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COUNTING ARGUMENTS FOR HOPF ALGEBRAS OF

LOW DIMENSION

By

Nicolas Andruskiewitsch and Sonia Natale

Abstract. Let k be an algebraically closed field of characteristic0.

We show that all Hopf algebras of dimension 15, 21 or 35 over k

are necessarily semisimple. We also prove that Hopf algebras of

dimension 25 or 49 are either semisimple or pointed. This concludes

the full classificationof Hopf algebras of the above mentioned

dimensions. We also classify pointed Hopf algebras of dimension

pq2, where p =£q are prime numbers, and semisimple Hopf algebras

of dimension 45.

§0. Introduction

In the last years there has been an intense activityin classificationproblems

of finitedimensional Hopf algebras over an algebraically closed fieldk of char-

acteristic0. Many resultshave been found, containing mainly the semisimple case

and the pointed non-semisimple case. The question of classifyingall Hopf algebras

of a fixed dimension, posed by I. Kaplansky in 1975, was solved in the Ph. D.

thesis of R. Williams for dimension < 11 [W]. An alternativeproof of thisresult

appears in [SI]. Apart from these, the complete classificationis known only when

the dimension is a prime number p; in this case there is only one isomorphism

type, represented by the group algebra of the cyclic group of order p [Z].

In this paper we develope some ideas about the coradical nitration of a finite

dimensional Hopf algebra, starting from a description that appears in an un-

published work of W. Nichols. These allow us to prove the following Theorem.
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Theorem 0.1. (a). A Hopf algebra of dimension 15 or 35 is semisimple and

isomorphic to the group algebra of a cyclic group.

(b). A Hopf algebra of dimension 21 is semisimple and isomorphic to either

k.Z/(21), kG or kG, where G is the only {up to isomorphisms) non-abelian group of

order 21.

(c). Let H be a Hopf algebra of dimension m2, where m = 5 or 7'.Then H is

either semisimple or pointed. Thus H is isomorphic to kZ/(m2) or kZ/(m) c

Z/(m), if H is semisimple; or to a Taft algebra T{£)~ T(£)*, where £ is a

primitive m-th. root of unity, if H is pointed.

Let £be a primitive m-th. root of unity. We recall that the Taft algebra T(£)

is defined as the algebra on two generators x and g, satisfying the relations

y = 0, gm = ＼, gx = £xg.

The Hopf algebra structure in T(£) is determined by

&{g) = gRg, A{x) = i(g>x + xRg,

e(*)=0, e(g) = ＼,

<f{g)=g-＼ #'(x) = -xg-1.

It is known that T(E) is a pointed non-semisimple Hopf algebra of dimension m2

whose proper Hopf subalgebras are semisimple and contained in k<g>. Also, we

have r(£) ^ T{£)* and T(£)~ T{?) if and only if £= f.

The paper is organized as follows: in §1 we give a proof of the results of

Nichols on the coradical filtrationand a series of consequences of them. In

section 2 we present some resultson the possibilitiesfor the dimensions of certain

terms of the coradical filtration.We devote section 3 to prove Theorem 0.1 using

the methods described in the previous sections.

We include an Appendix where we present the classificationof pointed Hopf

algebras of dimension pq2, where p ＼=q are prime numbers; we use for this

the "Lifting principle" from [AS2]. We also prove here that a semisimple Hopf

algebra of dimension 45 is necessarily trivial.

Our references for the theory of Hopf algebras are [Sw], [Mo], [Sch]. The

notation for Hopf algebras is standard: A, ^,6, denote respectively the comul-

tiplication,the antipode, the counit; we use Sweedler notation but dropping the

summation symbol. Throughout k denotes an algebraically closed field of char-

acteristiczero.
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§1. Remarks on the Coradlcal Filtration

Let C be a coalgebra over k. We denote by C the setof isomorphism types

of simpleleftC-comodules and by G{C) the setof group-likeelementsin C. We

shallconsider the coradicalfiltrationof C.

