NON- c_{i}-SELF-DUAL QUATERNIONIC YANG-MILLS CONNECTIONS AND L_{2}-GAP THEORY

By
Tadashi TANIGUCHI

1. Introduction

In the context with the 4-dimensional Yang-Mills theory, it would be of interest to study the Yang-Mills theory on several cases which appear naturally. From this point of view, Nitta ([12]), Mamone Capria and Salamon ([8]) developed Yang-Mills theory on quaternion-Kähler manifold and gave the notion of c_{1} - and c_{2}-self-dual connections which reasonably corresponds to the self-dual or anti-self-dual connections on 4-dimensional manifold ([2]).

In this note, we will give two properties for c_{1} - and c_{2}-self-dual connections on quaternion-Kähler manifolds; (i) the existence of quaternionic Yang-Mills connections which are neither c_{1} - nor c_{2}-connections, and (ii) the gap phenomena for quaternionic Yang-Mills connections by L_{2}-norm. These results seem natural consequence as higher dimensional analogues to 4-dimensional Yang-Mills theory.

There are remarkable results on the construction c_{1} - and c_{2}-self-dual connections by Kametani, Nagatomo and Nitta ([6], [9], [10], [11]). As a counter part of this result, we can consider the question whether there exist non- c_{1} - and c_{2}-selfdual connections on the compact quaternionic Kähler symmetric spaces, so called Wolf spaces. On the other hand, in 4-dimensional Yang-Mills theory, Itoh [3] found the non-self-dual Yang-Mills connections on S^{4} and $C P^{2}$. The non-selfduality of the canonical invariant G-connections on S^{4} and $C P^{2}$ requires the injectivity of the isotropy homomorphisms. Namely, if the isotropy group of base space is embedded into the structure group G, then the canonical connection is not (anti-) self-dual. Employing the ideas in [3] crusiously, we will give the existence of non- c_{i}-self-dual Yang-Mills connections in higher dimensions. Namely, we show that the canonical invariant connections on a homogeneous G-bundle with some structure group G on a Wolf space give the non- c_{i}-self-dual Yang-Mills connections. It is also the non- c_{i}-self-dual quaternionic Yang-Mills connections.

[^0]Secondly, we will discuss on the gap phenomena for quaternionic Yang-Mills fields. This problem has been studied in [14] by using the pointwise norm (cf. [14]). Replacing the pointwise norm to the L_{2}-norm, we will show the gap phenomena again for quaternionic Yang-Mills fields. It can be also viewed as a higherdimensional context to the 4-dimensional gap phenomena via L_{2}-norm for YangMills fields (cf. [13]).

2. Preliminaries

A quaternion-Kähler manifold (M, g) is a Riemannian $4 n$-manifold whose holonomy group is contained in $S p(n) \cdot S p(1), n>1$. In the case of $n=1$, we add the assumption that (M, g) is Einstein and half-conformally flat. It is known that the bundle $\wedge^{2} T^{*} M$ of 2 -forms on a quaternion-Kähler manifold (M, g) has the following irreducible decomposition as a representation of $S p(n) \cdot S p(1)$ (cf. [8], [12]):

$$
\begin{equation*}
\wedge^{2} T^{*} M=S^{2} H \oplus S^{2} E \oplus\left(S^{2} H \oplus S^{2} E\right)^{\perp} \tag{2.1}
\end{equation*}
$$

where H and E are the vector bundles associated with the standard representations of $S p(1)$ and $S p(n)$, respectively. Let P be a principal bundle with a compact Lie group G as the structure group over a quaternion-Kähler manifold (M, g). Let $A d(P)=P \times_{A d} g$ be the vector bundle associated to P via the adjoint representation of G on its Lie algebra g. The curvature form F^{∇} on P descends to a 2 -form on M with values in $\operatorname{Ad}(P)$. Corresponding to the decomposition (2.1), we write the curvature F^{∇} as $F^{\nabla}=F^{1}+F^{2}+F^{3}$. A connection ∇ is said to be c_{i}-self-dual $\left(i=1,2\right.$ or 3) if $F^{j}=0$ for all $j \neq i$. Each c_{i}-self-dual connection is a Yang-Mills connection (cf. [8], [12], [2]). Moreover, if M is a compact, a c_{1} - or c_{2}-self-dual connection is characterized as a connection minimizing the YangMills functional $Y M(\nabla)=1 / 2 \int_{M}\left|F^{\nabla}\right|^{2} d v_{g}$.

