TSUKUBA J. MATH.
Vol. 22 No. 1 (1998), 1-29

A FAMILY OF BRAIDED COSEMISIMPLE HOPF
ALGEBRAS OF FINITE DIMENSION
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0. Introduction

Recently some finite dimensional cosemisimple Hopf algebras were con-
structed [Mas2] [F] [G]. We aim to give a plain and systematic description of
cosemisimple Hopf algebras of low dimension. For this purpose we construct
them as quotient bialgebras of a sufficiently large bialgebra. This way has the
advantage of defining homomorphisms and determining braidings.

In this paper we define and study a family of finite dimensional cosemisimple
Hopf algebras

F = {Ag\?_LHvA&/FL-)’AgV_LH’AEV_L_) |N 21,L2 2}7

which consists of quotients of a bialgebra B over an algebraically closed field &
with chk # 2.

This family contains the “non-trivial” cosemisimple Hopf algebras of
dimension 8, 12 if chk # 3.

In Section 1 we review basic definitions and results.

In Section 2 quadratic bialgebras B, B{*) and B(") are constructed. We use B
to construct the family &, and B¥) to obtain braidings on the members of a
subfamily of & . These bialgebras B, B(*¥) are cosemisimple, and we determine all
braidings on them.

In Section 3 we define the family & as a set of quotient bialgebras of the
bialgebra B. We write AgQLLl’_l) = Ag\TL'), etc. Let v,A = +1. Our main results are
as follows.

1) A(N"? is a non-cocommutative involutory cosemisimple Hopf algebra of
dimension 4NL, which is non-commutative unless (L,1) = (2,+1). A%) is

furthermore semisimple if (dim A%)) -1#£0.
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ii) Any non-commutative subHopf algebra of A%) generated by a simple
subcoalgebra is a member of the family.

iii) All braidings on A% are determined.

iv) We determine when Aﬁ;;j'l) and AE‘ZZ) are isomorphic.

1. Preliminaries [D]

We follow Sweedler’s book [S] and Montgomery’s book [M] for terminology
of Hopf algebras.

In this section we review basic definitions and results. They are due to Doi
[D].

Let B be a bialgebra over a field k, 7: B® B — k a k-linear map which is
invertible with respect to the convolution product. (B,t) is called a braided
bialgebra if the following three conditions hold:

(1) Z1(xy, y1)x2y2 = Zy1x1t(x2,y2)
(2) t(xy,z) = Lt(x, z1)1(y, 22)
3) (%, yz) = Xt (x1,2)t(x2, y)

for x,y,z € B.

Then the following conditions are automatically satisfied:
T(x, 1) = &(x) = 7(1, x),
Z1(x1,y1)t(x2, 21)t(¥2, 22) = Z(¥1, 21)7(x1, 22)T(*X2, ¥2) for x,y,z € B.
We call this 7 a braiding on B.

ProposiTioN 1.1 ([H, Proposition 1.2]). Let (B,t) be a braided bialgebra
generated by a subcoalgebra C, (I) the bi-ideal generated by a coideal I of B. Then
T induces a braiding on the bialgebra B/(I) iff t=00on CR®I+I® C.

If (B,7) is a braided bialgebra, ‘z! is another braiding on B, where
tt=1(x,y) = t71(»,x), and the braiding 7 is said to be symmetric if 't = 1.

Let C be a coalgebra over k, 0 : C® C — k an invertible k-linear map. For
any bialgebra B, a linear map f : C — B is called a g-map if

Zo(x1,y1)f () f(y2) = Zf (1) f(a1)o(x2,32), x,y€C.
Let T(C) be the tensor (bi-)algebra and I, is the (bi-)ideal generated by
4) Zo(x1,1)x22 — Zy1xi10(x2,y2), x,y,z€C.



A family of braided cosemisimple 3

We can form the bialgebra M(C, o) = T(C)/I,, which is called is the quadratic
bialgebra associated with (C,a).

REMARK 1.2. i) The map i: C— T(C) — M(C,0) is an injective coalgebra
o-map.

ii) If B is a bialgebra and f: C — B is a o-(coalgebra) map, then there is a
unique (bi-) algebra map f : M(C,o) — B such that foi=f.

iif) M(C,0) has a natural algebra-gradation {C"},,.

iv) M(C,0)” = M(C,o7') = M(C,'a), M(C,0) = M(C,'c").

Let (C, o) be as above. The map ¢ is called a Yang-Baxter form (or YB-form)
if for all x,y,ze C,

) Zo(x1,y1)0(x2, 21)0(y2, 22) = Za(y1,21)0(x1, 22)0(x2, 2).

We call (C,0) a YB-coalgebra if o is a YB-form.
REMARK 1.3. If ¢ is a YB-form on C, so is ‘o™!.
A YB-form ¢ is said to be symmetric if ‘7! = 0.

ProposiTioN 1.4 ([D, Theorem 2.6}). If (C,a) is a YB-coalgebra, ¢ uniquely
extends to a braiding 6 on M(C,o0).

We note that if (C,0) is a YB-coalgebra then M(C,o) has another braiding
g1,

COROLLARY 1.5. & is symmetric iff o is symmetric.

For a bialgebra B, a Hopf algebra H and a bialgebra map :: B — H, we call
(H,1) (or simply H) a Hopf closure of B if the following universality holds: for
any Hopf algebra 4 and any bialgebra map f : B — A, there is a unique Hopf
algebra map f : H — A4 such that f oz =f. See [Man] [H] [D].

ProrposiTiON 1.6 ([T2] [D, Theorem 3.6] [H]). Let M(C,0) be the quadratic
bialgebra associated with (C,0), d(#0) a grouplike element of M(C,a). If there is
amap j:C— M(C,0) such that

Zi(x1)j(x2) = e(x)d = Zj(x1)i(x;)  forall xeC,
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then d is central and the (well-defined) localization M(C,a)[d™"] becomes a Hopf
algebra. Moreover it is a Hopf closure of M(C,o), and it follows that
M(C,0)[d™']| = M(C,0)[G"], where G is the set of grouplike elements of
M(C,0). If (C,6) is a YB-coalgebra, M(C,c)[d™!] has a braiding.