Co c C＼ <=･･･;

so that Co is the coradical of C. We have Co ^ Rrec^T> where CT is a simple

subcoalgebra of dimension d^, dr e Z. It is convenient to introduce the notation

C<w := Q CT;

zeC:dr=d

for instance Co,1 = kG(C) and Co,2 is the sum of all 4-dimensional simple sub-

coalgebras of C.

We have Cn = ((JacC*)"+1)±, n > 0, where JacC* denotes the Jacobson

radical of C* and for any subspace V of C*, F1 c C is the anihilator of F in C,

i.e., V1 = {ceC: <u,c> = 0, Vu e F}. See [Mo, 5.2.9].

We shall denote by FT (resp., V*) the simple left (resp. right) C-comodule

corresponding to xeC. As usual, for g,he G(C), ^,/,(C) denotes the space of

(a.h)-skew primitive elements of C:

■%AQ :={xeC: A(x) = xRg + hRx};

a skew primitive element ie^(C) will be called trivialif it belongs to the

linear span of g ―h.

By a Co-bicomodule we understand a vector space endowed with left and

right Co-coactions pL: M ―>Co R M and pR: M ―>･M R Co such that (/>L(g)id)/?^

= (idRPr)Pl- ^ny Co-bicomodule is a direct sum of simple Co-sub-bicomodules

and a simple Co-bicomodule is of the form VT R ^* and has dimension ^^ for

some t^gC. If Mis a Co-bicomodule, we set MT^ for the isotypic component

of type Vz R V;.

We want to state a description of the coradical filtrationdue to Nichols, see

[W]. Let C be a coalgebra; then its coradical is coseparable because k is alge-

braically closed. By [Mo, Th. 5.4.2]there existsa coalgebra projection n of C onto

Co; let / := ker7r. Then C is a Co-bicomodule via pT := (n R id)A : C ―>･Co R C
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and pR := (id (g>n)A : C ―>C R Co. Clearly, / and Cn, n > 0, are sub-bicomodules

of C. Let PM be the sequence of subspaces dej&ned recursively by

^0 = 0,

Pi = {x e C : A(x) = pL{x) + pR(x)} = A~l(Co (g)/ + / <g>Co),

Pn = xeC:A(x)-pL(x)-pR{x)e ^

1</<≪-!

Lemma 1.1 (W. Nichols). Pn = C ≫n/.

Pi R Pn-i n>2.

Proof. By induction on n, the case n = 0 being trivial.The inclusion Pn <=

CnC＼I follows from the induction hypothesis: indeed, clearly Pn ^ Cn and if

x e Pn then

A(*) = (n <g)id)A(x) + (id (g)n)A{x) + ^ xt R x≪_/)

for some x, e Pt, 1 < i < n ― 1. Applying nRn, we obtain

A(7t(jc)) = (n <g>7t)A(jc) = (ttR 7t)A(x) + (7t(g)7t)A(x) = 2(tt R 7r)A(x),

since by induction P(- = Q fl/ ^ /, for all / = 1,..., n ― 1. Hence, (n R ^)A(x) = 0

and tt(x) = 0; so that x e CnC＼I.

Conversely, let xeCnfl/. Then A(x) = J2o<i<nx' R ^ w^tn x' G ^> ^z G

CM_,-.It is clear that C,-= Co c (Q D/); accordingly we write x,-= jc,-5o+ x,-!+ with

X, neCn, X; + e C fl / and similarly for the v.-'s.It follows that

&(x) -pL(x) -pR{x) = J2 xh+Ryi,+ -

0<i<n 0</<≪

but the term J2i<i<n-＼ x',oR Ao *s R since x e I. Hence x e Pn by induction. □

Observe that Lemma 1.1 implies that Pn is a Co-sub-bicomodule of /, for all

n > 0. The following Lemma relatesthe structure of P＼ with the firstterm of the

coradical filtrationof C.

