefollowing set as a basis

ii)The grouplikeelements but 1 in B^ are given by

They are non-zero divisors.

iii)The simple suhcoalgebras of B^

elements are all of dimension 4. They are

Duv = spank

( yu yvA11A22

A21A12

which are not spanned by grouplike

given by

yu
yv

A＼2A2＼

Yu Yva riA＼＼

)
･

iv) B^ is cosemisimple.The nth component Cn (n

as the sum of simple subcoalgebrasas follows:

cn = l
■^n―u+VjU ^ v-^uv j

^ 1) ofR^

y n -a-k(rn/2 rn/2 + ＼/jw/2rn/2 vn/2＼

We omit the proof.
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ii) We show the statement with B. The statement with B^ is similarly

verified.

We have obtained braidings dap(a,fie kx) on B.

Let ffbea braiding. Note that the second component C2 of B has a basis

{Xn, Xn, X11X22, ^22^11, -^12^21,̂ 21^12}-

So for Xij, Xim, it follows that

t^oyXia-iXib)XajXbm = (j(Xjj,Xim)XjjXmm 4- o^Xjj+i, Xitm+＼)Xj+ijXm+itm,

l,XibXiaa(Xaj, Xbm) ― XuXii(j(Xij,Xim) + Xij+iXij+ia^i+ij, X/+iiW).

These must be equal, so we obtain the following by Proposition 2.6.i):

GyXijiXim)XjjXmm = XuXa(j＼Xij,Xim),

a(Xfj+i, Xitm+i)Xj+＼jXm+＼tm = Xij+iXiti+ia(Xi+ij, X/+i)OT).

The above equations imply that o＼cRc *s giyen as follows with some a, fl,y e k:

a

X＼＼

Xn

x22

Xn X＼2 Xi＼ X22

y

o

o

0

0

a

P

0

0

p

a

0

0

0

0

y

Moreover it follows by Condition (2) that

0 = (r(0,X12)=a(Z11X12,Xi2)

= <r(Xn,Xu)(T(Xi2,Xi2)+ tr(XiuXnMXi2,X22) = Y*,

and

0 = a(0,Z12)=(j(X11X2i,X12)

= a{XluXn)<j{X2UXl2)+a(XluXl2)<j(X2uX22) = yfi.

We have that y ―0, a, fie kx sincea is invertible.

Therefore crlc^c = <Jap,so <r= a^.

We describea Hopf closure of the bialgebraB.

□
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d+ = X＼x± X＼2. These are central grouplike elements. For example,

that.

＼X2＼

*12

X12

V*21

)(
Xn

x")(
-Xn

-x2

x12

■)

:)-(

4X

-(

-Xl2

Using Proposition 1.6 and Proposition2.6

Xx

:

1 ^21 ＼ / X＼l

2 Xyi J V ^21

)(

X22)

X12＼

X22J

we have the following.

Proposition 2.10. The Hopf closure H of B is given by

H = B[d-1]=B[dZ1]=B[G(B)-%

where G(B) is the set of grouplike elements in B. This Hopf algebra is braided and

cosemisimple, and includes B as a sub-bialgebra. Furthermore, H is involutory.In

fact, the antipode S is determined by

S(Xij)=Xjid-l=(-l)i+jXjidIl.

3. Quotients of the bialgebra B

In this section we define and study a family of finite dimensional co-

semisimple bi(Hopf) algebras which are quotients of the bialgebra B over an

algebraically closed field k with chk # 2.

It will be shown that the family contains the "non-trivial" cosemisimple Hopf

algebras of dimension 8 ([Mas2]) and of dimension 12 ([F])if chk # 3. See also

Gelaki's Hopf algebras of dimension 4p, where p(^3) is prime ([G]).

We construct the family. It is easy to see by Proposition 2.6 that for L^2,

N^l and X, v= ±1,

L

the following subsets

L

{X22X11X22 X＼＼X2iX＼＼...,

L L

: nj^ ^^ ii.i..T.i.ni.i..iiiii.
I21X12I21 ･ ･ ･ ―/IX12X21X12 ･ ･ ･},

span coideals of B. Let J[ and l^ be the ideals generated by these coideals

respectively,which are bi-ideals.
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We can form the bialgebra

A^ = B/4 + rN

11

We write A^L ' ― A^l'
*＼

etc. Let n be the following subjectivebialgebra map:

it■R―> A^ Y--＼-*Y- ― y-

Theorem 3.1.

i) A^r has the following set as a basis

t t

{xsn X2ix＼＼xn ■■■,x＼2X21X12X21 ･ ･･ |1 ^ s ^ 2N, 0 ^ r ^ L - 1}.

