A FAMILY OF BRAIDED COSEMISIMPLE HOPF ALGEBRAS OF FINITE DIMENSION

By
Satoshi SuZuki

0. Introduction

Recently some finite dimensional cosemisimple Hopf algebras were constructed [Mas2] [F] [G]. We aim to give a plain and systematic description of cosemisimple Hopf algebras of low dimension. For this purpose we construct them as quotient bialgebras of a sufficiently large bialgebra. This way has the advantage of defining homomorphisms and determining braidings.

In this paper we define and study a family of finite dimensional cosemisimple Hopf algebras

$$
\mathscr{F}=\left\{A_{N L}^{(++)}, A_{N L}^{(+-)}, A_{N L}^{(-+)}, A_{N L}^{(--)} \mid N \geqq 1, L \geqq 2\right\},
$$

which consists of quotients of a bialgebra B over an algebraically closed field k with $\operatorname{ch} k \neq 2$.

This family contains the "non-trivial" cosemisimple Hopf algebras of dimension 8,12 if $c h k \neq 3$.

In Section 1 we review basic definitions and results.
In Section 2 quadratic bialgebras $B, B^{(+)}$and $B^{(-)}$are constructed. We use B to construct the family \mathscr{F}, and $B^{(\pm)}$to obtain braidings on the members of a subfamily of \mathscr{F}. These bialgebras $B, B^{(\pm)}$are cosemisimple, and we determine all braidings on them.

In Section 3 we define the family \mathscr{F} as a set of quotient bialgebras of the bialgebra B. We write $A_{N L}^{(+1,-1)}=A_{N L}^{(+-)}$, etc. Let $v, \lambda= \pm 1$. Our main results are as follows.
i) $A_{N L}^{(\nu \lambda)}$ is a non-cocommutative involutory cosemisimple Hopf algebra of dimension $4 N L$, which is non-commutative unless $(L, \lambda)=(2,+1) . A_{N L}^{(v \lambda)}$ is furthermore semisimple if $\left(\operatorname{dim} A_{N L}^{(\nu \lambda)}\right) \cdot 1 \neq 0$.
ii) Any non-commutative subHopf algebra of $A_{N L}^{(\nu \lambda)}$ generated by a simple subcoalgebra is a member of the family.
iii) All braidings on $A_{N L}^{(\nu \lambda)}$ are determined.
iv) We determine when $A_{N_{1} L_{1}}^{\left(v_{1} \lambda_{1}\right)}$ and $A_{N_{2} L_{2}}^{\left(v_{2} \lambda_{2}\right)}$ are isomorphic.

1. Preliminaries [D]

We follow Sweedler's book [S] and Montgomery's book [M] for terminology of Hopf algebras.

In this section we review basic definitions and results. They are due to Doi [D].

Let B be a bialgebra over a field $k, \tau: B \otimes B \rightarrow k$ a k-linear map which is invertible with respect to the convolution product. (B, τ) is called a braided bialgebra if the following three conditions hold:

$$
\begin{align*}
& \Sigma \tau\left(x_{1}, y_{1}\right) x_{2} y_{2}=\Sigma y_{1} x_{1} \tau\left(x_{2}, y_{2}\right) \tag{1}\\
& \tau(x y, z)=\Sigma \tau\left(x, z_{1}\right) \tau\left(y, z_{2}\right) \tag{2}\\
& \tau(x, y z)=\Sigma \tau\left(x_{1}, z\right) \tau\left(x_{2}, y\right) \tag{3}
\end{align*}
$$

for $x, y, z \in B$.
Then the following conditions are automatically satisfied:

$$
\begin{gathered}
\tau(x, 1)=\varepsilon(x)=\tau(1, x), \\
\Sigma \tau\left(x_{1}, y_{1}\right) \tau\left(x_{2}, z_{1}\right) \tau\left(y_{2}, z_{2}\right)=\Sigma \tau\left(y_{1}, z_{1}\right) \tau\left(x_{1}, z_{2}\right) \tau\left(x_{2}, y_{2}\right) \quad \text { for } x, y, z \in B .
\end{gathered}
$$

We call this τ a braiding on B.

Proposition 1.1 ([H, Proposition 1.2]). Let (B, τ) be a braided bialgebra generated by a subcoalgebra C, (I) the bi-ideal generated by a coideal I of B. Then τ induces a braiding on the bialgebra $B /(I)$ iff $\tau=0$ on $C \otimes I+I \otimes C$.

If (B, τ) is a braided bialgebra, ${ }^{t} \tau^{-1}$ is another braiding on B, where ${ }^{t} \tau^{-1}(x, y)=\tau^{-1}(y, x)$, and the braiding τ is said to be symmetric if ${ }^{t} \tau^{-1}=\tau$.

Let C be a coalgebra over $k, \sigma: C \otimes C \rightarrow k$ an invertible k-linear map. For any bialgebra B, a linear map $f: C \rightarrow B$ is called a σ-map if

$$
\Sigma \sigma\left(x_{1}, y_{1}\right) f\left(x_{2}\right) f\left(y_{2}\right)=\Sigma f\left(y_{1}\right) f\left(x_{1}\right) \sigma\left(x_{2}, y_{2}\right), \quad x, y \in C .
$$

Let $T(C)$ be the tensor (bi-)algebra and I_{σ} is the (bi-)ideal generated by

$$
\begin{equation*}
\Sigma \sigma\left(x_{1}, y_{1}\right) x_{2} y_{2}-\Sigma y_{1} x_{1} \sigma\left(x_{2}, y_{2}\right), \quad x, y, z \in C . \tag{4}
\end{equation*}
$$

We can form the bialgebra $M(C, \sigma)=T(C) / I_{\sigma}$, which is called is the quadratic bialgebra associated with (C, σ).

Remark 1.2. i) The map $i: C \hookrightarrow T(C) \rightarrow M(C, \sigma)$ is an injective coalgebra σ-map.
ii) If B is a bialgebra and $f: C \rightarrow B$ is a σ-(coalgebra) map, then there is a unique (bi-) algebra map $\hat{f}: M(C, \sigma) \rightarrow B$ such that $\hat{f} \circ i=f$.
iii) $M(C, \sigma)$ has a natural algebra-gradation $\left\{C^{n}\right\}_{n \geq 0}$.
iv) $M(C, \sigma)^{o p}=M\left(C, \sigma^{-1}\right)=M\left(C,{ }^{t} \sigma\right), M(C, \sigma)=M\left(C,{ }^{t} \sigma^{-1}\right)$.

Let (C, σ) be as above. The map σ is called a Yang-Baxter form (or YB-form) if for all $x, y, z \in C$,

$$
\begin{equation*}
\Sigma \sigma\left(x_{1}, y_{1}\right) \sigma\left(x_{2}, z_{1}\right) \sigma\left(y_{2}, z_{2}\right)=\Sigma \sigma\left(y_{1}, z_{1}\right) \sigma\left(x_{1}, z_{2}\right) \sigma\left(x_{2}, y_{2}\right) . \tag{5}
\end{equation*}
$$

We call (C, σ) a YB-coalgebra if σ is a YB-form.

Remark 1.3. If σ is a YB-form on C, so is ${ }^{t} \sigma^{-1}$.
A YB-form σ is said to be symmetric if ${ }^{t} \sigma^{-1}=\sigma$.
Proposition 1.4 ([D, Theorem 2.6]). If (C, σ) is a YB-coalgebra, σ uniquely extends to a braiding $\tilde{\sigma}$ on $M(C, \sigma)$.

We note that if (C, σ) is a YB-coalgebra then $M(C, \sigma)$ has another braiding t^{-1}.

Corollary 1.5. $\tilde{\sigma}$ is symmetric iff σ is symmetric.
For a bialgebra B, a Hopf algebra H and a bialgebra map $\imath: B \rightarrow H$, we call (H, i) (or simply H) a Hopf closure of B if the following universality holds: for any Hopf algebra A and any bialgebra map $f: B \rightarrow A$, there is a unique Hopf algebra map $\tilde{f}: H \rightarrow A$ such that $\tilde{f} \circ l=f$. See [Man] [H] [D].

Proposition 1.6 ([T2] [D, Theorem 3.6] [H]). Let $M(C, \sigma)$ be the quadratic bialgebra associated with $(C, \sigma), d(\neq 0)$ a grouplike element of $M(C, \sigma)$. If there is a map $j: C \rightarrow M(C, \sigma)$ such that

$$
\Sigma i\left(x_{1}\right) j\left(x_{2}\right)=\varepsilon(x) d=\Sigma j\left(x_{1}\right) i\left(x_{2}\right) \quad \text { for all } x \in C
$$

then d is central and the (well-defined) localization $M(C, \sigma)\left[d^{-1}\right]$ becomes a Hopf algebra. Moreover it is a Hopf closure of $M(C, \sigma)$, and it follows that $M(C, \sigma)\left[d^{-1}\right]=M(C, \sigma)\left[G^{-1}\right]$, where G is the set of grouplike elements of $M(C, \sigma)$. If (C, σ) is a YB-coalgebra, $M(C, \sigma)\left[d^{-1}\right]$ has a braiding.

2. YB-coalgebras and quadratic bialgebras

From now on we work over an algebraically closed field k whose characteristic, $c h k$, is not 2 . Indices of Kronecker's $\delta_{i j}, X_{i j}$, etc. are considered modulo 2.

In this section we define some YB-coalgebras and examine quadratic bialgebras associated with them.

Set $C=M_{2}(k)^{*}$, the dual coalgebra of the 2×2-matrix algebra $M_{2}(k)$, and let $\left\{X_{i j}\right\}_{1 \leqq i, j \leqq 2}$ be the comatrix basis of C, namely it spans C and satisfies

$$
\Delta\left(X_{i j}\right)=\Sigma_{k=1}^{2} X_{i k} \otimes X_{k j}, \quad \varepsilon\left(X_{i j}\right)=\delta_{i j}
$$

For any coalgebra D and $Y_{i j} \in D, 1 \leqq i, j \leqq 2$, if the linear map $C \rightarrow D$, $X_{i j} \mapsto Y_{i j}$, is an injective coalgebra map, we denote the image by

$$
\operatorname{span}_{k}\left(Y_{i j}\right)=\operatorname{span}_{k}\left(\begin{array}{ll}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{array}\right) .
$$

Let $\lambda= \pm 1$. Now for any $\alpha \in k^{\times}=k-\{0\}$, we define linear maps $\sigma_{(\alpha)}$, $\tau_{(\alpha)}^{(\pm 1)}=\tau_{(\alpha)}^{(\pm)}: C \otimes C \rightarrow k$ as follows (see [D, Example 2.8] for $\left.\tau^{(\lambda)}\right)$:

$\sigma_{(\alpha)}$	X_{11}	X_{12}	X_{21}	X_{22}
X_{11}	0	0	0	0
X_{12}	0	α	1	0
X_{21}	0	1	α	0
X_{22}	0	0	0	0,

$\tau_{(\alpha)}^{(\lambda)}$	X_{11}	X_{12}	X_{21}	X_{22}
X_{11}	α	0	0	1
X_{12}	0	0	0	0
X_{21}	0	0	0	0
X_{22}	λ	0	0	α.