Lemma 1.2 (W. Nichols). The first term of the coradical filtration can be

expressed as C＼ = ^ CT a C^ and CT a Cm = Cz c C≪c i31/""(o≪/yowe 5/m/>/e

coalqebra if x = u).

We stress that P,T""is not intrinsic since it depends on the projection n
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Proof. Clearly if = {x e Px: A(x) e CT R C + C <g)C^} c CT a C^ c q . By

Lemma 1.1,Q = Co cP{ = (cr CT)0 (c^if) £Er,^ ^T a Cm. The claim

follows. n

Assume in what follows that C = H is a finitedimensional Hopf algebra.

Then Sf{Cx) is a simple subcoalgebra which we denote by Cxd＼if g e G(H)

then g.CT and CT.g are alsosimple subcoalgebraswhich we denote by Cg,z,CT,g

respectively.

Corollary 1.3. dim if = dim if"'1" = dim if w = dimif "* for any

geG(H).

Proof. As ^(Ct a Cm) = C * a Crd, g.(CT a Q) = Cg.ra Q , and (CT a C≪).^

t.oa Cu.a, the claim follows from Lemma 1.2. □

Corollary 1.4. If I is a direct sum of one-dimensional Ho-sub-hicomodules

then Hl=H0 + Zg,heG(H) PoAH). □

Consider the right action <―: H* (x)H ―> H* given by a '―h = <ai,/*>a2,

VheH, oleH*.

Let J e if * be a non-zero left integral and let go e G(H) be the distinguished

group-like element, so that

<x
j=<a,l>j

and
ja

= <a,0O>J, VaeiT.

We shall assume in what follows that H is not cosemisimple, or equivalently,

that < J, 1 > = 0; in particular J2 = 0 and if g e G(H), also (J ― ^)2 = f <- g = 0.

Observe that if C # kl is a simple subcoalgebra of H, and if c e C, then

tf--<M ci eCflkl

whence J|c = 0, i.e.,J belongs to the anihilator of Ho, Hq = Jaci/*.

Let g G(H). Since the left(and right) multiplication by g is a coalgebra

automorphism of H, it preserves Ho. This implies that also J ^―g belongs to

Jacif*.

Also, for all txe H*, we have

"
(I

^9

＼ r / r ＼ r

J = <a,gf-!> ― gf, and f U- gfJa - (a,g-lg0) ― ^
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Hence k(J *― g) is a two-sided ideal of H* and k(J -"―#)£ JaciJ*. Moreover,

since distinct group-like elements are linearly independent and the map H -≫H*,

h^> J ^- /?,is injective, the ideals k( J ^- gf) and k( J "― gf') are distinct if g ^ gf'.

Lemma 1.5. Let H be a non-cosemisimple finitedimensional Hopf algebra. Let

L = (J <―kG(H))1. Then L c= H is a subcoalgebra of H containing Hq and there

is an Ho-bicomodule decomposition

H = L@@Ij,

7=1

where s = ＼G(H)＼and L are one-dimensional Ho-sub-bicomodules of I, V/ = 1,...,s.

Proof. Call Lg := ker J <―g ^ H. Then MgeG(H), Lg is a subcoalgebra

of H of codimension 1 containing Hq. Also, Ls # L^ if gf^ g*'.Index (/(//) in

the form G(H) = {1 = g＼,...,#,$},where ^ = |G(i/)|, and write Lj := L0;. Denote

also by L^ := Oi</<y Li- Then l0) is a subcoalgebra of // and Ho £ L^), V/.In

particular,(L(^)o = i/0, and L^ = HO@IU＼ where /(≫= ker7r|L(;).This gives

a descending chain of i/o-sub-bicomodules

j(s)c J^"1) c ... c /(!)c /,

such that cod3m(lV＼lV-V) = 1, for allj=＼,.. .:s, where /(°)= /. Hence, there

exist one-dimensional i/o-sub-bicomodules Ij, j = 1,... ,s, such that I^~^ ―

IU) c L. We thus obtain

H= (＼-kG(H)) 0 Qlj,

as claimed. □

Combining Lemma 1.5 with Corollary 1.4, we obtain

Corollary 1.6. Let H be a non-cosemisimple finite dimensional Hopf

algebra. Suppose that dim// ―dimi/o = ＼G{H)＼.Then SPg^ =2 k(g ―h), for some

g,heG(H).
'