2. YB-coalgebras and quadratic bialgebras

From now on we work over an algebraically closed field £ whose charac-
teristic, chk, is not 2. Indices of Kronecker’s d;;, Xj;, etc. are considered modulo 2.

In this section we define some YB-coalgebras and examine quadratic
bialgebras associated with them.

Set C = M,(k)", the dual coalgebra of the 2 x 2-matrix algebra M>(k), and
let {X;}<; <, be the comatrix basis of C, namely it spans C and satisfies

A(Xy) = Zi_ X ® Xij,  &(Xy) = 6.

For any coalgebra D and Yj;e D, 1 24, j<2, if the linear map C — D,
X;j— Yy, is an injective coalgebra map, we denote the image by

Yu Y
spani(Yy;) = spany (Y; Yzz) :

Let A= +1. Now for any aek™ =k — {0}, we define linear maps o(y),

rgai)l) = rif)) : C® C — k as follows (see [D, Example 2.8] for t®):

0w |Xu X Xan Xn Tg; Xu Xz Xn X
X 0 0 0 0 X o 0 0 1
X2 0 o 1 0 X 0 0 0 0
X21 0 1 o 0 Xg] 0 0 0 0
X 0 0 0 0, Xy A 0 0 o

PROPOSITION 2.1.  0(y), @ (wek*) are YB-forms on C.
(@) “(a)

Proor. We show that o) = is a YB-form.
We can write o(Xj j+1, Xim+1) =5,-j§1moz‘5"’.
For X, X;» and X,,, observe that

Za,lv,ca-(AYz'czy I“b)a(Xaja Xuc)a(Xbma Xcv)
= (X it1, X1141)0(Xit1, j, Xuu+1)0(Xis1,m, Xus1,0)

61‘ lsi u 614
:6ij51méuua oSl g Ol
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and
2a,b,ca'()(lba Xuc)o'(X'iay Xcv)a(Xaj» Xbm)
= 0( X1, 141, Xuut1)0( Xii 1, Xur1,0)0(Xig 1, j, Xisi,m)
— 5uv(5ij51ma51ua5i,u+1 aﬁil_

Thus Condition (5) is satisfied.
The inverse is given by

Therefore o(,) is a YB-form for a € k™.
It is easy to check that rgig is also a YB-form on C. O

Therefore (C,0(,) and (C, rgig) are YB-coalgebras for all o e k™.

REMARK 2.2. {a(u),rg)) |o, B € k*}, {r&),r&)) |o, f € k*} form subgroups of
the unit group of Ma(k)®>.

Next we examine the defining relations of the quadratic bialgebras associated
with them.

ProPOSITION 2.3.
i) The ideal I,, where o = a(y), is generated by the following:
{X121 - X222’ X122 - X221’ X j1.Xii — O‘Xi+1,i+l)f}'+1,j} if o = 1,
(X} - X5, X5 — X2, Xy Xim(i+j+1+m=1)} if o’ #1.
ii) The ideal I, where ¥ = 18, is generated by the following:
{X11 X — Xpo X114, X12X01 — AXn X120, X Xy — aXyXi, Xoj Xij — AaX1jXo5}
if 02 =4,
{X11Xn — XX, X12Xo1 — X1 X2, XijXim(i +j + 1+ m = 1)}
if o2 # 4.
Proor. i) For X, Xj,, observe that
Zo(Xia, X1p) Xaj Xom = 0(Xi i1, X1041) Xir1, j X141m

= o1 X1 i X 1my
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2 X6 Xia0(Xsj, Xom) = Ximi1Xi j110(Xjt1, j, Xon1m)
= Xypr1 X, j4100m.
Thus the subset
e X Xim — Xrrmer Xivr j10 |1 S 4, j, 1,m < 2}
generates the ideal I,. The above polynomials are written as follows:

aX} — X7y i ifi=lLj=m
Xquj X1 jr1 X j12 ifi#lj=m,
o Xij Xim — Xiv1me1Xir1, j41 ifi=1j#m,
Xii Xim — Xiptm1 Xig1 41 ifi#lj#m(e,l=i+1lm=j+1).

it) This is similarly shown as 1i). O

REMARK 2.4. 1) For the bialgebra M(C,0(_y)), see the quantum conformal
group in [Man]

i) M(C,7 +1)) are the quantum matrix bialgebras M4;(2).

i) M(C, ‘[E \/)—_1)) is Takeuchi’s two-parameter bialgebra M, (2)
for « =+v/—1, = —v/—1 ([T1], [D]).

Define B = M(C,0y)) for o> # 1 and B = M(C, r ) for o # 1. We write
BED = B(E), These definitions, ignoring choice of o, are reasonable by Prop-
osition 2.3.

On the other hand, we see by Proposition 1.1 that braidings &41), §+) /) are
induced on B, B? respectively, via the canonical surjections

M(C,0(41)) —» B, M(C,*" _)— B®

(iﬁ))

Note that {X;;Xp,|i+ j+ !+ m =1} spans a coideal of T(C).
Therefore we have the following claim:

CLamM 2.5.
i) 0@ : C® C — k extends to a braiding G on B for every aek*.
i) rgig :C® C — k extends to a braiding ‘Egg on B% for every aek*.

We examine the coalgebra structure of B.
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PROPOSITION 2.6.
1) B has the following set as a basis

r r

e N et N
{XTT XnXuXn ..., X5 X1 X12X21--- [n 20,0 r <n}.
ii) The grouplike elements but 1 in B are given by
XH+ X5 (sz1).

Then are central non-zero divisors.
iil) The simple subcoalgebras of B which are not spanned by grouplike elements
are of dimension 4. They are given by

t t

Y N e N
XB X1 XnX1 - XEXpXnXp: -
Cy = spany 11 41 22t 11 2412 211 12 (sg(),tgl).

