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NON-Cj-SELF-DUAL QUATERNIONIC YANG-MILLS

CONNECTIONS AND L2-GAP THEORY

By

Tadashi Taniguchi

1. Introduction

In the context with the 4-dimensional Yang-Mills theory, it would be of

interest to study the Yang-Mills theory on several cases which appear naturally.

From this point of view, Nitta ([12]), Mamone Capria and Salamon ([8])

developed Yang-Mills theory on quatemion-Kahler manifold and gave the notion

of c＼-and ci-self-dualconnections which reasonably corresponds to the self-dual

or anti-self-dualconnections on 4-dimensional manifold ([2]).

In thisnote, we will give two properties for c＼-and C2-self-dualconnections on

quatemion-Kahler manifolds; (i) the existence of quaternionic Yang-Mills con-

nections which are neither c＼-nor C2-connections, and (ii)the gap phenomena for

quaternionic Yang-Mills connections by L2-norm. These results seem natural con-

sequence as higher dimensional analogues to 4-dimensional Yang-Mills theory.

There are remarkable results on the construction c＼-and C2-self-dualcon-

nections by Kametani, Nagatomo and Nitta ([6],[9],[10],[11]).As a counter part

of thisresult,we can consider the question whether there existnon-ci- and ^-self-

dual connections on the compact quaternionic Kahler symmetric spaces, so called

Wolf spaces. On the other hand, in 4-dimensional Yang-Mills theory, Itoh [3]

found the non-self-dual Yang-Mills connections on SA and CP2. The non-self-

duality of the canonical invariant (/-connections on S4 and CP2 requires the

injectivityof the isotropy homomorphisms. Namely, if the isotropy group of base

space is embedded into the structure group G, then the canonical connection is

not (anti-) self-dual. Employing the ideas in [3] crusiously, we will give the

existence of non-c,-self-dualYang-Mills connections in higher dimensions. Namely,

we show that the canonical invariant connections on a homogeneous (/-bundle

with some structure group G on a Wolf space give the non-c,-self-dualYang-Mills

connections. It is also the non-c,-self-dual quaternionic Yang-Mills connections.
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Secondly, we will discuss on the gap phenomena for quatemionic Yang-Mills

fields.This problem has been studiedin [14] by using the pointwise norm (cf.[14]).

Replacing the pointwise norm to the Li -norm, we will show the gap phenomena

again for quatemionic Yang-Mills fields.It can be also viewed as a higher-

dimensional context to the 4-dimensional gap phenomena via Z^-norai for Yang-

Mills fields(cf. [13]).

2. Preliminaries

A quaternion-Kahler manifold (M,g) is a Riemanniae 4^1-manifold whose

holonomy group is contained in Sp(n) ･ Sp(l), n > 1. In the case of n = 1, we add

the assumption that (M, g) is Einstein and half-conformally flat.It is known that

the bundle a2T*M of 2-forms on a quaternion-Kahler manifold (M,g) has the

following irreducible decomposition as a representation of Sp(n) ･ Sp(l) (cf. [8],

[12]):

(2.1) A2T*M = S2HRS2ER{S2HRS2E)±,

where H and E are the vector bundles associated with the standard repre-

sentations of Sp{＼) and Spin), respectively. Let P be a principal bundle with a

compact Lie group G as the structure group over a quaternion-Kahler manifold

(M,g). Let Ad(P) ―P xAd q be the vector bundle associated to P via the adjoint

representation of G on its Lie algebra g. The curvature form Fv on P descends to

a 2-form on M with values in Ad{P). Corresponding to the decomposition (2.1),

we write the curvature Fv as Fv = Fl + F2 + F3. A connection V is said to be

c,-self-dual(z = 1,2 or 3) if F7'= 0 for all j # i. Each c,-self-dualconnection is

a Yang-Mills connection (cf.[8],[12],[2]).Moreover, if M is a compact, a c＼-or

C2-self-dual connection is characterized as a connection minimizing the Yang-

Mills functional YM(V) = 1/2 JM|FV|2^.

Definition 2.1 ([14]). A connection V on a principalG-hundle P over a

compact quaternion-Kdhlermanifold (M,g) is calleda quaternionicYang-Mills

connection?/Av (Fv aO""1) = 0 where Q is thefundamental 4-form on (M,g) and

Av is the Laplacian on Ad(P).