27ms rfww^J^ = 4NL.

ii) Le? G(y4^) ― G be the set of grouplike elements of A^J. Then

L L

G = {X?i ± X?2, *n ^11^22^11 ･ ･･ ± V^2 ^12^21^12 ･･ ･ | 1 S S ^ Nj

iii)The simple suhcoalgebras of A^ which are not spanned by grouplike

elements are aiven bv

Cst = spank

( t

*li*ll*22*ll-"

t

*12*21*12*21'--

t

*?2X12*21*12'--

t

*?j*22*llX22'--

)

for 0 ^ s S N - 1, UrgL-1.

iv) |G(^4^)| = 4/V, anJ ?/iereare exactly N(L― 1) simple subcoalgehras of

dimension 4.

v) y^jy^is non-cocommutative and cosemisimple. It is non-commutative unless

(L,A) = (2+1).

vi) AffL is an involutory Hopf algebra,

t

vii)Let A = Lxsn 5c22*ii*22･ -:(1 ^ J ^ 27V,0 ^ r ^ L - 1). 77*e?fA is a non-

zero two-sided integral.

viii)aZt is semisimple if chkXNL.

Proof, i) Let B' be the algebra k(X, Y}/{X2 - Y2} and A, v = ±1. Let V

be the ^-vector space with a basis{<s,f) e V＼s^ 1,O^?^L-1}.
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We define the followingideals of B'＼

L L

Ig = (1 - vX2N).

We prove i) step-by-step.

(Step 1) We define a rightB'-module structureon V

Define the actions of X and Y as follows:

X : (s,t}＼-+

Y:(s,t}^

( <J,f+ l>,

A<s+1,L-1>,

<5+l,0>,

<5 + 2,r-l>,

<s + 2,?-l>,

<-M+l>,

A<5+1,L-1>,

if tis odd, t^L-2,

t = L-l,

if tis even, t = 0,

t^2,

if t is odd,

if t is even, t^L-2,

t = L-l.

It is easy to see X1 = Y2 in Endk(V).

Thus we have a right B'-module structureon V.

(Step 2) We claim the subspace W spanned by

{(q(2N) +s,t>- vq{s,?> 11 SsS2N,q^l,Q^t^L-l}

is a submodule of V.

For example, when t―L ―1 is odd and s = IN, observe the following:

X : (q{2N) + 2N,L- l}^A(q(2N) + 2N+l,L-l)

= A<(f+l)(2tf) + l,L-l>

= Av*+1<l,L-l> (mod W),

and

X : vq(2N, L - 1>＼-+vqX<2N + 1,L - 1>

= v*/l<l-(2JV)+ l,Z,-l>

= vqkv<＼,L- 1> (mod W).

(Step 3) The action of B' induces the B'/j[-module structureon V,

We check it case-by-case.
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When L is even, for each 0 ^ 2m ^ L ―2, observe the following:

L

zF^~X : ･ <s,2m> [YX)L2U
＼
<5>l - 2>

i-^A<j+1,L-1>

i^>A(s+l+4u,L-l -2m>,

･<5,2M+l>S<5 + %,l>h-^<^ + % + 3,0>

f―! ^<^ + 4m + 3,L-2m-2>.

5t^T:-<j,2m>^X<j + 4m,0>i-^<j + 4m+1,1>

^ ><J + 4≪+l,L-2≪-l>,

,yjni/2-.-l
■(s,2u+l}L^ >(s,L-l}

h^A<5 + 3,L-2>

K
X{s + 3 + 4m,L - 2 - 2m>.

L L

Thus it follows that YX---X = X/XY^~Y in Endk(V).

When L is odd (so L ^ 3),for each 2 ?g2m ^ L - 1, observe the following:

L

7X---7:-<.s,0>h―i ><i,L-l>i^+l,I-l>l

ry;n(L-l)/2-n y
･<5,2M>h―' > <j,L-1>k->A<j+1,L-1>

J^X A<^ + 1 + 4m,Z,- 1 - 2m>.