Y e N Y e N
XEXnX0Xo1 -+ XE XnnXuXa -

iv) B is cosemisimple. The nth component C" (n = 1) of B is decomposed as
the sum of simple subcoalgebras as follows:

C" = 2:n:Z.v+tCst7 lf nis Odd;
T Bae2s+eCoe + K(XT, £ X7,),  if nis even.

Proor. i) It is verified in the same manner as Theorem 3.1.i) below.

ii), iit), iv) It is easy to see that X% + X3 is grouplike for s > 1. By i) and
the defining relations of B, it is a central non-zero divisor. C is isomorphic to C,
as coalgebras by

t

Xn l—»Xffm
X X5 XXX ...,
Xo1 - X5 X0 X12X01 ...,
X XEXn X Xn . ...
By i) we have that
B=k-1+3k(X% + X5)+2Cy
=k 1@ {@21k(X]] + X3} © {@,20.21Ca}-

Thus ii), iii), iv) are done. O
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PROPOSITION 2.7.
i) B® has the following set as a basis

{X11 X5, Xi5X5) [ u +v 2 0},
ii) The grouplike elements but 1 in B* are given by
XXy + \/FXluz a2z ).
They are non-zero divisors.
iti) The simple subcoalgebras of B®) which are not spanned by grouplike
elements are all of dimension 4. They are given by
XtXxXy, X4LXJ
D,, = n42  Apa <o)
oo o) @3
iv) B® is cosemisimple. The nth component C* (n = 1) of B®) is decomposed

as the sum of simple subcoalgebras as follows:

c" = 2:n=u+v,u=<,=vDuua lf nis Odd;
ZurousoDu + k(XI"I/ZXz"‘,’/2 + vV l"/zXl"z/zXz"l/z), if n is even.

We omit the proof.

COROLLARY 2.8. Let {Cy) denote the sub-bialgebra generated by the simple
subcoalgebra Cs; = B. Then as bialgebras,

B, if tis odd,
B if tis even.

32<Cst>:{

We omit the proof. See the proof of Theorem 3.5 below.
Define linear maps 6,5 = ﬂo(aﬂ_l), rgjg) = ﬂt&)q_l) for o, Bek*, A= +1. They
are also YB-forms on C. The YB-form o, extends to a braiding 6,5 on B, and

TS?) extends to a braiding fﬁ? on BY.

PROPOSITION 2.9. i) g, is symmetric iff Z=1=p%. ‘L'g:l) is symmetric iff
=1, =41

iiy The set of braidings on B is {6.5|a,fek”}, and that on BW is
{79 |a, p e kY.

Proor. 1) We note that ‘g,p = 04, ’rg}?) = rg'{,)w. The statement follows from
these.
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ii) We show the statement with B. The statement with B is similarly
verified.

We have obtained braidings G.s(x,f € k*) on B.

Let o be a braiding. Note that the second component C? of B has a basis

(X2, X%, X11 X2, X Xi1, X12X21, Xo1 X12}.
So for Xij, Xim, it follows that
20(Xia, X1p) Xaj Xom = 0(Xij, Xim) Xjj Xonm + 0(Xi jr15 Ximi1) X1, j Xt 1m,
EX1 Xia0(Xgjy Xom) = XuXiuo(Xij, Xim) + X111 Xii110(Xiv1,j5 Xig1m)-
These must be equal, so we obtain the following by Proposition 2.6.i):
o(Xij, Xim) Xjj Xonm = XuXiio(Xijy Xim),
o(Xi j+1, Xim+1) Xj1, j Xme1m = X111 X010 X1, j5 Xig1.m)-
The above equations imply that o|.g( is given as follows with some «, 8, yek:

o ‘ Xu X2 X X»

Xu y 0 0 0
X12 0 4 ﬁ 0
X21 0 ﬂ o 0
X22 0 0 0 Y

Moreover it follows by Condition (2) that
0 = (0, X12) = a(X11 X12, X12)
= o(X11, X11)o(X12, X12) + 0(X11, X12)o(X12, X22) = 72,
and
0 =0(0, X12) = o(X11 X021, X12)
= o(X11, Xn1)o(Xa1, X12) + o(X11, X12)o(X21, X22) = 7B

We have that y =0, a, f k™ since o is invertible.
Therefore o|c g c = Tup, SO T = Gup. O

We describe a Hopf closure of the bialgebra B.
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Set dy = X7 + X%. These are central grouplike elements. For example,
observe that

(Xu XIZ)(XII X21>:d (1 0)=(X11 X21>(X11 X12>
X1 Xp/\ X X» T 0 1 X2 Xn)\Xa Xn)’

(Xn X12>( X —X21) y (1 0)
X X/ \-X2 Xn “\0 1
_(Xn —le)(Xn Xlz)
X X» Xu Xn)

Using Proposition 1.6 and Proposition 2.6, we have the following.

and

ProrposiTiON 2.10. The Hopf closure H of B is given by
H = B|d;'| = Bld~'] = BIG(B)™"],

where G(B) is the set of grouplike elements in B. This Hopf algebra is braided and
cosemisimple, and includes B as a sub-bialgebra. Furthermore, H is involutory. In
fact, the antipode S is determined by

S(Xy) = Xud(' = (=1)" Xd ™"

3. Quotients of the bialgebra B

In this section we define and study a family of finite dimensional co-
semisimple bi(Hopf) algebras which are quotients of the bialgebra B over an
algebraically closed field & with chk # 2.

It will be shown that the family contains the “non-trivial” cosemisimple Hopf
algebras of dimension 8 ([Mas2]) and of dimension 12 ([F]) if chk # 3. See also
Gelaki’s Hopf algebras of dimension 4p, where p(=3) is prime ([G]).