Note that in the case of n = 1, the quatemionic Yang-Mills connections are

Yang-Mills connections, and vice versa. Each c,-self-dualconnection is a quater-

nionic Yang-Mills connection. Moreover, a quatemionic Yang-Mills connection is

a Yang-Mills connection (Proposition 1.1 in [14]).
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Let M = K/H be a compact oriented Riemannian homogeneous space with a

reductive decomposition f = t)+ m and P = (P, n, M, G) be a principal bundle

such that elements of K acts on P as automorphisms i.e.% o 71= n o % for all

& e AT and % oi?9 = i?s o % for all A:e AT and all g e G where >: AT x P ―≫P is

a leftaction, <D is the induced action of AT on M and P is the action of G by right

translations on the fibers of P. Fix u$ in P over o = eif in M. The AT-action

induces the isotropy homomorphisms X : /f ―>G by %(mo) = JRa(A)(wo)-A

connection c on ? is called invariant if and only if <&*kco= co for all k e AT. We

then obtain a one-to-one correspondence between the set of AT-invariant

connections co on P and the set of linear maps A: m ―>g such that

Am o ai4 = adx(h)°Am for any he H. The correspondence is given by A(X) =

X{X) if X e I) or A(X) = Am(Ar) if Z e m and the invariant connection co

and curvature F01 on P are then given by

ftV,(f)=A(JQ, Xef

F-(l, f) = [Am(X), Am(F)] - Am([X, Y]J - X([X, Y]^ IJem

where X, Y are the vector fields in P induced by X, Y. The AT-invariant

connection in P defined by Am = 0 is called the canonical connection according to

the decomposition f = f)+ m. Its curvature satisfiesF?o(X, Y) = -l/2X([X, Y}^)

for X, 7em (cf. [5]).

Compact quaternionic Kahler symmetric spaces were classifiedby Wolf [16],

called Wolf spaces. Wolf spaces are quotients M = K/H of a compact simple

centerless Lie group AT by a closed subgroup H with the splittingH ― L- A where

A is isomorphic to Sp(l).

Theorem 2.1 ([15]). Let P be a K-homogeneous principal G-bundle over a

Wolf space and X be the corresponding isotropy homomorphism of H into G. For a

canonical K-invariant connection a> on P,

(1) co is a c＼-self-dual if and only if X＼L = 0,

(2) co is a ci-self-dual if and only if k＼Sp{＼)= 0,

(3) co is a c^-self-dual if and only if X = 0, in this case, P is trivial and co is

flat.

3. Non-Cj-self-dual quaternionic Yang-MIMs connections

Theorem 3.1. Let G be a classicalLie group Sp(r), SU(r) or SO(r). Let r

satisfyin the table below the inequality corresponding to a Wolf space M = K/H.
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Then, there existsa K-homogeneous G-bundle over M ―K/H whose canonical

invariantconnectionsis not Ci-self-dual,i= 1,2,3.

manifold Spir) SUM SO(r)

HP" r>n + ＼ r > In + 2 r>An

G2(Cn+2) r>n + l r>n + 2 (n= 1,2) r>6 (n = 2)

r>n + A (n>3) r>2≪ + 3 (≫#2)

G4(Rn+4) r>2 (ti=1) r>4 (n =1,2) r>n + A

r>3 (n = 2) r>≪ + 4 (≪>3)

r>n + 2 (≪>3)

G2/(SU(2)-Sp(l)) r>2 r>A r>4

F4/($p(3)-Sp(i)) r>A r>8 r>15

(E6/Z3)/(SU(6)-Sp(l)) r>l r>8 r>15

E7/(Spin(12)-Sp(l)) r>13 r>14 r>15

E8/(E7.Sp(l)) r>57 r>59 r>115

Proof. In general, the canonical invariant connections on a homogeneous

G-bundle on a compact symmetric space has parallel curvature i.e. V,-i^ = 0 for

any i,j,k ([3],[5]) and hence it gives a quatemionic Yang-Mills connection i.e.

VjFy = 0 for any i,j (Proposition 1.1 in [14]).It is also a Yang-Mills connection

i.e.Y^i^i^Jj = 0 for any j. From Theorem 2.1 ([15]),if f)is embedded into g by

a homomorphism A, then the I induces as the isotropy representation a K-

homogeneous (j-bundle over M = K/H whose canonical invariant connection is

not Ci-self-dual.Hence, with respect to given I),we may find such the Lie algebra

g. Elementary embeddings between Lie algebras are known as the following.

(3.1)

Note that

<

sp(r) <― su(2r) <―>u(2r) <-> so(4r),

so(r) <― 5u(r) ^^ u(r) ^^ sp(r),

sp(l) ~ ≫u(2) =. so(3), ≪p(2) ^ so(5), ≫u(4) ^ so(6),

u(l) ^ so(2) ^ R, spin{n) ~ so(≪), so(4) = so(3) c so(3)

HP1 = G4(R5) = S＼ G2(C3) = CP2, G2(C4) = G4(R6).
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HPn = {Sp{n + l)/Z2)/{Sp(n) ■Sp(l)):

sp(≪) 0 sp(l) 3 (x,y) h-> A(x,}>) sp(≫ + 1) defined by k{x,y) := diag(x,j>). For

JV>n+l, we defined by l(x,y) := diag(x,j>, 0). Using (3.1), we see that

sp(/i) c sp(l) ^ su(2r) c su(2) ^ su(2n + 2).