Proposition 2.1. $\sigma_{(\alpha)}, \tau_{(\alpha)}^{(\lambda)}\left(\alpha \in k^{\times}\right)$are YB-forms on C.
Proof. We show that $\sigma_{(\alpha)}=\sigma$ is a YB-form.
We can write $\sigma\left(X_{i, j+1}, X_{l, m+1}\right)=\delta_{i j} \delta_{l m} \alpha^{\delta_{i l}}$.
For $X_{i j}, X_{l m}$ and $X_{u v}$, observe that

$$
\begin{aligned}
& \Sigma_{a, b, c} \sigma\left(X_{i a}, X_{l b}\right) \sigma\left(X_{a j}, X_{u c}\right) \sigma\left(X_{b m}, X_{c v}\right) \\
& \quad=\sigma\left(X_{i, i+1}, X_{l l+1}\right) \sigma\left(X_{i+1, j}, X_{u, u+1}\right) \sigma\left(X_{l+1, m}, X_{u+1, v}\right) \\
& \quad=\delta_{i j} \delta_{l m} \delta_{u v} \alpha^{\delta_{i l}} \alpha^{\delta_{i+1, u}} \alpha^{\delta_{l u}},
\end{aligned}
$$

and

$$
\begin{aligned}
& \Sigma_{a, b, c} \sigma\left(X_{l b}, X_{u c}\right) \sigma\left(X_{i a}, X_{c v}\right) \sigma\left(X_{a j}, X_{b m}\right) \\
& \quad=\sigma\left(X_{l, l+1}, X_{u, u+1}\right) \sigma\left(X_{i, i+1}, X_{u+1, v}\right) \sigma\left(X_{i+1, j}, X_{l+1, m}\right) \\
& \quad=\delta_{u v} \delta_{i j} \delta_{l m} \alpha^{\delta_{l u}} \alpha^{\delta_{i, u+1}} \alpha^{\delta_{i l}} .
\end{aligned}
$$

Thus Condition (5) is satisfied.
The inverse is given by

$$
\sigma_{(\alpha)}^{-1}=\sigma_{(\alpha-1)} .
$$

Therefore $\sigma_{(\alpha)}$ is a YB-form for $\alpha \in k^{\times}$.
It is easy to check that $\tau_{(\alpha)}^{(\lambda)}$ is also a YB-form on C.
Therefore $\left(C, \sigma_{(\alpha)}\right)$ and $\left(C, \tau_{(\alpha)}^{(\lambda)}\right)$ are YB-coalgebras for all $\alpha \in k^{\times}$.
Remark 2.2. $\quad\left\{\sigma_{(\alpha)}, \tau_{(\beta)}^{(+)} \mid \alpha, \beta \in k^{\times}\right\},\left\{\tau_{(\alpha)}^{(+)}, \tau_{(\beta)}^{(-)} \mid \alpha, \beta \in k^{\times}\right\}$form subgroups of the unit group of $M_{2}(k)^{\otimes 2}$.

Next we examine the defining relations of the quadratic bialgebras associated with them.

Proposition 2.3.

i) The ideal I_{σ}, where $\sigma=\sigma_{(\alpha)}$, is generated by the following:

$$
\begin{array}{ll}
\left\{X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}, X_{j, j+1} X_{i i}-\alpha X_{i+1, i+1} X_{j+1, j}\right\} & \text { if } \alpha^{2}=1, \\
\left\{X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}, X_{i j} X_{l m}(i+j+l+m \equiv 1)\right\} & \text { if } \alpha^{2} \neq 1 .
\end{array}
$$

ii) The ideal $I_{\tau^{(\lambda)}}$, where $\tau^{(\lambda)}=\tau_{(\alpha)}^{(\lambda)}$, is generated by the following:

$$
\begin{aligned}
& \left\{X_{11} X_{22}-X_{22} X_{11}, X_{12} X_{21}-\lambda X_{21} X_{12}, X_{i 2} X_{i 1}-\alpha X_{i l} X_{i 2}, X_{2 j} X_{1 j}-\lambda \alpha X_{1 j} X_{2 j}\right\} \\
& \\
& \\
& \quad \text { if } \alpha^{2}=\lambda, \\
& \left\{X_{11} X_{22}-X_{22} X_{11}, X_{12} X_{21}-\lambda X_{21} X_{12}, X_{i j} X_{l m}(i+j+l+m \equiv 1)\right\}
\end{aligned}
$$

$$
\text { if } \alpha^{2} \neq \lambda
$$

Proof. i) For $X_{i j}, X_{l m}$, observe that

$$
\begin{aligned}
\Sigma \sigma\left(X_{i a}, X_{l b}\right) X_{a j} X_{b m} & =\sigma\left(X_{i, i+1}, X_{l, l+1}\right) X_{i+1, j} X_{l+1, m} \\
& =\alpha^{\delta_{i l}} X_{i+1, j} X_{l+1, m}
\end{aligned}
$$

$$
\begin{aligned}
\Sigma X_{l b} X_{i a} \sigma\left(X_{a j}, X_{b m}\right) & =X_{l, m+1} X_{i, j+1} \sigma\left(X_{j+1, j}, X_{m+1, m}\right) \\
& =X_{l, m+1} X_{i, j+1} \alpha^{\delta_{j m}}
\end{aligned}
$$

Thus the subset

$$
\left\{\alpha^{\delta_{i l}} X_{i j} X_{l m}-X_{l+1, m+1} X_{i+1, j+1} \alpha^{\delta_{j m}} \mid 1 \leqq i, j, l, m \leqq 2\right\}
$$

generates the ideal I_{σ}. The above polynomials are written as follows:

$$
\begin{cases}\alpha X_{i j}^{2}-X_{i+1, j+1}^{2} \alpha & \text { if } i=l, j=m \\ X_{i j} X_{l j}-X_{l+1, j+1} X_{i+1, j+1} \alpha & \text { if } i \neq l, j=m \\ \alpha X_{i j} X_{i m}-X_{i+1, m+1} X_{i+1, j+1} & \text { if } i=l, j \neq m \\ X_{i j} X_{l m}-X_{l+1, m+1} X_{i+1, j+1} & \text { if } i \neq l, j \neq m(\text { i.e. }, l \equiv i+1, m \equiv j+1)\end{cases}
$$

ii) This is similarly shown as i).

Remark 2.4. i) For the bialgebra $M\left(C, \sigma_{(-1)}\right)$, see the quantum conformal group in [Man].
ii) $M\left(C, \tau_{(\pm 1)}^{(+)}\right)$are the quantum matrix bialgebras $M_{ \pm 1}(2)$.
iii) $M\left(C, \tau_{(\sqrt{-1})}^{(-)}\right)$is Takeuchi's two-parameter bialgebra $M_{\alpha, \beta}(2)$ for $\alpha=\sqrt{-1}, \beta=-\sqrt{-1}$ ([T1], [D]).

Define $B=M\left(C, \sigma_{(\alpha)}\right)$ for $\alpha^{2} \neq 1$ and $B^{(\lambda)}=M\left(C, \tau_{(\alpha)}^{(\lambda)}\right)$ for $\alpha^{2} \neq \lambda$. We write $B^{(\pm 1)}=B^{(\pm)}$. These definitions, ignoring choice of α, are reasonable by Proposition 2.3.

On the other hand, we see by Proposition 1.1 that braidings $\tilde{\sigma}_{(\pm 1)}, \tilde{\tau}_{(\pm \sqrt{\lambda})}^{(\lambda)}$ are induced on $B, B^{(\lambda)}$, respectively, via the canonical surjections

$$
M\left(C, \sigma_{(\pm 1)}\right) \rightarrow B, \quad M\left(C, \tau_{(\pm \sqrt{\lambda})}^{(\lambda)}\right) \rightarrow B^{(\lambda)}
$$

Note that $\left\{X_{i j} X_{l m} \mid i+j+l+m \equiv 1\right\}$ spans a coideal of $T(C)$.
Therefore we have the following claim:
Claim 2.5.
i) $\sigma_{(\alpha)}: C \otimes C \rightarrow k$ extends to a braiding $\tilde{\sigma}_{(\alpha)}$ on B for every $\alpha \in k^{\times}$.
ii) $\tau_{(\alpha)}^{(\lambda)}: C \otimes C \rightarrow k$ extends to a braiding $\tilde{\tau}_{(\alpha)}^{(\lambda)}$ on $B^{(\lambda)}$ for every $\alpha \in k^{\times}$.

We examine the coalgebra structure of B.

Proposition 2.6.

i) B has the following set as a basis

$$
\{X_{11}^{n-r} \overbrace{X_{22} X_{11} X_{22} \ldots}^{r}, X_{12}^{n-r} \overbrace{X_{21} X_{12} X_{21} \cdots}^{r} \mid n \geqq 0,0 \leqq r \leqq n\} .
$$

ii) The grouplike elements but 1 in B are given by

$$
X_{11}^{2 s} \pm X_{12}^{2 s} \quad(s \geqq 1) .
$$

Then are central non-zero divisors.
iii) The simple subcoalgebras of B which are not spanned by grouplike elements are of dimension 4. They are given by

$$
C_{s t}=\operatorname{span}_{k}\left(\begin{array}{ll}
X_{11}^{2 s} \overbrace{X_{11} X_{22} X_{11} \cdots}^{t} & X_{12}^{2 s} \overbrace{X_{12} X_{21} X_{12} \cdots}^{t} \\
X_{12}^{2 s} \overbrace{X_{21} X_{12} X_{21} \cdots}^{t} & X_{11}^{s s} \overbrace{X_{22} X_{11} X_{22} \cdots}^{t}
\end{array}\right) \quad(s \geqq 0, t \geqq 1) .
$$

iv) B is cosemisimple. The nth component $C^{n}(n \geqq 1)$ of B is decomposed as the sum of simple subcoalgebras as follows:

$$
C^{n}= \begin{cases}\Sigma_{n=2 s+t} C_{s t}, & \text { if } n \text { is odd } ; \\ \Sigma_{n=2 s+l} C_{s t}+k\left(X_{11}^{n} \pm X_{12}^{n}\right), & \text { if } n \text { is even } .\end{cases}
$$

Proof. i) It is verified in the same manner as Theorem 3.1.i) below.
ii), iii), iv) It is easy to see that $X_{11}^{2 s} \pm X_{12}^{2 s}$ is grouplike for $s \geqq 1$. By i) and the defining relations of B, it is a central non-zero divisor. C is isomorphic to $C_{s t}$ as coalgebras by

$$
\begin{aligned}
& X_{11} \mapsto X_{11}^{2 s} \overbrace{X_{11} X_{22} X_{11} \ldots,}^{t}, \\
& X_{12} \mapsto X_{12}^{2 s} X_{12} X_{21} X_{12} \ldots, \\
& X_{21} \mapsto X_{12}^{2 s} X_{21} X_{12} X_{21} \ldots, \\
& X_{22} \mapsto X_{11}^{2 s} X_{22} X_{11} X_{22} \ldots,
\end{aligned}
$$

By i) we have that

$$
\begin{aligned}
B & =k \cdot 1+\Sigma k\left(X_{11}^{2 s} \pm X_{12}^{2 s}\right)+\Sigma C_{s t} \\
& =k \cdot 1 \oplus\left\{\oplus_{s \geqq 1} k\left(X_{11}^{2 s} \pm X_{12}^{2 s}\right\} \oplus\left\{\oplus_{s \geqq 0, t \geqq 1} C_{s t}\right\}\right.
\end{aligned}
$$

Thus ii), iii), iv) are done.

Proposition 2.7.
i) $B^{(\lambda)}$ has the following set as a basis

$$
\left\{X_{11}^{u} X_{22}^{v}, X_{12}^{u} X_{21}^{v} \mid u+v \geqq 0\right\}
$$

ii) The grouplike elements but 1 in $B^{(\lambda)}$ are given by

$$
X_{11}^{u} X_{22}^{u} \pm \sqrt{\lambda^{u}} X_{12}^{u} X_{21}^{u} \quad(u \geqq 1)
$$

They are non-zero divisors.
iii) The simple subcoalgebras of $B^{(\lambda)}$ which are not spanned by grouplike elements are all of dimension 4. They are given by

$$
D_{u v}=\operatorname{span}_{k}\left(\begin{array}{ll}
X_{11}^{u} X_{22}^{v} & X_{12}^{u} X_{21}^{v} \\
X_{21}^{u} X_{12}^{v} & X_{22}^{u} X_{11}^{v}
\end{array}\right), \quad(u \leqq v) .
$$

iv) $B^{(\lambda)}$ is cosemisimple. The nth component $C^{n}(n \geqq 1)$ of $B^{(\lambda)}$ is decomposed as the sum of simple subcoalgebras as follows:

$$
C^{n}= \begin{cases}\Sigma_{n=u+v, u \leqq v} D_{u v}, & \text { if } n \text { is odd } \\ \Sigma_{n=u+v, u \leqq v} D_{u v}+k\left(X_{11}^{n / 2} X_{22}^{n / 2} \pm \sqrt{\lambda^{n / 2}} X_{12}^{n / 2} X_{21}^{n / 2}\right), & \text { if } n \text { is even } .\end{cases}
$$

We omit the proof.