･<5,2m-1>^C<5 + 4m-4,1>^^<5 + 4m-1,0>

l-^ > <j + 4m-1,L-1-2≪>^<j + 4m-1,L-2m>.
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L

xF^~?:-<^,0>h^<5+l,L-l>,

･ <j, 2m>
t^X

<5 + 4m, 0>
£

<s + 4m + 1, 0>

(YX){L-i)/2-uP^ > <s + 4u+l,L-2u-l},

<s,2m-1>^ ><j,L-2> Avl<j+l,Z,-l>

i^-> X<s + Au - 3,L - 2u + 1> i A<,s+ 4m - 1,L - 2m>

L L

Thus we have that'Jx^Y = XXY^~X in EndAV).

In either case V becomes a right B'/J^ -module by the action.

(Step 4) V/W is a B'/j[ + /^-module of dimension 2NL.

Since V/W has the set {<j, r> 11 ^ j ^ 2^,0 ^ f ^ Z,- 1} as a basis, F/*F

has dimension 2NL.

The action of X2 is given by X2 : <j,r>i-* <.s+ 2, r>.

Thus for 1 ^ 5 ^ IN, O^t^L-l, it follows that

X2N : <j,r> h^ <5 + 2iV,0 = <1 ･(2N) +s,t} = v(s,?> mod W.

So we have that 1 = vX2N in Endk{V/W).

Thus it is done.

(Step 5) We construct a right v4#L-module M = {V/W) 0 (V/W).

There are two algebra maps

n'0:B^B'/J? + I+>,

X＼＼i―>X = x, X22 h->Y = y,

and

n＼:B^B'/J^ + P^

X＼2h-≫X = x, Z2i i-≫F = >;,

They induce algebra maps

no:4^B'/J? + li＼

xm-^x, x12 ＼-*y, xM+i i->0,

nl:A($^B'/J}! + Ig,

X12HX, X2il->V, X,vl->0.
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Using these, we obtain the right A^L -module V/W ― Vo through no with a basis

{<5,0o = <M>| 1 S s^ 2N,0 S t£ L- 1},

and the right A^L-module V/W= V＼ through n＼ with a basis

{<j, ?>j = <J> t} 11 ^ ^ ^ 27V,0 ^ r ^ L - 1}.

Let M be the right
^4^-module

Fo c V＼. We note that M has dimension

4NL.

(Step 6) It follows that M ~ A^ as right v4^}-modules.

Define an A%L^-module map ^ : Aj$ -+ M and a £>linearmap ^ : M ―>J^

as follows:

<t>:Afl^M, ≪^{<2AA,0>0 + v<2iV,0>1}.a,

＼jj: M ^ A)$, is, tyo＼-^xsnX22X11X22 *'''

<5,r>1hH-xf2X2lXi2X21 ････

It is easy to see that i/ris surjective and that tf>o i/jis the identity map on M.

Therefore we have that M ~ A^ as ^^L-modules, in particular dimA^ =

dimM = 4NL.

This completes the proof of i).

ii)~ v) These are easily verifiedby i). Since A^f is generated by {xy}, it is

commutative iff (L,X) = (2,+1).

vi) There is an algebra map B^B°p, Xij^Xji ･(X^2N~l) + X2^N~l)), and

this induces an algebra map S,

B

n

B°p

AvX) s , AyX)＼op

The anti-algebramap S is an antipode of
^4^,

which is given by

c / 2(2N-l) 2(2W-1KO : X{j＼―>Xy^Xjj i X＼2 )

= Xji{pc＼＼+ xl2) .

So At) is an Involutory Hopf algebra.
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vii)The element A

zero by i).

Satoshi Suzuki

t

― Sxjj JC22*n*22 ･･ ･ (1 ^ s ^ 2JV",0 ^ t ^ L ― 1) is non-

Recall that A is called a left(resp. right)integralif aA (resp. Ad) = e(a)A for

all a e 41

It is enough to check on the subset {xu}. Observe the following.