Definition 2.1 ([14]). A connection ∇ on a principal G-bundle P over a compact quaternion-Kähler manifold (M, g) is called a quaternionic Yang-Mills connection if $\Delta^{\nabla}\left(F^{\nabla} \wedge \Omega^{n-1}\right)=0$ where Ω is the fundamental 4 -form on (M, g) and Δ^{∇} is the Laplacian on $\operatorname{Ad}(P)$.

Note that in the case of $n=1$, the quaternionic Yang-Mills connections are Yang-Mills connections, and vice versa. Each c_{i}-self-dual connection is a quaternionic Yang-Mills connection. Moreover, a quaternionic Yang-Mills connection is a Yang-Mills connection (Proposition 1.1 in [14]).

Let $M=K / H$ be a compact oriented Riemannian homogeneous space with a reductive decomposition $\mathfrak{f}=\mathfrak{h}+\mathfrak{m}$ and $P=(P, \pi, M, G)$ be a principal bundle such that elements of K acts on P as automorphisms i.e. $\Phi_{k} \circ \pi=\pi \circ \bar{\Phi}_{k}$ for all $k \in K$ and $\bar{\Phi}_{k} \circ R_{g}=R_{g} \circ \bar{\Phi}_{k}$ for all $k \in K$ and all $g \in G$ where $\bar{\Phi}: K \times P \rightarrow P$ is a left action, Φ is the induced action of K on M and R is the action of G by right translations on the fibers of P. Fix u_{0} in P over $o=e H$ in M. The K-action induces the isotropy homomorphisms $\lambda: H \rightarrow G$ by $\bar{\Phi}_{h}\left(u_{0}\right)=R_{\lambda(h)}\left(u_{0}\right)$. A connection ω on P is called invariant if and only if $\bar{\Phi}_{k}^{*} \omega=\omega$ for all $k \in K$. We then obtain a one-to-one correspondence between the set of K-invariant connections ω on P and the set of linear maps $\Lambda: m \rightarrow \mathfrak{g}$ such that $\Lambda_{\mathfrak{m}} \circ a d_{h}=a d_{\lambda(h)} \circ \Lambda_{\mathfrak{m}}$ for any $h \in H$. The correspondence is given by $\Lambda(X)=$ $\lambda(X)$ if $X \in \mathfrak{h}$ or $\Lambda(X)=\Lambda_{\mathfrak{m}}(X)$ if $X \in \mathfrak{m}$ and the invariant connection ω and curvature F^{ω} on P are then given by

$$
\begin{gathered}
\omega_{u_{0}}(\tilde{X})=\Lambda(X), \quad X \in \mathfrak{I} \\
F_{u_{0}}^{\omega}(\tilde{X}, \tilde{Y})=\left[\Lambda_{\mathfrak{m}}(X), \Lambda_{\mathfrak{m}}(Y)\right]-\Lambda_{\mathfrak{m}}\left([X, Y]_{\mathfrak{m}}\right)-\lambda\left([X, Y]_{\mathfrak{h}}\right), \quad X, Y \in \mathfrak{m}
\end{gathered}
$$

where \tilde{X}, \tilde{Y} are the vector fields in P induced by X, Y. The K-invariant connection in P defined by $\Lambda_{\mathfrak{m}} \equiv 0$ is called the canonical connection according to the decomposition $\mathfrak{f}=\mathfrak{h}+\mathfrak{m}$. Its curvature satisfies $F_{u_{0}}^{\omega}(\tilde{X}, \tilde{Y})=-1 / 2 \lambda\left([X, Y]_{\mathfrak{h}}\right)$ for $X, Y \in \mathfrak{m}$ (cf. [5]).

Compact quaternionic Kähler symmetric spaces were classified by Wolf [16], called Wolf spaces. Wolf spaces are quotients $M=K / H$ of a compact simple centerless Lie group K by a closed subgroup H with the splitting $H=L \cdot A$ where A is isomorphic to $S p(1)$.

