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GLOBAL BEHAVIOURS OF CIRCLES IN A COMPLEX

HYPERBOLIC SPACE

By

Toshiaki Adachi* and Sadahiro Maeda

0. Introduction

Let M be a complete Riemannian manifold. A curve y on M parametrized

by its arc length s is called a circle if it satisfies the following equations

VSXS = kYs, Vs Ys = -kXa, and Xs = y{$)

for some positive constant k and a field of unit vectors Ys along y. Here Vs

denotes the covariant differentiation along y with respect to the Riemannian

connection V of M. The positive constant k is called the curvature of y. For given

a positive k and an orthonormal pair of vectors u, v e TXM at a given point

x e M, we have a unique circle y defined for ―oo < s < oo such that

y(0) = x, y(0) = u and (VJy(1si))i=0= kv (c.f. [7]). On a manifold of constant

curvature the feature of circles with curvature k is well-known. On a Euclidean

space Rn they are circles (in usual sense of Euclidean geometry) of radius 1 /k. On

a sphere Sn(c) of constant curvature c, they are small circles with prime period

2n/Vk2 + c. In these cases all circles are closed. Here we call a circle y closed if

there exists nonzero constant sq with y(so) = y(0), XSo = Xq and YSo = Yq. The

minimum positive s$ satisfying these equalities is called the prime period of y. On

a real hyperbolic space Hn{-c) of constant curvature ―c, the feature of circles is

different from these two cases (c.f. [5]). When the curvature A: of a circle is greater

than yfc they are stillclosed with prime period 2it/Vk2 ― c. But when k < sfc

they are unbounded. Similarly on a Hadamard surface it is known that circles are

unbounded if their curvature is smaller than the square root of the absolute value

of the upper bound of the curvature of the surface (see [2]).

In this paper we study global behaviours of circles on a complex hyperbolic

space CHn{―c) of holomorphic sectional curvature ―c. For a circle y on a

Kaehler manifold (with complex structure J and with metric < , >) we have an

*The firstauthor supported partiallyby The Sumitomo Foundation.

Recevied January 9, 1995.



30 Toshiaki Adachi and Sadahiro Maeda

important invariant x ―(XS,JYS}, which is called the complex torsion, defined

by the associated vector fieldsXs and Ys. This invariant does not depend on s;

v,<xs,jYs> = <ysxs, jys> + <xs,/vsYsy

= k-<Ys, jYsy - k ･ <zs, jxsy = o.

We find that two circlesare congruent on a complex space form if and only if

they have the same curvatures and the same complex torsions (c.f.Theorem 5.1

in [6]). Here we say that two circlesy and a are congruent if there exists a

holomorphic isometry (p on a complex space form satisfying y = (p o a.

In the preceeding paper [3], we studied the feature of circles on a complex

projective space CPn(c) of holomorphic sectional curvature c. We showed that

there existinfinite many open circles:A circle on CPn{c) with curvature k and

complex torsion t is closed if and only if (i) x ― 0, ±1 or (ii)a ratio of two

solutions for the cubic equation c2? ―(4k2 + c)X 4-lyfckx = 0 is rational.In this

paper we show that the feature of circles on CHJ―c) is more complicated.

Theorem 1. Let y be a circle with curvature k and with complex torsion x

on a complex hyperbolic space CHn{―c) of holomorphic sectional curvature ―c.

For given x we denote by k(x) the unique positive solution for k2x2 ―

(4/27)(A:2 - I)3 = 0. Then the following hold:

(1) When k < yfck{x)/2, y is a simple two-sides unbounded open curve. Here

two-sides unbounded means that the sets {y(s)＼s > 0} and {y(s)＼s<0} are

unbounded.

(2) When k > yfck{x)/2 and x = 0, y is a simple closed curve with prime

period 4n/y/4k2 ― c.

(3) When k > yfck(x)/2 and x = 1 or ―1, y is a simple closed curve with

prime period 2n/Vk2 ― c.

(4) When k > y/ck(x)/2 and x # 0, + 1, we denote by a, b and d (a < b < d)

the nonzero real solutions for

a3 - (4k2 - c)X - 2^~ckx = 0.