We construct the family. It is easy to see by Proposition 2.6 that for L = 2,
N z1 and A, v= +1, the following subsets

X X = b
{XnX11 X0 = XuXnXin ..., XnXpXo - —AXpXnXn -},

{1 - (" +vxi)}

span coideals of B. Let J} and I}, be the ideals generated by these coideals
respectively, which are bi-ideals.
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We can form the bialgebra
AP =B/t 4+ 1.
We write AR',*L_) = AS\}LLI’_I), etc. Let n be the following surjective bialgebra map:
(v4) e
TZZB—>ANL, X,-j|—>X,-j=x,-j.

THEOREM 3.1.
i) A%) has the following set as a basis

t t
{xfl 5622)611)(22 . .T,xf25€21x12x21 j|1 <sZ2N,0ZLt<L— 1}.

Thus dimA(? = 4NL.
i) Let G(A(Nv,{)) = G be the set of grouplike elements of A%) . Then

L L
[ e v
G = {3 + 2%, x5 Sxnx; - + \/Ixﬁxlzlexlz“' |1 <5< N}

i) The simple subcoalgebras of Ag,{) which are not spanned by grouplike
elements are given by

s~ L = 25~ L —
X3 Xiixpxnn o X{3 X12X21 %12+ + -
t t

N

Cst = spany

2 7 ~ ~ -~
X3P X X12X01 -0 XH XopX11 X2 -

for 0Ss<N-1,1<t<L-1.

iv) IG(A(N"?)| =4N, and there are exactly N(L — 1) simple subcoalgebras of
dimension 4.
v) A(]:,'f) is non-cocommutative and cosemisimple. It is non-commutative unless

(L,A) = (2,+1).
vi) A(N"ﬁ) is an involutory Hopf algebra.
t
vi)) Let A =Zxj, xnx11x22--"(1 S s<2N,0<t<L—1). Then A is a non-

zero two-sided integral.
viii) A(Nvi) is semisimple if chk ¥ NL.

PROOF. i) Let B' be the algebra k<X, Y)/{X? - Y?}and A, v= +1. Let V
be the k-vector space with a basis {(s,1> e V|s=21,0<t<L-1}.
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We define the following ideals of B’:

L L
o e . ,—M
J¥ = (YXYX - —AXYXY ),

I = (1-vX).

We prove i) step-by-step.
(Step 1) We define a right B’-module structure on V.
Define the actions of X and Y as follows:

(st + 1), iftis odd, =L -2,
AMs+1,L—1), t=L-1,

X: t

DY 1,00, if 1is even, =0,

s+2,t—1), t=2,
s+2,t— 1D, if ¢ 1s odd,

Y:{(s,D>< (5,14 1), if tis even, t<L-2,
Ms+1,L -1, t=L-1.

It is easy to see X2 = Y? in Endi (V).
Thus we have a right B’-module structure on V.
(Step 2) We claim the subspace W spanned by

{{g(2N) +s,8) —vi{s5,t)|1 £5s<2N,q=2 1,05t <L -1}

is a submodule of V. ,
For example, when =L — 1 is odd and s = 2N, observe the following:

X : {q(2N) 4+ 2N,L — 1> {g(2N) + 2N +1,L - 1)
=X(g+1)2N)+1,L-1)
= W11, L~ 1) (mod W),
and
X :VIQ2N,L— 1> vAQRN +1,L - 1)
=vIA1-(2N)+1,L -1}
=vIlv{1l,L - 1> (mod W).

(Step 3) The action of B’ induces the B’ /Jﬁ’-module structure on V.
We check it case-by-case.
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When L is even, for each 0 <2u < L —2, observe the following:

/_._JLH )L/Z u—1
YX-- X -4, 2u>f———>< L-2>

X s+ 1L,L— 1D
OO0 a5+ 1+ 4u, L — 1 - 2u),

(s 20+ 1 PN (s du, D (s 4u+ 3,00

L/2—u—1
) s+ du+3,L—2u—2)

L
PR
XY - Y: <s2u> <s+4u0)»————+<s+4u+1 )3

L/2~u-1
K s+ dut+1,L—2u—1),

L/Z—u—l

s+ DI s L1
XY s +3,L—2)

O s+ 3+ du, L — 2 — 2u)d.

L L
e N— e N,

Thus it follows that YX---X =AXY --Y in Endi(V).

When L is odd (so L = 3), for each 2 <2u < L — 1, observe the following:

L

R, @L-12
YX -7 :-(s,0) 22

¢ L—15% s+ 1,1 - 1),
(Yx)E-D/2-u

s 2ud T s L= 155 A+ 1,L— 1)
B0 s+ 1 +8u, L — 1 —2u).

s, 20— 1 O (s du— 415 S (s du—1,0)

(L=1)/2-u
'(YX)—-’ <S+4u—1,L—1—2u>»z> (+4u—1,L - 2u).
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L
N
XY - X:-(,0->+1L-1),

(s, 2> O s+ au,05 5 (s 4 du+1,0)

(L—1)/2-u
O (s+4u+1,L—2u—1),

(L-1)/2-u
s 2u— 1 s L -2 K s+ 1,L - 1)
u—1
0 ds+4u—3,L—2u+ 1> A(s+4u—1,L - 2ud.
L L
e o ——
Thus we have that YX .- Y = AXY---X in End(V).
In either case V becomes a right B’ /Jf-module by the action.
(Step 4) V/W is a B'/J{ + I¥-module of dimension 2NL.
Since ¥/W has the set {{s,t)|1 S s<2N,0<t< L -1} as a basis, V/W
has dimension 2NL.
The action of X2 is given by X2 : (s, D> {s+2,).
Thus for 1 £s<2N, 0Lt £ L -1, it follows that
X2V (s, 1> {s+2N,t) =1 - (2N) +5,t) = v{s,t) mod W.