Theorem 2.1 ([15]). Let P be a K-homogeneous principal G-bundle over a Wolf space and λ be the corresponding isotropy homomorphism of H into G. For a canonical K-invariant connection ω on P,
(1) ω is a c_{1}-self-dual if and only if $\lambda \mid L=0$,
(2) ω is a c_{2}-self-dual if and only if $\lambda \mid S p(1)=0$,
(3) ω is a c_{3}-self-dual if and only if $\lambda=0$, in this case, P is trivial and ω is flat.

3. Non- c_{i}-self-dual quaternionic Yang-Mills connections

Theorem 3.1. Let G be a classical Lie group $S p(r), S U(r)$ or $S O(r)$. Let r satisfy in the table below the inequality corresponding to a Wolf space $M=K / H$.

Then, there exists a K-homogeneous G-bundle over $M=K / H$ whose canonical invariant connections is not c_{i}-self-dual, $i=1,2,3$.

manifold	$S p(r)$	$S U(r)$	$S O(r)$
$H P^{n}$	$r \geq n+1$	$r \geq 2 n+2$	$r \geq 4 n$
$G_{2}\left(C^{n+2}\right)$	$r \geq n+1$	$r \geq n+2(n=1,2)$	$r \geq 6(n=2)$
		$r \geq n+4(n \geq 3)$	$r \geq 2 n+3(n \neq 2)$
$G_{4}\left(\mathbb{R}^{n+4}\right)$	$r \geq 2(n=1)$	$r \geq 4(n=1,2)$	$r \geq n+4$
	$r \geq 3(n=2)$	$r \geq n+4(n \geq 3)$	
	$r \geq n+2(n \geq 3)$		
$G_{2} /(S U(2) \cdot S p(1))$	$r \geq 2$	$r \geq 4$	$r \geq 4$
$F_{4} /(S p(3) \cdot S p(1))$	$r \geq 4$	$r \geq 8$	$r \geq 15$
$\left(E_{6} / Z_{3}\right) /(S U(6) \cdot S p(1))$	$r \geq 7$	$r \geq 8$	$r \geq 15$
$E_{7} /(S p i n(12) \cdot S p(1))$	$r \geq 13$	$r \geq 14$	$r \geq 15$
$E_{8} /\left(E_{7} \cdot S p(1)\right)$	$r \geq 57$	$r \geq 59$	$r \geq 115$

Proof. In general, the canonical invariant connections on a homogeneous G-bundle on a compact symmetric space has parallel curvature i.e. $\nabla_{i} F_{j k}^{\nabla}=0$ for any $i, j, k([3],[5])$ and hence it gives a quaternionic Yang-Mills connection i.e. $\nabla_{i} F_{i j}^{\nabla}=0$ for any i, j (Proposition 1.1 in [14]). It is also a Yang-Mills connection i.e. $\sum_{i} \nabla_{i} F_{i j}^{\nabla}=0$ for any j. From Theorem 2.1 ([15]), if \mathfrak{h} is embedded into \mathfrak{g} by a homomorphism λ, then the λ induces as the isotropy representation a K homogeneous G-bundle over $M=K / H$ whose canonical invariant connection is not c_{i}-self-dual. Hence, with respect to given \mathfrak{h}, we may find such the Lie algebra g. Elementary embeddings between Lie algebras are known as the following.

$$
\left\{\begin{array}{l}
\mathfrak{s p}(r) \hookrightarrow \mathfrak{s u}(2 r) \hookrightarrow \mathfrak{u}(2 r) \hookrightarrow \mathfrak{s p}(4 r), \tag{3.1}\\
\mathfrak{s p}(r) \hookrightarrow \mathfrak{s u}(r) \hookrightarrow \mathfrak{u}(r) \hookrightarrow \mathfrak{s p}(r), \\
\mathfrak{s p}(1) \simeq \mathfrak{s u}(2) \simeq \mathfrak{s o}(3), \quad \mathfrak{s p}(2) \simeq \mathfrak{s o}(5), \quad \mathfrak{s u}(4) \simeq \mathfrak{s p}(6), \\
\mathfrak{u}(1) \simeq \mathfrak{s v}(2) \simeq \mathbb{R}, \quad \operatorname{spin}(n) \simeq \mathfrak{s o}(n), \quad \mathfrak{s v}(4)=\mathfrak{s o}(3) \oplus \mathfrak{s v}(3) .
\end{array}\right.
$$