Corollary 2.8. Let $\left\langle C_{s t}\right\rangle$ denote the sub-bialgebra generated by the simple subcoalgebra $C_{s t} \subset B$. Then as bialgebras,

$$
B \supseteqq\left\langle C_{s t}\right\rangle \simeq \begin{cases}B, & \text { if } t \text { is odd } \\ B^{(+)}, & \text {if } t \text { is even } .\end{cases}
$$

We omit the proof. See the proof of Theorem 3.5 below.
Define linear maps $\sigma_{\alpha \beta}=\beta \sigma_{\left(\alpha \beta \beta^{-1}\right)}, \tau_{\alpha \beta}^{(\lambda)}=\beta \tau_{\left(\alpha \beta^{-1}\right)}^{(\lambda)}$ for $\alpha, \beta \in k^{\times}, \lambda= \pm 1$. They are also YB-forms on C. The YB-form $\sigma_{\alpha \beta}$ extends to a braiding $\tilde{\sigma}_{\alpha \beta}$ on B, and $\tau_{\alpha \beta}^{(\lambda)}$ extends to a braiding $\tilde{\tau}_{\alpha \beta}^{(\lambda)}$ on $B^{(\lambda)}$.

Proposition 2.9. i) $\sigma_{\alpha \beta}$ is symmetric iff $\alpha^{2}=1=\beta^{2} . \tau_{\alpha \beta}^{(\lambda)}$ is symmetric iff $\alpha^{2}=1, \beta^{2}=\lambda$.
ii) The set of braidings on B is $\left\{\tilde{\sigma}_{\alpha \beta} \mid \alpha, \beta \in k^{\times}\right\}$, and that on $B^{(\lambda)}$ is $\left\{\tilde{\tau}_{\alpha \beta}^{(\lambda)} \mid \alpha, \beta \in k^{\times}\right\}$.

Proof. i) We note that ${ }^{t} \sigma_{\alpha \beta}=\sigma_{\alpha \beta},{ }^{t} \tau_{\alpha \beta}^{(\lambda)}=\tau_{\alpha, \lambda \beta}^{(\lambda)}$. The statement follows from these.
ii) We show the statement with B. The statement with $B^{(\lambda)}$ is similarly verified.

We have obtained braidings $\tilde{\sigma}_{\alpha \beta}\left(\alpha, \beta \in k^{\times}\right)$on B.
Let σ be a braiding. Note that the second component C^{2} of B has a basis

$$
\left\{X_{11}^{2}, X_{12}^{2}, X_{11} X_{22}, X_{22} X_{11}, X_{12} X_{21}, X_{21} X_{12}\right\}
$$

So for $X_{i j}, X_{l m}$, it follows that

$$
\begin{array}{r}
\Sigma \sigma\left(X_{i a}, X_{l b}\right) X_{a j} X_{b m}=\sigma\left(X_{i j}, X_{l m}\right) X_{j j} X_{m m}+\sigma\left(X_{i, j+1}, X_{l, m+1}\right) X_{j+1, j} X_{m+1, m}, \\
\Sigma X_{l b} X_{i a} \sigma\left(X_{a j}, X_{b m}\right)=X_{l l} X_{i i} \sigma\left(X_{i j}, X_{l m}\right)+X_{l, l+1} X_{i, i+1} \sigma\left(X_{i+1, j}, X_{l+1, m}\right)
\end{array}
$$

These must be equal, so we obtain the following by Proposition 2.6.i):

$$
\begin{aligned}
\sigma\left(X_{i j}, X_{l m}\right) X_{j j} X_{m m} & =X_{l l} X_{i i} \sigma\left(X_{i j}, X_{l m}\right), \\
\sigma\left(X_{i, j+1}, X_{l, m+1}\right) X_{j+1, j} X_{m+1, m} & =X_{l, l+1} X_{i, i+1} \sigma\left(X_{i+1, j}, X_{l+1, m}\right) .
\end{aligned}
$$

The above equations imply that $\left.\sigma\right|_{C \otimes C}$ is given as follows with some $\alpha, \beta, \gamma \in k$:

σ	X_{11}	X_{12}	X_{21}	X_{22}
X_{11}	γ	0	0	0
X_{12}	0	α	β	0
X_{21}	0	β	α	0
X_{22}	0	0	0	γ.

Moreover it follows by Condition (2) that

$$
\begin{aligned}
0 & =\sigma\left(0, X_{12}\right)=\sigma\left(X_{11} X_{12}, X_{12}\right) \\
& =\sigma\left(X_{11}, X_{11}\right) \sigma\left(X_{12}, X_{12}\right)+\sigma\left(X_{11}, X_{12}\right) \sigma\left(X_{12}, X_{22}\right)=\gamma \alpha
\end{aligned}
$$

and

$$
\begin{aligned}
0 & =\sigma\left(0, X_{12}\right)=\sigma\left(X_{11} X_{21}, X_{12}\right) \\
& =\sigma\left(X_{11}, X_{11}\right) \sigma\left(X_{21}, X_{12}\right)+\sigma\left(X_{11}, X_{12}\right) \sigma\left(X_{21}, X_{22}\right)=\gamma \beta
\end{aligned}
$$

We have that $\gamma=0, \alpha, \beta \in k^{\times}$since σ is invertible.
Therefore $\left.\sigma\right|_{C \otimes C}=\sigma_{\alpha \beta}$, so $\sigma=\tilde{\sigma}_{\alpha \beta}$.
We describe a Hopf closure of the bialgebra B.

Set $d_{ \pm}=X_{11}^{2} \pm X_{12}^{2}$. These are central grouplike elements. For example, observe that

$$
\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)\left(\begin{array}{ll}
X_{11} & X_{21} \\
X_{12} & X_{22}
\end{array}\right)=d_{+}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
X_{11} & X_{21} \\
X_{12} & X_{22}
\end{array}\right)\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
$$

and

$$
\begin{aligned}
\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)\left(\begin{array}{cc}
X_{11} & -X_{21} \\
-X_{12} & X_{22}
\end{array}\right) & =d_{-}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
X_{11} & -X_{21} \\
-X_{12} & X_{22}
\end{array}\right)\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right) .
\end{aligned}
$$

Using Proposition 1.6 and Proposition 2.6, we have the following.
Proposition 2.10. The Hopf closure H of B is given by

$$
H=B\left[d_{+}^{-1}\right]=B\left[d_{-}^{-1}\right]=B\left[G(B)^{-1}\right]
$$

where $G(B)$ is the set of grouplike elements in B. This Hopf algebra is braided and cosemisimple, and includes B as a sub-bialgebra. Furthermore, H is involutory. In fact, the antipode S is determined by

$$
S\left(X_{i j}\right)=X_{j i} d_{+}^{-1}=(-1)^{i+j} X_{j i} d_{-}^{-1}
$$

3. Quotients of the bialgebra \mathbf{B}

In this section we define and study a family of finite dimensional cosemisimple bi (Hopf) algebras which are quotients of the bialgebra B over an algebraically closed field k with $c h k \neq 2$.

It will be shown that the family contains the "non-trivial" cosemisimple Hopf algebras of dimension 8 ([Mas2]) and of dimension 12 ([F]) if $c h k \neq 3$. See also Gelaki's Hopf algebras of dimension $4 p$, where $p(\geqq 3)$ is prime ([G]).

We construct the family. It is easy to see by Proposition 2.6 that for $L \geqq 2$, $N \geqq 1$ and $\lambda, v= \pm 1$, the following subsets

$$
\left\{\begin{array}{c}
\overbrace{X_{22} X_{11} X_{22} \cdots}^{L}-\overbrace{X_{11} X_{22} X_{11} \cdots}^{L}, \overbrace{X_{21} X_{12} X_{21} \cdots}^{L}-\lambda \overbrace{X_{12} X_{21} X_{12} \cdots}^{L}\}, \\
\left\{1-\left(X_{11}^{2 N}+v X_{12}^{2 N}\right)\right\}
\end{array}\right.
$$

span coideals of B. Let J_{L}^{λ} and I_{N}^{ν} be the ideals generated by these coideals respectively, which are bi-ideals.

We can form the bialgebra

$$
A_{N L}^{(v \lambda)}=B / J_{L}^{\lambda}+I_{N}^{v} .
$$

We write $A_{N L}^{(+-)}=A_{N L}^{(+1,-1)}$, etc. Let π be the following surjective bialgebra map:

$$
\pi: B \rightarrow A_{N L}^{(\nu \lambda)}, \quad X_{i j} \mapsto \bar{X}_{i j}=x_{i j}
$$

Theorem 3.1.

i) $A_{N L}^{(\nu \lambda)}$ has the following set as a basis

$$
\{x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \ldots}^{t}, x_{12}^{s} \overbrace{x_{21} x_{12} x_{21} \cdots}^{t} \mid 1 \leqq s \leqq 2 N, 0 \leqq t \leqq L-1\} .
$$

Thus $\operatorname{dim} A_{N L}^{(\nu)}=4 N L$.
ii) Let $G\left(A_{N L}^{(\nu \lambda)}\right)=G$ be the set of grouplike elements of $A_{N L}^{(\nu \lambda)}$. Then

$$
G=\{x_{11}^{2 s} \pm x_{12}^{2 s}, x_{11}^{2 s} \overbrace{x_{11} x_{22} x_{11} \cdots}^{L} \pm \sqrt{\lambda} x_{12}^{2 s} \overbrace{x_{12} x_{21} x_{12} \cdots}^{L} \mid 1 \leqq s \leqq N\} .
$$

iii) The simple subcoalgebras of $A_{N L}^{(\nu \lambda)}$ which are not spanned by grouplike elements are given by

$$
\begin{aligned}
& C_{s t}=\operatorname{span}_{k}\left(\begin{array}{ll}
x_{11}^{2 s} \overbrace{x_{11} x_{22} x_{11} \cdots}^{t} & x_{12}^{2 s} \overbrace{x_{12} x_{21} x_{12} \cdots}^{t} \\
x_{12}^{2 s} \overbrace{x_{21} x_{12} x_{21} \cdots}^{t} & x_{11}^{2 s} \overbrace{\overbrace{22} x_{11} x_{22} \cdots}^{t}
\end{array}\right) \\
& \text { for } 0 \leqq s \leqq N-1,1 \leqq t \leqq L-1 .
\end{aligned}
$$

iv) $\left|G\left(A_{N L}^{(\nu \lambda)}\right)\right|=4 N$, and there are exactly $N(L-1)$ simple subcoalgebras of dimension 4.
v) $A_{N L}^{(\nu \lambda)}$ is non-cocommutative and cosemisimple. It is non-commutative unless $(L, \lambda)=(2,+1)$.
vi) $A_{N L}^{(\nu)}$ is an involutory Hopf algebra.
vii) Let $\Lambda=\Sigma x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \cdots}^{i}(1 \leqq s \leqq 2 N, 0 \leqq t \leqq L-1)$. Then Λ is a nonzero two-sided integral.
viii) $A_{N L}^{(\nu \lambda)}$ is semisimple if $\operatorname{chk} \npreceq N L$.

Proof. i) Let B^{\prime} be the algebra $k\langle X, Y\rangle /\left\{X^{2}-Y^{2}\right\}$ and $\lambda, v= \pm 1$. Let V be the k-vector space with a basis $\{\langle s, t\rangle \in V \mid s \geqq 1,0 \leqq t \leqq L-1\}$.