Hence we get r > In + 2 for 5J7(r). Since sp(/i) c sp(l) 3 (x,y) t-+ X(x,y) e

so(4≪) defined by A(jc,j)i;:= xv ― yj, t;e ^4", we have r>4n for SO(r).

G2{Cn+1) = (SU(n + 2)/ZH+2)/U(n) ･ ^(1):

Using (3.1), we have u(≪) c sp(l) e―>sp(≪) c sp(l) ^^ sp(≪ + 1) for any n.

Using (3.1), we also have u(n) c sp(l) <―>so(2n) c so(3) c-^ so(2≪ + 3) for any

n # 2. In the case of n = 2, u(2) c sp(l) ~ ≪ c su(2) c sp(l) ^ so(2) c su(2) c

sp(l) ^ so(2) c so(3) c so(3) <2Lso(2) c so(4) ^ so(6). When n = 1, it has shown

by Itoh [3]. Using (3.1), we get u(≫) c sp(l) ^ if c su(n) c su(2) ≪->su(2) c

su(n) c su(2) ^^ 5u(n + 4) for any n > 3. In the case of ≪ = 2, u(2) c sp(l) ^

R c su(2) c su(2) ^ so(2) c so(4) ^ so(6) ^ su(4). When /i = 1, it has shown

by Itoh [3].

E%/{EtSP{＼)):

For the wolf space E%/{Ei ･ Sp{＼)) we use the fact that Ej is closed subgroup of

U(56) (cf. [17]) and u(≪) ^-> su(n+1).

The same argument can be applied to the others. □

By generalizing the argument in Itoh [3, Theorem 3], we have the following.

Lemma 3.1. Let P be a Sp(n+ ＼)-homogeneous G-bundle over HPn induced

by an injective isotropy homomorphism X of H into G. Then the canonical

Sp(n + ＼)-invariant connection co is not weakly stable.

Proof. The curvature tensor of HP" with quaternionic sectional curvature 4

is defined by

(3.2) i?(JJ)-lAF +
3
£

a=l

3

a=l

We fix a A in Hom#(m, g). Since A o ad/, = ad^) o A for any he H, the Ad(P)-

valued 1-form A induced by A is parallel, S^A = dwA = 0. Then cot = co + tA

gives a deformation of co. Since Fat is invariant under K, ＼FWt＼2is constant. Thus,

we have the following:

2 dt2
＼Fa'＼2dv＼t=Q= vol(HPnKF<°, [A, A]>
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for a deformation cot with (d/dt)cot＼t=Q ― A. Using (3.2) and the same argument

in Theorem 3 in [3], we have

<F≪,[A,A)} = -nJ2＼A(ej)＼＼

j

where {ej}j=it2,...,4n*s the orthonormal basis of in. Thus, if A ^ 0, then

(＼/2){d2/dt2)
Lpn
|Fw'|2£foL=0 < 0. Therefore co is not weakly stable. □

4. Gap phenomena for quaternionic Yang-Mils fields

Let (M,g) be a compact quatemion-Kahler manifold. The Riemannian

curvature operator R acting on a2TM has a splitting R = R＼ + Ri + ^3 with

respect to the decomposition (2.1). By using the result in [7] we can write the

curvature operator Rt as Rt = [ijS2TM where fit(i = 1 or 2) is a positive constant.

Since R^ is negative semi-definite, we put /i3= 0. We set A,-= s/2≪ ―2^?- (i = 1,2

or 3) where s is the scalar curvature of (M,g).

Theorem 4.1. Let V be a quaternionic Yang-Mills connection over a compact

quaternion-Kdhler manifold (M,g). Assume F3 =0.

(1) There exists a constant

£i =

62

≪ + 2
mm

mm

(2n-l)2s2V

(4.1)

S(4n-l)2

1

2

f(2n-i)2s2V l_

＼

8(4≪-l)2 '2

< s

~2n

(- -2/i, H

fe-2-H

I-2R )■> -<[FvJ]Jy

3

such that

k<0, YM(V) < 4n2c2k + ex => Fl = 0

(2) There exists a constant

n + 2

2n+l

such that

k>0, YM(V) < An2cxk + e2 => F2 = 0.