Xl2A = X2lA
0

xiiA

= e(xi2)A = e(x2i)A.

t t

= I^j1 X22*llX22 **' = £xll *22*11*22 *･■= A

= £(xn)A.

t

IIMm̂ ^B IIIBII
X22A = 1X22^1! X22X11X22 " * '

t t

― 2J:even^i 1^22 ^22^11^22 h^odd^T X22^11 ^22^11^22 ' " ･

t-2

― ^s:even,?=0^H^:22
+ 25:eVen,?=l-:5Cii

"^
^:even,^2^ii ^22-^11^22 * * '

t+2 L-l

1 ≫■ -A.
+ 2j:odd,fgL-3^T -^22^11^22 ^£>s:odd,t=L-2Xu ^22-^11^22 " ' °

L-2

+ ^:0dd,r=L-l-^i| ^22^11^22 ' ･ ･

t

― ^s:even*i 1 *22
+ S?:even*i

1
+ ^:odd,0<≪<L-3^i

1 ^22^11^22 * ' '

t

+ £s:even,2<^L-l*ii *22* 11*22 |-£.s:odd*ll

L-2

+ ^s-.oddXS＼lX22Xl＼X22---

L-＼

*22*11*22- ･･

= A

= e(x22)A-

Thus A is a left integral. It is similarly shown that A is a right integral.

Therefore A is a non-zero two-sided integral.

viii)It follows that e(A) = 2NL # 0 iff chkJfNL. □
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Remark 3.2. For the multiplication relations of A^, we note the following.

･ xfj is central.

･xf+1=*≪, andx^+i=vx..+1.

L L

Set h+ ― x＼x± x＼2 and g = x＼1X22^11 ＼-yfX̂12^21 ^12 ･･･ for a fixed y/1. Cm

denotes the cyclic group of order m.

Proposition 3.3. i) The subgroup </*+,/*_> of G is central in A^, and the

order is 2N. As groups

</i+,A_>
f CN x C2 if{N,v) = (even,+＼);

otherwise.

ii) GcZ(4ft, the center of A$, iffg e Z(A{$) iff(L,A) = (even,+l)

Proof, i) The order of </z+,/2_> is 2iV by Theorem 3.1

If (JV,v) =

<

(even,+l),

(even,-l),

(odd,+l),

(odd,-l),

then </*+,/?_> = (h+y x <x?f _ x2Arx

then </*+,/*_> = <A+> = <A_>,

then </!+,/?_> = </!_>,

then <A+,A_> = </i+>.

ii)Note that G = </i+,/i_>U<A+,/i_>^.So it follows that G a Z{A{$) iff

geZ(A<$).

It Is easy to

g is central <=>

see that

I L L

Xa ■XnX22 ■'' = XUX22 ･ ■･ '*≪,

L L

Xu+l ■X12X21 ' ･ * = -^12^21 ^j,i+1 , fori= 1,2. □

Remark 3.4.

i) The dimension of a simple subcoalgebra of A^ is either 1 or 22= 4.

ii) The simple subcoalgebra Qi generatesA^) as an algebra.
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iii)For the YB-coalgebra (C,oap), C ~ Qi c= A^, Xij^xy, is a coalgebra

o-^-map.

We identify C and Cq＼.

iv) A^"^ (~a＼^~, see Prop.3.12 below) is the "non-trivial" semisimple Hopf

algebra of dimension 8 ([Mas2]). The ideal decomposition is given as follows:

A＼i~]= k(xU + ^22 + *?i + XUX22) c ^Ull - -^22- JC?i+ *11*22)

c k(Xu - X22 +X＼＼~ XuXn) c k(xu + X22 ~x]l- XUX22)

c ,spfl/Ijfc{jCi2,X21,x＼2,X12X2I}･

v) Since the subHopf algebra K ―k(h+,h-} is normal, A^K+ is a Hopf

ideal, where K+ = KersK. So A^/A^K+ ― A is a Hopf algebra of dimension

2L. It is easy to see that the elements x＼＼= a, X22 ― b e A are grouplike and

generate A as an algebra. This means that A is a group-algebra. Moreover let

ab = c, then the order of c is L. Then,

L L

A = k(a, b Ia2 = 1 = b2, baba ･･･ = abab ･･･ >

= k(a, c Ia2 = 1, cL = 1, aca l = c l >

IcDl, where Dl is the dihedral group of order 2L.

Thus we obtain a short exact sequence by means of [Masl, Definition1.3]

＼^K^Af)^kDL^ 1.

vi) As bialgebras

B/J2 ―B/(X＼＼X22―Xi2X＼＼,X＼2X2＼―XXi＼X＼2)

- k(Xtfr/(Xlx - X222,X2U- Xl^XijXto (i +j + l + m = l),

X11X22 ― Xii X＼＼,XnXix ― ^Xi＼X＼2)

= B /{Xll ― X22,Xl2 ― X2i).