We define the following ideals of B^{\prime} :

$$
\begin{aligned}
& J_{L}^{\lambda \prime}=(\overbrace{Y X Y X \cdots}^{L}-\lambda \overbrace{X Y X Y \cdots}^{L}), \\
& I_{N}^{\prime \prime}=\left(1-v X^{2 N}\right) .
\end{aligned}
$$

We prove i) step-by-step.
(Step 1) We define a right B^{\prime}-module structure on V.
Define the actions of X and Y as follows:

$$
\begin{aligned}
& X:\langle s, t\rangle \mapsto\left\{\begin{array}{lll}
\langle s, t+1\rangle, & \text { if } t \text { is odd, } & t \leqq L-2, \\
\lambda\langle s+1, L-1\rangle, & & t=L-1, \\
\langle s+1,0\rangle, & \text { if } t \text { is even, } & t=0, \\
\langle s+2, t-1\rangle,
\end{array}\right. \\
& Y:\langle s, t\rangle \mapsto \begin{cases}\langle s+2, t-1\rangle, & \text { if } t \text { is odd, } \\
\langle s, t+1\rangle, & \text { if } t \text { is even, } \\
\lambda \leqq L-2, \\
\lambda\langle s+1, L-1\rangle,\end{cases}
\end{aligned}
$$

It is easy to see $X^{2} \equiv Y^{2}$ in $E n d_{k}(V)$.
Thus we have a right B^{\prime}-module structure on V.
(Step 2) We claim the subspace W spanned by

$$
\left\{\langle q(2 N)+s, t\rangle-v^{q}\langle s, t\rangle \mid 1 \leqq s \leqq 2 N, q \leqq 1,0 \leqq t \leqq L-1\right\}
$$

is a submodule of V.
For example, when $t=L-1$ is odd and $s=2 N$, observe the following:

$$
\begin{aligned}
X:\langle q(2 N)+2 N, L-1\rangle & \mapsto \lambda\langle q(2 N)+2 N+1, L-1\rangle \\
& =\lambda\langle(q+1)(2 N)+1, L-1\rangle \\
& \equiv \lambda v^{q+1}\langle 1, L-1\rangle(\bmod W)
\end{aligned}
$$

and

$$
\begin{aligned}
X: v^{q}\langle 2 N, L-1\rangle & \mapsto v^{q} \lambda\langle 2 N+1, L-1\rangle \\
& =v^{q} \lambda\langle 1 \cdot(2 N)+1, L-1\rangle \\
& \equiv v^{q} \lambda v\langle 1, L-1\rangle(\bmod W)
\end{aligned}
$$

(Step 3) The action of B^{\prime} induces the $B^{\prime} / J_{L}^{\lambda^{\prime}}$-module structure on V.
We check it case-by-case.

When L is even, for each $0 \leqq 2 u \leqq L-2$, observe the following:

$$
\begin{aligned}
& \overbrace{Y X \cdots X}^{L}: \cdot\langle s, 2 u\rangle \stackrel{(Y X)^{L / 2-u-1}}{\longmapsto}\langle s, L-2\rangle \\
& \stackrel{Y X}{\vdash} \lambda\langle s+1, L-1\rangle \\
& \stackrel{(Y X)^{u}}{\longmapsto} \lambda\langle s+1+4 u, L-1-2 u\rangle, \\
& \cdot\langle s, 2 u+1\rangle \stackrel{(Y X)^{u}}{\longmapsto}\langle s+4 u, 1\rangle \stackrel{Y X}{\longmapsto}\langle s+4 u+3,0\rangle \\
& \stackrel{(Y X)^{L / 2-u-1}}{\longrightarrow}\langle s+4 u+3, L-2 u-2\rangle \text {. } \\
& \overbrace{X Y \cdots Y}^{L}: \cdot\langle s, 2 u\rangle \stackrel{(X Y)^{u}}{\longmapsto}\langle s+4 u, 0\rangle \stackrel{X Y}{\longrightarrow}\langle s+4 u+1,1\rangle \\
& \stackrel{(X Y)^{L / 2-u-1}}{\longmapsto}\langle s+4 u+1, L-2 u-1\rangle, \\
& \cdot\langle s, 2 u+1\rangle \stackrel{(X Y)^{L / 2-u-1}}{\longleftrightarrow}\langle s, L-1\rangle \\
& \xrightarrow{X Y} \lambda\langle s+3, L-2\rangle \\
& \stackrel{(X Y)^{u}}{\stackrel{ }{\bullet}} \lambda\langle s+3+4 u, L-2-2 u\rangle .
\end{aligned}
$$

Thus it follows that $\overbrace{Y X \cdots X}^{L} \equiv \lambda \overbrace{X Y \cdots Y}^{L}$ in $\operatorname{End}_{k}(V)$.
When L is odd (so $L \geqq 3$), for each $2 \leqq 2 u \leqq L-1$, observe the following:

$$
\begin{aligned}
\overbrace{Y X \cdots Y}^{L}: & \cdot\langle s, 0\rangle \\
& \stackrel{(Y X)^{(L-1) / 2}}{\longmapsto}\langle s, L-1\rangle \stackrel{Y}{\mapsto} \lambda\langle s+1, L-1\rangle, \\
\cdot\langle s, 2 u\rangle & \stackrel{(Y X)^{(L-1) / 2-u}}{\longmapsto}\langle s, L-1\rangle \stackrel{Y}{\mapsto} \lambda\langle s+1, L-1\rangle \\
& \stackrel{(Y Y)^{u}}{\longmapsto} \lambda\langle s+1+4 u, L-1-2 u\rangle . \\
\cdot\langle s, 2 u-1\rangle & \stackrel{(Y X)^{u-1}}{\longmapsto}\langle s+4 u-4,1\rangle \stackrel{Y X}{\longmapsto}\langle s+4 u-1,0\rangle \\
& \stackrel{(Y X)^{(L-1) / 2-u}}{\longmapsto}\langle s+4 u-1, L-1-2 u\rangle \stackrel{Y}{\mapsto}\langle s+4 u-1, L-2 u\rangle .
\end{aligned}
$$

$$
\begin{aligned}
& \overbrace{X Y \cdots X}^{L}: \cdot\langle s, 0\rangle \mapsto\langle s+1, L-1\rangle \\
& \cdot\langle s, 2 u\rangle \stackrel{(X Y)^{u}}{\longleftrightarrow}\langle s+4 u, 0\rangle \stackrel{X}{\mapsto}\langle s+4 u+1,0\rangle \\
& \stackrel{(Y X)^{(L-1) / 2-u}}{\longmapsto}\langle s+4 u+1, L-2 u-1\rangle, \\
& \cdot\langle s, 2 u-1\rangle \stackrel{(X Y)^{(L-1) / 2-u}}{\longmapsto}\langle s, L-2\rangle \stackrel{X Y}{\longmapsto} \lambda\langle s+1, L-1\rangle \\
& \stackrel{(X Y)^{u-1}}{\longmapsto} \lambda\langle s+4 u-3, L-2 u+1\rangle \stackrel{X}{\longmapsto} \lambda\langle s+4 u-1, L-2 u\rangle .
\end{aligned}
$$

Thus we have that $\overbrace{Y X \cdots Y}^{L} \equiv \lambda \overbrace{X Y \cdots X}^{L}$ in $E n d_{k}(V)$.
In either case V becomes a right $B^{\prime} / J_{L}^{\lambda^{\prime}}$-module by the action.
(Step 4) V / W is a $B^{\prime} / J_{L}^{\lambda^{\prime}}+I_{N}^{v^{\prime}}$-module of dimension $2 N L$.
Since V / W has the set $\{\langle s, t\rangle \mid 1 \leqq s \leqq 2 N, 0 \leqq t \leqq L-1\}$ as a basis, V / W has dimension $2 N L$.

The action of X^{2} is given by $X^{2}:\langle s, t\rangle \mapsto\langle s+2, t\rangle$.
Thus for $1 \leqq s \leqq 2 N, 0 \leqq t \leqq L-1$, it follows that

$$
X^{2 N}:\langle s, t\rangle \mapsto\langle s+2 N, t\rangle=\langle 1 \cdot(2 N)+s, t\rangle \equiv v\langle s, t\rangle \bmod W
$$

So we have that $1 \equiv \nu X^{2 N}$ in $E n d_{k}(V / W)$.
Thus it is done.
(Step 5) We construct a right $A_{N L}^{\nu 2}$-module $M=(V / W) \oplus(V / W)$.
There are two algebra maps

$$
\begin{gathered}
\pi_{0}^{\prime}: B \rightarrow B^{\prime} / J_{L}^{+\prime}+I_{N}^{+\prime} \\
X_{11} \mapsto \bar{X}=x, \quad X_{22} \mapsto \bar{Y}=y, \\
X_{i, i+1} \mapsto 0
\end{gathered}
$$

and

$$
\begin{gathered}
\pi_{1}^{\prime}: B \rightarrow B^{\prime} / J_{L}^{\lambda \prime}+I_{N}^{v \prime}, \\
X_{12} \mapsto \bar{X}=x, \quad X_{21} \mapsto \bar{Y}=y, \\
X_{i i} \mapsto 0 .
\end{gathered}
$$

They induce algebra maps

$$
\begin{gathered}
\pi_{0}: A_{N L}^{(\nu \lambda)} \rightarrow B^{\prime} / J_{L}^{+\prime}+I_{N}^{+\prime}, \\
x_{11} \mapsto x, \quad x_{22} \mapsto y, \quad x_{i, i+1} \mapsto 0, \\
\pi_{1}: A_{N L}^{(\nu \lambda)} \rightarrow B^{\prime} / J_{L}^{\lambda \prime}+I_{N}^{\nu \prime}, \\
x_{12} \mapsto x, \quad x_{21} \mapsto y, \quad x_{i i} \mapsto 0 .
\end{gathered}
$$

Using these, we obtain the right $A_{N L}^{(v \lambda)}$-module $V / W=V_{0}$ through π_{0} with a basis

$$
\left\{\langle s, t\rangle_{0}=\langle s, t\rangle \mid 1 \leqq s \leqq 2 N, 0 \leqq t \leqq L-1\right\},
$$

and the right $A_{N L}^{(\nu \lambda)}$-module $V / W=V_{1}$ through π_{1} with a basis

$$
\left\{\langle s, t\rangle_{1}=\langle s, t\rangle \mid 1 \leqq s \leqq 2 N, 0 \leqq t \leqq L-1\right\} .
$$

Let M be the right $A_{N L}^{(\nu \lambda)}$-module $V_{0} \oplus V_{1}$. We note that M has dimension $4 N L$.
(Step 6) It follows that $M \simeq A_{N L}^{(\nu \lambda)}$ as right $A_{N L}^{(\nu \lambda)}$-modules.
Define an $A_{N L}^{(\nu \lambda)}$-module map $\phi: A_{N L}^{(\nu \lambda)} \rightarrow M$ and a k-linear map $\psi: M \rightarrow A_{N L}^{(\nu \lambda)}$ as follows:

$$
\begin{aligned}
\phi: A_{N L}^{(v \lambda)} \rightarrow M, & a \mapsto\left\{\langle 2 N, 0\rangle_{0}+v\langle 2 N, 0\rangle_{1}\right\} \cdot a, \\
\psi: M \rightarrow A_{N L}^{(v \lambda)}, & \langle s, t\rangle_{0} \mapsto x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \cdots}^{t}, \\
& \langle s, t\rangle_{1} \mapsto x_{12}^{s} \overbrace{x_{21} x_{12} x_{21} \cdots .}^{t} .
\end{aligned}
$$

It is easy to see that ψ is surjective and that $\phi \circ \psi$ is the identity map on M. Therefore we have that $M \simeq A_{N L}^{(\nu \lambda)}$ as $A_{N L}^{(\nu \lambda)}$-modules, in particular $\operatorname{dim} A_{N L}^{(\nu \lambda)}=$ $\operatorname{dim} M=4 N L$.