Note that

$$
H P^{1}=G_{4}\left(\mathbb{R}^{5}\right)=S^{4}, \quad G_{2}\left(C^{3}\right)=C P^{2}, \quad G_{2}\left(C^{4}\right)=G_{4}\left(\mathbb{R}^{6}\right)
$$

$H P^{n}=\left(S p(n+1) / \mathbb{Z}_{2}\right) /(S p(n) \cdot S p(1)):$
$\mathfrak{s p}(n) \oplus \mathfrak{s p}(1) \ni(x, y) \mapsto \lambda(x, y) \in \mathfrak{s p}(n+1)$ defined by $\lambda(x, y):=\operatorname{diag}(x, y)$. For $N>n+1$, we defined by $\lambda(x, y):=\operatorname{diag}(x, y, 0)$. Using (3.1), we see that

$$
\mathfrak{s p}(n) \oplus \mathfrak{s p}(1) \hookrightarrow \mathfrak{s u}(2 r) \oplus \mathfrak{s u}(2) \hookrightarrow \mathfrak{s u}(2 n+2) .
$$

Hence we get $r \geq 2 n+2$ for $S U(r)$. Since $\mathfrak{s p}(n) \oplus \mathfrak{s p}(1) \ni(x, y) \mapsto \lambda(x, y) \in$ $\mathfrak{s o}(4 n)$ defined by $\lambda(x, y) v:=x v-v y, v \in \mathbb{R}^{4 n}$, we have $r \geq 4 n$ for $S O(r)$.

$$
G_{2}\left(C^{n+2}\right)=\left(S U(n+2) / \mathbb{Z}_{n+2}\right) / U(n) \cdot S p(1):
$$

Using (3.1), we have $\mathfrak{u}(n) \oplus \mathfrak{s p}(1) \hookrightarrow \mathfrak{s p}(n) \oplus \mathfrak{s p}(1) \hookrightarrow \mathfrak{s p}(n+1)$ for any n.
Using (3.1), we also have $\mathfrak{u}(n) \oplus \mathfrak{s p}(1) \hookrightarrow \mathfrak{s p}(2 n) \oplus \mathfrak{s v}(3) \hookrightarrow \mathfrak{s v}(2 n+3)$ for any $n \neq 2$. In the case of $n=2, \mathfrak{u}(2) \oplus \mathfrak{s p}(1) \simeq \mathbb{R} \oplus \mathfrak{s u}(2) \oplus \mathfrak{s p}(1) \simeq \mathfrak{s d}(2) \oplus \mathfrak{s u}(2) \oplus$ $\mathfrak{s p}(1) \simeq \mathfrak{s o}(2) \oplus \mathfrak{s o}(3) \oplus \mathfrak{s o}(3) \simeq \mathfrak{s o}(2) \oplus \mathfrak{s o}(4) \hookrightarrow \mathfrak{s o}(6)$. When $n=1$, it has shown by Itoh [3]. Using (3.1), we get $\mathfrak{u}(n) \oplus \mathfrak{s p}(1) \simeq \mathbb{R} \oplus \mathfrak{s u}(n) \oplus \mathfrak{s u}(2) \hookrightarrow \mathfrak{s u}(2) \oplus$ $\mathfrak{s u}(n) \oplus \mathfrak{s u}(2) \hookrightarrow \mathfrak{s u}(n+4)$ for any $n \geq 3$. In the case of $n=2, \mathfrak{u}(2) \oplus \mathfrak{s p}(1) \simeq$ $\boldsymbol{R} \oplus \mathfrak{s u}(2) \oplus \mathfrak{s u}(2) \simeq \mathfrak{s v}(2) \oplus \mathfrak{s v}(4) \hookrightarrow \mathfrak{s v}(6) \simeq \mathfrak{s u}(4)$. When $n=1$, it has shown by Itoh [3].
$E_{8} /\left(E_{7} \cdot S P(1)\right):$
For the wolf space $E_{8} /\left(E_{7} \cdot S p(1)\right)$ we use the fact that E_{7} is closed subgroup of $U(56)$ (cf. [17]) and $\mathfrak{u}(n) \hookrightarrow \mathfrak{s u}(n+1)$.