Thus
^4^2^

is furthermore a quotient bialgebra of B^:

>]) _ rW I(Y2
Y2 Y2 - Y2 1 - (Y2N + vY2N})AN2 ― D I＼A＼＼~A22iA＼2 A2＼il ＼A＼＼+VAl2 ))■

We note that {Xf{ - X＼2,X＼2 - XfJ spans a coideal of B^ and that {1-

(X2^ + vX22)} spans a coideal modulo the coideal spank{X2x ― X22,X22 ― X2l}
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Recall that Cst denotes a simple subcoalgebra of dimension 4 of A^ for

0 ^s ^N - I, l^f:gL-l. Let <C^> denote the subHopf algebra generated

by Cst.It is easy to see that <C≪> is commutative iff either t is even or

(L, X) = (It,+1). So it follows that t is odd if <C^> is non-commutative.

We show that <C≪> is a member of the family {A^} if t is odd.

Set

GCD(L, t)= mL, GCD(N, 2s+t)= mN,

L/mL = Lq, N/mN = NQ, t/mL = t0, (2s + t)/mN = (s,t)0,

Theorem 3.5. Assume that t is odd and Cst a A＼}). Then

<Cst> - ANoL as HoPf algebras.

Proof. Let t be odd, and fix 0 ^ s S N - 1 and l^t^L-l. We note

thatintegers25 +1, to,(s,t)0,mL and m^ are also odd.

Set

t

t

Z2＼ =X?2^21^12--'^21,

t

Z12 = Xi2Xi2X2i---Xi2,

^22 =rf＼Xi2X＼＼ ･･･X22-

The map at: A^J^ ―>･<Cs?>, x^i-j-Zy, is a (well-defined) surjectlve Hopf

algebra map. This is easily verified.

We show that the map co is injective.

Recall and set that

Go = G{A^J

U La

= {xft ±Xj2,4l -^11^22^11 ･･･ ± ＼/L^2-*12*21*12---|l Su^Nq},

Then it follows that

4i=^o0£(Cw)o.

Thus it is enough to show that co is injective on kGo and on E(CMt))0



■

■

_ 2(2s+t)u2sv
― xn -mi

V

tv

#0.

((2s+t)u + sv +

So we have that

(a,b) =

Let

<
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It is easy to see that co is injective on IcGq.

So we show that co is injective on Z(CMt))0.

First we examine ca((Cuv)0) for 0 ^ u ^ No ―1, 1 ^ u ^ Lo ―1.

Let tv = qL + r, for some #, 0 ^ r ^ L ―1. It is easy to see that r/0, so it

follows that ＼<r, L-r^L-l.

V

For x＼＼x＼1X22*11 ･･･ e (CUV)Q, observe that

V

co(xflxnx22Xn ■･･)

V

2w― ≪N
= Zn Z＼＼Z22Z＼＼ ･ ■･

t

(xft xux22---xn)2u ■(xfi ･ xnx22 ■■■̂ ii)(JCn ･ ^22^11 ･ ･ ･ x22) ･ ･ ■

2(2s+t)u 2sv /･ ^ n

r

x＼＼-*11*22*11 ･･･,

L+r

*(,r1)L-*ii*22*ii--:,

if q is even,

if*

r

2{(2s+t)u+sv+(q/2)L}
, /s s

X,}V ; W ' ! -XHX22X11---,

is odd

xW^^-m)^} .s^j^t-

((2s+ t)u+ sv + ^LmodN

{q

2

1)

r)

if q is even,

if q is odd

L + r mod N,L ―r)

(O^fl^TV-1,1 SbSL-l).

V

0 # ft>(xj"xi 1X22^11 ･ ･ ･) G G>((COT)0) (1 Cab-

if q is even,

if q is odd,
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Since Cab is a simple subcoalgebra, it follows that

co((Cuv)0) = Cab ^ AH

Thus co is injective on (Cuv)0.

Next assume that there are 0 ^ u, u' ^ No ― 1, 1 ^ t>,i/ ^ Lo ― 1 such that

Let tv' = q'L + r/i lgr'^I-1.

It is easy to see that q = q' mod 2 implies u = u' and v ― v'.

So let q be even and q' odd. This implies that q + q' + 1 is even and that

L = r + r'.

We have that t(v + v') = {q + q' + l)L, so it follows that L0＼v + v'.

It follows that Lq = v + v', since 1 ^ y, i;'^ Lo ― 1.