This completes the proof of i).
ii) \sim v) These are easily verified by i). Since $A_{N L}^{(\nu)}$ is generated by $\left\{x_{i j}\right\}$, it is commutative iff $(L, \lambda)=(2,+1)$.
vi) There is an algebra map $B \rightarrow B^{o p}, X_{i j} \mapsto X_{j i} \cdot\left(X_{11}^{2(2 N-1)}+X_{12}^{2(2 N-1)}\right)$, and this induces an algebra map S,

The anti-algebra map S is an antipode of $A_{N L}^{(\nu)}$, which is given by

$$
\begin{aligned}
S: x_{i j} & \mapsto x_{j i}\left(x_{11}^{2(2 N-1)}+x_{12}^{2(2 N-1)}\right) \\
& =x_{j i}\left(x_{11}^{2}+x_{12}^{2}\right)^{-1}
\end{aligned}
$$

So $A_{N L}^{(v 2)}$ is an involutory Hopf algebra.
vii) The element $\Lambda=\Sigma x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \cdots}^{t}(1 \leqq s \leqq 2 N, 0 \leqq t \leqq L-1)$ is nonzero by i).

Recall that Λ is called a left (resp. right) integral if $a \Lambda$ (resp. $\Lambda a)=\varepsilon(a) \Lambda$ for all $a \in A_{N L}^{(\nu \lambda)}$.

It is enough to check on the subset $\left\{x_{i j}\right\}$. Observe the following.

$$
\begin{aligned}
& x_{12} \Lambda=x_{21} \Lambda=0 \\
& =\varepsilon\left(x_{12}\right) \Lambda=\varepsilon\left(x_{21}\right) \Lambda . \\
& x_{11} \Lambda=\Sigma x_{11}^{s+1} \overbrace{x_{22} x_{11} x_{22} \cdots}^{t}=\Sigma x_{11}^{s} \overbrace{22 x_{11} x_{22} \cdots}^{t}=\Lambda \\
& =\varepsilon\left(x_{11}\right) \Lambda . \\
& x_{22} \Lambda=\Sigma x_{22} x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \ldots}^{t} \\
& =\Sigma_{s: \text { even }} x_{11}^{s} x_{22} \overbrace{x_{22} x_{11} x_{22} \cdots}^{t}+\Sigma_{\text {s:odd }} x_{11}^{s-1} x_{22} x_{11} \overbrace{x_{22} x_{11} x_{22} \cdots}^{i} \\
& =\Sigma_{s: \text { even }, t=0} x_{11}^{s} x_{22}+\Sigma_{s: \text { even }, t=1} x_{11}^{s+2}+\Sigma_{s: \text { even }, t \geq 2} x_{11}^{s+3} \overbrace{x_{22} x_{11} x_{22} \ldots}^{t-2} \\
& +\Sigma_{\text {s:odd }, t \leq L-3} x_{11}^{s-1} \overbrace{x_{22} x_{11} x_{22} \cdots}^{t+2}+\Sigma_{\text {s:odd }, t=L-2} x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \ldots}^{L-1} \\
& +\Sigma_{\text {s:odd }, t=L-1} x_{11}^{s+2} \overbrace{x_{22} x_{11} x_{22} \ldots}^{L-2} \\
& =\Sigma_{\text {s:even }} x_{11}^{s} x_{22}+\Sigma_{s: \text { even }} x_{11}^{s}+\Sigma_{s . \text { odd }, 0 \leqq t \leqq L-3} x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \cdots}^{t} \\
& +\Sigma_{\text {s:even }, 2 \leqq t \leqq L-1} x_{11}^{s} \overbrace{22 x_{11} x_{22} \cdots}^{t}+\Sigma_{s: \text { odd }} x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \cdots}^{L-1} \\
& +\Sigma_{s: \text { odd }} x_{11}^{s} \overbrace{x_{22} x_{11} x_{22} \cdots}^{L-2} \\
& =\Lambda \\
& =\varepsilon\left(x_{22}\right) \Lambda \text {. }
\end{aligned}
$$

Thus Λ is a left integral. It is similarly shown that Λ is a right integral. Therefore Λ is a non-zero two-sided integral.
viii) It follows that $\varepsilon(\Lambda)=2 N L \neq 0$ iff $\operatorname{chk} \not \backslash N L$.

Remark 3.2. For the multiplication relations of $A_{N L}^{(\nu \lambda)}$, we note the following.

- $x_{i j}^{2}$ is central.
- $x_{i i}^{2 N+1}=x_{i i}$, and $x_{i, i+1}^{2 N+1}=v x_{i, i+1}$.
- $x_{11}^{4 N}+x_{12}^{4 N}=1$.
- $\left(x_{11}^{2 s}+\mu x_{12}^{2 s}\right)^{-1}=x_{11}^{2(2 N-s)}+\mu x_{12}^{2(2 N-s)}$ for $1 \leqq s \leqq N, \mu= \pm 1$.

Set $h_{ \pm}=x_{11}^{2} \pm x_{12}^{2}$ and $g=\overbrace{x_{11} x_{22} x_{11} \cdots}^{L}+\sqrt{\lambda} \overbrace{x_{12} x_{21} x_{12} \cdots}^{L}$ for a fixed $\sqrt{\lambda}$. C_{m} denotes the cyclic group of order m.

Proposition 3.3. i) The subgroup $\left\langle h_{+}, h_{-}\right\rangle$of G is central in $A_{N L}^{(\nu \lambda)}$, and the order is $2 N$. As groups

$$
\left\langle h_{+}, h_{-}\right\rangle \simeq \begin{cases}C_{N} \times C_{2}, & \text { if }(N, v)=(\text { even },+1) \\ C_{2 N}, & \text { otherwise }\end{cases}
$$

ii) $G \subset Z\left(A_{N L}^{(\nu \lambda)}\right)$, the center of $A_{N L}^{(\nu \lambda)}$, iff $g \in Z\left(A_{N L}^{(\nu \lambda)}\right)$ iff $(L, \lambda)=($ even,+1$)$.

Proof. i) The order of $\left\langle h_{+}, h_{-}\right\rangle$is $2 N$ by Theorem 3.1.
If $(N, v)=$

$$
\begin{cases}(\text { even },+1), & \text { then }\left\langle h_{+}, h_{-}\right\rangle=\left\langle h_{+}\right\rangle \times\left\langle x_{11}^{2 N}-x_{12}^{2 N}\right\rangle, \\ \text { (even, }, 1), & \text { then }\left\langle h_{+}, h_{-}\right\rangle=\left\langle h_{+}\right\rangle=\left\langle h_{-}\right\rangle, \\ \text {(odd, }+1), & \text { then }\left\langle h_{+}, h_{-}\right\rangle=\left\langle h_{-}\right\rangle, \\ \text {(odd, }-1), & \text { then }\left\langle h_{+}, h_{-}\right\rangle=\left\langle h_{+}\right\rangle .\end{cases}
$$

ii) Note that $G=\left\langle h_{+}, h_{-}\right\rangle \cup\left\langle h_{+}, h_{-}\right\rangle g$. So it follows that $G \subset Z\left(A_{N L}^{(\nu \lambda)}\right)$ iff $g \in Z\left(A_{N L}^{(\nu \lambda)}\right)$.

It is easy to see that
g is central $\Leftrightarrow\left\{\begin{array}{l}x_{i i} \cdot \overbrace{x_{11} x_{22} \cdots}^{L}=\overbrace{x_{11} x_{22} \cdots}^{L} \cdot x_{i i}, \\ x_{i, i+1} \cdot \overbrace{x_{12} x_{21} \cdots}^{L}=\overbrace{x_{12} x_{21} \cdots}^{L} \cdot x_{i, i+1}, \quad \text { for } i=1,2 .\end{array}\right.$

Remark 3.4.
i) The dimension of a simple subcoalgebra of $A_{N L}^{(\nu \lambda)}$ is either 1 or $2^{2}=4$.
ii) The simple subcoalgebra C_{01} generates $A_{N L}^{(\nu \lambda)}$ as an algebra.
iii) For the YB-coalgebra $\left(C, \sigma_{\alpha \beta}\right), C \simeq C_{01} \subset A_{N L}^{(\nu \lambda)}, X_{i j} \mapsto x_{i j}$, is a coalgebra $\sigma_{\alpha \beta}$-map.

We identify C and C_{01}.
iv) $A_{12}^{(+-)}$($\simeq A_{12}^{(-)}$, see Prop.3.12 below) is the "non-trivial" semisimple Hopf algebra of dimension 8 ([Mas2]). The ideal decomposition is given as follows:

$$
\begin{aligned}
A_{12}^{(+-)}= & k\left(x_{11}+x_{22}+x_{11}^{2}+x_{11} x_{22}\right) \oplus k\left(x_{11}-x_{22}-x_{11}^{2}+x_{11} x_{22}\right) \\
& \oplus k\left(x_{11}-x_{22}+x_{11}^{2}-x_{11} x_{22}\right) \oplus k\left(x_{11}+x_{22}-x_{11}^{2}-x_{11} x_{22}\right) \\
& \oplus \operatorname{span}_{k}\left\{x_{12}, x_{21}, x_{12}^{2}, x_{12} x_{21}\right\} .
\end{aligned}
$$

v) Since the subHopf algebra $K=k\left\langle h_{+}, h_{-}\right\rangle$is normal, $A_{N L}^{(v \lambda)} K^{+}$is a Hopf ideal, where $K^{+}=\operatorname{Ker} \varepsilon_{K}$. So $A_{N L}^{(\nu \lambda)} / A_{N L}^{(\nu \lambda)} K^{+}=\bar{A}$ is a Hopf algebra of dimension $2 L$. It is easy to see that the elements $\bar{x}_{11}=a, \bar{x}_{22}=b \in \bar{A}$ are grouplike and generate \bar{A} as an algebra. This means that \bar{A} is a group-algebra. Moreover let $a b=c$, then the order of c is L. Then,

$$
\begin{aligned}
\bar{A} & =k\langle a, b \mid a^{2}=1=b^{2}, \overbrace{b a b a \cdots}^{L}=\overbrace{a b a b \cdots}^{L}\rangle \\
& =k\left\langle a, c \mid a^{2}=1, c^{L}=1, a c a^{-1}=c^{-1}\right\rangle \\
& =k D_{L}, \quad \text { where } D_{L} \text { is the dihedral group of order } 2 L .
\end{aligned}
$$

Thus we obtain a short exact sequence by means of [Mas1, Definition 1.3]

$$
1 \rightarrow K \hookrightarrow A_{N L}^{(\nu \lambda)} \rightarrow k D_{L} \rightarrow 1
$$

vi) As bialgebras

$$
\begin{aligned}
B / J_{2}^{\lambda}= & B /\left(X_{11} X_{22}-X_{22} X_{11}, X_{12} X_{21}-\lambda X_{21} X_{12}\right) \\
= & k\left\langle X_{i j}\right\rangle /\left(X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}, X_{i j} X_{l m}(i+j+l+m \equiv 1),\right. \\
& \left.\quad X_{11} X_{22}-X_{22} X_{11}, X_{12} X_{21}-\lambda X_{21} X_{12}\right) \\
= & B^{(\lambda)} /\left(X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}\right) .
\end{aligned}
$$

Thus $A_{N 2}^{(\nu \lambda)}$ is furthermore a quotient bialgebra of $B^{(\lambda)}$:

$$
A_{N 2}^{(v \lambda)}=B^{(\lambda)} /\left(X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}, 1-\left(X_{11}^{2 N}+v X_{12}^{2 N}\right)\right)
$$

We note that $\left\{X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}\right\}$ spans a coideal of $B^{(\lambda)}$ and that $\{1-$ $\left.\left(X_{11}^{2 N}+\nu X_{12}^{2 N}\right)\right\}$ spans a coideal modulo the coideal $\operatorname{span}_{k}\left\{X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}\right\}$.

Recall that $C_{s t}$ denotes a simple subcoalgebra of dimension 4 of $A_{N L}^{(\nu \lambda)}$ for $0 \leqq s \leqq N-1,1 \leqq t \leqq L-1$. Let $\left\langle C_{s t}\right\rangle$ denote the subHopf algebra generated by $C_{s t}$. It is easy to see that $\left\langle C_{s t}\right\rangle$ is commutative iff either t is even or $(L, \lambda)=(2 t,+1)$. So it follows that t is odd if $\left\langle C_{s t}\right\rangle$ is non-commutative.