The same argument can be applied to the others.

By generalizing the argument in Itoh [3, Theorem 3], we have the following.
Lemma 3.1. Let P be a $S p(n+1)$-homogeneous G-bundle over $H P^{n}$ induced by an injective isotropy homomorphism λ of H into G. Then the canonical $S p(n+1)$-invariant connection ω is not weakly stable.

Proof. The curvature tensor of $H P^{n}$ with quaternionic sectional curvature 4 is defined by

$$
\begin{equation*}
R(X, Y)=X \wedge Y+\sum_{\alpha=1}^{3} J_{\alpha} X \wedge J_{\alpha} Y-2 \sum_{\alpha=1}^{3}\left\langle J_{\alpha} X, Y\right\rangle J_{\alpha} . \tag{3.2}
\end{equation*}
$$

We fix a Λ in $\operatorname{Hom}_{H}(\mathfrak{m}, \mathfrak{g})$. Since $\Lambda \circ \operatorname{ad}_{h}=\operatorname{ad}_{\lambda(h)} \circ \Lambda$ for any $h \in H$, the $\operatorname{Ad}(P)-$ valued 1 -form A induced by Λ is parallel, $\delta^{\omega} A=d^{\omega} A=0$. Then $\omega_{t}=\omega+t A$ gives a deformation of ω. Since $F^{\omega_{t}}$ is invariant under $K,\left|F^{\omega_{t}}\right|^{2}$ is constant. Thus, we have the following:

$$
\left.\frac{1}{2} \frac{d^{2}}{d t^{2}} \int_{H P^{n}}\left|F^{\omega_{t}}\right|^{2} d v\right|_{t=0}=\operatorname{vol}\left(\boldsymbol{H} P^{n}\right)\left\langle F^{\omega},[\Lambda, \Lambda]\right\rangle
$$

for a deformation ω_{t} with $\left.(d / d t) \omega_{t}\right|_{t=0}=A$. Using (3.2) and the same argument in Theorem 3 in [3], we have

$$
\left\langle F^{\omega},[\Lambda, \Lambda]\right\rangle=-n \sum_{j}\left|\Lambda\left(e_{j}\right)\right|^{2},
$$

where $\left\{e_{j}\right\}_{j=1,2, \ldots, 4 n}$ is the orthonormal basis of m. Thus, if $\Lambda \neq 0$, then $\left.(1 / 2)\left(d^{2} / d t^{2}\right) \int_{H P^{n}}\left|F^{\omega_{t}}\right|^{2} d v\right|_{t=0}<0$. Therefore ω is not weakly stable.

4. Gap phenomena for quaternionic Yang-Mills fields

Let (M, g) be a compact quaternion-Kähler manifold. The Riemannian curvature operator R acting on $\wedge^{2} T M$ has a splitting $R=R_{1}+R_{2}+R_{3}$ with respect to the decomposition (2.1). By using the result in [7] we can write the curvature operator R_{i} as $R_{i}=\mu_{i} I_{\wedge^{2} T M}$ where $\mu_{i}(i=1$ or 2) is a positive constant. Since R_{3} is negative semi-definite, we put $\mu_{3}=0$. We set $\lambda_{i}=s / 2 n-2 \mu_{i}(i=1,2$ or 3) where s is the scalar curvature of (M, g).

Theorem 4.1. Let ∇ be a quaternionic Yang-Mills connection over a compact quaternion-Kähler manifold (M, g). Assume $F^{3}=0$.
(1) There exists a constant

$$
\varepsilon_{1}=\frac{n+2}{3} \min \left\{\frac{(2 n-1)^{2} s^{2} V}{8(4 n-1)^{2}}, \frac{1}{2}\left(\frac{s}{2 n}-2 \mu_{1}\right)^{2} V\right\}
$$

such that

$$
k<0, \quad Y M(\nabla) \leq 4 \pi^{2} c_{2} k+\varepsilon_{1} \Rightarrow F^{1} \equiv 0
$$