So we have that 1 =vX?¥ in End(V/W).
Thus it is done.
(Step 5) We construct a right A%, -module M = (V/W) @ (V/W).
There are two algebra maps
ny:B— B I+ I,
Xu—=X=x, Xp—Y=y,
A/i,i-#l ans Oa
and
m :B— B'/J}V+ 1},
XleYZx, X21I—>Y:y,
/Yii — 0.
They induce algebra maps
o A(Nvi) — B/ + I,
XX, xprey, X0,
m: ASp — B IY + I,

X2 X, Xy, Xi+—0.
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Using these, we obtain the right A%)-module V /W = V, through np with a basis
{Ks,0 =<5, D1 s <2N, 0t S L -1},

and the right A%)-module V/W =V, through m; with a basis
{1 =45, )| 1 Ss<2N, 05t <L -1}

Let M be the right A%)-module Vo @ V,. We note that M has dimension
4NL.

(Step 6) It follows that M ~ A%) as right A%)-modules.

Define an A%)-module map ¢ : A%) — M and a k-linear map Y : M — A%)

as follows:

¢: A0 — M, a—{2N,05 + v(2N,0%,} - a,
t
VM- ASJQ, {8, o= X7 XopX11X%22 - -7,
t
{8, 1 X3, X1 X12X01

It is easy to see that ¥ is surjective and that ¢ oy is the identity map on M.
Therefore we have that M ~ A%) as A%)-modules, in particular dim A%) =
dim M = 4NL.

This completes the proof of i).

i) ~ v) These are easily verified by i). Since A%) is generated by {x;}, it is
commutative iff (L,1) = (2,+1).

vi) There is an algebra map B — B”?, X;— Xj; - (Xlzl(zzv—n) +X12§2N—1)), and
this induces an algebra map S,

B — B°P
Ay —— (4.
The anti-algebra map S is an antipode of A%), which is given by

S ¢ xy x (0PN 4 XPN-Dy

= xu(x3; +x3) 7"

So A(N"i) is an involutory Hopf algebra.
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t
vii) The element A =Xx$, Spxnxn - (1<s<2N,0<7<L-1) is non-
zero by i).
Recall that A is called a left (resp. right) integral if aA (resp. Aa) = &(a)A for
all ae A%).
It is enough to check on the subset {x;}. Observe the following.

X[zA = xZ[A =0

= 8(X12)A = E(XZl)A.

t t

| e N, e N
xnuA =X kpxnixan - = Ix{ Xnxnxn - =A
= 8(X11)A.

t

e N
XA = ZxpXj; X0nX11X22 -+
t t
e e, —1 e N,
= TgevenX] 1 X22 X202 X11X22 * * * +Zs0dd X]] X22X11 X22X11X22 "+ *
-2
42 43 N
= Tseven,1=0X]1X22 + Zseven=1X]] - + Zseven,22X]] X22X11X22 " *
+2 L-1
] e e, P —
+ Zsodd < L-3X]] X22X11X22 * * * +Zsodd (=L—-2%]] X22X11X22 " **
-2
2 f——_
+ Zoodd=L-1X]1~ X202 X11X22 - **
t
e N,
5
= Eszevenxilxzz + Zs:evenxll + 2s;odd,0§t§L—3xf1 X2X11X22 " **
¢ -1
+ Zgeven2 1< L—1X]; X22X11X22 * +* +Zs0ddX]] X22X11X22 " - *

-2
e
+ ZgodaXiy X2 X11X22 " - -
=A
= e(ng)A.

Thus A is a left integral. It is similarly shown that A is a right integral.
Therefore A is a non-zero two-sided integral.
viii) It follows that &(A) =2NL # 0 iff chk ¥ NL. O
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REMARK 3.2. For the multiplication relations of A%), we note the following.

° x,zj is central.

N1
o xN+! = x;, and x2,+1 = VXiifl.

i
® x“ +x12 = 1.
o (o + ) =V 4l for I SsS N = 1

L L
Set hy = x2, + x3, and g = T VA% for a fixed V4. Cp
denotes the cyclic group of order m.

PROPOSITION 3.3. i) The subgroup <{h.,h_) of G is central in A%), and the
order is 2N. As groups

Cy X CZ, lf(Nv v) = (even,+1);
Con, otherwise.

hoshoy = {
i) G Z(A\D), the center of AND, iff ge Z(AWY) iff (L,2) = (even,+1).

Proor. i) The order of <h,,h_) is 2N by Theorem 3.1.
If (N,v) =

(even,+1),  then (hy,h )y = (hy) x 3V — X3y,
(even,—1),  then <hy,hd> = (hyd = <hd,
(0dd,+1),  then <hs,h > = (hod,

(odd, —1), then <hy,h_ ) = ().

ii) Note that G = (hy,h_dU<hs,h_dg. So it follows that G = Z(4\?) iff
ZA(VA)

geZ(Ayp).
It is easy to see that

L L
e
. Xip » X11X22 ** - = X11X22 -+ -+ Xij,
g is central & . .
NG — .
Xjjl * X12X21 -+ * = X12X21 - - *Xii41, fori=1,2. O

REMARK 3.4.
1) The dimension of a simple subcoalgebra of A%) is either 1 or 22 =
ii) The simple subcoalgebra Cj; generates A%) as an algebra.
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iii) For the YB-coalgebra (C,0,5), C ~ Cy < A%), Xij— x;j, is a coalgebra
Oxg-map.