We show that $\left\langle C_{s t}\right\rangle$ is a member of the family $\left\{A_{N L}^{(\nu \lambda)}\right\}$ if t is odd.
Set

$$
\begin{aligned}
G C D(L, t) & =m_{L}, \quad G C D(N, 2 s+t)=m_{N} \\
L / m_{L}=L_{0}, \quad N / m_{N} & =N_{0}, \quad t / m_{L}=t_{0}, \quad(2 s+t) / m_{N}=(s, t)_{0} \\
(2 & \left.\leqq L_{0} \leqq L, 1 \leqq N_{0} \leqq N\right) .
\end{aligned}
$$

Theorem 3.5. Assume that t is odd and $C_{s t} \subset A_{N L}^{(\nu \lambda)}$. Then

$$
\left\langle C_{s t}\right\rangle \simeq A_{N_{0} L_{0}}^{(\nu \lambda)} \quad \text { as Hopf algebras. }
$$

Proof. Let t be odd, and fix $0 \leqq s \leqq N-1$ and $1 \leqq t \leqq L-1$. We note that integers $2 s+t, t_{0},(s, t)_{0}, m_{L}$ and m_{N} are also odd.

Set

$$
\begin{aligned}
& z_{11}=x_{11}^{2 s} \overbrace{x_{11} x_{22} \cdots x_{11}}^{t}, \quad z_{12}=x_{12}^{2 s} \overbrace{x_{12} x_{21} \cdots x_{12}}^{t}, \\
& z_{21}=x_{12}^{2 s} \overbrace{x_{21} x_{12} \cdots x_{21}}^{t}, \quad z_{22}=x_{11}^{2 s} \overbrace{x_{22} x_{11} \cdots x_{22}}^{t} .
\end{aligned}
$$

The map $\omega: A_{N_{0} L_{0}}^{(\nu \lambda)} \rightarrow\left\langle C_{s t}\right\rangle, x_{i j} \mapsto z_{i j}$, is a (well-defined) surjective Hopf algebra map. This is easily verified.

We show that the map ω is injective.
Recall and set that

$$
\begin{aligned}
& G_{0}= G\left(A_{N_{0} L_{0}}^{(\nu \lambda)}\right) \\
&=\{x_{11}^{2 u} \pm x_{12}^{2 u}, x_{11}^{2 u} \cdot \overbrace{x_{11} x_{22} x_{11} \cdots}^{L_{0}} \pm \sqrt{\lambda} x_{12}^{2 u} \cdot \overbrace{x_{12} x_{21} x_{12} \cdots}^{L_{0}} \mid 1 \leqq u \leqq N_{0}\}, \\
&\left(C_{u v}\right)_{0}=C_{u v} \subset A_{N_{0} L_{0}}^{(\nu \lambda)} .
\end{aligned}
$$

Then it follows that

$$
A_{N_{0} L_{0}}^{(\nu \lambda)}=k G_{0} \oplus \Sigma\left(C_{u v}\right)_{0}
$$

Thus it is enough to show that ω is injective on $k G_{0}$ and on $\Sigma\left(C_{u v}\right)_{0}$.

It is easy to see that ω is injective on $k G_{0}$.
So we show that ω is injective on $\Sigma\left(C_{u v}\right)_{0}$.
First we examine $\omega\left(\left(C_{u v}\right)_{0}\right)$ for $0 \leqq u \leqq N_{0}-1,1 \leqq v \leqq L_{0}-1$.
Let $t v=q L+r$, for some $q, 0 \leqq r \leqq L-1$. It is easy to see that $r \neq 0$, so it follows that $1 \leqq r, L-r \leqq L-1$.

For $x_{11}^{2 u} \overbrace{x_{11} x_{22} x_{11} \cdots} \in\left(C_{u v}\right)_{0}$, observe that

$$
\begin{aligned}
& \omega(x_{11}^{2 u} \overbrace{x_{11} x_{22} x_{11} \cdots}^{v}) \\
&=z_{11}^{2 u} \overbrace{z_{11} z_{22} z_{11} \cdots}^{v} \\
&=(x_{11}^{2 s} \overbrace{x_{11} x_{22} \cdots x_{11}}^{v})^{2 u} \cdot \overbrace{\left(x_{11}^{2 s} \cdot x_{11} x_{22} \cdots x_{11}\right)\left(x_{11}^{2 s} \cdot x_{22} x_{11} \cdots x_{22}\right) \cdots}^{v} \\
&=x_{11}^{2(2 s+t) u} x_{11}^{2 s v} \overbrace{x_{11} x_{22} x_{11} \cdots}^{t v} \\
&=x_{11}^{2(2 s+t) u} x_{11}^{2 s v} \\
& \times\left\{\begin{array}{l}
x_{11}^{q L} \overbrace{x_{11} x_{22} x_{11} \cdots}^{r}, \\
x_{11}^{(q-1) L} \cdot \overbrace{x_{11} x_{22} x_{11} \cdots,}^{L+r}, \quad \text { if } q \text { is even, } q \text { is odd } \\
\end{array}\right. \\
&= \begin{cases}x_{11}^{2\{(2 s+t) u+s v+(q / 2) L\}} \cdot \overbrace{x_{11} x_{22} x_{11} \cdots,}^{r}, \\
x_{11}^{2\{(2 s+t) u+s v+((q-1) / 2) L+r\}} \cdot \overbrace{x_{22} x_{11} x_{22} \cdots,}^{L-r}, & \text { if } q \text { is odd }\end{cases} \\
& \neq 0 .
\end{aligned}
$$

Let

$$
(a, b)= \begin{cases}\left((2 s+t) u+s v+\frac{q}{2} L \bmod N, r\right), & \text { if } q \text { is even } \\ \left((2 s+t) u+s v+\frac{(q-1)}{2} L+r \bmod N, L-r\right), & \text { if } q \text { is odd } \\ (0 \leqq a \leqq N-1,1 \leqq b \leqq L-1) & \end{cases}
$$

So we have that

$$
0 \neq \omega(x_{11}^{2 u} \overbrace{x_{11} x_{22} x_{11} \cdots}^{v}) \in \omega\left(\left(C_{u v}\right)_{0}\right) \cap C_{a b} .
$$

Since $C_{a b}$ is a simple subcoalgebra, it follows that

$$
\omega\left(\left(C_{u v}\right)_{0}\right)=C_{a b} \subset A_{N L}^{(\nu \lambda)}
$$

Thus ω is injective on $\left(C_{u v}\right)_{0}$.
Next assume that there are $0 \leqq u, u^{\prime} \leqq N_{0}-1,1 \leqq v, v^{\prime} \leqq L_{0}-1$ such that $\omega\left(\left(C_{u v}\right)_{0}\right)=\omega\left(\left(C_{u^{\prime} v^{\prime}}\right)_{0}\right)$.

Let $t v^{\prime}=q^{\prime} L+r^{\prime}, 1 \leqq r^{\prime} \leqq L-1$.
It is easy to see that $q \equiv q^{\prime} \bmod 2$ implies $u=u^{\prime}$ and $v=v^{\prime}$.
So let q be even and q^{\prime} odd. This implies that $q+q^{\prime}+1$ is even and that $L=r+r^{\prime}$.

We have that $t\left(v+v^{\prime}\right)=\left(q+q^{\prime}+1\right) L$, so it follows that $L_{0} \mid v+v^{\prime}$.
It follows that $L_{0}=v+v^{\prime}$, since $1 \leqq v, v^{\prime} \leqq L_{0}-1$.
So we have $t=\left(q+q^{\prime}+1\right) m_{L}$, and this means that t is even. A contradiction.

Thus $\omega\left(\left(C_{u v}\right)_{0}\right)=\omega\left(\left(C_{u^{\prime} v^{\prime}}\right)_{0}\right)$ iff $u=u^{\prime}, v=v^{\prime}$, so ω is injective on $\Sigma\left(C_{u v}\right)_{0}$.
Therefore we have the injectivity of ω.
This completes the proof of the theorem.

It is easy to see that the following lemma holds.

Lemma 3.6. Assume that A_{1} and A_{2} are bialgebras over an algebraically closed field. If the bialgebra $A_{1} \otimes A_{2}$ is generated by a simple subcoalgebra as an algebra, then so is $A_{i}, i=1,2$. Moreover if any simple subcoalgebra of $A_{1} \otimes A_{2}$ has dimension 1 or n^{2}, then either A_{1} or A_{2} is pointed.

Corollary 3.7.

i) Assume that $A_{N L}^{(\nu \lambda)}$ is non-commutative, i.e. $(L, \lambda) \neq(2,+1)$, and $C_{s t} \subset A_{N L}^{(\nu \lambda)}$. Then

$$
\left\langle C_{s t}\right\rangle=A_{N L}^{(\nu \lambda)} \quad \text { iff } t \text { is odd, }(L, t)=1 \text { and }(N, 2 s+t)=1 .
$$

ii) Assume simply that t is odd and $C_{s t} \subset A_{N L}^{(\nu \lambda)}$. Then

$$
\left\langle C_{s t}\right\rangle=A_{N L}^{(\nu \lambda)} \quad \text { iff }(L, t)=1,(N, 2 s+t)=1
$$

iii) Let N be $2^{n} m$, and m odd. Then

$$
A_{N L}^{(\nu \lambda)} \simeq A_{2^{n}, L}^{(\nu \lambda)} \otimes k C_{m} \quad \text { as Hopf algebras }
$$

iv) If $A_{2^{n}, L}^{(\nu \lambda)}$ is non-commutative, then it is indecomposable as the tensor product of its subHopf algebras.

Proof. i), ii) These follow from the dimensionality.
iii) Let N be $2^{n} m$ and m odd. We may assume that $m \geqq 3$. Now let $s=(m-1) / 2, t=1$, then it follows that $2 s+t=m, N_{0}=2^{n}, L_{0}=L$, and $\left\langle C_{s t}\right\rangle \simeq A_{2^{n}, L}^{(\nu \lambda)}$.

Let $f=x_{11}^{2 \cdot 2^{n}}+v x_{12}^{2 \cdot 2^{n}}$. Then f is a central grouplike element with order m, and $C_{s t} \cdot f=C_{s^{\prime} t}$, where $s^{\prime}=2^{n}+(m-1) / 2 \leqq N-1$.

For such s, s^{\prime} and t, it follows that

$$
\begin{aligned}
\left(2 s^{\prime}+t, N\right) & =\left(2\left\{2^{n}+\frac{m-1}{2}\right\}+1,2^{n} m\right) \\
& =\left(2^{n+1}+m, 2^{n} m\right) \\
& =1
\end{aligned}
$$

Thus the simple subcoalgebra $C_{s t} \cdot f=C_{s^{\prime} t}$ generates $A_{N L}^{(\nu \lambda)}$ as an algebra by ii).
Therefore we have that

$$
A_{2^{n} m, L}^{(\nu \lambda)} \simeq A_{2^{n}, L}^{(\nu \lambda)} \otimes k C_{m}, \quad \text { as Hopf algebras. }
$$

iv) Let $2^{n}=N$. Applying Lemma 3.6 to $A_{N L}^{(\nu \lambda)}$, we may assume

$$
A_{N L}^{(\nu \lambda)}=\left\langle C_{s t}\right\rangle \otimes k F,
$$

for some $0 \leqq s \leqq N-1,1 \leqq t \leqq L-1$, (abelian)subgroup $F \subset G\left(A_{N L}^{(\nu \lambda)}\right)$.
Since $A_{N L}^{(\nu \lambda)}$ is non-commutative, so is $\left\langle C_{s t}\right\rangle$. This means that t is odd. By Theorem 3.5, $\left\langle C_{s t}\right\rangle \simeq A_{N_{0} L_{0}}^{(\nu \lambda)}$.