□

Lemma 1.7. Let H be a non-cosemisimple finite dimensional Hopf algebra.

(i). Suppose that 0>9ih=k(g - h), for all g,heG{H). Then J ― kG(i7) s

(JacH*)2. In particular, ＼G{H)＼< dimH - dimH{.

(ii).If H＼ = H then H has a non-trivialskew primitive element.
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Note that part (ii)of the Lemma above implies, since H is finitedimensional,

that if H = Hi then G{H) is non-trivial.

Proof, (i).Suppose that J <―kG(H) is not contained in (Jac//*)2. Then

<J, i/i>7^0. In the notation of Lemma 1.5, this implies that I＼ is an Hq-

sub-bicomodule of H＼ H /, which in turn implies the claim.

(ii).Suppose that H＼=H. Then the subcomodules Ij in Lemma 1.5 are

necessarily contained in P＼, and thus spanned by non-trivial skew primitive

elements of H. □

Let M and N be non-negative integers such that M divides N and let £e kx

be a primitive M-th. root of unity. Consider the algebra K^N^), generated by

elements x and g with relations

xM = fi(l-gM), gN = l, gx = £xg,

where //= 0, if M ― N, and //e {0,1}, if M ^ A''.The formulas

&{g) = gRg, A(x) = ＼Rx + xRg,

e(x)=0, s(g) = l,

Se{g)=g-＼ Se(x) = -xg-＼

determine a Hopf algebra structurein K^N,^). It follows from [AS2, Thm. 5.5]

that the dimension of K^N,R is MN. If M = N, then KM(N,£) ~ T{£), where

T(£) is the Taft algebra corresponding to £.

Note that k<^M> is a central Hopf subalgebra of KM(N,£) and there is a

short exact sequence of Hopf algebras 0 ―>k<#M> ―>K^N,^) ―>T(£) ―>･1.

Also, K^N,^) is a non-semisimple pointed Hopf algebra over k, whose

coradical filtrationis

Ku
0<i<N-l

Wx", 0<w<M-l.

Variations of the following Proposition appear in [N], [AS1], [S2]

Proposition 1.8. Let H be a non-semisimple finitedimensional Hopf algebra

over k. Suppose that k(g ―h) £ &g,h->for some g,he G(H). Then H contains a

Hopf subalgebra K isomorphic to K^N, £),for some root of unity £ek, and some

A*6 {0,1}.

In particular,if dim H is free of squares, then H does not contain non-trivial

skew primitive elements.
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Proof. We may assume that k(g - 1) £ ^i, for some 1 # g e G(H). Thus,

the cyclic group T ― <#> acts on ^ i by conjugation and there exists a character

/ef and a non-zero ie^i ―kG(H) such that gxg"1 =/(gf)x.

The subalgebra A^ := k<g,jt> of i/ is hence a Hopf subalgebra satisfying

(*) A(g)=gRg, A(x) = x <g)g + 1 <g>x, gx = £xg,

where £= /(#). Moreover, £is a root of unity in k and £± 1, since otherwise, £

would be a commutative Hopf subalgebra of H not contained in the coradical of

H, which is not possible. Let M be the order of £ and let N be the order of g, so

that M divides N.