(2) There exists a constant

$$
\varepsilon_{2}=\frac{n+2}{2 n+1} \min \left\{\frac{(2 n-1)^{2} s^{2} V}{8(4 n-1)^{2}}, \frac{1}{2}\left(\frac{s}{2 n}-2 \mu_{2}\right)^{2} V\right\}
$$

such that

$$
k>0, \quad Y M(\nabla) \leq 4 \pi^{2} c_{1} k+\varepsilon_{2} \Rightarrow F^{2} \equiv 0
$$

Where $k=-1 /\left(8 \pi^{2}\right) \int_{M} \operatorname{tr}\left(F^{\nabla} \wedge F^{\nabla}\right) \wedge \Omega^{n-1}, c_{1}=6 n /(2 n+1)!, c_{2}=-1 /(2 n-1)!$.
Proof. We will write the Bochner-Weitzenböck formula for any g-valued 2-forms ϕ (cf. [14, [1]).

$$
\begin{equation*}
\left\langle\Delta^{\nabla} \phi, \phi\right\rangle-\left\langle\nabla^{*} \nabla \phi, \phi\right\rangle=\left\langle\phi \circ\left(\frac{s}{2 n} I-2 R\right), \phi\right\rangle-\left\langle\left[F^{\nabla}, \phi\right], \phi\right\rangle . \tag{4.1}
\end{equation*}
$$

For convenience we put $A=\left(c_{1}-c_{2}\right) / c_{1}$ and $\phi=A F^{1}$. Substituting $\phi=A F^{1}$ into (4.1) and using $F^{3}=0,\left[F^{2}, F^{1}\right]=0$ (cf. Proposition 3.3 in [14]), we have

$$
\begin{equation*}
\left\langle\Delta^{\nabla} F^{1}, F^{1}\right\rangle-\left\langle\nabla^{*} \nabla F^{1}, F^{1}\right\rangle=\lambda_{1}\left|F^{1}\right|^{2}-\left\langle\left[F^{1}, F^{1}\right], F^{1}\right\rangle \tag{4.2}
\end{equation*}
$$

where $\left(s / 2 n I-2 R_{1}\right)_{X, Y}=(s / 2 n) X \wedge Y-2 R_{1}(X \wedge Y)=\left(s / 2 n-2 \mu_{1}\right) X \wedge Y, X, Y$ $\in T_{x} M$. Hence we put $\lambda_{1}=s / 2 n-2 \mu_{1}$. Note that $\Delta^{\nabla}\left(F^{\nabla} \wedge \Omega^{n+1}\right)=0$ and $F^{3}=0$ hold if and only if $\Delta^{\nabla} F^{1}=0$ (see Proposition 3.1 in [14]). Using the Kato's inequality $\int\left|\nabla F^{1}\right| \geq \int|d| F^{1} \|, \quad\left|\left[F^{1}, F^{1}\right]\right| \leq \sqrt{2}\left|F^{1}\right| \cdot\left|F^{1}\right|$ (cf. [14], [1], [13]) and integrating over the compact quaternion-Kähler manifold M, we obtain the inequality

$$
\begin{equation*}
\int\left\langle\Delta^{\nabla} F^{1}, F^{1}\right\rangle \geq \int|d| F^{1} \|^{2}+\lambda_{1} \int\left|F^{1}\right|^{2}-\sqrt{2} \int\left|F^{1}\right| \cdot\left|F^{1}\right| . \tag{4.3}
\end{equation*}
$$

To get the $L_{2 n}$-estimates we use the following Sobolev inequality due to [4] for the case $\operatorname{dim} M=4 n$:

$$
\begin{equation*}
\|\varphi\|_{4 n / 2 n-1}^{2} \leq \frac{2(4 n-1)}{(2 n-1) s V^{1 / 2 n}}\|d|\varphi|\|_{2}^{2}+V^{-1 /(2 n)}\|\varphi\|_{2}^{2} \tag{4.4}
\end{equation*}
$$

holding for all functions $\varphi \in C^{\infty}(M)$ where V is the volume of M, s is the scalar curvature and $\|\cdot\|_{p}$ denotes the L_{p}-norm. We now apply the Hölder's inequality to the integrand of the last term on the right hand side of (4.3) to get:

$$
\begin{equation*}
\int\left\langle\Delta^{\nabla} F^{1}, F^{1}\right\rangle \geq \int|d| F^{1}\left\|^{2}+\lambda_{1} \int\left|F^{1}\right|^{2}-\sqrt{2}\right\| F^{1}\left\|_{2 n} \cdot\right\| F^{1} \|_{4 n / 2 n-1}^{2} \tag{4.5}
\end{equation*}
$$