Comparing the dimensions, we have that $|F|=m_{N} m_{L}$.
Counting the number of 4 -dimensional simple subcolagebras, we have the following:

$$
\begin{aligned}
N(L-1) & =N_{0}\left(L_{0}-1\right) \cdot|F| \\
& =N_{0}\left(L_{0}-1\right) m_{N} m_{L} \\
& =N\left(L-m_{L}\right) .
\end{aligned}
$$

Thus we have that $m_{L}=1$.
On the other hand, it follows that $m_{N}=1$ since $2 s+t$ is odd and N is a power of 2 .

Thus we have that $F=\langle 1\rangle$.
Next we show that we can obtain all braidings on $A_{N L}^{(\nu \lambda)}$. See [GW], [G]. We identifiy $C<A_{N L}^{(\nu \lambda)}$ as in Remark 3.4. Note that any braiding on $A_{N L}^{(\nu)}$ is
determined on $C \otimes C$. If a bilinear map τ on C extends to a braiding on $A_{N L}^{(\nu \lambda)}$, we denote the braiding by $\tilde{\tau}$.

Recall YB-forms $\sigma_{\alpha \beta}, \tau_{\alpha \beta}^{(\lambda)}$ on C.
Claim 3.8. Let σ be a braiding on $A_{N L}^{(\nu \lambda)}$.
i) If $L \geqq 3,\left.\sigma\right|_{C \otimes C}$ coincides with $\sigma_{\alpha \beta}$ for some $\alpha, \beta \in k^{\times}$such that $(\alpha \beta)^{N}=v$, $\left(\alpha \beta^{-1}\right)^{L}=\lambda$.
ii) If $L=2,\left.\sigma^{\prime}\right|_{C \otimes C}$ coincides with either $\sigma_{\alpha \beta}$ for some $\alpha, \beta \in k^{\times}$such that $(\alpha \beta)^{N}=v,\left(\alpha \beta^{-1}\right)^{2}=\lambda$ or $\tau_{\gamma \delta}^{(\lambda)}$ for some $\gamma, \delta \in k^{\times}$such that $\delta^{2}=\gamma^{2}, \gamma^{2 N}=1$.

Proof. i) Assume that $L \geqq 3$.
The subcoalgebra $C \cdot C$ of $A_{N L}^{(\nu \lambda)}$ has a basis

$$
\left\{x_{11}^{2}, x_{12}^{2}, x_{11} x_{22}, x_{22} x_{11}, x_{12} x_{21}, x_{21} x_{12}\right\}
$$

We have similarly as in Proposition 2.9,

$$
\left.\sigma\right|_{C \otimes C}=\sigma_{\alpha \beta} \quad \text { for some } \alpha, \beta \in k^{\times} .
$$

Moreover σ satisfies the following:

$$
\begin{aligned}
0 & =\sigma\left(1-\left(x_{11}^{2 N}+v x_{12}^{2 N}\right), x_{11}\right) \\
& =1-v\left\{\sigma_{\alpha \beta}\left(x_{12}, x_{12}\right) \sigma_{\alpha \beta}\left(x_{12}, x_{21}\right)\right\}^{N} \\
& =1-v(\alpha \beta)^{N} .
\end{aligned}
$$

Thus it follows that $(\alpha \beta)^{N}=v$.
Observe that when L is even,

$$
\begin{aligned}
0 & =\sigma(\overbrace{x_{21} x_{12} \cdots x_{12}}^{L}-\lambda \overbrace{x_{12} x_{21} \cdots x_{21}}^{L}, x_{22}) \\
& =\alpha^{L}-\lambda \beta^{L},
\end{aligned}
$$

and that when L is odd,

$$
\begin{aligned}
0 & =\sigma(\overbrace{x_{21} x_{12} \cdots x_{21}}^{L}-\lambda \overbrace{x_{12} x_{21} \cdots x_{12}}^{L}, x_{21}) \\
& =\alpha^{L}-\lambda \beta^{L} .
\end{aligned}
$$

Thus in either case, it follows that $\alpha^{L}=\lambda \beta^{L}$, or $\left(\alpha \beta^{-1}\right)^{L}=\lambda$.
ii) Assume that $L=2$.

The subcoalgebra $C \cdot C$ of $A_{N 2}^{(\nu \lambda)}$ has a basis

$$
\left\{x_{11}^{2}, x_{12}^{2}, x_{11} x_{22}, x_{12} x_{21}\right\}
$$

As in the proof of Proposition 2.9, we have the following:

$$
\begin{aligned}
\sigma\left(x_{i j}, x_{l m}\right) x_{j j} x_{m m} & =x_{l l} x_{i i} \sigma\left(x_{i j}, x_{l m}\right), \\
\sigma\left(x_{i, j+1}, x_{l, m+1}\right) x_{j+1, j} x_{m+1, m} & =x_{l, l+1} x_{i, i+1} \sigma\left(x_{i+1, j}, x_{l+1, m}\right)
\end{aligned}
$$

Using these relations, we have the following with $\alpha, \beta, \gamma, \delta \in k$,

σ	X_{11}	X_{12}	X_{21}	X_{22}
X_{11}	γ	0	0	δ
X_{12}	0	α	β	0
X_{21}	0	β	α	0
X_{22}	$\lambda \delta$	0	0	γ.

Moreover σ satisfies the following equations:

$$
\begin{aligned}
& 0=\sigma\left(x_{11} x_{12}, x_{12}\right)=\gamma \alpha, \\
& 0=\sigma\left(x_{11} x_{21}, x_{12}\right)=\gamma \beta, \\
& 0=\sigma\left(x_{11} x_{12}, x_{21}\right)=\delta \beta, \\
& 0=\sigma\left(x_{11} x_{21}, x_{21}\right)=\delta \alpha .
\end{aligned}
$$

So it follows that either $\gamma=0=\delta$ or $\alpha=0=\beta$.
Thus $\left.\sigma\right|_{C \otimes C}$ is either $\sigma_{\alpha \beta}$ or $\tau_{\gamma \delta}^{(\lambda)}$, for $\alpha, \beta, \gamma, \delta \in k^{\times}$.
If $\left.\sigma\right|_{C \otimes C}=\sigma_{\alpha \beta}$, then the relations on α, β follow similarly as in the proof of i$)$.
Let $\left.\sigma\right|_{C \otimes C}=\tau_{\gamma \delta}^{(\lambda)}$. Observe that

$$
\begin{aligned}
0 & =\sigma\left(x_{11}^{2}-x_{22}^{2}, x_{22}\right) \\
& =\tau_{\gamma \delta}^{(\lambda)}\left(x_{11}, x_{22}\right)^{2}-\tau_{\gamma \delta}^{(\lambda)}\left(x_{22}, x_{22}\right)^{2} \\
& =\delta^{2}-\gamma^{2} \\
0 & =\sigma\left(1-\left(x_{11}^{2 N}-v x_{12}^{2 N}\right), x_{11}\right) \\
& =1-\tau_{\gamma \delta}^{(\lambda)}\left(x_{11}, x_{11}\right)^{2 N} \\
& =1-\gamma^{2 N} .
\end{aligned}
$$

Thus it follows that $\delta^{2}=\gamma^{2}, \gamma^{2 N}=1$.

Claim 3.9.
i) The YB-form $\sigma_{\alpha \beta}$ extends to a braiding on $A_{N L}^{(\nu \lambda)}$ if $(\alpha \beta)^{N}=\nu,\left(\alpha \beta^{-1}\right)^{L}=\lambda$.
ii) The YB-form $\tau_{\gamma \delta}^{(\lambda)}$ extends to a braiding on $A_{N 2}^{(\nu \lambda)}$ if $\delta^{2}=\gamma^{2}, \gamma^{2 N}=1$.

Proof. Recall that B has braidings $\left\{\tilde{\alpha}_{\alpha \beta} \mid \alpha, \beta \in k^{\times}\right\}$and that $B^{(\lambda)}$ has braidings $\left\{\tilde{\tau}_{\gamma \delta}^{(\lambda)} \mid \gamma, \delta \in k^{\times}\right\}$.
i) It is easy to see by Proposition 1.1 that $\tilde{\sigma}_{\alpha \beta}: B \otimes B \rightarrow k$ induces a braiding on $A_{N L}^{(\nu \lambda)}$ iff

$$
\left\{\begin{aligned}
(\alpha \beta)^{N} & =v \\
\left(\alpha \beta^{-1}\right)^{L} & =\lambda
\end{aligned}\right.
$$

ii) Recall that $A_{N 2}^{(\nu \lambda)}=B^{(\lambda)} /\left(X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}, 1-\left(X_{11}^{2 N}+v X_{12}^{2 N}\right)\right)$.

It follows that $\tau_{\gamma \delta}^{(\lambda)}$ induces a braiding on $B^{(\lambda)} /\left(X_{11}^{2}-X_{22}^{2}, X_{12}^{2}-X_{21}^{2}\right)$ iff $\delta^{2}=\gamma^{2}$, and that $\tau_{\gamma \delta}^{(\lambda)}$ induces a braiding on $A_{N 2}^{(\nu \lambda)}$ iff $\delta^{2}=\gamma^{2}, \gamma^{2 N}=1=\delta^{2 N}$.

Proposition 3.10.
i) The set of braidings on $A_{N L}^{(\nu \lambda)}$ is given as follows:

$$
\begin{gathered}
\left\{\tilde{\sigma}_{\alpha \beta} \mid(\alpha \beta)^{N}=v,\left(\alpha \beta^{-1}\right)^{L}=\lambda\right\}, \quad \text { if } L \geqq 3, \\
\left\{\tilde{\alpha}_{\alpha \beta}, \tilde{\tau}_{\gamma \delta \delta}^{(\lambda)} \mid(\alpha \beta)^{N}=v,\left(\alpha \beta^{-1}\right)^{2}=\lambda, \delta^{2}=\gamma^{2}, \gamma^{2 N}=1\right\}, \quad \text { if } L=2 .
\end{gathered}
$$

ii) $A_{N L}^{(v 2)}$ is, in fact, a braided Hopf algebra.

If chk $\not \backslash N L$, the number of braidings on $A_{N L}^{(\nu \lambda)}$ is

$$
\begin{cases}2 N L, & \text { if } L \geqq 3 \\ 8 N, & \text { if } L=2\end{cases}
$$

iii) The number of symmetric braidings on $A_{N L}^{(\nu \lambda)}$ is given as follows; When $L \geqq 3$,

N	L	(v, λ)	$\tilde{\sigma}$
odd	odd	$(\pm 1, \pm 1)$	2
		$(\pm 1, \mp 1)$	0
odd	even	$(v,+1)$	2
		$(v,-1)$	0
even	odd	$(+1, \lambda)$	2
		$(-1, \lambda)$	0
even		even	$(+1,+1)$
		otherwise	4

When $L=2$,

N	(v, λ)	$\tilde{\sigma}$	$\tilde{\tau}^{(\lambda)}$
odd	$(v,+1)$	2	4
	$(v,-1)$	0	0
even	$(+1,+1)$	4	4
	$(+1,-1)$	0	0
	$(-1,+1)$	0	4
	$(-1,-1)$	0	0.