The relations in (*), together with the quantum binomial formula, imply that

A(xM) =xMRgM + l RxM and gMxM = xMgM. Thus the subalgebra k<grM, jcm>

is a commutative Hopf subalgebra and therefore it is contained in H$. It then

follows that xM = yu(l ― gM); if M = N we may take fi = 0, while if // # 0 and

M^iV, we can normalize x so that //= 1. We have then a Hopf algebra surjection

p:K,{N,£)^K.

By choice of TV, the restriction of p to the coradical of KM(N,£) is injective;

since x ^ 0, it is not difficult to show that the restriction of p to KM(N, £)＼is also

injective. Hence p is injective [Mo].

The last part of the Proposition follows from [NZ1. □

§2. Some General Results

In this section we give some results on the possible dimensions of the terms

of the coradical filtrationof a finitedimensional Hopf algebra H.

Lemma 2.1. (i).The order of G(H) divides the dimension of Hn, n > 0 and

of HOtd, d>＼.

(ii).If H is neither pointed nor semisimple, then dim H ―|G(H) ＼> 6. If

moreover ＼G(H)＼> 1 is odd, then dimH - ＼G(H)＼> 11.

Proof, (i).All the Hn, as well as the H0,d, are left (kG(H),H)-Hopf

modules by means of the comultiplication of H and the left multiplication by

elements of G(H). Hence [NZ] applies.

(ii).We have dim if > dimif0 = 1^(^)1 + J2d>2dimHo,d > ＼G{H)＼. That

is, ＼G(H)＼< |G(H)| + 4 < dimH. The case of codimension 5 is discarded by

Lemma 2.2 below. If ＼G{H)＼is odd and #0,2 # 0 then dim//0,2 > 4＼G{H)＼> 12.

This implies the second claim: indeed, we have now ＼G(H)＼< ＼G(H)＼+ 9 <

dimH and the case of codimension 10 follows again by Lemma 2.2. □
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Lemma 2.2 [SI]. If H is not cosemisimple, dimi/o + 1 < dim//.

We give an alternative proof that uses Lemma 1.5.

Proof. Suppose that H is not cosemisimple and dim Hq + 1 = dim H; in

particular, H = H＼. By Lemma 1.7-(ii),H contains a non-trivial skew primitive

element and a fortioria non-trivialgroup-like element g, since it is finitedimen-

sional. By Lemma 2.1-(i),the order of g divides both dimi/o and dim//. This is

a contradiction that finishesthe proof of the Lemma. □

Remark. The preceeding Lemma can be proved without using [NZ], as

follows: suppose that dim Hq + 1 = dim H. Write H ― Hq c / as in§1, where /is

the kernel of the coalgebra projection H ―>･Hq. Since / is coideal in H, A/ c

I RH + H RI. On the other hand, since clearly H = H＼, AI ^H0RH +

H <g)Hq. Thus, A/ c Hq (g)/ + / (g)Hq. Writting I = kx, xe I, we have

A(x) =xRZ? + aRx,

for some a,b e Hq. Let 0 ^ J e //* be a left integral in H*. Then we have

< J,ifo> = 0. We may assume that < J,x> = 1.

Let now a e //*, so that a J = <a, 1> J and J a = <a, g0} J, where go e H is

the distinguished group-like element. Specializing in x, we have

and

<a,a> = ■I")

<M> =

<≪,!><H

(H-

= <a

<<*,0o>

1>

Hence a = 1, b = g0 and A(x) = 1 R x + x (g>gf0-Also, go
7^

1 since 7/ is finite

dimensional and the characteristicof k is zero.

Now write gox = y + tx, where y e Ho and te k. So that A(go*) = A_y+

?(l(x)x+ xRgfo) and on the other hand, A(go*) = A(^0)A(x) = goRgox + goxRgl-

This implies that

Aj = gf0R ^0^ + ^0^ R g＼- t{＼R X + X (g)g(0)

= ^0 07 + 7R^ + f(9oR x + x R gl - I R x - x R g0).

But A,y£Ho R Ho, then r = 0.