Applying the Sobolev inequality (4.4) to the first term on the right hand side of (4.3), we have

$$
\begin{align*}
\int\left\langle\Delta^{\nabla} F^{1}, F^{1}\right\rangle \geq & \left(\lambda_{1}-\frac{(2 n-1) s}{2(4 n-1)}\right)\left\|F^{1}\right\|_{2}^{2} \tag{4.6}\\
& +\left(\frac{(2 n-1) s}{2(4 n-1)} V^{1 /(2 n)}-\sqrt{2}\left\|F^{1}\right\|_{2 n}\right)\left\|F^{1}\right\|_{4 n / 2 n-1}^{2}
\end{align*}
$$

In the case of $\lambda_{1}-(2 n-1) s / 2(4 n-1)>0$, if we take $\left\|F^{1}\right\|_{2 n}<(2 n-1) s /$ $(2 \sqrt{2}(4 n-1)) V^{1 /(2 n)}$ from (4.6), then we conclude that $F^{1} \equiv 0$. In the case of $\lambda_{1}-(2 n-1) s / 2(4 n-1) \leq 0$, we use (4.6) together with the following inequality which is obtained immediately from (4.5):

$$
\begin{equation*}
\int\left\langle\Delta^{\nabla} F^{1}, F^{1}\right\rangle \geq \lambda_{1}\left\|F^{1}\right\|_{2}^{2}-\sqrt{2}\left\|F^{1}\right\|_{2 n} \cdot\left\|F^{1}\right\|_{4 n / 2 n-1}^{2} \tag{4.7}
\end{equation*}
$$

In fact, if $\left\|F^{1}\right\|_{2 n} \leq 1 /(\sqrt{2}) \lambda_{1} V^{1 /(2 n)}$, then (4.7) implies

$$
\begin{equation*}
\int\left\langle\Delta^{\nabla} F^{1}, F^{1}\right\rangle \geq \lambda_{1}\left\|F^{1}\right\|_{2}^{2}-\lambda_{1} V^{1 /(2 n)}\left\|F^{1}\right\|_{4 n / 2 n-1}^{2} \tag{4.8}
\end{equation*}
$$

which is positive if $\left\|F^{1}\right\|_{2}^{2}-V^{1 /(2 n)}\left\|F^{1}\right\|_{4 n / 2 n-1}^{2} \geq 0$. On the other hand, if $\left\|F^{1}\right\|_{2 n} \leq 1 /(\sqrt{2}) \lambda_{1} V^{1 /(2 n)}$, then we get by (4.6)

$$
\begin{equation*}
\int\left\langle\Delta^{\nabla} F^{1}, F^{1}\right\rangle \geq\left(\lambda_{1}-\frac{(2 n-1) s}{2(4 n-1)}\right)\left(\left\|F^{1}\right\|_{2}^{2}-V^{1 /(2 n)}\left\|F^{1}\right\|_{4 n / 2 n-1}^{2}\right) \tag{4.9}
\end{equation*}
$$

which is positive if $\left\|F^{1}\right\|_{2}^{2}-V^{1 /(2 n)}\left\|F^{1}\right\|_{4 n / 2 n-1}^{2} \leq 0$, since we are in the case where $\lambda_{1}-(2 n-1) s / 2(4 n-1) \leq 0$. If we take

$$
\delta=\min \left\{\frac{(2 n-1) s}{2 \sqrt{2}(4 n-1)} V^{1 /(2 n)}, \frac{1}{\sqrt{2}} \lambda_{1} V^{1 /(2 n)}\right\}
$$

we have $F^{1} \equiv 0$. Namely, if $\left\|F^{1}\right\|_{2 n} \leq \delta$, then, from (4.8) and (4.9), we conclude that $F^{1} \equiv 0$.