So we have ?= (q + q' + l)mL, and this means that t is even. A contra-

diction.

Thus co((CMC)0) = ct>((CMv)0) iff m = m', y = u', so co is injective on T,(CUV)O.

Therefore we have the injectivity of co.

This completes the proof of the theorem. □

It is easy to see that the following lemma holds.

Lemma 3.6. Assume that A＼ and Ai are bialgebras over an algebraically

closed field. If the bialgebra A＼ R A2 is generated by a simple subcoalgebra as an

algebra, then so is Ai, i― 1,2. Moreover if any simple subcoalgebra of A＼(x)A2

has dimension 1 or n2, then either A＼ or A% is pointed.

Corollary 3.7.

i) Assume thatA^ is non-commutative,i.e.(L,X) # (2,+1), and Cstc A^

Then

<Crt> = A{$ ifftis odd,(L, t)= 1 and (N, 2s + t)= l.

ii)Assume simply that t is odd and Cst<=A^. Then

(Cst> = A{$ iff(L,t) = l,(N,2s + t)= l.

iii)Let N be 2nm, and m odd. Then

anl - Ai"＼ R kcm as Hopf algebras.

iv) If A^n
L
is non-commutative, then it isindecomposable as the tensor product

of its suhHopf algebras.
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Proof, i),ii)These follow from the dimensionality.

iii)Let N be 2nm and m odd. We may assume that m > 3. Now let

s={m-l)/2,

/C ＼~A^

t = 1, then it follows that 2s + t = m, N0 = 2n, Lq = L, and

Let / = x＼j2"+ vxj22".Then / is a central grouplike element with order m

and Cst･/ = Cs,t,where S1 = 2" + (m - l)/2 ^ N - I.

For such s, s' and t,it follows that

(2s' + t,N) = w 2n +
m -1

2~

(2n+1+m,2nm)

}

+ l,2"iw

)

― 1.

Thus the simple subcoalgebra Cst･/ = Cs>tgenerates A^ as an algebra by ii).

Therefore we have that

A2*m,L - A2*l R kcmi as HoPf algebras.

iv) Let 2n = N. Applying Lemma 3.6 to A^L', we may assume

A{$ = <CstyRkF,

for some O^s^N-l, lgrgi-1, (abelian)subgroup F c G{A%%).

Since ^4}^ is non-commutative, so is (Csty. This means that t is odd. By

Theorem 3.5, <C≪> * A^-

Comparing the dimensions, we have that ＼F＼= w^/wi,.

Counting the number of 4-dimensional simple subcolagebras, we have the

following:

N(L-l)=N0(L0-l)-＼F＼

= No(Lo - l)mNmL

= N(L-mL).

Thus we have that mL = 1.

On the other hand, it follows that m^ ―1 since 2s +1 is odd and N is a

power of 2.

Thus we have that F ―<1>.

Next we show that we can obtain all braidings on A^j). See

We identifiyC < A%f as in Remark 3.4. Note that any braiding

□

[GW], [G].

on A$ is
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determined on C R C. If a bilinearmap t on C extends to a braidingon A^, we

denote the braiding by f.

Recall YB-forms a^, rj on C

Claim 3.8.

i) IfL^3,

Let a he a braiding on A^.

a＼cRc coincides with a^p for some a,/?e kx such that (afi) ― v,

ii)If L ― 2, o'＼c<$,ccoincides with either a^p for

{xpf = v, (o^-1)2 = X or z$ for some y,dekx such

some 0L,Pekx such that

that 52 = y＼ v2N = l.

Proof, i) Assume that L ^ 3.

The subcoalgebra C ■C of A^f has a basis

{X2U ,xj2, X＼1X22, ^22^11, ^12-^21,^21^12}

We have similarly as in Proposition 2.9,

o-|cg)C = aap for some a,fi e kx.

Moreover a satisfies the following:

O = ff(l-(jc5f + v^2v),xn)

= 1 - v{CTa≪(xi2,Xi2)ffa≪(Xi2,X2l)}Ar

Thus it follows that (afi)N= v.

Observe that when L is even,

L L

IHIIIII^ ..i..i..―.■―■id'^- _
0 = a(X2＼Xw-X＼2-kx＼2X2＼ ■･･X21,*22)

= <xL - ipL

and that when L is odd,

L L

nr^SiL. ii-^Sa-
0 = U{X2＼X12 ･ ･ ･ X21 -XxnX2＼ ■■'Xi2,X2l)

= <xL- XfiL.