Then we find the following:

(i) If one of the three ratios a/b, b/d and d/a is rational, y is a simple closed

curve. Moreover, the prime period of y is the least common multiple of

4n/y/c(b - a) and 4n/y/c(d ― a).

(ii) If each of the three ratios a/b, b/d and d/a is irrational, y is a simple

bounded open curve.
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For a Hadamard manifold we have an important notion of the ideal

boundary. Real hyperbolic space and complex hyperbolic space are typical

examples of Hadamard manifold. With the ideal boundary we compactify

CHn(-c) and denote by CH≫(―c). For a two-sides unbounded curve y we

denote by y(oo) (resp. y(-oo)) if the limit lim^oo^) (resp. linij_>_ooy{s))exists

in CHn(―c). When these points on the ideal boundary exist, we say that y has

points at infinity. From this point of view the Comtet's result is rewritten as

follows: In a real hyperbolic space Hn(―c), every circle y with curvature k < y/c

has points at infinity. When k = s/c they coincide; 7(00) =y(-oo), and when

k < y/c they are distinct;y(oo) # y(-oo). For circles on a complex hyperbolic

soace we can show the following.

Theorem 2. Let y denote a circle with curvature k and complex torsion x on

CHn{-c). Then the following hold:

(1) If k = y/ck(x)/2, then y is horocyclic. Here horocyclic means that

y(oo) = y(―oo) and every geodesic p with p(oo) = y(oo) crosses y orthogonally.

(2) If k < ＼fck{%)/2, then y has two distinctpoints at infinity.

In section 1 we show by using the structure of the Sl -fiberbundle M over

CHn{―c) that horizontal liftsof circleson CHn(―c) into M are helixes of order

2, 3 or 5. This gives us explicitexpressions of circlesin CHn(―c). By using of

the explicitexpressions of circles,we can investigate global behaviour of circles

in CHn(―c). In section 2 we use another expression of complex hyperbolic

space, which is regarded as an open unit ballin Cn, and show Theorem 2. These

generalize some resultsin I"11.

1. Open circles and closed circles

Let y be a circleon a Riemannian manifold (M, g) with curvature k. When

we change the metric homothetically g ―>m2 ■g for some positive constant m,

the curve a(s) = y(s/m) is a circle on (M,m2 ･ g) with curvature k/m. Since we

can obtain CHn{―c) by changing the metric on CHn{―4) homothetically;

g ―*■(4/c)g, and the complex torsion does not change in this operation, we may

just treat the case c = 4. Here, in general we note that on a Riemannian

manifold (M, g) under the operation g ―>m2g, the prime period of a closed

circle changes to m-times of the original prime period.

We shall start with giving some fundamental notations on a complex

hyperbolic space of holomorphic sectional curvature -4. We denote by <£,> the
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Hennitian form on Cn+l given by

n

<z, w> = -zowo + Y^ ZJ J

7=1

for z = (zo,z＼,...,zn)and w = (wq, w＼,..., wn) e Cn+l. We define an indefinite

metric < ,> on Cn+l by < ,> = Re<^ ,y. Let M be the real hypersurface with

indefinite metric < ,> in Cn+l defined by <z,z> = -1. The group Sl = {ei9} acts

freely on M by z ―>ez0z.Hence we can consider a base manifold M' of the

principal fiber bundle n : M ―≫M' with group 51. This base manifold M' with

positive definitemetric < ,> is called a complex hyperbolic space of holomorphic

sectional curvature ―4.

In this section, we shallinvestigate circlesin CHn(―4) by making use of the

fibration n : M ―≫CHn(―4). For the sake of simplicity we identify a vector field

X on CHn(―A) with its horizontal lift X* on M. We denote by / the natural

complex structure on Cn+l. We mix the complex structures of Cn+l and

CHn{―4). Let z be a point of M. We denote by N = 7V(z) the position vector of

the point z. Note that the integral curves of tangent vector field JN are the

fibers of the fiber bundle n : M ―>CHn(―4). The relation between the con-

nection V of Cn+l and the connection V of M is as follows:

(1.1) VUV = VUV-(U, V}N

for any vectorfieldsU and V on M. In fact,since(N,N} = -1, {V,N} = 0 and

VVN = U, we get

VUV = VUV- ≪yv V, N)/(N, N))N

= VuV + <yuV,N}N = VuV-(U, V}N.