Proof. i) This follows from Claim 3.8 and 3.9.
ii) There is a surjective map

$$
\begin{gathered}
\left\{(p, q) \in k \times k \mid p^{2 N}=v, q^{2 L}=\lambda\right\} \rightarrow\left\{(\alpha, \beta) \in k \times k \mid(\alpha \beta)^{N}=v,\left(\alpha \beta^{-1}\right)^{L}=\lambda\right\} \\
(p, q) \mapsto\left(p q, p q^{-1}\right)
\end{gathered}
$$

Set $(p, q) \sim\left(p^{\prime}, q^{\prime}\right) \Leftrightarrow(p, q)= \pm\left(p^{\prime}, q^{\prime}\right)$. It is an equivalence relation, which induces the bijection

$$
\left.\left\{(p, q) \mid p^{2 N}=v, q^{2 L}=\lambda\right\} / \sim \approx\left\{(\alpha, \beta) \mid(\alpha \beta)^{N}=v,\left(\alpha \beta^{-1}\right)^{L}=\lambda\right)\right\} .
$$

Let $\operatorname{chk} \npreceq N L$. Then it follows that $|\{\tilde{\sigma}\}|=2 N \cdot 2 L \cdot \frac{1}{2}=2 N L$. For $\tilde{\tau}^{(\lambda)}$, since $\gamma^{2 N}=1$ and $\delta^{2}=\gamma^{2}$, it follows that $\left|\left\{\tilde{\tau}^{(\lambda)}\right\}\right|=2 N \cdot 2=4 N$.
iii) Recall that $\operatorname{chk} \neq 2$. On $A_{N L}^{(\nu 2)}, \tilde{\sigma}_{\alpha \beta}$ is symmetric iff $\alpha^{2}=1=\beta^{2}$ and $(\alpha \beta)^{N}=\nu,\left(\alpha \beta^{-1}\right)^{L}=\lambda$.

On $A_{N 2}^{(\nu)}, \tilde{\tau}_{\gamma \delta}^{(\lambda)}$ is symmetric iff $\gamma^{2}=1, \delta^{2}=\lambda$ and $\gamma^{2 N}=1, \delta^{2}=\gamma^{2}$.
Remark 3.11. The algebra map $\theta: A_{N L}^{(\nu \lambda)} \rightarrow A_{N L}^{(\nu \lambda) c o p}, x_{i j} \mapsto x_{j i}$, is a bijective Hopf algebra map. Define $\langle a, b\rangle=\tilde{\sigma}_{\alpha \beta}(\theta(a), b)$ for $a, b \in A_{N L}^{(v \lambda)}$.

The linear map $\langle\rangle:, A_{N L}^{(v \lambda)} \otimes A_{N L}^{(\nu \lambda)} \rightarrow k$ is a non-trivial Hopf paring.
Using Proposition 3.10, we have the following indispensable proposition.
Proposition 3.12. $\quad A_{N_{1} L_{1}}^{\left(v_{1} \lambda_{1}\right)} \simeq A_{N_{2} L_{2}}^{\left(v_{2} \lambda_{2}\right)}$ if and only if both $\left(N_{1}, L_{1}\right)=\left(N_{2}, L_{2}\right)$ and

$$
\begin{cases}\left(v_{2}, \lambda_{2}\right)= \pm\left(v_{1}, \lambda_{1}\right), & \left(\text { case } N_{1}, L_{1} \text { odd }\right) \\ \lambda_{2}=\lambda_{1}, & \left(\text { case } N_{1} \text { odd }, L_{1} \text { even }\right) \\ v_{2}=v_{1}, & \left(\text { case } N_{1} \text { even, } L_{1} \text { odd }\right) \\ \left(v_{2}, \lambda_{2}\right)=\left(v_{1}, \lambda_{1}\right), & \left(\text { case } N_{1}, L_{1} \text { even }\right)\end{cases}
$$

Proof. For a fixed $\sqrt{-1}$, we can define a bialgebra map $\xi: B \rightarrow B$,

$$
\begin{aligned}
& \xi: X_{i i} \mapsto X_{i i}, \\
& X_{12} \mapsto \sqrt{-1} X_{12}, \\
& X_{21} \mapsto-\sqrt{-1} X_{21} .
\end{aligned}
$$

Let

$$
\check{A}_{N L}^{(v \lambda)}= \begin{cases}A_{N L}^{(-v,-\lambda)}, & \text { if } N, L \text { are odd } \\ A_{N L}^{(-v, \lambda)}, & \text { if } N \text { is odd, } L \text { is even } \\ A_{N L}^{(v,-\lambda)}, & \text { if } N \text { is even, } L \text { is odd } \\ A_{N L}^{(v \lambda)}, & \text { if } N, L \text { are even }\end{cases}
$$

Then the following diagram commutes:

Thus by Proposition 3.10.iii), if N or L is odd, then the statement follows.
Assume that both N and L are even. Then

$$
\left(v_{1}, \lambda_{1}\right)=\left\{\begin{aligned}
(++) \Rightarrow & \text { by Prop. 3.10.iii), }\left(v_{2}, \lambda_{2}\right)=(++) . \\
(-+) \Rightarrow & \text { by Prop. 3.3.ii), } G\left(A_{N_{1} L_{1}}^{\left(v_{1} \lambda_{1}\right)}\right) \text { is central so } \lambda_{2}=+1 . \\
& \text { By Prop. 3.10.iii), } v_{2}=-1 \operatorname{so}\left(v_{2}, \lambda_{2}\right)=(-+) . \\
(+-) \Rightarrow & \text { by Prop. 3.3.ii), } k G\left(A_{N_{1} L_{1}}^{\left(v_{1} \lambda_{1}\right)}\right) \cap Z\left(A_{N_{1} L_{1}}^{\left(v_{1} \lambda_{1}\right)}\right)=K \text { so } \lambda_{2}=-1 . \\
& \text { By Prop. 3.3.i) }, v_{2}=+1 \operatorname{so}\left(v_{2}, \lambda_{2}\right)=(+-) . \\
(--) \Rightarrow & \text { it follows that }\left(v_{2}, \lambda_{2}\right)=(--) .
\end{aligned}\right.
$$

This completes the proof.
Remark 3.13 ([Mas2], [F]). The "non-trivial" 8-dimensional semisimple Hopf algebra is given by

$$
A_{1,2}^{(+-)} \simeq A_{1,2}^{(--)}
$$

Let $c h k \neq 3$. The two "non-trivial" 12 -dimensional semisimple Hopf algebras are given by

$$
A_{1,3}^{(++)} \simeq A_{1,3}^{(-)} \quad \text { and } \quad A_{1,3}^{(+-)} \simeq A_{1,3}^{(-+)}
$$

Recall that H is a Hopf closure of B and that $A_{N L}^{(\nu \lambda)}$ is a Hopf algebra which is a quotient of B through π. So there is a Hopf algebra map $\tilde{\pi}: H \rightarrow A_{N L}^{(\nu))}$ such that $\tilde{\pi}=\left.\pi\right|_{B}$.
H is a right $A_{N L}^{(\nu \lambda)}$-comodule algebra via $\tilde{\pi}$. See [DT]. Then
Proposition 3.14. H is a cleft $A_{N L}^{(\nu \lambda)}$-comodule algebra. Namely there is an invertible comodule map $\phi: A_{N L}^{(\nu \lambda)} \rightarrow H$.

Proof. Recall the basis $\{x_{11}^{s} \cdot \overbrace{22} x_{11} \cdots, x_{12}^{s} \cdot \overbrace{x_{21} x_{12} \cdots}^{t} \mid 1 \leqq s \leqq 2 N, 0 \leqq t \leqq$ $L-1\}$. This can be written as follows:

$$
\left(\begin{array}{cccc}
x_{11}^{2 s} \cdot x_{11} & x_{11}^{2 s} \cdot x_{22} & x_{12}^{2 s} \cdot x_{12} & x_{12}^{2(s+1)} \\
x_{11}^{2 s} \cdot x_{11} x_{22} & x_{11}^{2 s} \cdot x_{22} x_{11} & x_{12}^{2 s} \cdot x_{12} x_{21} & x_{12}^{2 s} \cdot x_{21} x_{12} \\
\vdots & \vdots & \vdots & \vdots \\
x_{11}^{2 s} \cdot \overbrace{x_{11} x_{22} \cdots}^{L-1} & x_{11}^{2 s} \cdot \overbrace{x_{22} x_{11} \cdots}^{L-1} & x_{12}^{2 s} \cdot \overbrace{x_{12} x_{21} \cdots}^{L-1} & x_{12}^{2 s} \cdot \overbrace{x_{21} x_{12} \cdots}^{L-1} \\
x_{11}^{2 s} \cdot \overbrace{x_{11} x_{22} \cdots x_{L L}}^{L} & & x_{12}^{2 s} \cdot \overbrace{x_{12} x_{21} \cdots x_{L, L+1}}^{L} &
\end{array}\right)
$$

We use it. Define, for example, a linear map $\phi: A_{N L}^{(\nu \lambda)} \rightarrow B \rightarrow H$ by the small letters to its capital letters, i.e., $x_{i j}$ to $X_{i j}$, etc. Then ϕ is a right $A_{N L}^{(\nu \lambda)}$-comodule map.

We define another linear map $\psi: A_{N L}^{(\nu \lambda)} \rightarrow H$ as follows:
On the bottom row,

$$
\begin{aligned}
\psi & : x_{11}^{2 s} \cdot \overbrace{x_{11} x_{22} \cdots x_{L L}}^{L} \mapsto
\end{aligned}(\overbrace{X_{L L} \cdots X_{22} X_{11}}^{L} \cdot X_{11}^{2 s})\left(\frac{1}{d_{+}}\right)^{2 s+L}, ~ \begin{aligned}
L \\
x_{12}^{2 s} \cdot \overbrace{x_{12} x_{21} \cdots x_{L, L+1}}^{L} \rightarrow \lambda(\overbrace{X_{L, L+1} \cdots X_{21} X_{12}}^{L} \cdot X_{12}^{2 s})\left(\frac{1}{d_{+}}\right)^{2 s+L},
\end{aligned}
$$

and on the other rows,

$$
\psi=S \circ \phi
$$

Then we have $\psi=\phi^{-1}$, so ϕ is invertible.
Therefore H is a cleft $A_{N L}^{(\nu)}$-comodule algebra.

Added in Proof

The group $G=G\left(A_{N L}^{(\nu \lambda)}\right)$ is abelian, and the type is given as follows. The case that L is even:

$$
\begin{aligned}
G & =\left\langle h_{+}, h_{-}\right\rangle \times\left\langle h_{+}^{-L / 2} g\right\rangle \\
& = \begin{cases}\left(C_{N} \times C_{2}\right) \times C_{2}, & \text { if }(N, v)=(\text { even },+1) \\
\left(C_{2 N}\right) \times C_{2}, & \text { otherwise } .\end{cases}
\end{aligned}
$$

The case that L is odd:

$$
G= \begin{cases}\left\langle h_{\lambda}^{(1-L) / 2} g\right\rangle=C_{4 N} & \text { if } v=-\lambda^{N} ; \\ \left\langle h_{\lambda}^{(1-L) / 2} g\right\rangle \times\left\langle h_{+}^{-1} h_{-}\right\rangle=C_{2 N} \times C_{2}, & \text { if } v=\lambda^{N} .\end{cases}
$$

Proposition 3.12 follows from this and Proposition 3.3.

References

[D] Y. Doi, Braided bialgebras and quadratic bialgebras, Comm. Algebra 21(5), 1731-1749.
[DT] Y. Doi and M. Takeuchi, Cleft comodule algebras for a bialgebra, Comm. Algebra 14 (1986), 801-817.
[F] N. Fukuda, Semisimple Hopf algebras of dimension 12 (to appear).
[GW] S. Gelaki and S. Westreich, On the quasitriangularity of $U_{q}\left(s l_{n}\right)^{\prime}$, preprint.
[G] S. Gelaki, Quantum groups of dimension $p q^{2}$, preprint.
[H] T. Hayashi, Quantum groups and quantum determinants, J. Algebra 152 (1992), 146-165.
[Man] Yu. Manin, Quantum groups and non-commutative geometry, U. of Montreal Lectures, 1988.
[Mas1] A. Masuoka, Coideal subalgebras in finite Hopf algebras, J. Algebra 163 (1994), 819-831.
[Mas2] ——, Semisimple Hopf algebras of dimension 6, 8, Israel J. Math. 92 (1995), 361-373.
[M] S. Montgomery, Hopf algebras and their actions on rings, American Mathematical Society, Prividence, 1993.
[S] M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
[T1] M. Takeuchi, A two-parameter quantization of GL(n), Proc. Japan Acad. 66. Ser. A (1990), 112-114.
[T2] —, Matric bialgebras and quantum groups, Israel J. Math. 72 (1990), 232-251.