Where k = -1/(8tt2) Jm tr(Fv aFv) aQ""1, cx = 6n/{2n + 1)!,c2 = -l/(2n - 1)1

Proof. We willwrite the Bochner-Weitzenbock formula for any g-valued

2-forms 6 (cf.[14, [1]).

<av^> - <v*v^> =
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For convenience we put A ―(c＼―C2)/c＼and <f>= AFl. Substituting (f>= AFl

into (4.1) and using F3 = 0, [F2,Fl] =0 (cf. Proposition 3.3 in [14]), we have

(4.2) <AV1,F1> - <y*VF＼Fl> = AJF1!2 - <[F＼Fl],F1}

where ($/2nI - 2R＼)XJ = (s/2n)X a Y - 2RY{X a Y) = {s/2n - 2/ix)X a F, X, 7

e TXM. Hence we put k＼= s/2n - 2^. Note that AV(FV Alln+1) = 0 and F3 = 0

hold if and only if AVF! =0 (see Proposition 3.1 in [14]). Using the Kato's

inequality JIVF1] > JI^H, ＼[Fl,Fl]＼< V2＼Fl＼-＼Fl＼(cf. [14], [1], [13]) and

integrating over the compact quatemion-Kahler manifold M, we obtain the

inequality

(4.3)
[<AVF1>JF1>£: f|J|F1||2

+ 21
||F1|2-V2||F1|-|F1|

To get the Lin -estimates we use the following Sobolev inequality due to [4]

for the case dim M ― An:

(4.4) 2 2(4/1-1)
Wn^n/m-i < {2n-l)sV^≫

＼＼dw＼＼＼＼+v-liw＼＼<p＼＼＼

holding for all functions (p e C00(M) where V is the volume of M, s is the scalar

curvature and ||･ 1^ denotes the L^-norm. We now apply the Holder's inequality

to the integrand of the last term on the right hand side of (4.3) to get:

(4.5)
^A^.F1)^ f|rf|F1||2

+ ^1
f|/'1|2-V2||/'1||2lI.||f1||JB/2ll_1.

Applying the Sobolev inequality (4.4) to the firstterm on the right hand side of

(4.3), we have

(4.6)
|<Av/'1,/fl>^ (*-

+

(

(2/i- i)s

2(4/1-1)

(2#!-l>

2(4/1-1)

)

＼＼F'＼＼l

J/l/(2*)_ yftWF ■il) I Fl II2
＼r ＼＼An/2n-＼-

In the case of X＼- (2/i - l)s/2(4n - 1) > 0, if we take ＼＼Fl＼＼2n< {In - ＼)s/

{2V2(4n- l))F1/(2w) from (4.6), then we conclude that Fl = 0. In the case of

k＼ ―(2≪ ―l)j/2(4n ― 1) < 0, we use (4.6) together with the following inequality

which is obtained immediately from (4.5):

(4.7)
＼<£f＼F1>

> kx＼＼F% - V2＼＼F%n ■WF'Wl/in-i



c%

Using (4.10) and F3 = 0, we obtain

FM(V) < 4n2c2k + C-l^S2V^-l^n

＼＼F%
c3 -c2

11^112 +

n + 2
£l = min<

Hence, according to take e＼as follows:

8(4≪-l)2 '2V2≪ ^7 J
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In fact,if IIF1!^ < l/(V2)MVl^2n＼ then (4.7)implies

(4.8)
J<AV,F'>>A,||F'||^-A1K'/(2"≫||f1||L/2/,_1

which is positive if ＼＼Fl＼＼22- W^WF1^^ > 0. On the other hand, if

IIP1Ik, < i/{＼/2)X＼VlIVn＼then we get by (4.6)

(4.9) j<AV,F'>> L -gzijQfllF'll*- K'/^IIF'H^.,)

which is positiveif H^11|2~ ^^^ll^^lL^-i ^ R> sincewe arein the case where

Xi - (2n - l)s/2(4n - 1) < 0. If we take

8 = min<

we have F1 = 0. Namely

that F1 = 0.

2

(*≫-

Vl(4n

if ||

-1)

yW≫)

1

V2
hvmn)

Fl＼＼2n<S, then, from (4.8) and (4.9), we conclude

Applying the Holder inequality,we have

||F1||2<||F1||2n-F(n-1)/(2")

Therefore, by using H^F"1||f_ < 32, we get

(4.10)

On the other hand, from [2]

HF1^^2- F("-1)/w

2YM(V) = %n2c2k + -―-

3

if it satisfiesYM{V) = 4n2c2k + eh then Fl = 0. We complete the proof of (1) of

Theorem 4.1. The same argument can be applied to (2) of Theorem 4.1. □
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