Let V denote the Riemannian connection of CHn(―4). We then find

(1.2) VxY = VxY + <X,JYyjN

for any vector fields X and Y on CHn(―4). In fact, since (JN,JN} = -1 and

<F,AO = <7,/A^> = 0, we have

VXY = VXY- ≪yx7, JNy/(JN, JN})JN = VXY + <VZF,/AT>/tf

= vx y - < y, Vx{jN)yjN = vz r - < r, /x>/tv.

Using thisrelationship we obtain the following fundamental result on circlesin a

complex hyperbolic space.

Proposition 1. Let y be a circlein CHn(―4) with curvature k and complex

torsion x satisfying: VSXS ―kYs and VSYS = ―kXs. Then a horizontal lift y of y
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into M is a helix of order 2, 3 or 5 corresponding to x ― 0, t = +1 and t # 0,

+ ＼.It satisfiesthe following differentialequations:

<

VsJNs = -TYs + Vl-r2Zs.,

VsZs=Vl~x2JNs + kWs,

where the unit horizontal vector fields Zs and Ws are given by

Zs = l/y/l-x2-(JXs + xYs) and Ws= 1/Vl - x2 ･(JYS - xXs).

Here we should note that the coefficientmatrix of the equation of helix is

not skew-symmetric, because (JNS,JNS} = ―1.

We show Theorem 1 by dividing into three cases; x = 0, x = +1 and

Proposition 2. Let y be circle with curvature k on CHn(―4). Suppose that

the complex torsion x of y is 0. Then the following hold:

(i) When k > 1, y is a simple closed curve with prime period 2n/Vk2 ―1.

(ii) When k < 1, y is a simple two-sides unbounded open curve.

Proof. By hypothesis a horizontal lift y of y on the hypersurface M

satisfiesVSXS ―kYs and V5F5 = ―kXs. We shall solve this differentialequation

with the initialcondition y(0) = z, Xq = u and Yq ― v. By using (1.1) we can

rewrite this equation into yR + (k2 ―l)y = 0 as a equation in Cn+l. On the

other hand since the initial condition is rewritten as y(Q) = z, y(0) = u and

y(0) = kv + z. we set

y(s)

~y(s)

(-k2 + cosWl -k2 s)■z + , sinhVl ― k2 s ･ u

(-1+coshVl -k2s) -v, ifjfc<l,

1
(k2 - cosVk2 - 1 s) ･ z + ,

v k2 ― 1

(1 - cos＼/&2 - Is) ■v, if k > 1

sin%/&2 ― Is ･ u

1-

+

1

k
T^T2

y(s) = (2 + s2)/! ■z + su + (^/2)y, if k = 1,

k2

+

1
^1

k

k2-!

These expressions tellus that y = n o y is two-sides unbounded if k < 1.
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We now suppose that there exists some so satisfying y(so)= y(0), that is,

y(so) = ee'y(0)(―emz) for some 0e[O,27r). Since the vectors z,u and v are

linearly independent in Cn+l, these expressions imply the following:

<

<

cosh(Vl - k2s0) -k2 = (l- k2)ee＼

sinh(Vl - k2s0) = 0,

cosh(Vl - ik2Jo)-1=0.

so = O

cos(VF - ls0)-k2 = (l- k2)e6＼

sin(v^2 ―Isq)= 0,

cos(＼/k2- ls0) -1=0.

if k< 1,

ifk= 1,

if fc> 1.

This yields that if k < 1, then sq ― 0, so that 7 is a simple open curve, and that if

k>＼, then y/k2 - Isq/2% e Z and 9 = 0. We here note that y/k2 - lso/2n e Z

implies y(so) = y(0) and y(so) = y(0), that is, XSo = u and YSQ = v. Therefore we

can see that 7 is a simple closed curve with prime period 2n＼/k2 ― 1. Of course 7

is also a simple closed curve with the same prime period.