Thus in either case, it follows that <xL― X[lL, or (aj?~1)L= X.

ii) Assume that L = 2.
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The subcoalgebra C ■C of A^ has a basis

{Xn,xf2>*H*22,*12*2l}-

As in the proof of Proposition 2.9, we have the following:

(7{Xij,Xim)XjjXmm = XnXa(T{Xij, Xlm),

&(Xi,j+l, Xi:m+＼)Xj+ij-Xm+l:m = Xij+＼Xij+i(l(Xi+ij, Xi+ijn)

Using these relations, we have the following with a, B, y, 8 e k,

a

Xn

X2i

X22

X＼＼ X＼2 X21 I22

y
o

0
xs

0

a

P

0

Moreover a satisfiesthe following

0

0

0

0

fi

a

0

equations:

= <7(*11*12,*12) va,

<K*n*2i,*i2) = yfi,

= <r(XllXl2,X2l) Sfi,

8

0

0

7

0 = o(x＼i X21, X21) = da.

So it follows that either y = Q =5 or a = 0 = /?.

Thus cr|cRc *s either aap or tL, for a, ft, y, Sekx.

If 0"|C0C = aaA' t^1611̂ e relations on a, jS follow similarly as in the proof of i)

Let c|c(g)C = Tys ･ Observe that

= T^)(Xn,X22)2 - T^)(X22,X22)2

= S2-y＼

Thus it follows that S2

0
= <r(l-(*ff-vj$),xn)

= i-t2W,,)w

= 1 - y2N

= y＼ y = ＼



Claim 3.9.

i) The YB-form

ii) The YB-form
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extends to a braiding on A^f if (afi)N = v, {ap~l)L = X.

extends to a braiding on Aj$ if $2 ― T2, y2N ― 1-

Proof. Recall that B has braidings {dap＼oi,fie kx} and that B^ has

braidings {i^＼y,8 e k*}.

i) It is easy to see by Proposition 1.1 that d^ : B (g)B ―>k induces a braiding

on Afl iflf

ii) Recall that A$ = 5(A>/(*?i - X22,X22 - X22 ,1 - (X + vX22N)).

It follows that t$ induces a braiding on B^/(X^ - X%2, X?2 - X^)

: v2. and that t^ induces a braidins on A^ iff S2 = v2. v2Ar= 1 = 32N.S2 = y2,and that S induces a braiding on A{$ iffS2 = y2, y2N = 1 =

Proposition 3.10.

i) The set of braidingson A^ is given as follows:

{dty, $H＼W)N = v,(a/T1)2 = A,J2 = y2,72Ar= 1}, 1/ L = 2.

ii) Affj)is,in fact,a braided Hopf algebra.

If chk X NL, the number of braidingson At) is

{

iii)The number

When L>3,

of symmetric

2NL, if L ^ 3,

&N, if L = 2.

braidings on AZ^ is given as follows;

N L

odd odd

odd even

even odd

(±i,±i)

(±i,+i)

(v,+l)

(v,-l)

(+M)

(-M)

even even (+1,+1)

otherwise

a

2

0

2

0

2

0

4

0

,

iff

□
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When L = 2,
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N (M)

odd

even

(v,+l)

(v,-l)

(+1.+1)

(+1,-1)

(-!,+!)

(-1,-1)

a f≪

2 4

0 0

4 4

0 0

0 4

0 0.

Proof, i) This follows from Claim 3.8 and 3.9.

ii) There is a surjective map

{(p,q)zkxk＼p2N = v,q2L = A}-+ {(*,fi)ekx k＼(afif = v,{*jTl)L = A},

(p,q)^(pq,pq~l).

Set (p,q) ~(p',qf) <^ {p, q) = ±{p',q')-It is an equivalence relation, which

induces the bijection

{(p,q)＼p2N = v,q2L = X}/ - ≪{(a,/?)|{afif = v,(a/T^ = A)}.

Let chkJfNL. Then it follows that |{or}|= 2iV ･2L ･＼= 2NL. For fW, since

y2N = 1 and d2 = y2, it follows that |{fW}| = 27V ･ 2 = 47V.

iii)Recall that chk # 2. On A&, &ap is symmetric iff a2 = 1 = )92 and

(a/?)
L

= 1.

is symmetric iff y2 = 1, S2 = X and y2N ―I, 32 ― y2 □

Remark 3.11. The algebra map 6: A^ -^A^cop, Xij＼-+Xji,is a bijective

Hopf algebra map. Define (a,h} = &ap(0(a),b)for a,heA^.