We identify C and Cy;.

iv) Ag_) (zA(lg‘), see Prop.3.12 below) is the “non-trivial” semisimple Hopf
algebra of dimension 8 ([Mas2]). The ideal decomposition is given as follows:

AEZ') = k(x11 + X2 + %3 + x11x22) ® k(x11 — X22 — X3, + x11x2)
@ k(x11 —x22 + Xfl — xux2) ® k(xi +xn — xfl — X11%22)
@Spank{xlz,le,xfz,xlzle}-

v) Since the subHopf algebra K = k{Ah,,h_) is normal, A;;?K* is a Hopf
ideal, where K+ = Kerex. So A2 /ASPK* = 4 is a Hopf algebra of dimension
2L. 1t is easy to see that the elements X} = a, X = be 4 are grouplike and
generate A as an algebra. This means that 4 is a group-algebra. Moreover let
ab = ¢, then the order of ¢ is L. Then,

L L
— [P S ——
A=k{a,b|a>=1=0b*baba--- =abab---)

= l’c(a,c|a2 =1,cl=1acat =c"
=kDy, where Dy is the dihedral group of order 2L.
Thus we obtain a short exact sequence by means of [Masl, Definition 1.3]
1 - K AW - kDp — 1.
vi) As bialgebras
B/J; = B/(Xi1Xn — XnXu1, XiaXa1 — AXa1 X12)
= k{Xy> /(X — X3, XDy — X3y, Xy Xom (i +14+m=1),
X1 X2 — X X11, X12X21 — AX21 X12)
= BY/(X}, - X3, X}, - X)),
Thus A(Nv;) is furthermore a quotient bialgebra of B®W:
Ay = B (X} — X, Xh - X3, 1 - (XA +vx ).

We note that {X? — X3,, X3 — X7} spans a coideal of B*) and that {1—
(XZ¥ + vXA')} spans a coideal modulo the coideal spam{X? — X2, X% — X3 }.
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Recall that C; denotes a simple subcoalgebra of dimension 4 of A%) for
0<s=N-1,12t<L-1. Let {Cy) denote the subHopf algebra generated
by Cq. It is easy to see that (Cy)> is commutative iff either ¢ is even or
(L,Ay = (2¢,41). So it follows that ¢ is odd if (Cy) is non-commutative.

We show that (Cy) is a member of the family {A%)} if ¢ is odd.

Set

GCD(L,t) =my, GCD(N,2s+t) = my,
L/my = Ly, N/my = Ny, t/mL =t, (2s+ t)/mN = (s, Z)O,
2<Ly<L 1SN <N)

THEOREM 3.5. Assume that t is odd and Cy < A(Nvi). Then

(Cqyy ~ A(NV:ZO as Hopf algebras.

Proor. Let ¢ be odd, and fix 0 <s<N-1and 1 £¢t<L—-1. We note
that integers 25+, to, (s,7), mr and my are also odd.
Set

t t

ZS,_/‘— ,_/%
Zi = X3 XX XI1, 212 = Xoy XiaXa1 - X12,

t t
o = XXX Xl I = X3 Smxn X2 -
The map w: A%L) — (Cy), x>z, is a (well-defined) surjective Hopf
algebra map. This is easily verified.
We show that the map w is injective.
Recall and set that

9
Go = G(442,)
Ly Ly
= {x3 4+ X3 3 T £ VA Xxaxn |1 L u < Nob,

(Cw)o = Cuw < 451,
Then it follows that
A — kG @ 2(C
NoLo = KGo @ (Cw)o-

Thus it is enough to show that w is injective on kGy and on Z(C,),.
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It is easy to see that w is injective on kGy.

So we show that w is injective on Z(Cy),.

First we examine o((Cy)y) for 0 Su<No—1, 1 Sv=<Lo—-1.

Let tv =¢gL +r, for some q, 0 <r < L — 1. It is easy to see that r #0, so it
follows that 1 <r, L—r<L-1.

v
For x%’l‘m € (Cw)q, Observe that
v
(R KX )
v

D at—
= Z11 211222211+

v
A

t
e “
= (3 T X)) (XF - xnx - xn) (08 XXy e Xa)

w

2(2s+t)u e em—
= x1§ ) X XXXy -

r
L et s
xfy - XX -, if g is even,
L+r
)L e s
X§‘i Y TR if g is odd

r
2 @stt)utsv(q/DL} | o .
x1§ S X11X22X11 7, if g is even,
L—r

xﬁ(2s+l)u+sv+((q—1)/2)L+r} _f—’x22x“x‘——\22 ey if ¢is odd
#0.

Let

((2s+t)u+sv+%LmodN,r), if g is even,

(25 + t)u + sv +(‘1+1)L +rmodN,L—r), if qisodd,

O<as<N-1,1Sb<L-1).

(a,b) =

So we have that

v

0# CO(X%'{ X11x2x11 ) € 0((Cuw)oy) N Cap-
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Since C,; is a simple subcoalgebra, it follows that
&((Cuw)o) = Cap = A(NVI{)'

Thus  is injective on (Cyp)y-

Next assume that there are 0 < u, u' SNy~ 1, 1 £v, v/ £ Ly — 1 such that
((Cun)g) = &((Curvr)g)-

Let ' =¢g'L+v, 1S <L-1

It is easy to see that ¢ =¢' mod2 implies u =’ and v="1".

So let ¢ be even and ¢’ odd. This implies that g+ ¢’ + 1 is even and that
L=r+7.

We have that (v +v') = (¢+¢' + 1)L, so it follows that Ly|v+v'.

It follows that Lo =v+ v/, since 1 v, v/ £ Ly — 1.

So we have t=(q+4q + 1)mr, and this means that ¢ is even. A contra-
diction.

Thus @((Cu)g) = @((Cuw)p) iff u =1/, v="1', s0 w is injective on Z(Cuy),.

Therefore we have the injectivity of w.

This completes the proof of the theorem. O

It is easy to see that the following lemma holds.

LemMMA 3.6. Assume that A, and A, are bialgebras over an algebraically
closed field. If the bialgebra A) ® A, is generated by a simple subcoalgebra as an
algebra, then so is A;, i = 1,2. Moreover if any simple subcoalgebra of A1 ® A
has dimension 1 or n?, then either A, or Ay is pointed.