Remark. The circle 7 lies on an embedded real hyperbolic plane

n({Rz@RuRRv)nM).

For completeness we investigate the case of x = ±1 (c.f. [1]).

Proposition 3. Let 7 be a circle with curvature k in CHn(―4). Suppose that

the complex torsion x of 7 is 1 or ―1. Then the following hold:

(i) When k > 2, 7 is a simple closed curve with prime period 2n/Vk2 ― 4.

(ii) When k < 2, y is a simple two-sides unbounded open curve.

Proof. We consider the case of x ― ―1, that is, Ys = JXS. By Proposition

1, a horizontal lifty of y satisfiesthe differentialequation VSXS ― kJXs, so that

y ―kJy ―7 = 0. Solving this equation under the initial condition 7(0) = z and

y(0) = u, we get

y(s) = eis(l- is)z+ seisu, if k = 2,

y(s) = ―― (-f}e≪s+ ^s)z + -^- (eas - e*)≪, if k * 2,
a ―p a ―p
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where a and /? are the solutions of the characteristic equation t2 ― kit ― 1 = 0 for

the equation for y and satisfy a + ($ = ki, a/? = ―1. By the same discussion as in

the proof of Proposition 2, we get the conclusion for x ― -1. If we reverse the

direction of a circle a{s) = y{-s), then the signature of the complex torsion

changes, so that we get our conclusion.

Remark: The circle y lies on n((Cz<§> Cu) PIM).

The rest of this section is devoted to the study the case of t ^ 0, ± 1. By

elementary calculations we get the following two lemmas.

Lemma 1. For fixed t, ―1 < t < 1, the following equation for k

(1.3)

has

*v-^(f-l)3 0

a unique positive solution k(x), which satisfiesthe following:

1) £(t)>V1 + (3/2)|t|>1,

2) k(-x) = *(t),

3) k(x) is a monotone increasing function with respect to x when 0 < x < 1

4) fc(O)= l and k(±l)=2.

Lemma 2. We consider the following cubic equation;

(1.4) A3-(k2-l)A-kx = 0,

where k > 0 and ―1 < x < 1. Let k{x) be the unique positive solution for (1.3).

Then the following hold:

(i) When k<k(r), the equation (1.4) has two conjugate non-real solutions,

(ii) When k = k{%), the equation (1.4) has double root,

(iii) When k > kit), the equation (1.4) has three distinctreal solutions.

We are now in a position to prove the following

Proposition 4. Let y be a circle with curvature k and with complex torsion

x in CHn(―4). Suppose that x # 0, ±1. Let k(x) be the unique positive solution

for (1.3). Then the following hold:

(1) When k<k{x), y is a simple two-sides unbounded open curve.

(2) When k > k(x), we denote by a,b and d(a < b < d) nonzero real solutions

for (1.4). Then we find the following:
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(i) If one of the three ratios a/b, b/d and d/a is rational, y is a simple

closed curve. In addition, the prime period of y is the least common

multiple of 2n/(b ―a) and 2n/(d
~

a).

(ii)If each of the three ratios a/b, b/d and d/a is irrational,y is a

simple bounded open curve.

Proof. By the firstand the second equalities of Proposition 1, a horizontal

lifty of y satisfiesVS(VSXS) = ―k2Xs - kxJNs. This, together with (1.1),implies

that y(3)+ (k2 ―l)y + kxiy = 0. Its characteristic equation

(1.5) t3 + (k2-l)t + kxi = 0

yields the equation (1.4) by setting t = Xi. Solving the equation on y with initial

condition y(Q) = z, y(0) = u and y(0) = kv + z, we get the following expression:

y(s) =Aeas + Beps + Ce3s, if k * k{x),

y{s)= De^ + Eevs + Fsevs, if k = k{x).

Here a, ft and S are distinct solutions for (1.5) in the case of k ^k(x), which

satisfy a + /?+ <5= 0, a/?+ (Id + 8a = k2 - 1, and aifid=-kxi. By Lemma 2,

when k > k(x) they are pure imaginary; a = ai, jS= bi, 8 = di,and when A:< k(x)

they are expressed as a = ai, f$= h + ig, d = ―h + ig with real a,h,g(h > 0).