Applying the Hölder inequality, we have

$$
\left\|F^{1}\right\|_{2} \leq\left\|F^{1}\right\|_{2 n} \cdot V^{(n-1) /(2 n)}
$$

Therefore, by using $\left\|F^{1}\right\|_{2 n}^{2} \leq \delta^{2}$, we get

$$
\begin{equation*}
\left\|F^{1}\right\|_{2}^{2} \leq \delta^{2} \cdot V^{(n-1) / n} \tag{4.10}
\end{equation*}
$$

On the other hand, from [2]

$$
2 Y M(\nabla)=8 \pi^{2} c_{2} k+\frac{c_{1}-c_{2}}{c_{1}}\left\|F^{1}\right\|_{2}^{2}+\frac{c_{3}-c_{2}}{c_{3}}\left\|F^{3}\right\|_{2}^{2}
$$

Using (4.10) and $F^{3} \equiv 0$, we obtain

$$
Y M(\nabla) \leq 4 \pi^{2} c_{2} k+\frac{c_{1}-c_{2}}{2 c_{1}} \delta^{2} V^{(n-1) / n}
$$

Hence, according to take ε_{1} as follows:

$$
\varepsilon_{1}=\frac{n+2}{3} \min \left\{\frac{(2 n-1)^{2} s^{2}}{8(4 n-1)^{2}} V, \frac{1}{2}\left(\frac{s}{2 n}-2 \mu_{1}\right)^{2} V\right\}
$$

if it satisfies $Y M(\nabla)=4 \pi^{2} c_{2} k+\varepsilon_{1}$, then $F^{1} \equiv 0$. We complete the proof of (1) of Theorem 4.1. The same argument can be applied to (2) of Theorem 4.1.

References

[1] J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys., 79 (1981), 189-230.
[2] K. Galicki and Y. S. Poon, Duality and Yang-Mills fields on quaternionic Kähler manifold, J. Math. Phys., 32 (1991), 1263-1268.
[3] M. Itoh, Invariant connections and Yang-Mills solutions, Trans. Amer. Math. Soc., 267 (1981), 229-236.
[4] O. Kobayashi, Yamabe problems, Seminar on mathematical sciences Keio Univ., no. 16 (1990).
[5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. 1, Vol. 2, Interscience, New York, 1963, 1969.
[6] Y. Kametani and Y. Nagatomo, Construction of c_{2}-self-dual bundles on a quaternionic projective space, Osaka J. Math., 32 (1995), 1023-1033.
[7] S. Kobayashi, Y. Ohnita and M. Takeuchi, On instability of Yang-Mills connections, Math. Z., 193 (1986), 165-198.
[8] M. Mamone Capria and S. M. Salamon, Yang-Mills fields on quaternionic spaces, Nonlinearity, 1 (1988), 517-530.
[9] Y. Nagatomo, Rigidity of c_{1}-self-dual connections on quaternionic Kähler manifolds, J. Math. Phys., 33 (1992), 4020-4025.
[10] Y. Nagatomo and T. Nitta, Moduli of 1-instantons on $G_{2}\left(C^{n+2}\right)$, preprint.
[11] Y. Nagatomo and T. Nitta, k-instantons on $G_{2}\left(C^{n+2}\right)$ and stable bundles, preprint.
[12] T. Nitta, Vector bundles over quaternionic Kähler manifolds, Tohoku Math. J., 40 (1988), 425440.
[13] Min-Oo, An L_{2}-isolation theorem for Yang-Mills fields, Compositio Math., 47 (1982), 153-163.
[14] T. Taniguchi, Isolation phenomena for quaternionic Yang-Mills connections, Osaka J. Math., 35 (1998), 147-164.
[15] H. Urakawa, Self-dual connections of homogeneous principal bundles over quaternionic Kähler symmetric spaces, Tsukuba J. Math., 20 (1996), 387-397.
[16] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., 14 (1965), 1033-1047.
[17] I. Yokota, Exceptional simple Lie group, Gendai Suugaku Shiya Publication.
Department of Mathematics,
Keio University 3-14-1
Hiyoshi Kohoku, Yokohama 223, Japan

[^0]: Received July 15, 1996.
 Revised January 27, 1997.