COROLLARY 3.7.
1) Assume that Ag‘,’i) is non-commutative, i.e. (L,A) # (2,+1), and Cy = Ag\‘;i).
Then

(Co> =AY iff tisodd, (L,t)=1and (N,25+1) = 1.
ii) Assume simply that t is odd and Cy < A%,{). Then
(Cad=AS) iff (L) =1,(N,2s+1) =1
iii) Let N be 2"m, and m odd. Then
A0D ~ Ag‘% ® kC,, as Hopf algebras.

iv) If Agl,{ is non-commutative, then it is indecomposable as the tensor product
of its subHopf algebras.
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ProOF. i), ii) These follow from the dimensionality.

iii) Let N be 2"m and m odd. We may assume that m > 3. Now let
s=(m—1)/2, t=1, then it follows that 2s+¢t=m, Ny=2", Lo=L, and
(Cud > A5H.

Let f=x3% + vx3;*. Then f is a central grouplike element with order m,
and Cy-f = Cyy, Where § =2"+(m—1)/2< N - 1.

For such s, s’ and ¢, it follows that

(s’ +1,N) = (2{2" +’”—2_—1} + 1,2”m>

= (2" 4 m,2"m)

=1.
Thus the simple subcoalgebra Cy; - f = Cy, generates A%) as an algebra by ii).

Therefore we have that

Agﬂ) L Ag‘fl)‘ ® kC,, as Hopf algebras.

iv) Let 2" = N. Applying Lemma 3.6 to A%), we may assume

AW = (Cyd Q KF,

for some 0 <s<N-1, 1<¢t=<L -1, (abelian)subgroup F < G(4 M))

Since ASVL) is non-commutative, so is {Cy). This means that ¢ is odd. By
Theorem 3.5, (Cy) ~ AIJ:L)

Comparing the dimensions, we have that |F| = mymy.

Counting the number of 4-dimensional simple subcolagebras, we have the
following:

N(L—1)=No(Lo— 1) |F|
= N()(L() — l)mNmL
== N(L - mL).

Thus we have that my = 1.

On the other hand, it follows that my =1 since 2s+ ¢ is-odd and N is a
power of 2.

Thus we have that F = {1). O

Next we show that we can obtain all braidings on A . See [GW], [G].
We identifiy C < 4 NL) as in Remark 3.4. Note that any braldlng on A%)
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determined on C ® C. If a bilinear map 7 on C extends to a braiding on A%), we
denote the braiding by 7.
Recall YB-forms ag,, rﬁi,) on C.

CLam 3.8. Let o be a braiding on ASJ,{).

i) If L 23, o|cgc coincides with a,p for some o, B e k™ such that (aﬂ)N =,
(@) =4

i) If L=2, 0'|cgc coincides with either .5 for some o,f € k™ such that
(BN =, (ocﬂ_l)2 =1 or rié) for some y,6 € k* such that 8* =y, yN = 1.

ProoOF. 1) Assume that L = 3.
The subcoalgebra C - C of A%) has a basis

{x31, X1y, X11X22, X22X11, X12X21, X21 %12} -
We have similarly as in Proposition 2.9,
olegc = 0up for some o, fe k™.
Moreover o satisfies the following:
0 =o(1 — (<Y +vx3y), xu1)
=1- V{Gaﬂ(xlz,le)Uaﬂ(xlz,xZI)}N
=1-v(p)".

Thus it follows that (af)™ = v.
Observe that when L is even,

L L

. A
0 = a(xpx12- - x12 —A%12X21 - - - X1, X22)

and that when L is odd,

L L
0 = a(5a1x12 - - X2r —AX12X21 - - - X12, X21)

=aof —Ip"5

Thus in either case, it follows that of = 485, or («™)) = 4.
ii) Assume that L = 2.
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The subcoalgebra C - C of A%) has a basis
{32y, %35, X11%02, X12%21 )
As in the proof of Proposition 2.9, we have the following:
O(Xij, Xim) XjjXmm = XuXiG(Xij, Xim),
O(Xi j4 1 X1 mt1) X1, jXmt Lm = X141 Xiit 10 (Xig 1, jy X1 m)-
Using these relations, we have the following with «, B8, y, d ek,

o l Xu X Xa X

X11 Y 0 0 o
X12 0 o ﬁ 0
X 0 B o« O
X22 AD 0 0 Y

Moreover o satisfies the following equations:
0 = a(x11x12, X12) = y2,
0 = o(x11x21, X12) = P,
0 = a(x11%12, X21) = 6P,
0 = o(x11x21, X21) = 0.

So it follows that either y=0=4J or a =0 =4.

Thus o|cg ¢ is either g, or 152), for a, B, y, 6ek*.

If 6|cgc = 04, then the relations on a, § follow similarly as in the proof of i).
Let olcgc = rg). Observe that

0 = o(x7; — X35, %2)
= fg)(x“,xzz)z _ rf,ﬁ) (%2, %22)?
=0~ 7,

0=0(1 - (7 —vxiy),xn1)
=1- Tg)(xn,xn)m
—1—pN,

Thus it follows that 6% =32, y*N = 1. O

3
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CrLamm 3.9.
i) The YB-form o, extends to a braiding on ACD i ()N =, («f)F =
ii) The YB-form rig) extends to a braiding on Ag\,z if =92, yN =1.

ProoF. Recall that B has braidings {G.s|o,f€k*} and that B® has
braidings {Z\y |y,6 € k*}.
i) It is easy to see by Proposition 1.1 that 6,5 : B® B — k induces a braiding

on A( iff
@) =
(@p™")t =

ii) Recall that 402 = BW /(X2 — X%, X% — X3,1 — (X2 +vx%")).
It follows that rié) induces a braiding on B®W/ (Xlz1 X%, X5 - X3) iff
8% =2, and that ryé induces a braiding on A N2 Vif 2=, W =1=6". O

ProrosiTioN 3.10.
1) The set of braidings on Agi) is given as follows:

{Gugl (B =v, (@) =2}, if L23,
(G, TR B = v, (@ = 2,88 =N =1}, f L=2.

i) A(N"I{) is, in fact, a braided Hopf algebra.
If chk ¥ NL, the number of braidings on Ag? is

2NL, if Lz3,

8N, if L=2.
iii) The number of symmetric braidings on A%) is given as follows;
When L = 3,

N L (A &
odd odd (+1,+1) 2
(£1,F1) 0

odd even (v,+1) 2
(v,—1) 0

even odd (+1,4) 2
(-1,4) 0

even even (+1,+1) 4
otherwise 0.
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When L =2,
N (%) & i
odd  (v,+1) 2 4
(v,—1) 0 0
even (+1,+1) | 4 4
(+1,-1) 0 0
(—1,+1) 0 4
(-1,-1) | 0 o.