When A;= &(t), the pure imaginary ＼i= a? and v = bi are the solutions for (1.5)

with a ― -2b and b = -sgn.(x)y(k(x)2 - l)/3, where sgn(t) denotes the signature

of t. The elements A,B,C,D,E and F of Cn+l are given by

A

c

-(Pd + ＼)z-au-kv

(a-fl(a-a)

-(a/? + ＼)z- Su - kv

(p-d)(5-*)

B
-(ad+ l)z- flu-kv

u-m-s)

D = {(v2 + ＼)z- 2vu + kv}/9v2

E = {(8v2 - ＼)z+ 2vm - kv}/9v2, F = {(1 - 2v2)z + vu + kv}/3v.

By these expressions we can conclude y is two-sides unbounded if k < k(x), and

bounded if k > k(r).

We now suppose that there exists some so satisfying y(so) = y(0), that is

j(sq) = e0!y(O) for some 0 e [0,2tt). Our discussion consists of the three parts. In

the case that k > k{x), by the expression of y, this condition is equivalent to

A + B ■exp((b ― a)iso) + C ･ exp((J - a)iso)) = z ■exp((6 - aso)i)
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Since <z, w> = <^z,y> = 0 and ＼^u,y>| # 1, the vectors z,u and v are linearly

independent. This equality, with the expression of A,B and C, is equivalent to the

following:

(1.6) <

(b - d){＼ - bd) + (d- a){＼ - da) ･ exp((6 - a)is0) + (a- b)(l - ab)

x exp((J - a)iso) ― (a - b)(b ― d)(d ― a) ･ exp((0 - aso)i).

a(b ― d) + b{d ― a) ･ exp((b - a)iso) + c(a - b) ･ exp((d ― a)iso) ― 0,

b ― d + (d ― a) ■exp((b ― a)i$o) + (a ―b) ■exp((d ― a)iso) = 0.

Since a,b and d are different each other, we get exp((6 - d)iso)= 1 from the

second and the third equalities of (1.6). Hence we have (b ―d)so/2n e Z.

Similarly we find that (d - a)so/2n e Z and (b ―a)so/2n e Z. These yield

that (b ―a)/(d ―a) is rational if sq # 0. As we have (b ―a)/(d ―a) =

(b+(b + d))/{d + {b + d)) = 2- (3d/{b + 2d)) = 2 - (3/(2 + b/d)), we get that

b/d is rational if so # 0. Thus y(so) = y(0) implies either b/d is rational or

so = 0. Therefore if b/d is irrational then the circleis a simple curve. Conversely

we suppose that b/d is rational, that is (b ―a)/(d ―a) is rational. Let so be the

least common multiple of 2%/{d-d) and 2n/(b-a). Then (1.6) holds with

9 = aso (mod 27t),hence y(so) = exp(asoOHO)- Moreover one can easily get that y

satisfiesy(so)― Qxp(aiso)y(O) and y(so)+ y(so) = exp(awo) ･(KR) + K^))- That is,

XSo ― Xo and YSo ― Yq. Therefore we conclude that if b/d is rational then the

circle y is a simple closed curve and that its prime period is the least common

multiple of 2n/{b ―a) and 2n/(d ―a). We here point out that "one of a/b, b/d

and d/a is rational" is equivalent to "each of a/b, b/d and d/a is rational". In

case that each of a/b, b/d and d/a is irrational, the circle y is a simple open

curve.

In the case that k = k(r), by the expression of y the condition y(j0) = emy(0)

leads us to

D ■exp(-3feo) + E + Fsq ― z ■exp((0 - aso)i).

Since z,u and v are linearly independent, we obtain with the expression of D, E

and F that

Hence sq

-2 ･ exp(-3bis0) + 2 + 3bis0 = 0,

exp(-3biso) ― 1 + 3bis§= 0.

= 0, so that the circle y is a simple open curve
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In the case k < k(x), the condition y(so) = eeiy(0) yields

A + B ■exp(/wo + (d
~

a)i$o) + C ■Qxp(―hso + (g ― a)iso) = exp((0 ― aso)i)z.