Thus gox = y e Hq and since left multiplication by g^x is a coalgebra auto-

morphism of H, g^1 Hq = Ho',in particular x = gnlgox e Hq which is an absurd.
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Lemma 2.3. (i).Let Pn be as in §1. Then Hn = H0@Pn and ＼G(H)＼divides

dimPn, Vn.

(ii).Suppose that H does not contain any non-trivialskew primitive element.

Suppose that any simple subcoalgebra of H has dimension 1 or n2, where n > 1 is a

fixed integer. Then n divides dim Pi.

If moreover every irreducible H^-sub-bicomodule of P＼ has dimension n, then

n＼G(H)＼divides dim Pi.

The assumption that H does not contain any non-trivial skew primitive

element is fulfilled,for instance, if either dim H is free of squares (by Proposition

1.8) or dim// = p2, p prime, and H is not pointed.

Proof. Part (i) is an easy but useful consequence of Lemma 2.1.

If H does not contain any non-trivialskew primitive element, then any simple

i/o-sub-bicomodule of P＼ has dimension n or n2, whence n divides dim Pi. If any

such sub-bicomodule has dimension n, then Corollary 1.3 implies that n＼G(H)＼

divides dim Pi. Hence part (ii)follows. □

Lemma 2.4. If H is pointed non-semisimple then dim// is divisibleby p2 for

some prime number p.

Proof. This follows at once from the Theorem of Taft-Wilson (see e.g.

[Mo, 5.4.1])and Proposition 1.8. □

Lemma 2.5 [Z]. If H is not semisimple and dim//" is odd, then either G(H) or

G(H*) is non-trivial.

Proof. Since the dimension of H is odd, Radford's formula for y4 implies

that H and H* can not be both unimodular; thisimplies the Lemma. See e.g.

[Sch], [AS1, Lemma 2.2]. □

Lemma 2.6. (i).Let H be a non-cosemisimple Hopf algebra whose dimension

is not divisibleby 4. Then H＼ ^ H.

(ii).Let H be a non-cosemisimple non-pointed Hopf algebra of dimension 3r,

where r is an integer not divisibleby 4. Then the order of G(H) is not equal to r.

Proof, (i).Assume that H＼ = H. By Lemma 1.7,H has a non-trivialskew-

primitive element. Therefore H contains a Hopf subalgebra K, of dimension NM,
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as in Proposition 1.8, where M and tV are integers such that M divides N. Now,

K＼ = KC＼Hi = K by [Mo, 5.2.12].Then, since the coradical filtrationof K has

M terms, we have M = 2 and 4 divides dim H, which is a contradiction.

(ii).Assume that the order of G{H) equals r. By assumption and using

Lemma 2.1, we find that dim//o = 2r and H = H＼. Now (i) applies. D

§3. Proof of Theorem 0.1

The proof of Theorem 0.1 will be carried out case by case. We will need the

following Lemma.

Lemma 3.1. Let p and q be prime numbers and let H be a Hopf algebra of

dimension pq over k.

(i).[EG], [GW], [Ma]. If H is semisimple, then H is either commutative or

cocommutative.

(ii).If p = q and H is pointed non-semisimple, then H is isomorphic to a Toft

algebra T{E), for some primitive p-th. root of unity £,e k. □

An alternative proof of part (i) of Lemma 3.1,in the case where p and q

are distinct odd prime numbers, is given in [Na]. Part (ii) has been found

independently by W. Nichols, W. Chin, D. Stefan and the firstauthor. See [AS1]

for a proof.

In what follows, H will denote a Hopf algebra of the prescribed dimension.

We shall assume that H is neither pointed nor cosemisimple. By Lemma 2.5, we

may also assume that G(H) # 1.

Dimension 15. By Lemma 2.6-(ii),＼G(H)＼# 5. Assume that ＼G(H)＼= 3.