Proor. i) This follows from Claim 3.8 and 3.9.
ii) There is a surjective map

{(p,q) ek x| PN =v,q?t = 2} = {(,p) ek x k| (@B)" =, (af™)" = 2},
(p,9)~ (pg,pq").
Set (p,q) ~ (P,¢) & (p,q) = £(P',4q’). It is an equivalence relation, which
induces the bijection
{(2.0) | PN =v, @ =3}/ ~ = {(@B)|@p)" =v,(ap™")" = 2)}.

Let chk  NL. Then it follows that |{§}| = 2N - 2L -1 =2NL. For #¥, since

N =1 and 6 =, it follows that |{t}}] =2N .2 = 4N.

iii) Recall that chk #2. On ANL), Gyp is symmetric iff ?=1= /iz and
@B)" =v, (@p )"

On A%), fg}) is symmetric iff =1, =24and y¥ =1, & =2 O
REMARK 3.11. The algebra map 6 : Ay, M) AUPeP x5 xy is a bijective
Ay ij > X;

Hopf algebra map. Define (a,b) = O'a/;( (a ), b) for a,b GA%).
The linear map < , »: Ay v’l) ® Any ) _, k is a non-trivial Hopf paring.

Using Proposition 3.10, we have the following indispensable proposition.

PROPOSITION 3.12. Ag\v,:,f‘l) ~ 1;2,{22 if and only if both (Ny,L;) = (N2, L,) and

(v2,42) = 2(v1, A1), (case Ny, L, odd);

Ay = A1, (case Ny odd, L, even);

Vo =y, (case Ny even, L, odd);
(

(v2,42) = (v1,41), case Ny, L, even).
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Proor. For a fixed v—1, we can define a bialgebra map ¢: B — B,
¢ X X,
X V=1X,,
Xo1 > —V—1Xy.
Let

A;,‘L""A), if NV, L are odd,

P A if Nis odd, L is even,
NE A%[A), if N is even, L is odd,
A%L), if N, L are even.

Then the following diagram commutes:

B — ., B

A = o

NL -

Thus by Proposition 3.10.iii), if N or L is odd, then the statement follows.
Assume that both N and L are even. Then

( (++4) = by Prop. 3.10.ii), (v2,4;) = (++).

(=+) = by Prop. 3.3.ii), G(A%;i‘l)) is central so Ay = +1.
By Prop. 3.10.ii), v, = —1 so(v2,42) = (—+).

(V],/l]) =9

(+-) = by Prop. 3.3.ii), kG(AN' 7)) N Z(AG3)) = K s0 4p = —1.

By Prop. 3.3.i), v = +1 so(v2, A2) = (+—).

| (==) = it follows that(vs, A2) = (——).

This completes the proof. O
ReMARk 3.13 ([Mas2], [F]). The “non-trivial” 8-dimensional semisimple

Hopf algebra is given by

A = )

» y



28 Satoshi Suzuki

Let chk # 3. The two “non-trivial” 12-dimensional semisimple Hopf algebras
are given by
AT =47 and A =4
Recall that H is a Hopf closure of B and that 4, "’1)
is a quotient of B through n. So there is a Hopf algebra map 7: H — A(W1 such

is a Hopf algebra which

that # = 7|.
H is a right A%)-comodule algebra via #. See [DT]. Then

ProrosiTioN 3.14. H is a cleft Agi)-comodule algebra. Namely there is an
invertible comodule map ¢ : A L) — H.
1 t
ProoF. Recall the basis {x{; - x22x11 -7, x{, - Xnx12-- [l £s<2N,05¢ =
L —1}. This can be written as follows:

2(s+1) 2(s+1)
X11 *12 \
X% - X1y X% - xx X3 - X12 X35 - xa1
2s 2
X3 - X1 %2 X171 - X22X11 X75  X12%21 X33 - X21X12
L1 L-1 L-1 L-1
og s — g s N— 25 s PN,
X711 - XX - X110 X22X11 0 X1y - X12X21 " - xﬁ s X21X12 70"
L L
25 ’___/h_\ 2s ,—/—
X171 ° X11X22 - - XLL X1p * X12X21 ** - XL L+1

for 0<s<N-1.

We use it. Define, for example, a linear map ¢ : 4 NL) — B — H by the small

(vA)

letters to its capital letters, i.e., x;; to Xj;, etc. Then ¢ is a right A,;’-comodule
map.
We define another linear map v : 4y V'l) — H as follows:
On the bottom row,
L L 1 \Z+H
Crrredunuvn £ N
¥ ox® XXy - XL '_’(XLL"‘X22X11'X12iY)<2') ,
+
L L 1 2s+L
P — e e
X35 KXo -+ xLeat — MXp L1 Xo Xig X )<d ) ;
+

and on the other rows,

Y =Sog.
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Then we have y = ¢~', so ¢ is invertible.

(v2)

Therefore H is a cleft 4, -comodule algebra. O

Added in Proof

The group G = G(A%)) is abelian, and the type is given as follows. The case
that L is even:

G = (hy, by x gy

(Cy x C3) x Gy, if (N,v) = (even,+1);
(Con) x Cy, otherwise.

The case that L is odd:

HTgy = Cay if v =—a";
KRGy x (B by = Coy x Gy, if v=AN.

Proposition 3.12 follows from this and Proposition 3.3.
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