Since z,u and v are linearly independent we get by use of the expression of A,B

and C that

a(/J -S)+ P(5 - a) exp(As0 + (g - a)is0) + <5(a - j8)exp(-/w0 + (0 - ≪)≪o) = 0.

^ - 5 + (<5- a) exp(fo0 + (g - a)iso) + (a - P) Qxp(-hsQ + (g - a)w0) = 0.

These lead us to

exp(/w0 + (0 - a)isQ) = exp(-A^0 + (0 - ≪)≪o),

which, together with h # 0, implies ^o = 0, so the circle y is a simple open curve.

Hence we complete the proof.

Remark. The circley lies on n((Cz R CuR Cv) flM).

Summarizing Propositions 2, 3 and 4 we get Theorem 1. We should note

that for given k > yfck(x)/2 there existsopen circlesand closed circleswith

curvature k. We hope the reader compares the resulton circleson a complex

projectivespace ([3]).

2. Asymptotic behaviours of unbounded circles

In this section we study the asymptotic behaviours of unbounded circlesand

show Theorem 2. For this sake the following representation of a complex

hyperbolic space is convenient. We can identify CHn with the open unit

ball Dn(C) = {w Cn＼J2]=＼wjWj<l} in Cn by the mapping > defined by

>(ti(zo,zi,...,zn)) = (zi/zo,... ,zn/zo). The compactification of a complex

hyperbolic space with its ideal boundary is nothing but taking the topological

closure of Dn(C) with respect to the canonical topology of Cn.

In the first place we show that a circle y with curvature k ―k{x) and

complex torsion t is horocyclic. The circle y with y(Q) = z, y(0) = u and

(Vsy(s))s=o = kv ^s expressed as

y(s)= tt((2+ s*)/2 -Z + SU+ {s1/2)v), if t = 0,

y(s)= n(e±is{l + is)z + se±isu), if x = ±1,



＼＼bJu+ k{x)v＼＼2= b2- 2bk(x)■x + k{x)2= {2b2 + I)2,

so that w is a unit vector.Obviously <w, m> = 0, which guarantees that every

geodesic p going to the point (Ooy)(oo) crosses y orthogonally.

We here interpretk(x) in terms of sectionalcurvatures.

Let

with

yields

and

that w ―

k(z)-x =

|Riem(w, w)＼,where w = (bJu + k{x)v)/{2h2 + 1), b = -sga(r)^J(k(x)2 - l)/3 and

Riem(w,w) is thesectionalcurvatureof a planespannedby u,w.

Proof. The curvaturetensorR of CHn(―4) is as follows:

R(X, Y)Z =-≪Y,Z}X - <X,Z>Y + <JY,Z}JX - </Z,Z}JY + 2<X, JY)JZ)

Proposition 5.

t(-1 < t < 1) and

y be a circle with curvarure k, complex torsion

the associated initial vectors u, v. Then k(x) =

y(s)

where h =

get that y

(2.1)

= n(w

Global behaviours of circles

[{(1 - h2)e-2bis - (1 + W2)ebis + 3hi(2b2 + l)sebis}z

+ {-2be~2bis + {2b + 3b2is)ebis}Ju

+ k{e~2bis + (-1 + 3bis)ebis}v] j, if t * 0, ± 1

39

-sgn(i)y (&(t)2- l)/3, which Is nonzero when t ^ 0. We therefore

has a singlepoint at infinity;

( >oy)(oo) = O o y( ―oo) =
n2b2 + l)zj + biuj+ kvj＼

＼(2b2+ l)z0 + biuQ + ^oA<y<≪

for any t. We now show that every geodesic p going to the point (<Doy)(oo)

crosses y orthogonally. One can easily find that the geodesic p in CHn which is

parametrized by its arc length satisfying p(0) = z and p(0) = w is expressed as:

p(s) = n(z ■cosh s + w ･ sinns).