Since dim Ho ―3 should be a sum of squares greater than 1, we discard all

the possibilitiesexcept dimi/o = 12. In this case, H＼ = H and this contradicts

Lemma 2.6-(i). □

Dimension 21. By Lemma 2.6, ＼G(H)＼# 7. If ＼G(H)＼= 3 then arguing as

for dimension 15, we eliminate all possibilitiesexcept dim//o = 12 or 15.

If ＼G{H)＼= 3 and dimi/0 = 15 then dim Hi = 18, by Lemmas 2.1 and 2.6-(i).

Thus, dimP＼ = 3. But Ho is the direct sum of kG(H) and three simple coalgebras

of dimension 4. This contradicts Lemma (2.3)-(ii).

If G{H)＼ = 3 and dimi/0 = 12 then dimHx = 15 or 18, by Lemmas 2.1 and

2.6-(i).Then dim Pi = 3 or 6. But in this case, the simple subcoalgebras of H

have either dimension 1 or 9. Then Lemma 2.3-(ii)applies. □
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Dimension 25. We can assume that ＼G(H)＼= 5 and dimi/o = 10, 15 or

20; but neither 5 nor 10 nor 15 can be expressed as sums of squares greater

than 1. □

Dimension 35. ＼G(H)＼= 7 is not possible since 7 divides dim Ho, d for all d.

If ＼G(H)＼= 5 then arguing as for 15 we eliminate all the cases except dim/fo

= 25. Necessarily, dimi^i = 30, dim Pi = 5 and Ho is a direct sum of 1- or 4-

dimensional simple coalgebras. Hence Lemma 2.3-(ii)applies. □

Dimension 49. We reduce by analogous considerations as above to the

case ＼G(H)＼=7, dimi/o = 35 and Ho is the direct sum of kG(H) and seven

4-dimensional simple coalgebras. By Lemma 1.5, dim H＼ =42; hence P＼ has

dimension 7. Now Lemma 2.3-(ii)applies again. □

Appendix

In this section, we classifyHopf algebras under some additional hypothesis.

Let p and q be different prime numbers. Let j = 1 or pr, 1 < r < q ―1 and

let ju― 0 or 1, such that ＼i= 0 when j ^ 1. Let w be a root of 1 such that the

order of co is q if j = 1, and q divides the order of co if j # 1. Let srf(co,j,n)be

the algebra generated by elements g and x with relations

gn = l, x≪=ii{＼-g% gx = coxg.

Then s^(co,j,pi)is a pointed Hopf algebra over k, where the comultiplication is

defined by

A(g)=g(g)g, A(x) = x R 1 + gj R x.

Lemma A.I. Let p and q be different prime numbers. Let H be a pointed non-

semisimple Hopf algebra of dimension pq2. Then G(H) is a cyclic group of order

pq and H is isomorphic to exactly one of the Hopf algebras in the following list:

(i) ^/(t, 1,0), t a primitive q-th. root of 1.

(ii) s/(r, 1,1), t a primitive q-th. root of 1.

(iii) stf(co,pr,0), 1 < r < q ― 1, where co is a fixed primitive pq-th. root of 1.

(iv) stf(z,p,0) ~ T(t) RkZ/p, where t is a primitive q-th. root of 1.

Conversely, all the Hopf algebras in the list have dimension pq2.

That is, there are 4(q ― I) isomorphism classes of pointed Hopf algebras of

dimension pq2 over k.
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Proof. It follows from [AS2, Thm. 5.5] that the Hopf algebras in the list

have dimension pq2.

Suppose now that H is a pointed non-semisimple Hopf algebra of dimension

pq1. We shall apply the liftingprinciple in [AS2]. First, ＼G(H)＼# q, resp. p by

[AS3, Th. 1.3],for q, resp. p, odd, or [N, Th. 4.2.1]for q = 2; respectively,p = 2.

Assume now that ＼G(H)＼=q2. By [AS1, Prop. 3.1] q3 divides dimH, which is

impossible.