The linear map < , > :,4^7 (x)AZlL'― k is a non-trivialHopf paring.

Using Proposition 3.10,we have the followingindispensableproposition.

Proposition 3.12. A^ ~A^ if and onlyif both(NhLi) = (N2,L2) and

<

(V2,^2) = ±(vi,Ai)

ki = Ai,

v2 = vi,

(v2,A2) = (vi,li),

(case N＼,Li odd);

(case N＼ odd, L＼ even)

(case N＼ even, L＼ odd)

(case N＼,L＼ even).
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Proof. For a fixed yf―l, we can define a bialgebra map £: B ―>B,

Let

aW _ <

A-vJ)

Av,-i)

if TV, L are odd,

if TV is odd, L is even,

if TV is even, L is odd,

if TV, L are even.

Then the followingdiagram commu

B

n

tes

4

B

n

i(vA)

Thus by Proposition 3.1Q.iii),if N or L is odd, then the statement follows.

Assume that both N and L are even. Then

(++) =* by Prop. 3.10.iii),(v2,A2) = (++)･

(-+) => by Prop. 3.3.ii),G^i0) is central so A2 = +1.

(vi,Ai) =

By Prop. 3.10.iii),v2 = -1 so(v2,A2) = (-+)

(+-) =* by Prop. 3.3.ii),kG(A^) 0 Z(A{^) = K so h = -1.

By Prop. 3.3.i),v2= +1 so(v2,A2) = (+-)

(―) => it follows that(v2,fa) = (―)

This completes the proof.

27

□

Remark 3.13 ([Mas2], [F]). The "non-trivial" 8-dimensional semisimple

Hopf algebra is given by

A＼,2 ― A＼,2
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Let chk # 3. The two "non-trivial"12-dimensionalsemisimple Hopf algebras

are given by

A++) , A(―)
1,3

and A^~] ~ A＼-+]

Recall that if is a Hopf closure of B and that A^ is a Hopf algebra which

is a quotient of B through n. So there is a Hopf algebra map n : H ―> A^ such

that n = n＼B.

if is a right A^L^-comodule algebra via n. See [DT]. Then

Proposition 3.14. H is a cleft A^-comodule algebra. Namely there is an

invertihle comodule map (j):A^ ―*■H.

t t

Proof. Recall the basis {x＼x ■X22X11"" 'ixn ' X2＼xn ･･･ 11 ^ s ^ 2iV, 0 ^ t ^

L―＼＼. This can be written as follows:

/

＼

Xn -XUX22

L-＼

L

Xu -XUX22-"Xll

2(*+l)

Xu ' X22

*n -^22^11

L-＼

X2{2 ･ X12X21

L-＼

L

x＼S2 ･ X12X21 ･ ･ ･ XL r+i

2(*+l)
X12

*H *^21^12

L-＼

＼

/

for O^sg.N-1.

We use it.Define, for example, a linear map ^ : A^f ―>B ―>H by the small

lettersto its capitalletters,i.e.,xtj to Xy, etc. Then ^ is a right A^L^-comodule

map.

We define another linear map ＼j/: A^ ―>/f as follows:

On the bottom row,

f £ / 1 ＼^+L

t -.xfl･^T^T^^I? ^ (xLL ■■･ x12xn ･Jft) fj-j

L

*?2 " *12*21 ' ' ･ *L,L+＼ -≫ A

and on the other rows,

L

%L,L+＼ ･ ' ■̂ 21^12 '^12)

＼l/= Sod

[dj '



Then we have ＼j/

Therefore i/ is a

A family of braided cosemisimple

= $ l, so <f>is Invertible.

cleft A＼rL^-comodule algebra.
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□

Added in Proof

The group G ― G(Aj$) is abelian, and the type is given as follows. The case

that L is even:

g = </i+,/i_>x</i;l/20>

The case that L is

..{

■

{ (Cat x C2) x C2

(C2n) x C2,

odd:

<h≪-L≫2gy = c4N

if (N,v) = {even,+＼);

otherwise.

ifv = -^;

<h^L)/2g} x (h-lh.y = C2N x C2, if v = XN

Proposition 3.12 follows from this and Proposition 3.3.
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