Then

(Oop)(oo) =
(zj + wj)

The condition ( >o p)(oo) = (O o y)(oo), together with (2.1),

(bJu + k{x)v)/{2b2 + 1). Since b = -sga(r)J(k(x)2 - l)/3

b3 - {k{tf - l)h (recall(1.4)), we have
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for allvector fieldsX, Y and Z. Hence we have

Riem(M, w) = -4b2 + %bk(x)x - k{xf{＼+ 3t2),

which, together with k{x)･ x ―b3 ―(k(x)2―l)b, yieldsthe conclusion.

In the second place we show that a circley with curvature k < k{x) and

complex torsion x has two distinctpoints at infinity.The circle y with

y(0)= z,y(0) = u and (V^s))_=o = kv is expressed corresponding to x as:

y(s)=n(
1

k

(-k2 + cosWl - k2s) ■z +

1

vT^F
sinhVl ― k2s ■u

+
k ＼

-―r^ (-1 + coshv 1 - k2s) -v), if t = 0 and k < 1,
1 ―k )

.
/exp( ± Ms)

y(s) = 7d v^_==l
＼ V 4 - k2

{(ki ■sinhV4 - k2s + s/A - k2cosh-s/4 - k2s)z

+ smhy/4 - k2s ■u} 1, if t = + 1 and k < 2,

y(s)
H(a-/W-≪5)(<5-a) [{{P - d)(fiS + l)e≪s+ (d- oc)(ad + l)e^s

+ (a - p)(afi + l)eSs}z + {a(£ - ≪V + P(& - a)^ + 8(*
~

P)>

+ k{{p - 5)e0ls+ (≪5- a)e?s + (a - P)eSs}v]

if t #0, ±1 andk<k(r).

)

Here a = ai, ft= h + ig and 5 = ―h + ig {h > 0) are distinct solutions for the

equation (1.5). Now we remark that for any t(―1 < t < 1) we have

and

(#oy)(oo)= (
(aS + l)zj + puj + kvj＼

(ad + l)z0 + J?≪0+ ^O/l< j<n

(O o y)(―oo) = -^- ― ―1
m } l(aj?+l)zo

+ ^ + Wi</<N

Of course the numbers a, ft and y in the above expressions of ( >oy)(oo) and

( >oy)(―oo) are distinctsolutions for (1.5). However, in case that t = 0, ±1,
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in particular we set a, /? and 3 as follows; When x = 0, a ―0 and

p = -d = Vl - k2. When t = ± 1, a = ±ki, j3= (±ki + V4 - k2)/2 and

S = (±ki-V4-k2)/2.

If we suppose that (O o y)(oo) = (O o y)(-oo), then for 1 <j <n

(2.2) (1 - u2)(ujZo - zjuo) + ka(vjZQ - ZjVq) + k(ujVQ - VjUq) = 0.

Multiplying both hand sides of (2.2) by zj and summing up with respect to j, we

obtain from <z, z> = -1 and <z,≪> = <CZ>^ ― 0 that

(2.3) (1 - a2)uo + akv0 = 0.

Similarly multiplying both sides of (2.2) by Uj or Vj and summing up, we get with

^u, vy = i(u,Jv} = h that

(2.4) {(1 - a2)z0 + kv0} - kh(az0 - u0) - 0.

(2.5) {(1 - a2)z0 + kvo}h + k{az0 - uQ) = 0.

When a = 0, that is x = 0, we have from (2.3), (2.4) and (2.5) that

uq = y0 = zq = 0. When x ― ±1, that is u = +/≪ and a = ±ki, we find from

(2.4) that zq ―0. But we emphasize that z$ # 0, because <^z,z^ = ―1. When

t # 0, ±1, we know that a # 0. It follows from (2.4) and (2.5) that

(1 ―oc2)zq+ kvQ ― 0 and mq = &zo = 0- These imply that

(ocd+ l)zo + M> + Ary0= (a/2+ l)zo + <S^o+ A:uo= 0.

This, together with the expressions of ( >oy)(oo) and ( >o y)(―oo), shows that

(ad + l)z7-+ % + kvj = (a)S4-l)z,-+ H + H" = °-

Hence ≪,= cczjfor 1 <y < n, so that u = <xv.In any case we have a contradiction.

We therefore get (O o y)(oo) # ( >o y)(-a)), and conclude the assertion of

Theorem 2.
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