Assume finallythat ＼G(H)＼= pq. Let R be the diagram of if as in [AS2]; R is

a braided Hopf algebra in the category of Yetter-Drinfeld modules over G{H) of

dimension q.

By the Taft-Wilson Theorem, there exists0 ^ x e &＼,U{H) - kG(H). We can

assume that uxu~{ = £x where £ is a root of 1 of order N. Then N2

divides dimH, so that N = q. This shows that R = k<x>, being x the class of x in

gr H (see [AS2]), because both have the same dimension q. This implies in turn

that u is central and hence that G{H) is abelian and cyclic.It follows now readily

that H is generated by g and x, where g is a group-like of order pq, x is a (≪,1)

skew primitive and gxg~x ―x(g)x, X a character of the cyclic group generated by

g and £= x{u) has order q. Looking at the differentpossibilitiesfor the orders of

u and y, we see that H is isomorphic to either of the Hopf algebras above. □

Remarks on the Hopf algebras in the list.(a). All the Hopf algebras in the list

can be presented as suitable extensions of Taft algebras and group algebras.

(b). It is not difficultto see that the dual of j/(t, 1,0) is isomorphic to a

Hopf algebra of type (iii).

(c). The Hopf algebra 0t{x) := (s/(z, 1,1))* is not pointed, cf. [Ra]. More

precisely,it is shown in loc. cit.that the coalgebra structure of M{x) is Tx c

Cq c Cq c ･･■c Cq, p-＼ divQct summands Cq ~ Mq(k)*.

All known examples of non-semisimple Hopf algebras of dimension pq2 over

k are either pointed or else dual of pointed Hopf algebras. The following Lemma

gives insight into this question.

Lemma A.2. Let p and q be differentprime numbers. Let H be a non-

semisimple Hopf algebra of dimension pq1. Suppose that the coradicalof H is a

Honf subalaebra. Then H is pointed.

Proof. Suppose on the contrary that H$ is not a group algebra. Then

necessarilyHq ~kF as Hopf algebras,where F is the unique (up to isomor-

phisms) non-abelian exoup of order pa. Consider the coradicalfiltrationof H.
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The associated graded coalgebra grH is a Hopf algebra whose coradical is

isomorphic to kF. Moreover, grH is isomorphic to a byproduct grH = R#kF,

where R is a braided Hopf algebra over kF. Then (gvH)* is a non-semisimple

Hopf algebra of dimension pq2 and (grH)* ~ R*$kF. Hence, (gr/f)* is a pointed

Hopf algebra of dimension pq2. This contradicts Lemma A.I. □

Lemma A.3. A semisimple Hopf algebra H of order 45 is necessarily trivial.

Proof. From the decomposition of H into simple subcoalgebras and [NR],

we read 45 = ＼G(H)＼ + J2%3 njj2- Then G(H) is non-trivial, by an easy calculation.

The case ＼G(H)＼ = 5 is also impossible; for, 5 should divide n^, n$ and ≪6 by

Lemma 2.1. So all these numbers should be 0; but then 25 should divide 40, a

contradiction. We discard similarly the cases ＼G(H)＼ = 3 or 15. Let us finally

assume that ＼G(H)＼ = ＼G(H*)＼ = 9. Let X e kG(H) be a normalized integral; then

X is an idempotent in R(H*), hence X = A + Yliei where A is a normalized

integral and the et's are primitive idempotents in R(H*). Hence HX = kAR

(@;//e/). Taking dimensions and using that HX is the representation induced

from the trivial representation of kG(H), we see that 5=1 + ^dim/fe;-. But

dim. Hei divides 45 by the class equation so it is either 1 or 3. Therefore at least

one of the dim He, is 1; but then there exists a non-trivial central group-like element

in H*, see e.g. [Sch, Lemma 4.14] and H is an extension of Hopf algebras. By

[Na], H is trivial. □
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